# Derivative Free Optimization 

# Optimization Master Paris Saclay / IPP AMS Master 2023/2024 

Anne Auger<br>RandOpt team<br>Inria and CMAP, Ecole Polytechnique, IP Paris anne.auger@inria.fr

## Organization of the class

When: Friday afternoon - 2 pm $-5: 15$ pm at ENSTA

| $01 / 12 / 2023$ | room 1320 |
| :---: | :---: |
| $08 / 12 / 2023$ | room 1321 |
| $15 / 12 / 2023$ | room 1320 |
| $22 / 12 / 2022$ | room 1320 |
| $12 / 01 / 2024$ | room 1320 |
| $19 / 01 / 2024$ | room 1320 |
| $26 / 01 / 2024$ | room 1320 |
| $02 / 02 / 2024$ | room 1320 |
| $09 / 02 / 2024$ | room 1320 |
| $\mathbf{1 6 / 0 2 / 2 0 2 4}[\mathbf{E X M}]$ |  |

## Evaluation

Written exam on 16/02/2024
Project (in group) around benchmarking/testing of algorithms

- oral presentation to the class


## Syllabus

Topics covered
Derivative Free Optimization / Black-box optimization Single-objective optimization what makes a problem difficult algorithm to solve those difficulties (mostly stochastic) Multi-objective optimization [taught D. Brockhoff] Benchmarking (partly taught by D. Brockhoff)

## Practical Exercices [bring your laptops]

 practical exercices: implement/manipulate algorithmsPython / Matlab / ...
ultimate goal: optimize a (real) black-box problem on your own

- understand and visualize convergence / adaptation / invariance
- experience numerics


## Derivative-Free / Black-box Optimization

Task: minimize a numerical objective function (also called fitness function or loss function)

$$
f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}, x \mapsto f(x) \in \mathbb{R}
$$

without derivatives (gradient). $\Omega$ : search space, $n$ :dimension of the search space
Also called zero-order black-box optimization


The function is seen by the algorithm as a zero-order oracle [a first order oracle would also return gradients] that can be queried at points and the oracle returns an answer

## Reminder: Local versus Global Optimum



## Examples: Optimization of the Design of a Launcher



- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law

23 continuous parameters to optimize

+ constraints


## Control of the Alignement of Molecules

## application domain: quantum physics or chemistry



Objective function:
via numerical simulation or a real experiment

possible application in drug design
In the case of a real lab experiment: the objective function is a real black-box

## Coffee Tasting Problem (A real Black-box)

## Coffee Tasting Problem

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function $=$ opinion of one expert

M. Herdy: "Evolution Strategies with subjective selection", 1996


## A last Application

Computer simulation teaches itself to walk upright (virtual robots (of different shapes) learning to walk, through stochastic optimization (CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yci5Ful1ovk
T. Geititenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

## What is the Goal?

- We want to find $x^{\star}$ such that $f\left(x^{\star}\right) \leq f(x)$ for all $x$

$$
x^{\star} \in \operatorname{argmin}_{x} f(x)
$$

- In general we will never find $x^{\star}$

> why?

## What is the Goal?

- We want to find $x^{\star}$ such that $f\left(x^{\star}\right) \leq f(x)$ for all $x$
- In general we will never find $x^{\star}$
- Because of the numerical/continuous nature of the search space we typically never hit exactly $x^{\star}$, we instead converge to a solution:
we want to find $x_{t} \in \mathbb{R}^{n}$ such that $\lim _{t \rightarrow \infty} f\left(x_{t}\right)=\min f$
of course we want fast convergence


## Level Sets of a Function

## Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading (as 1-D optimization is "trivial", see slides related to curse of dimensionality), we therefore often represent level-sets of functions

$$
\mathscr{L}_{c}=\left\{x \in \mathbb{R}^{n} \mid f(x)=c,\right\}, c \in \mathbb{R}
$$

