CMA-ES	VD-CMA	Experiment	Conclusion

A linear time natural gradient algorithm for black-box optimization in high dimension

Youhei Akimoto¹ Anne Auger² Nikolaus Hansen²

¹Shinshu University, Japan ²INRIA - Research Center Saclay, France

PGMO-COPI'14, Paris-Saclay, France, Oct. 28-31, 2014

Black-Box Optimization in High Dimension

In Black-Box Optimization,

- no priori knowledge about the problem; The objective function may be nonsmooth, nonconvex, discontinous, rugged.
- *f*-evaluation is computationally expensive; it typically requires a simulation. Therefore, the objective is to minimize the number of *f*-evaluations.
- ► in high dimension, the internal time/space complexity of a search algorithm can be the bottleneck; e.g., (d: number of variables)
 - ► O(d) for f-call
 - $O(d^2)$ for internal time/space complexity of a search algorithm

Objective: A linear time/space algorithm for black-box optimization in high dimension.

Covariance Matrix Adaptation Evolution Strategy

The CMA-ES¹ is a quasi parameter free and stochastic black-box continuous optimization algorithm.

- Candidates $(x_i^{(t)})_{i=1,...,\lambda}$ are drawn from $\mathcal{N}(\mathbf{m}^{(t)}, (\sigma^{(t)})^2 \mathbf{C}^{(t)})$.
- Sort $(x_i^{(t)})_{i=1,...,\lambda}$ with respect to *f*-value.
- Update m^(t), σ^(t), and C^(t) using the sorted solutions (x_{i:λ})_{i=1,...,λ} according to two principle: Natural Gradient and Cumulation

Nikolaus Hansen and Anne Auger. "Principled Design of Continuous Stochastic Search: From Theory to Practice". In: Theory and Principled Methods for the Design of Metaheuristics. Ed. by Y Borenstein and A Moraglio. Springer, 2013. ISBN: 978-3-642-33205-0. URL: http://hal.inria.fr/hal-00808450/.

Invariance of the CMA-ES

- Invariant to strictly increasing map g of f; $f \sim g \circ f$
- Invariant to translation; $f(x) \sim f(x_0 + x)$
- Invariant to linear transformation; $f(x) \sim f(Ax)$
 - invariant to rotation of search space $x \mapsto Rx$ *R*: orthogonal
 - invariant to scaling of search space $x \mapsto Dx$ D: diagonal

CMA-ES	VD-CMA	Conclusion
000		

Computational Complexity

 $O(\lambda d^2)$ floating point (FP) multiplication + $O(d^2 + \lambda d)$ FP memory. ($\lambda \in o(d)$)

1. $\sqrt{\mathbf{C}^{(t)}} = \text{MATRIXSQRT}(\mathbf{C}^{(t)})$ (perform every $O(d/\lambda)$ iter.)

2.
$$z_i \sim \mathcal{N}(0, \mathbf{I})$$
 for $i = 1, ..., 2$

3.
$$x_i = \mathbf{m}^{(t)} + \sigma^{(t)} \sqrt{\mathbf{C}^{(t)}} z_i$$

4.
$$(x_{i:\lambda})_{i=1,...,\lambda} = \text{SortW.r.t.}^{f}((x_{i})_{i=1,...,\lambda})$$

5.
$$\mathbf{p}_{\mathbf{C}}^{(t+1)} = (1-c_c)\mathbf{p}_{\mathbf{C}}^{(t)} + \sqrt{c_c(2-c_c)/(\sum w_i^2)} \sum_{i=1}^{\lambda} w_i(x_{i:\lambda} - \mathbf{m}^{(t)})/\sigma^{(t)}$$

6. $\mathbf{p}_{\sigma}^{(t+1)} = (1-c_{\sigma})\mathbf{p}_{\sigma}^{(t)} + \sqrt{c_{\sigma}(2-c_{\sigma})/(\sum w_i^2)} \sum_{i=1}^{\lambda} w_i z_{i:\lambda}$
 $O(\lambda c_{\sigma})$

7.
$$\sigma^{(t+1)} = \sigma^{(t)} \exp(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|\mathbf{p}_{\sigma}^{(t+1)}\|}{\mathbb{E}[\|\mathcal{N}(\mathbf{0},\mathbf{I})\|]} - 1\right))$$

