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Organization of the class

When: Friday afternoon - 2pm - 5:15pm at ENSTA

29/11/2024 room 1314
06/12/2024 room 1314
13/12/2024 room 1314
20/12/2024 room 1213
10/01/2025 room 1213
17/01/2025 room 1314
24/01/2025 room 1314
31/01/2025 room 1314
07/02/2025 room 1314

14/02/2025 [EXAM] TBA



Evaluation

Written exam on 14/02/2025 

Project (in group) around benchmarking of algorithms 
•  oral presentation to the class 

(60%

740%



Syllabus

Topics covered 
Derivative Free Optimization / Black-box optimization 
Single-objective optimization 
what makes a problem di!icult 
algorithm to solve those di!iculties (mostly stochastic) 

Multi-objective optimization [taught D. Brockho!] 
Benchmarking (partly taught by D. Brockho!) 

Practical Exercices 
practical exercices: implement/manipulate algorithms  
                                                  Python / Matlab / … 
ulitmate                   ultimate goal: optimize a (real) black-box problem on your own 

• understand and visualize convergence / adaptation / invariance

• experience numerics                 numerical errors, finite machine precision



Derivative-Free / Black-box Optimization
Task: minimize a numerical objective function (also called 
!tness function or loss function)   
  

without derivatives (gradient). : search space, dimension 
of the search space 
Also called zero-order black-box optimization

Ω n :
f : Ω ⊂ ℝn → ℝ, x ↦ f(x) ∈ ℝ

x
The function is seen by the algorithm as a zero-order oracle [a 
"rst order oracle would also return gradients] that can be 
queried at points and the oracle returns an answer  

EIRM



Reminder: Local versus Global Optimum

global minimum local minimum

local maximum
n=1



Examples: Optimization of the Design of a Launcher



Control of the Alignement of Molecules
application domain: quantum physics or chemistry

In the case of a real lab experiment: the objective function is 
a real black-box



Co!ee Tasting Problem (A real Black-box)

Xi>
,o

Exi =1

(X1
,
x2, Xs,X)- Taste



A last Application



What is the Goal?

•We want to "nd  such that  for all x⋆ f(x⋆) ≤ f(x) x

x⋆ ∈ argminx f(x)

why?

•In general we will never "nd x⋆



What is the Goal?

•We want to "nd  such that  for all x⋆ f(x⋆) ≤ f(x) x

x⋆ ∈ argminx f(x)

•In general we will never "nd x⋆

•Because of the numerical/continuous nature of the search 
space we typically never hit exactly , we instead converge 
to a solution: 

we want to "nd  such that 

x⋆

xt ∈ ℝn lim
t→∞

f(xt) = min f

of course we want fast convergence



Level Sets of a Function



Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading 
(as 1-D optimization is “trivial”, see slides related to curse of 
dimensionality), we therefore often represent level-sets of 
functions 

Examples of level sets in 2D
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Level Sets: Visualization of a Function

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain 



Level Sets: Topographic Map

The function is the altitude

3-D picture

Topographic map



Level Set: Exercice

Consider a strictly convex-quadratic function 
f(x) = 1

2 (x − x⋆)⊤H(x − x⋆) = 1
2 ∑

i
hii(xi − x⋆

i ) + 1
2 ∑

i≠j
hij(xi − x⋆

i )(xj − x⋆
j )

with H a symmetric, positive, de"nite matrix ( ).H ≻ 0

2. Assume n=2, H =


1 0
0 1

�
plot the level sets of f 

3. Same question with H =


1 0
0 9

�

4. Same question with H = P


1 0
0 9

�
P

T with P 2 R2⇥2

P orthogonal

1. What is/are the optima of f ? What does  represent for the 
function ?

H

2



f(x) = -(x - xiTH(x -xa)Hyo
strictly convex

f(x) o because H >0

f(x)= o Es X -X
*
=0 E) X = X

&

H= Df(x) Hessian matux

WLG X
*
= 0

4 H= (20) f(x) = -(xi+ x2))

( = (x)((x+ x)) = c)
(yo

#



H=(g)( = (x=(,x)(f(xi + gx) = c)
cyo , ellipsoid .

# f)=e())=x

H= PT (1 "
I = (pp2) eigenrectorsof
-





What Makes an Optimization Problem Di!icult?



What Makes a Function Di!icult to Solve?
Why stochastic search?



Ruggedness

A cut of a 4-D function that can easily be solved with the 
CMA-ES algorithm
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?
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f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value

easy! But how does it scale when n increases?

1-D optimization is trivial



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. 

How many points would you need to get a similar coverage (in 
terms of distance between adjacent points) in dimension 10? 



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. To get similar coverage, in terms of distance between 
adjacent points, of the 10-dimensional space [0,1]10 would 
require 10010 = 1020 points. A 100 points appear now as 
isolated points in a vast empty space. 

Consequence: a search policy (e.g. exhaustive search) that is 
valuable in small dimensions might be useless in moderate or 
large dimensional search spaces. 