## Examples of level sets in 2D



## Level Sets: Visualization of a Function



Source: Nykamp DQ, "Directional derivative on a mountain." From Math Insight. http://mathinsight.org/applet/ directional_derivative_mountain

## Level Sets: Topographic Map

## The function is the altitude




3-D picture

## Level Set: Exercice

Consider a strictly convex-quadratic function

$$
f(x)=\frac{1}{2}\left(x-x^{\star}\right)^{\top} H\left(x-x^{\star}\right)=\frac{1}{2} \sum_{i} h_{i i}\left(x_{i}-x_{i}^{\star}\right)+\frac{1}{2} \sum_{i \neq j} h_{i j}\left(x_{i}-x_{i}^{\star}\right)\left(x_{j}-x_{j}^{\star}\right)
$$

with $H$ a symmetric, positive, definite matrix $(H \succ 0)$.

1. What is/are the optima of f ? What does $H$ represent for the function?
2. Assume $\mathrm{n}=2, H=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ plot the level sets of f
3. Same question with $\quad H=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$
4. Same question with $H=P\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right] P^{T}$ with $P \in \mathbb{R}^{2 \times 2}$

What Makes an Optimization Problem Difficult?

## What Makes a Function Difficult to Solve?

Why stochastic search?

- non-linear, non-quadratic, non-convex
on linear and quadratic functions much better search policies are available
- ruggedness

> non-smooth, discontinuous, multimodal, and/or noisy function

- dimensionality (size of search space)
(considerably) larger than three
- non-separability
dependencies between the objective variables
- ill-conditioning

gradient direction Newton directio


## Ruggedness



A cut of a 4-D function that can easily be solved with the CMA-ES algorithm

## Why is Optimization a non-trivial Problem?

## Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

## Why is Optimization a non-trivial Problem?

## Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

set a regular grid on $[0,1]$
evaluate on $f$ all the points of the grid return the lowest function value

## Why is Optimization a non-trivial Problem?

## Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

set a regular grid on $[0,1]$
evaluate on $f$ all the points of the grid return the lowest function value

## Why is Optimization a non-trivial Problem?

## Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

set a regular grid on $[0,1]$
evaluate on $f$ all the points of the grid return the lowest function value
easy! But how does it scale when n increases?
1-D optimization is trivial

## Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0,1].

How many points would you need to get a similar coverage (in terms of distance between adjacent points) in dimension 10?

## Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say $[0,1]$. To get similar coverage, in terms of distance between adjacent points, of the 10 -dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. A 100 points appear now as isolated points in a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

## Curse of Dimensionality

How long would it take to evaluate $10^{20}$ points?

## Curse of Dimensionality

How long would it take to evaluate $10^{20}$ points?
import timeit
timeit.timeit('import numpy as np ;
np.sum(np.ones(10)*np.ones(10))', number=1000000)
> 7.0521080493927
7 seconds for $10^{6}$ evaluations of $f(x)=\sum_{i=1}^{10} x_{i}^{2}$
We would need more than $10^{8}$ days for evaluating $10^{20}$ points
[As a reference: origin of human species: roughly $6 \times 10^{8}$ days]

## Separability

Given $x=\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots x_{n}\right)$ denote

$$
\begin{gathered}
x\urcorner i \\
x^{i} \\
\left.f_{x\urcorner i}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \in \mathbb{R}^{n-1} \\
x_{1}\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)
\end{gathered}
$$

The function $f_{x^{i} i}(y)$ is a 1-D function which is a cut of $f$ along the coordinate $i$.

Definition: A function $f$ is separable if for all i , for all $x, \bar{x}$

$$
\operatorname{argmin}_{y} f_{x^{i} i}(y)=\operatorname{argmin}_{y} f_{\bar{x}^{i} i}(y)
$$

$\rightarrow$ the optimum along the coordinate $i$, does not depend on how the other coordinates are fixed.
a weak definition of separability

Lemma: Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ strictly increasing. If $f$ is separable then $g \circ f$ is separable.

