Derivative Free Optimization

Optimization and AMS Masters - University Paris Saclay
Exercices - Class 1

Anne Auger
anne.auger@inria.fr

I Pure Random Search (PRS)

We consider the following optimization algorithm.
[Objective: minimize $f:[-1,1]^{n} \rightarrow \mathbb{R}$
X_{t} is the estimate of the optimum at iteration t
Input $\left(U_{t}\right)_{t \geq 1}$ independent identically distributed each $U_{t} \sim \mathcal{U}_{[-1,1]^{n}}$ (unif. distributed in $\left.\left.[-1,1]^{n}\right)\right]$
Initialize $t=1, X_{1}=U_{1}$
while not terminate
. $t=t+1$
4. If $f\left(U_{t}\right) \leq f\left(X_{t-1}\right)$
5. $\quad X_{t}=U_{t}$
6. Else
8. $\quad X_{t}=X_{t-1}$

1. Show that for all $t \geq 1$

$$
f\left(X_{t}\right)=\min \left\{f\left(U_{1}\right), \ldots, f\left(U_{t}\right)\right\}
$$

2. We consider the simple case where $f(x)=\|x\|_{\infty}$ (we remind that $\|x\|_{\infty}:=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$). Show the convergence in probability of the PRS algorithm towards the optimum of f, that is prove that for all $\epsilon>0$

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(\left\|X_{t}\right\|_{\infty} \geq \epsilon\right)=0
$$

Hint: Prove and use the equality

$$
\left\{\left\|X_{t}\right\|_{\infty} \geq \epsilon\right\}=\cap_{k=1}^{t}\left\{\left\|U_{k}\right\|_{\infty} \geq \epsilon\right\}
$$

3. Let $T_{\epsilon}=\inf \left\{t \mid X_{t} \in[-\epsilon, \epsilon]^{n}\right\}$ (with $\epsilon>0$) be the first hitting time of $[-\epsilon, \epsilon]^{n}$.

Show that T_{ϵ} follows a geometric distribution with a parameter p that we will determine.
Deduce the expected value of T_{ϵ}, that is the expected hitting time of the PRS algorithm.
4. When we implement an optimization algorithm (without derivatives), the cost of the algorithm is the number of calls to the objective function. Write a pseudo-code of the PRS algorithm where at each iteration the objective function f is called only once.

II Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic algorithm. More precisely we consider a $(1, \lambda)$-ES algorithm whose state is given by $X_{t} \in \mathbb{R}^{n}$. At each iteration t, λ candidate solutions are sampled according to

$$
X_{i}^{t+1}=X_{t}+U_{t+1}^{i}
$$

with $\left(U_{t+1}^{i}\right)_{1 \leq i \leq \lambda}$ i.i.d. and $U_{t+1}^{i} \sim \mathcal{N}\left(0, I_{d}\right)$. Those candidate are evaluated on the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be minimized and then ranked according the their f values:

$$
f\left(X_{1: \lambda}^{t+1}\right) \leq \ldots \leq f\left(X_{\lambda: \lambda}^{t+1}\right)
$$

where $i: \lambda$ denotes the index of the $i^{\text {th }}$ best candidate solution. The best candidate solution is then selected that is

$$
X_{t+1}=X_{1: \lambda}^{t+1}
$$

We will compute for the linear function $f(x)=x_{1}$ to be minimized the conditional distribution of $X_{1: \lambda}^{t+1}$ (i.e. after selection) and compare it to the distribution of X_{i}^{t+1} (i.e. before selection).

1. What is the distribution of X_{i}^{t+1} conditional to X_{t} ? Deduce the density of each coordinate of X_{i}^{t+1}.

We remind that given λ random variables independent and identically distributed $Y_{1}, Y_{2}, \ldots, Y_{\lambda}$, the order statistics $Y_{(1)}, Y_{(2)}, \ldots, Y_{(\lambda)}$ are random variables defined by sorting the realizations of $Y_{1}, Y_{2}, \ldots, Y_{\lambda}$ in increasing order. We consider that each random variable Y_{i} admits a density $f(x)$ and we denote $F(x)$ the cumulative distribution function, that is $F(x)=\operatorname{Pr}(Y \leq x)$.
2. Compute the cumulative distribution of $Y_{(1)}$ and deduce the density of $Y_{(1)}$.
3. Let $U_{1: \lambda}^{t+1}$ be the random vector such that

$$
X_{1: \lambda}^{t+1}=X_{t}+U_{1: \lambda}^{t+1}
$$

Express for the minimization of the linear function $f(x)=x_{1}$, the first coordinate of $U_{1: \lambda}^{t+1}$ as an order statistic.
4. Deduce the conditional distribution and conditional density of the random vector $X_{1: \lambda}^{t+1}$.