8.
$$\mathbf{m}^{(t+1)} = \mathbf{m}^{(t)} + \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{m}} l(\theta^{(t)}; x_{i:\lambda})$$

9.
$$\mathbf{C}^{(t+1)} = \mathbf{C}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$$

 $O(\lambda d^2)$

d)

Restricted Covariance Matrix

Restrict the covariance matrix to represent it with a linear number of parameter

- C = D, where D is diagonal \implies invariant to scaling of each coordinate $x \mapsto Dx$, not invariant to rotation
- $\mathbf{C} = \mathbf{I} + \mathbf{v}\mathbf{v}^{\mathrm{T}}$, where $\mathbf{v} \in \mathbb{R}^d$

 \implies invariant to rotation of the search space $x \mapsto Rx$, not invariant to scaling

Our restriction:

$$\mathbf{C} = \mathbf{D}(\mathbf{I} + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{D}$$

The parameter is $\theta = (\mathbf{m}, \sigma, \mathbf{v}, \mathbf{D}) \in \mathbb{R}^{3d+1}$.

Intr 0	roduction	CMA-ES 000	VD-CMA ○●○○○○○○	Experiment 0000	Conclusion o
R	Required	Modificati	on		
	O(d) sampling	from $\mathcal{N}(\mathbf{m}, \sigma \mathbf{D})$	$(+ \mathbf{v} \mathbf{v}^{T}) \mathbf{D})$ is required	d	
	1. $\sqrt{\mathbf{C}^{(t)}} = \mathbf{I}$	$MatrixSort(\mathbf{C}^{(t)})$	(perform	h every $O(d/\lambda)$ iter.)	$O(\lambda d^2)$
	2. $z_i \sim \mathcal{N}(0)$	(I) for $i = 1,, 2$	l		
	3. $x_i = \mathbf{m}^{(t)}$	$(\sigma^{(t)} + \sigma^{(t)} \sqrt{\mathbf{C}^{(t)}} z_i)$			
	4. $(x_{i:\lambda})_{i=1, j=1, j=1, j=1, j=1, j=1, j=1, j=1, j$	$,,\lambda = SORTW.R.T$	$f((x_i)_{i=1,,\lambda})$		
	5. $\mathbf{p}_{\mathbf{C}}^{(t+1)} = 0$	$(1-c_c)\mathbf{p}_{\mathbf{C}}^{(t)} + \sqrt{c_c}$	$\overline{(2-c_c)/(\sum w_i^2)}\sum_{i=1}^{\lambda}$	$w_i(x_{i:\lambda} - \mathbf{m}^{(t)}) / \sigma^{(t)}$	
	6. $\mathbf{p}_{\sigma}^{(t+1)} = 0$	$(1-c_{\sigma})\mathbf{p}_{\sigma}^{(t)} + \sqrt{c}$	$\frac{1}{c_{\sigma}(2-c_{\sigma})/(\sum w_i^2)} \sum_{i=1}^{\infty} \frac{1}{c_{\sigma}(2-c_{\sigma})/(\sum $	$\lambda_{i=1} w_i z_i: \lambda$	$O(\lambda d)$
	7. $\sigma^{(t+1)} =$	$\sigma^{(t)} \exp(\frac{c_{\sigma}}{d_{\sigma}}) (\frac{\ \mathbf{p}\ }{\mathbb{E}[\ \mathbf{p}\]})$	$\frac{\left\ \frac{\partial \sigma^{(t+1)}}{\sigma} \right\ }{\mathbf{V}(0,\mathbf{I}) \]} - 1))$		
	8. $\mathbf{m}^{(t+1)} =$	$\mathbf{m}^{(t)} + \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{n}}$	$\mathbf{m}^{l(\theta^{(t)}; x_{i:\lambda})}$		
1	O(d) update for	or \mathbf{v} and \mathbf{D} instea	d of C is required		- 2
	9. $C^{(t+1)} =$		~ ~ ~ (a(t)	(t) (t) $(t+1)$	$O(\lambda d^2)$
	$\mathbf{C}^{(t)} + c_{\mu}$	$\sum_{i=1}^{n} w_i \nabla_{\mathbf{C}} l(\theta^{(t)})$	$(x_{i:\lambda}) + c_1 \nabla_{\mathbf{C}} l(\theta^{(t)}); \mathbf{n}$	$\mathbf{n}^{(l)} + \sigma^{(l)} \mathbf{p}_{\mathbf{C}}^{(l+1)}$	

