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Organization of the class

When: Friday afternoon - 2pm - 5:15pm at ENSTA

29/11/2024 room 1314
06/12/2024 room 1314
13/12/2024 room 1314
20/12/2024 room 1213
10/01/2025 room 1213
17/01/2025 room 1314
24/01/2025 room 1314
31/01/2025 room 1314
07/02/2025 room 1314
14/02/2025 [EXAM] TBA




Evaluation

on 14/02/2025 ) boL

around benchmarking of algorithms o
= oral presentation to the class o



Syllabus

Derivative Free Optimization / Black-box optimization
Single-objective optimization
what makes a problem difficult
algorithm to solve those difficulties (mostly stochastic)
Multi-objective optimization [taught D. Brockhoff]
Benchmarking (partly taught by D. Brockhoff)

practical exercices: implement/manipulate algorithms

Python / Matlab / ..
ultimate goal: optimize a (real) black-box problem on your own

e understand and visualize convergence / adaptation / invariance
e experience NUMerics numerical errors, finite machine precision



Derivative-Free / Black-box Optimization

Task: minimize a numerical function (also called
fitness function or loss function)

fTQCR">R,x— f(x) e R

without derivatives (gradient). €: search space, n :dimension
of the search space

Also called optimization
Xemﬂ- =
The function is seen by the algorithm as a zero-order a

first order oracle would also return gradients| that can be
queried at points and the oracle returns an answer



Reminder: Local versus Global Optimum

n=1

local maximum g

e

S~

global minimum local minimum



Examples: Optimization of the Design of a Launcher
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= Scenario: multi-stage launcher brings a
satellite into orbit

= Minimize the overall cost of a launch

= Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

23 continuous parameters to optimize
+ constraints




Control of the Alignement of Molecules

application domain: quantum physics or chemistry

CH
ke

Objective function:
via numerical simulation

or a real experiment

possible application in drug design

In the case of a real lab experiment: the objective function is
a real black-box



Coffee Tasting Problem (A real Black-box)

Coffee Tasting Problem

X122
Ax=1
» Find a mixture of coffee in order to keep the coffee taste from
one year to another (%4, %, Xs, X ) — Totke

» Objective function = opinion of one expert

@0 °

Quasipalm

M. Herdy: “Evolution Strategies with subjective
selection”, 1996



A last Application

Computer simulation teaches itself to walk upright (virtual robots (of
different shapes) learning to walk, through stochastic optimization
(CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yciSFul1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based
Locomotion for Bipedal Creatures”, SIGGRAPH Asia, 2013.



What is the Goal?

= We want to find x* such that f(x*) < f(x) for all x

= In general we will never find x*

why?



What is the Goal?

= We want to find x* such that f(x™) < f(x) for all x

= In general we will never find x*

» Because of the numerical/continuous nature of the search
space we typically never hit exactly x*, we instead converge
to a solution:

we want to find x, € R"” such that lim f(x,) = minf

[— 00

of course we want convergence



Level Sets of a Function



| evel Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading
(as 1-D optimization is “trivial”, see slides related to curse of
dimensionality), we therefore often represent level-sets of

functions

Examples of level sets in 2D

L. ={xeR"|f(x)=c},ceR




| evel Sets: Visualization of a Function

)

/

8=0 P 7 fla)=487

o—— a=(6.7,1.1) D.f(a) = 2.00 u=(-091,-042)  Duf(a)=2.00 .

u=(-091,-042) Vf(a)=(-1.81,-0.85) 1Vf(a)i=2.00 Vf(a) = (-1.81, -0.85) 1Vf(a)1 =2.00

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain



Level Sets: Topographic Map

The function is the altitude




| evel Set: Exercice

Consider a strictly convex—quadratic function

flx) = —(x )T H(x — x* Z h.(x —x*) +— Z B — x7)(x; - X *)
l;éJ
with H a symmetric, positive, deflnlte matrix (H > 0).