## Proposition: Let $f$ be a separable then for all $x$

$$
\operatorname{argmin} f\left(x_{1}, \ldots, x_{n}\right)=\left(\operatorname{argmin}_{y} f_{x \neg 1}(y), \ldots, \operatorname{argmin}_{y} f_{x \neg n}^{n}(y)\right)
$$

and $f$ can be optimized using $n$ minimization along the coordinates.

Exercice: prove the proposition

## Example: Additively Decomposable Functions

Lemma: Let $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} h_{i}\left(x_{i}\right)$ for $h_{i}$ having a unique argmin.
Then $f$ is separable. We say in this case that $f$ is additively decomposable.

Example: Rastrigin function

$$
f(x)=10 n+\sum_{i=1}^{n}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)\right)
$$



## Consequence

Consider $f(x)=\prod_{i=1}^{n} h_{i}\left(x_{i}\right)$ with $h_{i}\left(x_{i}\right)>0$. Then it is separable.

## Non-separable Problems

Separable problems are typically easy to optimize. Yet difficult real-word problems are non-separable.

One needs to be careful when evaluating optimization algorithms that not too many test functions are separable and if so that the algorithms do not exploit separability.

Otherwise: good performance on test problems will not reflect good performance of the algorithm to solve difficult problems

Algorithms known to exploit separability:
Many Genetic Algorithms (GA), Most Particle Swarm Optimization (PSO)

## Non－separable Problems

## Building a non－separable problem from a separable one

## Rotating the coordinate system

－$f: x \mapsto f(x)$ separable
－$f: x \mapsto f(R x)$ non－separable
$\mathbf{R}$ rotation matrix

${ }^{1}$ Hansen，Ostermeier，Gawelczyk（1995）．On the adaptation of arbitrary normal mutation distributions in evolution strategies：The generating set adaptation．Sixth ICGA，pp．57－64，Morgan Kaufmann
${ }^{2}$ Salomon（1996）．＂Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions；A survey of some theoretical and practical aspects of genetic algorithms．＂
BioSystems，39（3）：263－278

## III-conditioned Problems - Case of Convex-quadratic functions

Consider a strictly convex-quadratic function
$f(x)=\frac{1}{2}\left(x-x^{\star}\right)^{\top} H\left(x-x^{\star}\right)$ for $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $x^{\star} \in \mathbb{R}^{n}$ with $H$ a symmetric, positive, definite (SPD) matrix.
Remember that $H=\nabla^{2} f(x)$.
The condition number of the matrix $H$ (with respect to the Euclidean norm) is defined as

$$
\operatorname{cond}(H)=\frac{\lambda_{\max }(H)}{\lambda_{\min }(H)}
$$

with $\lambda_{\text {max }}()$ and $\lambda_{\text {min }}()$ being respectively the largest and smallest eigenvalues.

## III-conditioned means a high condition number of the Hessian

 matrix $H$.Consider now the specific case of the function $f(x)=\frac{1}{2}\left(x_{1}^{2}+9 x_{2}^{2}\right)$

1. Compute its Hessian matrix, its condition number
2. Plots the level sets of $f$, relate the condition number to the axis ratio of the level sets of $f$
3. Generalize to a general convex-quadratic function

Real-world problems are often ill-conditioned.
4. Why do you think it is the case?
5. why are ill-conditioned problems difficult?

## III-conditioned Problems

consider the curvature of the level sets of a function
ill-conditioned means "squeezed" lines of equal function value (high curvatures)

gradient direction $-f^{\prime}(\boldsymbol{x})^{\mathrm{T}}$
Newton direction
$-\boldsymbol{H}^{-1} f^{\prime}(\boldsymbol{x})^{\mathrm{T}}$

Condition number equals nine here. Condition numbers up to $10^{10}$ are not unusual in real world problems.

