Derivative Free Optimization

Optimization and AMS Masters - University Paris Saclay

Exercices - Class 1

Anne Auger anne.auger@inria.fr

I Pure Random Search (PRS)

We consider the following optimization algorithm.

[Objective: minimize $f: [-1,1]^n \to \mathbb{R}$

 X_t is the estimate of the optimum at iteration t

Input $(U_t)_{t\geq 1}$ independent identically distributed each $U_t \sim \mathcal{U}_{[-1,1]^n}$ (unif. distributed in $[-1,1]^n$)

- 1. Initialize $t=1, X_1=U_1$
- 2. while not terminate
- t = t + 13.
- If $f(U_t) \le f(X_{t-1})$ $X_t = U_t$ 4.
- 5.
- 6. Else
- $X_t = X_{t-1}$ 8.
- 1. Show that for all $t \geq 1$

$$f(X_t) = \min\{f(U_1), \dots, f(U_t)\}\$$

2. We consider the simple case where $f(x) = ||x||_{\infty}$ (we remind that $||x||_{\infty} := \max(|x_1|, \dots, |x_n|)$). Show the convergence in probability of the PRS algorithm towards the optimum of f, that is prove that for all $\epsilon > 0$

$$\lim_{t \to \infty} \Pr\left(\|X_t\|_{\infty} \ge \epsilon \right) = 0$$

Hint: Prove and use the equality

$$\{\|X_t\|_{\infty} \ge \epsilon\} = \bigcap_{k=1}^t \{\|U_k\|_{\infty} \ge \epsilon\}$$

- 3. Let $T_{\epsilon} = \inf\{t | X_t \in [-\epsilon, \epsilon]^n\}$ (with $\epsilon > 0$) be the first hitting time of $[-\epsilon, \epsilon]^n$. Show that T_{ϵ} follows a geometric distribution with a parameter p that we will determine. Deduce the expected value of T_{ϵ} , that is the expected hitting time of the PRS algorithm.
- 4. When we implement an optimization algorithm (without derivatives), the cost of the algorithm is the number of calls to the objective function. Write a pseudo-code of the PRS algorithm where at each iteration the objective function f is called only once.

II Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic algorithm. More precisely we consider a $(1, \lambda)$ -ES algorithm whose state is given by $X_t \in \mathbb{R}^n$. At each iteration t, λ candidate solutions are sampled according to

$$X_i^{t+1} = X_t + U_{t+1}^i$$

with $(U_{t+1}^i)_{1 \leq i \leq \lambda}$ i.i.d. and $U_{t+1}^i \sim \mathcal{N}(0, I_d)$. Those candidate are evaluated on the function $f : \mathbb{R}^n \to \mathbb{R}$ to be minimized and then ranked according the their f values:

$$f(X_{1\cdot\lambda}^{t+1}) \le \ldots \le f(X_{\lambda\cdot\lambda}^{t+1})$$

where $i:\lambda$ denotes the index of the i^{th} best candidate solution. The best candidate solution is then selected that is

$$X_{t+1} = X_{1:\lambda}^{t+1}$$
.

We will compute for the linear function $f(x) = x_1$ to be minimized the conditional distribution of $X_{1:\lambda}^{t+1}$ (i.e. after selection) and compare it to the distribution of X_i^{t+1} (i.e. before selection).

1. What is the distribution of X_i^{t+1} conditional to X_t ? Deduce the density of each coordinate of X_i^{t+1} .

We remind that given λ random variables independent and identically distributed $Y_1, Y_2, \ldots, Y_{\lambda}$, the order statistics $Y_{(1)}, Y_{(2)}, \ldots, Y_{(\lambda)}$ are random variables defined by sorting the realizations of $Y_1, Y_2, \ldots, Y_{\lambda}$ in increasing order. We consider that each random variable Y_i admits a density f(x) and we denote F(x) the cumulative distribution function, that is $F(x) = \Pr(Y \leq x)$.

- 2. Compute the cumulative distribution of $Y_{(1)}$ and deduce the density of $Y_{(1)}$.
- 3. Let $U_{1:\lambda}^{t+1}$ be the random vector such that

$$X_{1:\lambda}^{t+1} = X_t + U_{1:\lambda}^{t+1}$$

Express for the minimization of the linear function $f(x) = x_1$, the first coordinate of $U_{1:\lambda}^{t+1}$ as an order statistic.