1. What is/are the optima of f ? What does H represent for the

function 7

2. Assume n=2, H = (1) (1) plot the level sets of f
3. Same question with H = 10
| : “ 109
: : 10 A 2X2
4. Same question with H = P 0 9 P+ with P e R

P orthogonal
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What Makes an Optimization Problem Difficult?



What Makes a Function Difficult to Solve?

Why stochastic search?

» non-linear, non-quadratic, non-convex
on linear and quadratic functions
much better search policies are
available

> ruggedness

non-smooth, discontinuous,
multimodal, and/or noisy
function

» dimensionality (size of search space)

(considerably) larger than three

> non-separability
dependencies between the

objective variables
» ill-conditioning

gradient direction Newton directio



Ruggedness

100 | | | | | | |
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A cut of a 4-D function that can easily be solved with the
CMA-ES algorithm



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f:[0,1] =R 7



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f:10,1] =R 7

set a regular grid on [0,1]
evaluate on f all the points of the grid

return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f:[0,1] =R 7

set a regular grid on [0,1]
evaluate on f all the points of the grid

return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f:10,1] =R 7

set a regular grid on [0,1]
evaluate on f all the points of the grid

return the lowest function value

\\// easy! But how does it scale when n increases?

1-D optimization is trivial

,....|||||||l||la=

Y A




Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
0,1].

How many points would you need to get a similar coverage (in

terms of distance between adjacent points) in dimension 107



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[0,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]1° would
require 10010 = 1020 points. A 100 points appear now as
isolated points in a vast empty space.

5«\‘A Seacch

Consequence: a search policy (e.g.|exhaustive search) that is
valuable in small dimensions might be useless in moderate or

large dimensional search spaces.




Curse of Dimensionality

How long would it take to evaluate 1020 points?



Curse of Dimensionality

How long would it take to evaluate 1020 points?

import timeit

timeit.timeit('import numpy as np ;
np.sum(np.ones(10)*np.ones(10))', number=1000000)
> 7.0521080493927

7 seconds for 106 evaluations of f(x) = 2321 %2

We would need more than 108 days for evaluating 1020 points

[As a reference: origin of human species: roughly 6 x 108 days]



Separability

Given x = (x{, ..., X;_{, X;, X;. 1, - - .X,) denote

x = (Xps cees Xj_ s Xjg [ o0 X)) € R
Joril) = J (X5 co s X [ Vo X s -0 X,)

The function f_-(y) is a 1-D function which is a cut of f along

the coordinate i.

Definition: A function f is if for all i, for all x, x

ar gminy]}i(y) — argminyfxﬂi(y )

— the optimum along the coordinate i, does not depend on

how the other coordinates are fixed.

a weak definition of separability



Lemma: Given f: R" - R and g : Im(f) — R strictly
increasing. If fis then g o f is separable.
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Proposition: Let f be a then for all x
argminf(x;, ..., x,) = <argminy fia100), ...,argminy )’C”Ln(y)>

and f can be optimized using n minimization along the

coordinates.

Exercice: prove the proposition

|

|~ ol
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Example: Additively Decomposable Functions

n

Lemma: Let f(x,...,x,) = Z h(x;) for h; having a unique argmin.
i=1

Then fis separable. We say in this case that f is additively

decomposable.
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Consequence

Consider f(x) = Hhi(xi) with f,(x;) > 0. Then it is separable.
i=1



Non-separable Problems

Separable problems are typically easy to optimize. Yet

One needs to be careful when evaluating optimization algorithms
that not too many test functions are separable and if so that the
algorithms do not exploit separability.