CMA-ES	VD-CMA	Experiment	Conclusion
	0000000		

Sampling in O(d)

O(d) sampling from $\mathcal{N}(\mathbf{m}, \sigma \mathbf{D}(\mathbf{I} + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{D})$

1.
$$z_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 for $i = 1, \dots, \lambda$

2.
$$y_i = z_i + (\sqrt{1 + \|\mathbf{v}\|^2 - 1})\langle z, \mathbf{v} \rangle \mathbf{v}$$

3.
$$x_i = \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{D}^{(t)} y_i$$

4.
$$(x_{i:\lambda})_{i=1,...,\lambda} = \text{SORTW.R.T.}^{f}((x_{i})_{i=1,...,\lambda})$$

5. $\mathbf{p}_{\mathbf{C}}^{(t+1)} = (1-c_{c})\mathbf{p}_{\mathbf{C}}^{(t)} + \sqrt{c_{c}(2-c_{c})/(\sum w_{i}^{2})} \sum_{i=1}^{\lambda} w_{i}(x_{i:\lambda}-\mathbf{m}^{(t)})/\sigma^{(t)}$
6. $\mathbf{p}_{\sigma}^{(t+1)} = (1-c_{\sigma})\mathbf{p}_{\sigma}^{(t)} + \sqrt{c_{\sigma}(2-c_{\sigma})/(\sum w_{i}^{2})} \sum_{i=1}^{\lambda} w_{i}z_{i:\lambda}$
7. $\sigma^{(t+1)} = \sigma^{(t)} \exp(\frac{c_{\sigma}}{d_{c}} (\frac{\|\mathbf{p}_{\sigma}^{(t+1)}\|}{\mathbb{E}[\|\mathcal{N}(\mathbf{0},\mathbf{I})\|]} - 1))$
8. $\mathbf{m}^{(t+1)} = \mathbf{m}^{(t)} + \sum_{i=1}^{\lambda} w_{i} \tilde{\nabla}_{\mathbf{m}} l(\theta^{(t)}; x_{i:\lambda})$

O(d) update for v and D instead of C is required

9.
$$\mathbf{C}^{(t+1)} = \mathbf{C}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)}$$

 $O(\lambda d)$

Update of v and D

CMA-ES:

 $\mathbf{C}^{(t+1)} = \mathbf{C}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$

Our approach:

 $\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{v}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{v}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$ $\mathbf{D}^{(t+1)} = \mathbf{D}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{D}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{D}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$

Update of v and D

CMA-ES:

 $\mathbf{C}^{(t+1)} = \mathbf{C}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{C}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$

Our approach:

$$\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{v}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{v}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$$

$$\mathbf{D}^{(t+1)} = \mathbf{D}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{D}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{D}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$$

CMA-ES	VD-CMA	Experiment	Conclusion
	0000000		

Natural Gradient: Definition

The Natural Gradient $\tilde{\nabla}_{g}(\theta)$ is the steepest direction of g w.r.t. KL divergence

$$KL(p_{\theta} \parallel p_{\theta'}) := \int \ln \frac{p_{\theta}(x)}{p_{\theta'}(x)} p_{\theta}(x) \mathrm{d}x \approx \frac{1}{2} (\theta' - \theta)^{\mathrm{T}} G_{\theta}(\theta' - \theta) ,$$

where G_{θ} is the Fisher information matrix

$$G_{\theta} = \int \nabla l(\theta; x) \nabla l(\theta; x)^{\mathrm{T}} p_{\theta}(x) \mathrm{d}x, \text{ where } l(\theta; x) = \ln(p_{\theta}(x)) .$$

The natural gradient $\tilde{\nabla}_g$ is given by

$$\tilde{\nabla}g(\theta) = \boldsymbol{G}_{\boldsymbol{\theta}}^{-1} \nabla g(\theta)$$

