I Pure Random Search (PRS)

We consider the following optimization algorithm.

[Objective: minimize \(f : [-1,1]^n \to \mathbb{R} \)

Input \((U_t)_{t \geq 0}\) independent identically distributed each \(U_t \sim U_{[-1,1]^n} \) (uniform distributed in \([-1,1]^n\])

1. Initialize \(t = 0, X_0 = U_0 \)
2. while not terminate
3. \(t = t + 1 \)
4. If \(f(U_t) \leq f(X_{t-1}) \)
5. \(X_t = U_t \)
6. Else
8. \(X_t = X_{t-1} \)

1. Show that for all \(i \geq 0 \)
 \[
 f(X_i) = \min\{f(U_0), \ldots, f(U_i)\}
 \]

2. We consider the simple case where \(f(x) = \|x\|_\infty \) (we remind that \(\|x\|_\infty := \max(|x_1|, \ldots, |x_n|) \)).
 Show the convergence in probability of the PRS algorithm towards the optimum of \(f \), that is prove that for all \(\epsilon > 0 \)
 \[
 \lim_{t \to \infty} \Pr(\|X_t\|_\infty \geq \epsilon) = 0
 \]
 Hint: Use the equality
 \[
 \{\|X_t\|_\infty \geq \epsilon\} = \bigcap_{k=0}^{t}\{\|U_k\|_\infty \geq \epsilon\}
 \]

3. Let \(T_\epsilon = \inf\{t|X_t \in [-\epsilon, \epsilon]^n\} \) (with \(\epsilon > 0 \)) be the first hitting time of \([-\epsilon, \epsilon]^n\).
 Show that \(T_\epsilon \) follows a geometric distribution with a parameter \(p \) that we will determine.
 Deduce the expected value of \(T_\epsilon \), that is the expected hitting time of the PRS algorithm.

4. When we implement a DFO optimization algorithm, the cost of the algorithm is the number of calls to the objective function. Write a pseudo-code of the PRS algorithm where at each iteration the objective function \(f \) is called only once.
II Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic algorithm. More precisely we consider a \((1, \lambda)\)-ES algorithm whose state is given by \(X_t \in \mathbb{R}^n\). At each iteration \(t\), \(\lambda\) candidate solutions are sampled according to

\[X_{t+1}^i = X_t + U_{t+1}^i \]

with \((U_{t+1}^i)_{1 \leq i \leq \lambda}\) i.i.d. and \(U_{t+1}^i \sim \mathcal{N}(0, I_d)\). Those candidate are evaluated on the function \(f: \mathbb{R}^n \rightarrow \mathbb{R}\) to be minimized and then ranked according the their \(f\) values:

\[f(X_{1,\lambda}^{t+1}) \leq \cdots \leq f(X_{\lambda,\lambda}^{t+1}) \]

where \(i:\lambda\) denotes the index of the \(i\)th best candidate solution. The best candidate solution is then selected that is

\[X_{t+1} = X_{i:\lambda}^{t+1}. \]

We will compute for the linear function \(f(x) = x_1\) to be minimized the conditional distribution of \(X_{1,\lambda}^{t+1}\) (i.e. after selection) and compare it to the distribution of \(X_{1,\lambda}^{t}\) (i.e. before selection).

1. What is the distribution of \(X_{i:\lambda}^{t+1}\) conditional to \(X_t\)? Deduce the density of each coordinate of \(X_{i:\lambda}^{t+1}\).

We remind that given \(\lambda\) random variables independent and identically distributed \(Y_1, Y_2, \ldots, Y_{\lambda}\), the order statistics \(Y_{(1)}, Y_{(2)}, \ldots, Y_{(\lambda)}\) are random variables defined by sorting the realizations of \(Y_1, Y_2, \ldots, Y_{\lambda}\) in increasing order. We consider that each random variable \(Y_i\) admits a density \(f(x)\) and we denote \(F(x)\) the cumulative distribution function, that is \(F(x) = \Pr(Y \leq x)\).

2. Compute the cumulative distribution of \(Y_{(1)}\) and deduce the density of \(Y_{(1)}\).

3. Let \(U_{1,\lambda}^{t+1}\) be the random vector such that

\[X_{1,\lambda}^{t+1} = X_t + U_{1,\lambda}^{t+1} \]

Express for the minimization of the linear function \(f(x) = x_1\), the first coordinate of \(U_{1,\lambda}^{t+1}\) as an order statistic.