Otherwise: good performance on test problems will not reflect

good performance of the algorithm to solve difficult problems

Algorithms known to exploit separability:
Many Genetic Algorithms (GA), Most Particle Swarm Optimization
(PSO)



Non-separable Problems

Building a non-separable problem from a separable one

Rotafing the coordinate system

» f : x — f(x) separable
» f: x — f(Rx) non-separable

R rotation matrix
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Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278



lll-conditioned Problems - Case of Convex-quadratic functions

Consider a strictly convex-quadratic function

1
f(x) = E(x — x*)'H(x — x*) for x = (x{,...,x,)" € R" and

x* € R" with H a symmetric, positive, definite (SPD) matrix.
Remember that H = Vf(x).
The condition number of the matrix H (with respect to the

Euclidean norm) is defined as

Amax(H)
cond(H) = )

in() being respectively the largest and smallest

with 4_..() and 4

eigenvalues.



lll-conditioned means a high condition number of the Hessian

matrix H.

Consider now the specific case of the function f(x) = —(xl2 + 9x22)

A o

1. Compute its Hessian matrix, its condition numbe)r H=(o 3)
cond (W)= 3

2. Plots the level sets of f, relate the condition number to the

axis ratio of the level sets of f s

3. Generalize to a general convex-quadratic function

Real-world problems are often ill-conditioned. 1 el okt
: L Yed
4. Why do you think it is the case? — F“‘l&\ \1\\,,:“% L\c@;ﬁm\&,

5. why are ill-conditioned problems difficult?



lll-conditioned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed’ lines of equal function value (high
curvatures)

A

Condition number equals nine here. Condition numbers up to[10'°
are not unusual in real world problems. Jo®

gradient direction —f'(x)?!
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Part |l: Algorithms



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms

Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]

Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region /Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)

Differential Evolution [Storn, Price 1997]

Particle Swarm Optimization [Kennedy and Eberhart 1995]

Evolution Strategies, CMA-ES |[Rechenberg 1965, Hansen, Ostermeier 2001]
Estimation of Distribution Algorithms (EDASs) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004]

Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]



A Generic Template for Stochastic Search

Define {P,: 0 € ®}, a family of probability distributions on R”

Generic template to optimize f : R" - R

Initialize distribution parameter @, set population size 4 € N

While not terminate "
ﬂ(\l‘“ KIQ\

1. Sample xi, ..., x; according to P,

2. Evaluate x{,...,x; on f
3. Update parameters 0 «— F(0,x,, ...,x,, (X)), ..., [(x)))

the update of @ should drive P, to concentrate on the optima of f



To obtain an optimization algorithm we need:

O to define {P,,0 € O}
® to define F the update function of &



Which probability distribution to sample candidate
solutions?



Normal distribution - 1D case

Standard Normal Distribution
| ' probability density of the 1-D standard normal
distribution N (0, 1)

probability density
o
N

g
—

p(x) = \/127 exp (—%)

% 2 0 2

General case

> Normal distribution ' (m, c%)
m
m

» A normal distribution is entirely determined by its mean value and

variance
» The family of normal distributions is closed under linear transformations:

if X is normally distributed then a linear transformation aX + b is also

normally distributed
> Exercice: Show that m + o N(0,1) = N (m, o?)
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Generalization to n Variables: Independent Case

Assume X1 ~ N (uy, 012) denote its density  p(x|) = Zilexp( — 2%12()@ — /41)2>

) j | 1 1 :
Assume X2~ ¥ (1, 03) denote its density  p(xy) = ——exp( - 5—(x, — ?)
2 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with

p(xp Xy) =



Generalization to n Variables: Independent Case

Assume X1 ~ N (uy, 012) denote its density  p(x|) = Zilexp( — 2%12()@ — /41)2>

) j | 1 1 :
Assume X2~ ¥ (1, o3) denote its density  p(xy) = —-exp( — 5—(r — m)?)
1 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with

pxy, xy) = pxpp(x,) = eXP( — l(x —w)'E 7 (x — ﬂ))
1>*2 1 2 2122 2

2
: 0'1 O
with x=,x)" p=,mw)' Y = ( )