4. Deduce the conditional distribution and conditional density of the random vector $X_{1:\lambda}^{t+1}$.

III Adaptive step-size algorithms

We are going to test the convergence of several algorithms on some test functions, in particular on the so-called sphere function

$$f_{\text{sphere}}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{x}_i^2$$

and the ellipsoid function

$$f_{\text{elli}}(\mathbf{x}) = \sum_{i=1}^{n} (100^{\frac{i-1}{n-1}} \mathbf{x}_i)^2$$
.

- 1. What is the condition number associated to the Hessian matrix of the functions above? Are the functions ill-conditioned?
- 2. Use Matlab to implement the functions. We can create two functions fsphere.m and felli.m that take as input a vector \mathbf{x} and returns $f(\mathbf{x})$.

The (1+1)-ES algorithm is on of the simplest stochastic search method for numerical optimization. We will start by implementing a (1+1)-ES with constant step-size. The pseudo-code of the algorithm is given by

$$\begin{split} \text{Initialize } \boldsymbol{x} \in \mathbb{R}^n \text{ and } \sigma > 0 \\ \text{while not terminate} \\ \boldsymbol{\mathbf{x}}' = \boldsymbol{\mathbf{x}} + \sigma \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ \text{if } f(\boldsymbol{\mathbf{x}}') \leq f(\boldsymbol{\mathbf{x}}) \\ \boldsymbol{\mathbf{x}} = \boldsymbol{\mathbf{x}}' \end{split}$$

where $\mathcal{N}(0, I)$ denotes a Gaussian vector with mean 0 and covariance matrix equal to the identity.

- 1. Implement the algorithm in Matlab. You can write a function that takes as input an initial vector \mathbf{x} , an initial step-size σ and a maximum number of function evaluations and returns a vector where you have recorded at each iteration the best objective function value.
- 2. Use the algorithm to minimize the sphere function in dimension n=5. We will take as initial search point $\mathbf{x}^0=(1,\ldots,1)$ [x=ones(1,5)] and initial step-size $\sigma=10^{-3}$ [sigma=1e-3] and stopping criterion a maximum number of function evaluations equal to 2×10^4 .
- 3. Plot the evolution of the function value of the best solution versus the number of iterations (or function evaluations). We will use a log scale for the y-axis (semilogy).
- 4. Explain the three phases observed on the figure.

To accelerate the convergence, we will implement a step-size adaptive algorithm, i.e. σ is not fixed once for all. The method to adapt the step-size is called one-fifth success rule. The pseudo-code of the (1+1)-ES with one-fifth success rule is given by:

Initialize
$$\boldsymbol{x} \in \mathbb{R}^n$$
 and $\sigma > 0$ while not terminate $\boldsymbol{x'} = \boldsymbol{x} + \sigma \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ if $f(\boldsymbol{x'}) \leq f(\boldsymbol{x})$
$$\boldsymbol{x} = \boldsymbol{x'}$$

$$\sigma = 1.5\,\sigma$$
 else
$$\sigma = (1.5)^{-1/4}\sigma$$

- 5. Implement the (1+1)-ES with one-fifth success rule and test the algorithm on the sphere function $f_{\rm sphere}(x)$ in dimension 5 (n=5) using $\mathbf{x}^0=(1,\ldots,1),\,\sigma_0=10^{-3}$ and as stopping criterion a maximum number of function evaluations equal to 6×10^2 . Plot the evolution of the square root of the best function value at each iteration versus the number of iterations. Use a logarithmic scale for the y-axis. Compare to the plot obtained on Question 3. Plot also on the same graph the evolution of the step-size.
- 6. Use the algorithm to minimize the function f_{elli} in dimension n=5. Plot the evolution of the objective function value of the best solution versus the number of iterations. Why is the (1+1)-ES with one-fifth success much slower on f_{elli} than on f_{sphere} ?
- 7. Same question with the function

$$f_{\text{Rosenbrock}}(x) = \sum_{i=1}^{n-1} (100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2)$$
.

8. We now consider the functions, $g(f_{\text{sphere}})$ and $g(f_{\text{elli}})$ where $g: \mathbb{R} \to \mathbb{R}, y \mapsto y^{1/4}$. Modify your implementation in Questions 5 and 6 so as to save at each iteration the distance between \mathbf{x} and the optimum. Plot the evolution of the distance to the optimum versus the number of function evaluations on the functions f_{sphere} and $g(f_{\text{sphere}})$ as well as on the functions f_{elli} and $g(f_{\text{elli}})$. What do you observe? Explain.