4. Deduce the conditional distribution and conditional density of the random vector \(X_{1,\lambda}^{t+1}\).

II Adaptive step-size algorithms

We are going to test the convergence of several algorithms on some test functions, in particular on the so-called sphere function

\[f_{\text{sphere}}(x) = \sum_{i=1}^{n} x_i^2 \]

and the ellipsoid function

\[f_{\text{elli}}(x) = \sum_{i=1}^{n} (100^{i-1} x_i)^2. \]

1. What is the condition number associated to the Hessian matrix of the functions above? Are the functions ill-conditioned?

2. Use Matlab to implement the functions. We can create two functions \(f_{\text{sphere}}\) and \(f_{\text{elli}}\) in Matlab that take as input a vector \(x\) and returns \(f(x)\).
The \((1 + 1)\)-ES algorithm is one of the simplest stochastic search methods for numerical optimization. We will start by implementing a \((1 + 1)\)-ES with constant step-size. The pseudo-code of the algorithm is given by

\[
\text{Initialize } x \in \mathbb{R}^n \text{ and } \sigma > 0 \\
\text{while not terminate} \\
\quad x' = x + \sigma N(0, I) \\
\quad \text{if } f(x') \leq f(x) \\
\quad \quad x = x' \\
\text{where } N(0, I) \text{ denotes a Gaussian vector with mean 0 and covariance matrix equal to the identity.}
\]

1. Implement the algorithm in Matlab. You can write a function that takes as input an initial vector \(x\), an initial step-size \(\sigma\) and a maximum number of function evaluations and returns a vector where you have recorded at each iteration the best objective function value.

2. Use the algorithm to minimize the sphere function in dimension \(n = 5\). We will take as initial search point \(x^0 = (1, \ldots, 1) \ [x=\text{ones}(1, 5)] \) and initial step-size \(\sigma_0 = 10^{-3} \ [\text{sigma}=1e-3]\) and stopping criterion a maximum number of function evaluations equal to \(2 \times 10^4\).

3. Plot the evolution of the function value of the best solution versus the number of iterations (or function evaluations). We will use a log scale for the y-axis (``semilogy``).

4. Explain the three phases observed on the figure.

To accelerate the convergence, we will implement a step-size adaptive algorithm, i.e. \(\sigma\) is not fixed once for all. The method to adapt the step-size is called one-fifth success rule. The pseudo-code of the \((1 + 1)\)-ES with one-fifth success rule is given by:

\[
\text{Initialize } x \in \mathbb{R}^n \text{ and } \sigma > 0 \\
\text{while not terminate} \\
\quad x' = x + \sigma N(0, I) \\
\quad \text{if } f(x') \leq f(x) \\
\quad \quad x = x' \\
\quad \sigma = 1.5\sigma \\
\quad \text{else} \\
\quad \quad \sigma = (1.5)^{-1/4}\sigma
\]

5. Implement the \((1+1)\)-ES with one-fifth success rule and test the algorithm on the sphere function \(f_{\text{sphere}}(x)\) in dimension \(n = 5\) using \(x^0 = (1, \ldots, 1)\), \(\sigma_0 = 10^{-3}\) and as stopping criterion a maximum number of function evaluations equal to \(6 \times 10^2\). Plot the evolution of the square root of the best function value at each iteration versus the number of iterations. Use a logarithmic scale for the y-axis. Compare to the plot obtained on Question 3. Plot also on the same graph the evolution of the step-size.

6. Use the algorithm to minimize the function \(f_{\text{elli}}\) in dimension \(n = 5\). Plot the evolution of the objective function value of the best solution versus the number of iterations. Why is the \((1 + 1)\)-ES with one-fifth success much slower on \(f_{\text{elli}}\) than on \(f_{\text{sphere}}\)?

7. Same question with the function

\[
f_{\text{Rosenbrock}}(x) = \sum_{i=1}^{n-1} \left(100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2\right).
\]

8. We now consider the functions, \(g(f_{\text{sphere}})\) and \(g(f_{\text{elli}})\) where \(g : \mathbb{R} \to \mathbb{R}, y \mapsto y^{1/4}\). Modify your implementation in Questions 5 and 6 so as to save at each iteration the distance between \(x\) and the optimum. Plot the evolution of the distance to the optimum versus the number of function evaluations on the functions \(f_{\text{sphere}}\) and \(g(f_{\text{sphere}})\) as well as on the functions \(f_{\text{elli}}\) and \(g(f_{\text{elli}})\). What do you observe? Explain.