I gid
search



Curse of Dimensionality

How long would it take to evaluate 1020 points? 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 

!"#$%&'&!"(!&'
&!"(!&)&!"(!&*+!"#$%&',-"#.'/0',#'1''
,#)0-"*,#)$,(0*2345,#)$,(0*2344+6',-"7(%823333334'
9':)3;<23=3>?@?<:

7 seconds for 106 evaluations of  

We would need more than 108 days for evaluating 1020 points 

[As a reference: origin of human species: roughly 6 x 108 days]

f(x) =
P10

i=1 x
2
i



Separability

a weak de!nition of separability

The function  is a 1-D function which is a cut of  along 
the coordinate 

fx¬i(y) f
i .

De!nition: A function  is separable if for all i, for all f x, x̄

argminy fx¬i(y) = argminy fx̄¬i(y)

Given  denote 
 

x = (x1, …, xi−1, xi, xi+1, …xn)
x¬i = (x1, …, xi−1, xi+1, …, xn) ∈ ℝn−1

fx¬i(y) = f(x1, …, xi−1, y, xi+1, …, xn)

 the optimum along the coordinate , does not depend on 
how the other coordinates are !xed.
→ i



Lemma: Given  and  strictly 
increasing. If  is separable then  is separable.

f : ℝn → ℝ g : Im( f ) → ℝ
f g ∘ f

IR

Eof : >hy) Let g
: Im(h)->R strict increasing

argonic hly)
= argmin gofly)

Y

Let X-
a gonn t(y) h(x)(h(y) fy

sincea strict increasing
goh) < gohly) by

=> XE agmin goh



Let i argain gotly goih(x) < gohly) by
xEg+(gh(x)) => g(gh(y)) fy

generalized
inverse

=> h(x)h . (y) Fy
=) *E agminh

Since the organic is preserved when composing witho strit

increasing to the left, then if f is separable, got is
separable

Example = xi2
IR3
,o

-

= (x2)
" g(x)=Y

goft I



gt agminh = agmax gof



Proposition: Let  be a separable then for all f x

argminf(x1, …, xn) = (argminy fx¬1(y), …, argminy f n
x¬n(y))

and  can be optimized using  minimization along the 
coordinates.

f n

Exercice: prove the proposition
Let us prove

that (aminyfo (y), ---. , arguing fin(y) Cargaint
LinE

argain fixe + --,Xi,2,xite,-, xn) i= 1, . ..

f(x) =f(x, . . ., xn)3f(an, x2 , ..,xn)f(n ,22,x,- , xn)
↑

by def of an by def ofC2



flys, .... - flan-.., an) #X

lay-- / an) t arguing
The other inclusion is immediate :

again f c (arguin Fuly) . ..., (



Example: Additively Decomposable Functions

Lemma: Let  for  having a unique argmin. 

Then  is separable. We say in this case that  is additively 
decomposable.

f(x1, …, xn) =
n

∑
i=1

hi(xi) hi

f f

Example: Rastrigin function

f(x) = 10n +
n

∑
i=1

(x2
i − 10 cos(2πxi))
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Consequence

Consider  with  Then it is separable.f(x) =
n

∏
i=1

hi(xi) hi(xi) > 0.

Proof :
-

f(x) = exp(ti(x)
=exphi(xi)
= go additively decomposable

g(x) = exp(X) Strict in

(x= hi(xi) : additively decomposable
↳ separable



Non-separable Problems

Separable problems are typically easy to optimize. Yet di!icult 
real-word problems are non-separable. 

One needs to be careful when evaluating optimization algorithms 
that not too many test functions are separable and if so that the 
algorithms do not exploit separability. 

Otherwise: good performance on test problems will not re!ect 
good performance of the algorithm to solve di"icult problems

Algorithms known to exploit separability:  
Many Genetic Algorithms (GA), Most Particle Swarm Optimization 
(PSO)



Non-separable Problems
Building a non-separable problem from a separable one



Ill-conditioned Problems - Case of Convex-quadratic functions

Consider a strictly convex-quadratic function 
 for  and 

 with  a symmetric, positive, de!nite (SPD) matrix. 
Remember that . 
The condition number of the matrix  (with respect to the 
Euclidean norm) is de!ned as

f(x) = 1
2 (x − x⋆)⊤H(x − x⋆) x = (x1, …, xn)⊤ ∈ ℝn

x⋆ ∈ ℝn H
H = ∇2f(x)

H

cond(H) = λmax(H)
λmin(H)

with  and  being respectively the largest and smallest 
eigenvalues.

λmax() λmin()



Ill-conditioned means a high condition number of the Hessian 
matrix .H

Consider now the speci!c case of the function  

  1. Compute its Hessian matrix, its condition number 
  2. Plots the level sets of , relate the condition number to the 
axis ratio of the level sets of  
  3. Generalize to a general convex-quadratic function 

f(x) = 1
2 (x2

1 + 9x2
2)

f
f

Real-world problems are often ill-conditioned.  
   4. Why do you think it is the case? 
   5. why are ill-conditioned problems di"icult?  

H=(j)
cond(H)= 9

-

-> physical variables optimized
can live on different scales.



Ill-conditioned Problems

Ino6