III Adaptive step-size algorithms

We are going to test the convergence of several algorithms on some test functions, in particular on the so-called sphere function

$$
f_{\text {sphere }}(\mathbf{x})=\sum_{i=1}^{n} \mathbf{x}_{i}^{2}
$$

and the ellipsoid function

$$
f_{\mathrm{elli}}(\mathbf{x})=\sum_{i=1}^{n}\left(100^{\frac{i-1}{n-1}} \mathbf{x}_{i}\right)^{2}
$$

1. What is the condition number associated to the Hessian matrix of the functions above? Are the functions ill-conditioned?
2. Use Matlab to implement the functions. We can create two functions fsphere.m and felli.m that take as input a vector \mathbf{x} and returns $f(\mathbf{x})$.

The $(1+1)$-ES algorithm is on of the simplest stochastic search method for numerical optimization. We will start by implementing a $(1+1)$-ES with constant step-size. The pseudo-code of the algorithm is given by

```
Initialize \(\boldsymbol{x} \in \mathbb{R}^{n}\) and \(\sigma>0\)
while not terminate
    \(\mathrm{x}^{\prime}=\mathbf{x}+\sigma \mathcal{N}(\mathbf{0}, \boldsymbol{I})\)
    if \(f\left(\mathbf{x}^{\prime}\right) \leq f(\mathbf{x})\)
        \(\mathrm{x}=\mathrm{x}^{\prime}\)
```

where $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$ denotes a Gaussian vector with mean $\mathbf{0}$ and covariance matrix equal to the identity.

1. Implement the algorithm in Matlab. You can write a function that takes as input an initial vector \mathbf{x}, an initial step-size σ and a maximum number of function evaluations and returns a vector where you have recorded at each iteration the best objective function value.
2. Use the algorithm to minimize the sphere function in dimension $n=5$. We will take as initial search point $\mathrm{x}^{0}=(1, \ldots, 1)[\mathrm{x}=$ ones $(1,5)]$ and initial step-size $\sigma=10^{-3}$ [sigma=1e-3] and stopping criterion a maximum number of function evaluations equal to 2×10^{4}.
3. Plot the evolution of the function value of the best solution versus the number of iterations (or function evaluations). We will use a log scale for the y-axis (semilogy).
4. Explain the three phases observed on the figure.

To accelerate the convergence, we will implement a step-size adaptive algorithm, i.e. σ is not fixed once for all. The method to adapt the step-size is called one-fifth success rule. The pseudo-code of the $(1+1)$-ES with one-fifth success rule is given by:

```
Initialize \(\boldsymbol{x} \in \mathbb{R}^{n}\) and \(\sigma>0\)
while not terminate
    \(\boldsymbol{x}^{\prime}=\boldsymbol{x}+\sigma \mathcal{N}(\mathbf{0}, \boldsymbol{I})\)
    if \(f\left(\boldsymbol{x}^{\prime}\right) \leq f(\boldsymbol{x})\)
        \(\boldsymbol{x}=\boldsymbol{x}^{\prime}\)
        \(\sigma=1.5 \sigma\)
    else
        \(\sigma=(1.5)^{-1 / 4} \sigma\)
```

5. Implement the $(1+1)$-ES with one-fifth success rule and test the algorithm on the sphere function $f_{\text {sphere }}(x)$ in dimension $5(n=5)$ using $\mathbf{x}^{0}=(1, \ldots, 1), \sigma_{0}=10^{-3}$ and as stopping criterion a maximum number of function evaluations equal to 6×10^{2}. Plot the evolution of the square root of the best function value at each iteration versus the number of iterations. Use a logarithmic scale for the y-axis. Compare to the plot obtained on Question 3. Plot also on the same graph the evolution of the step-size.
6. Use the algorithm to minimize the function $f_{\text {elli }}$ in dimension $n=5$. Plot the evolution of the objective function value of the best solution versus the number of iterations. Why is the ($1+1$)-ES with one-fifth success much slower on $f_{\text {elli }}$ than on $f_{\text {sphere }}$?
7. Same question with the function

$$
f_{\text {Rosenbrock }}(x)=\sum_{i=1}^{n-1}\left(100\left(x_{i}^{2}-x_{i+1}\right)^{2}+\left(x_{i}-1\right)^{2}\right) .
$$

8. We now consider the functions, $g\left(f_{\text {sphere }}\right)$ and $g\left(f_{\text {elli }}\right)$ where $g: \mathbb{R} \rightarrow \mathbb{R}, y \mapsto y^{1 / 4}$. Modify your implementation in Questions 5 and 6 so as to save at each iteration the distance between \mathbf{x} and the optimum. Plot the evolution of the distance to the optimum versus the number of function evaluations on the functions $f_{\text {sphere }}$ and $g\left(f_{\text {sphere }}\right)$ as well as on the functions $f_{\text {elli }}$ and $g\left(f_{\text {elli }}\right)$. What do you observe? Explain.