Natural Gradient Computation $\tilde{\nabla}l(\theta; x) = G_{\theta}^{-1} \nabla l(\theta; x)$

- In a naive way, it requires cubic time in the number of parameters
 - E.g., for Gaussian with full covariance matrix C, in which the number of parameters is $O(d^2)$, then G_{θ} is of dimension $O(d^2)$ and its inversion requires $O(d^6)$

For $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$ with $\theta = (\mathbf{m}, \mathbf{C}), \tilde{\nabla} l(\theta; x)$ has a closed form

$$\tilde{\nabla}l(\theta; x) = \begin{bmatrix} \tilde{\nabla}_{\mathbf{m}} l(\theta; x) \\ \tilde{\nabla}_{\mathbf{C}} l(\theta; x) \end{bmatrix} = \begin{bmatrix} x - \mathbf{m} \\ (x - \mathbf{m})(x - \mathbf{m})^{\mathrm{T}} / \sigma^{2} - \mathbf{C} \end{bmatrix}$$

and it requires only $O(d^2)$.

To compute the natural gradient for N(m, σ²D(I + vv^T)D) efficiently, we need to compute ∇˜l(θ; x) directly (without computing the inverse of Fisher)

Natural Gradient Computation $\tilde{\nabla}l(\theta; x) = G_{\theta}^{-1} \nabla l(\theta; x)$

- In a naive way, it requires cubic time in the number of parameters
 - E.g., for Gaussian with full covariance matrix C, in which the number of parameters is $O(d^2)$, then G_{θ} is of dimension $O(d^2)$ and its inversion requires $O(d^6)$

For $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$ with $\theta = (\mathbf{m}, \mathbf{C}), \, \tilde{\nabla} l(\theta; x)$ has a closed form

$$\tilde{\nabla}l(\theta; x) = \begin{bmatrix} \tilde{\nabla}_{\mathbf{m}} l(\theta; x) \\ \tilde{\nabla}_{\mathbf{C}} l(\theta; x) \end{bmatrix} = \begin{bmatrix} x - \mathbf{m} \\ (x - \mathbf{m})(x - \mathbf{m})^{\mathrm{T}} / \sigma^{2} - \mathbf{C} \end{bmatrix}$$

and it requires only $O(d^2)$.

► To compute the natural gradient for N(m, σ²D(I + vv^T)D) efficiently, we need to compute ∇̃l(θ; x) directly (without computing the inverse of Fisher)

Natural Gradient Computation $\tilde{\nabla}l(\theta; x) = G_{\theta}^{-1} \nabla l(\theta; x)$

- In a naive way, it requires cubic time in the number of parameters
 - E.g., for Gaussian with full covariance matrix C, in which the number of parameters is $O(d^2)$, then G_{θ} is of dimension $O(d^2)$ and its inversion requires $O(d^6)$

For $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$ with $\theta = (\mathbf{m}, \mathbf{C}), \, \tilde{\nabla} l(\theta; x)$ has a closed form

$$\tilde{\nabla}l(\theta; x) = \begin{bmatrix} \tilde{\nabla}_{\mathbf{m}}l(\theta; x) \\ \tilde{\nabla}_{\mathbf{C}}l(\theta; x) \end{bmatrix} = \begin{bmatrix} x - \mathbf{m} \\ (x - \mathbf{m})(x - \mathbf{m})^{\mathrm{T}}/\sigma^{2} - \mathbf{C} \end{bmatrix}$$

and it requires only $O(d^2)$.

 To compute the natural gradient for N(m, σ²D(I + vv^T)D) efficiently, we need to compute V
 *V*l(θ; x) directly (without computing the inverse of Fisher)

CMA-ES	VD-CMA	Experiment	Conclusion
	00000000		

O(d) Natural Gradient Computation

O(d) Natural Gradient Computation

Let \odot denote the element-wise multiplication. Let $\overline{\mathbf{v}} = \mathbf{v}/||\mathbf{v}||$, $\overline{V} = \operatorname{diag}(\overline{\mathbf{v}})$, $\overline{\overline{\mathbf{v}}} = \overline{\mathbf{v}} \odot \overline{\mathbf{v}}, \, \gamma_{\mathbf{v}} = 1 + \|\mathbf{v}\|^2,$ $\alpha = \min\left(1, \left[\|\mathbf{v}\|^{4} + (2 - \gamma_{\mathbf{v}}^{-1/2})\gamma_{\mathbf{v}} / \max_{i}(\overline{\mathbf{v}}_{i})\right]^{1/2} / (2 + \|\mathbf{v}\|^{2})\right),$ $b = -(1 - \alpha^2) \|\mathbf{v}\|^4 \gamma_{\mathbf{v}}^{-1} + 2\alpha^2, A = 2\mathbf{I} - (b + 2\alpha)\overline{V}^2$. Compute 1. $s \leftarrow v \odot v - \|\mathbf{v}\|^2 \langle v, \overline{\mathbf{v}} \rangle \gamma_v^{-1} v \odot \overline{\mathbf{v}} - \mathbf{1}$ 2. $t \leftarrow \langle \mathbf{y}, \overline{\mathbf{v}} \rangle \mathbf{y} - 2^{-1} (\langle \mathbf{y}, \overline{\mathbf{v}} \rangle^2 + \gamma_{\mathbf{v}}) \overline{\mathbf{v}}$ 3. $s \leftarrow s - \alpha \gamma_{\mathbf{v}}^{-1} \left((2 + \|\mathbf{v}\|^2) \overline{\mathbf{v}} \odot t - \|\mathbf{v}\|^2 \langle \overline{\mathbf{v}}, t \rangle \overline{\overline{\mathbf{v}}} \right)$ 4. $s \leftarrow A^{-1}s - \left(1 + b\langle \overline{\overline{\mathbf{v}}}, A^{-1}\overline{\overline{\mathbf{v}}}\rangle\right)^{-1}b\langle s, A^{-1}\overline{\overline{\mathbf{v}}}\rangle A^{-1}\overline{\overline{\mathbf{v}}}$ 5. $t \leftarrow t - \alpha \left[(2 + \|\mathbf{v}\|^2) \overline{\mathbf{v}} \odot s - \langle s, \overline{\overline{\mathbf{v}}} \rangle \overline{\mathbf{v}} \right]$ Then, $\tilde{\nabla}_{\mathbf{v}} l(\theta; x) = \|\mathbf{v}\|^{-1} t$ and $\tilde{\nabla}_{\mathbf{D}} l(\theta; x) = \mathbf{D} s$.

CMA-ES	VD-CMA	Experiment	Conclusion
	0000000		

VD-CMA: A Linear Time/Space Variant of CMA

- O(d) sampling from $\mathcal{N}(\mathbf{m}, \sigma \mathbf{D}(\mathbf{I} + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{D})$
 - 1. $z_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ for $i = 1, \dots, \lambda$

2.
$$y_i = z_i + ((1 + ||\mathbf{v}||^2)^{1/2} - 1)\langle z, \mathbf{v} \rangle \mathbf{v}$$

3. $x_i = \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{D}^{(t)} y_i$

4.
$$(x_{i:\lambda})_{i=1,...,\lambda} = \text{SORTW.R.r.}^{f}((x_{i})_{i=1,...,\lambda})$$

5. $\mathbf{p}_{\mathbf{C}}^{(t+1)} = (1-c_{c})\mathbf{p}_{\mathbf{C}}^{(t)} + \sqrt{c_{c}(2-c_{c})/(\sum w_{i}^{2})} \sum_{i=1}^{\lambda} w_{i}(x_{i:\lambda} - \mathbf{m}^{(t)})/\sigma^{(t)}$
6. $\mathbf{p}_{\sigma}^{(t+1)} = (1-c_{\sigma})\mathbf{p}_{\sigma}^{(t)} + \sqrt{c_{\sigma}(2-c_{\sigma})/(\sum w_{i}^{2})} \sum_{i=1}^{\lambda} w_{i}z_{i:\lambda}$
7. $\sigma^{(t+1)} = \sigma^{(t)} \exp(\frac{c_{\sigma}}{d_{\sigma}} (\frac{\|\mathbf{p}_{\sigma}^{(t+1)}\|}{\mathbb{E}[\|\mathcal{N}(\mathbf{0},\mathbf{I})\|]} - 1))$
8. $\mathbf{m}^{(t+1)} = \mathbf{m}^{(t)} + \sum_{i=1}^{\lambda} w_{i} \tilde{\nabla}_{\mathbf{m}} l(\theta^{(t)}; x_{i:\lambda})$

O(d) update for v and **D**

9.
$$\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{v}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{v}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)}$$

10.
$$\mathbf{D}^{(t+1)} = \mathbf{D}^{(t)} + c_{\mu} \sum_{i=1}^{\lambda} w_i \tilde{\nabla}_{\mathbf{D}} l(\theta^{(t)}; x_{i:\lambda}) + c_1 \tilde{\nabla}_{\mathbf{D}} l(\theta^{(t)}; \mathbf{m}^{(t)} + \sigma^{(t)} \mathbf{p}_{\mathbf{C}}^{(t+1)})$$

Introduction	CMA-ES	VD-CMA	Experiment	Conclusion
o	000	00000000	●000	o
Testbed				

Sphere Tablet	$f_{sph}(x) = x^{T} \mathbf{I} x$ $f_{r} + (x) = x^{T} D_{r} + x \qquad D_{r} + -\operatorname{diag}(10^{6} 1 - 1)$
Ellipsoid	$f_{\text{tab}}(x) = x^T D_{\text{tab}}(x), \qquad D_{\text{tab}} = \text{diag}(10^3 \frac{0}{d-1}, \dots, 10^3 \frac{d-1}{d-1})$ $f_{\text{ell}}(x) = x^T D_{\text{ell}}(x), \qquad D_{\text{ell}} = \text{diag}(10^3 \frac{0}{d-1}, \dots, 10^3 \frac{d-1}{d-1})$
Cigar	$f_{cig}(x) = x^T D_{cig} x, \qquad D_{cig} = diag(1, 10^6, \dots, 10^6)$
Rot-Cigar	$f_{\text{cigrot}}(x) = x^{\mathrm{T}}(10^{6}\mathrm{I} + (1 - 10^{6})uu^{\mathrm{T}})x$
Ellipsoid-Cigar	$f_{\text{ellcig}}(x) = x^{\mathrm{T}} D_{\text{ell}} (10^{6} \mathrm{I} + (1 - 10^{6}) u u^{\mathrm{T}}) D_{\text{ell}} x$
Rot-Tablet	$f_{\text{tabrot}}(x) = x^{\mathrm{T}}(\mathbf{I} + (10^{6} - 1)uu^{\mathrm{T}})x$
Rot-Ellipsoid	$f_{\text{ellrot}}(x) = x^{\mathrm{T}} R^{\mathrm{T}} D_{\text{ell}} R x$
Rosenbrock Rot-Rosenbrock	$f_{\text{ros}}(x) = \sum_{i=1}^{d-1} 10^2 (x_i^2 - x_{i+1})^2 + (x_i - 1)^2$ $f_{\text{rosrot}}(x) = f_{\text{ros}}(Rx)$

- R is an orthogonal matrix and u is a unit vector, both are randomly generated for each run.
- Target function value is 10^{-10} ; Maximum number of FEs is $5 \cdot 10^7$.
- The inverse Hessian of f_{tabrot} and f_{ellrot} are not of the form $\mathbf{D}(\mathbf{I} + \mathbf{v}\mathbf{v}^{T})\mathbf{D}$

On 50 dimensional f_{ellcig}

$$f_{\mathsf{ellcig}}(x) = x^{\mathrm{T}} D_{\mathsf{ell}} (10^{6} \mathbf{I} + (1 - 10^{6}) u u^{\mathrm{T}}) D_{\mathsf{ell}} x$$

•
$$D_{\text{ell}} = \text{diag}(1, \dots, 10^{3\frac{i-1}{d-1}}, \dots, 10^3)$$

- $u = (1/\sqrt{d}, \dots, 1/\sqrt{d})$
- $Hess(f_{ellcig})^{-1} \propto D_{ell}^{-1}(\mathbf{I} + 10^6 u u^T) D_{ell}^{-1}$

 $\mathbf{D}(\mathbf{I} + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{D}$ becomes proportional to $Hess(f_{\text{ellcig}})^{-1}$ ($\mathbf{D} \propto D_{\text{ell}}^{-1}$, $\mathbf{v} \approx 10^{3}u$), and speed up the convergence afterwords.

VS. CMA (averaged over 10 independent runs)

- (a) Number of function evaluations (FEs) and CPU time [s] divided by d.
- (b) FEs and CPU time spent by VD-CMA divided by those spent by the CMA.
- Needs more than $5d \times 10^4$ FEs on f_{tabrot} and f_{ellrot} .
- Faster in CPU and even in FEs on other functions due to larger c_μ and c₁.

VS Other Linear Time Variants

CMA-ES	VD-CMA	Experiment	Conclusion
			•

Source code available at

- my homepage (Matlab/Octave) https://sites.google.com/site/youheiakimotospage/
- Shark Library in C++ http://image.diku.dk/shark
- libcmaes in C++ https://github.com/beniz/libcmaes

For more details, see

 Youhei Akimoto, Anne Auger, and Nikolaus Hansen.
 "Comparison-based Natural Gradient Optimization in High Dimension". In: Proceedings of Genetic and Evolutionary Computation Conference. 2014, pp. 373–380

VD-CMA: Modified Fisher Information

To update **m**, **v**, **D** in O(d), we need to compute $\tilde{\nabla}l(\theta; x) = G_{\theta}^{-1} \nabla l(\theta; x)$ analytically, where

$$G_{\theta} = \begin{bmatrix} G_{\mathbf{m}} & 0 & 0\\ 0 & G_{\mathbf{v},\mathbf{v}} & G_{\mathbf{v},\mathbf{D}}\\ 0 & G_{\mathbf{v},\mathbf{D}}^{\mathrm{T}} & G_{\mathbf{D},\mathbf{D}} \end{bmatrix}$$

Diagonal blocks are all nonsingular, however $\begin{bmatrix} G_{v,v} & G_{v,D} \\ G_{v,D}^T & G_{D,D} \end{bmatrix}$ is sometimes singular. Then the natural gradient is not well-defined and the update becomes unstable.

We define the modified Fisher information and define the natural gradient using this:

$$G_{\theta} = \begin{bmatrix} G_{\mathbf{m}} & 0 & 0\\ 0 & G_{\mathbf{v},\mathbf{v}} & \alpha G_{\mathbf{v},\mathbf{D}}\\ 0 & \alpha G_{\mathbf{v},\mathbf{D}}^{\mathrm{T}} & G_{\mathbf{D},\mathbf{D}} \end{bmatrix}$$

Then, for an appropriate $\alpha \in [0, 1]$, G_{θ} is guaranteed to be nonsingular.

VD-CMA: Modified Fisher Information

To update **m**, **v**, **D** in O(d), we need to compute $\tilde{\nabla}l(\theta; x) = G_{\theta}^{-1} \nabla l(\theta; x)$ analytically, where

$$G_{\theta} = \begin{bmatrix} G_{\mathbf{m}} & 0 & 0\\ 0 & G_{\mathbf{v},\mathbf{v}} & G_{\mathbf{v},\mathbf{D}}\\ 0 & G_{\mathbf{v},\mathbf{D}}^{\mathrm{T}} & G_{\mathbf{D},\mathbf{D}} \end{bmatrix}$$

Diagonal blocks are all nonsingular, however $\begin{bmatrix} G_{v,v} & G_{v,D} \\ G_{v,D}^T & G_{D,D} \end{bmatrix}$ is sometimes singular. Then the natural gradient is not well-defined and the update becomes unstable.

We define the modified Fisher information and define the natural gradient using this:

$$G_{\theta} = \begin{bmatrix} G_{\mathbf{m}} & 0 & 0\\ 0 & G_{\mathbf{v},\mathbf{v}} & \alpha G_{\mathbf{v},\mathbf{D}} \\ 0 & \alpha G_{\mathbf{v},\mathbf{D}}^{\mathrm{T}} & G_{\mathbf{D},\mathbf{D}} \end{bmatrix}$$

Then, for an appropriate $\alpha \in [0, 1]$, G_{θ} is guaranteed to be nonsingular.