2
O 62



Generalization to n Variables: Independent Case

Assume X1 ~ N (uy, 012) denote its density  p(x|) = Zilexp( — 2%12()@ — /41)2>

) j | 1 1 :
Assume X2~ ¥ (1, o3) denote its density  p(xy) = —-exp( — 5—(r — m)?)
1 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector

with —> i}(’f_@iﬁﬁj

1 1 _ o4 1
p(xy, %) = plx)p(x,) = 7.7, exp( — E(X - '“)TZ l(x B ,u)> >
6z 0
with X = (prz)T H = (ﬂlaﬂz)T 2= ( 1 2
O 62
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Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution

A random vector X = (X, ..., X)) € R" is a Gaussian vector
(or multivariate normal) if and only if for all real numbers
a, ...,a,, the random variable a, X, + ... + a, X, has a normal

distribution.



Gaussian Vector - Multivariate Normal Distribution

A random variable following a 1-D normal distribution is determined by its

mean value m and variance o~.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1,...,X,)" are random variables, each with
finite variance, then the covariance matrix X is the matrix whose (i, ) entries
are the covariance of (X, X;)

Y = cov(X;, Xj) = E [(Xi — i) (X — )]

where p; = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have S - \/a{[x;)

Y =E[(X —p)(X — )]



Density of a n-dimensional Gaussian vector /4 (m, C):

p./V(m.C)(x) =

exp (—%(x —m)' C7l(x — m)\

2-D Normal Distribution

Q2| C |

\C\:c\d‘(.(«)
The mean vector m:

determines the displacement

is the value with the largest density
the distribution is symmetric around the mean
N(m,C)=m+ N(0,C)
The covariance matrix:

determines the geometrical shape (see next slides)



Geometry of a Gaussian Vector

Consider a Gaussian vector /' (m, C), remind that lines of equal
densities are given by:

{x|A? = (x — m)'C~Y(x — m) = cst)

Decompose ( = UAUT with U orthogonal, i.e.

u U, 612 0 u -—
C= | | 2 U, —
0| o5
Let Y = UT(x — m) , then in the coordinate system, (u1,u2), the
lines of equal densities are given by

, Y 1
{x|A =—2+—2=CSt}
Oj %)



... any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R" |(x — m)'C *(x — m) =1}

Lines of Equal Density

N(m,o?1) ~ m+oN(0,1)  N(m,D?)~m+DN(0,1)  A/(m,C)~ m+C2N(0,1)

one degree of freedom o n degrees of freedom (2 4 1) /2 degrees of freedom
components are components are components are
independent standard independent, scaled correlated

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N(0,1) ~ A (0,AA™) holds for all
A.



Evolution Strategies

New search points are sampled normally

distributed
Xi=m+oy; for i = ]., c ey A with Yi ii.d. ~ N(O, C) ..
as perturbations of m, where x;, m € R", 0 € Ry, S
C E Ran
v
where Al \N’(m\, ° CL>

» the vector m € R" represents the favorite solution

» the so-called o € Ry controls the step length

» the C € R™" determines the shape

of the distribution ellipsoid
here, all new points are sampled with the same parameters




Evolution Strategies

New search points are sampled normally

distributed B

L]
L]
Y L]

Xi=m+oy; for i = ]., c ey A with Yi ii.d. ~ N(O, C) ..

< In fact, the covariance matrix of the sampling distribution is
but it is convenient to refer to C as the covariance matrix (it is a
covariance matrix but not of the sampling distribution)

VIINwI \w»

» the vector m € R" represents the favorite solution
» the so-called o € Ry controls the step length
» the C € R™" determines the shape

of the distribution ellipsoid

here, all new points are sampled with the same parameters

L I

———————

_______



How to update the different parameters m, o, C ?

1. Adapting the mean m



Update the Mean: a Simple Algorithm the (1+41)-ES

Notation and Terminology:

one solution kept one new solution
from one iteration (1 +1)'ES (offspring) sampled at
to the next each iteration

g
The 4+ means that we keep the best between current solution

and new solution, we talk about elitist selection

\_

(1+1)-ES algorithm (update of the mean)

sample one candidate solution from the mean m
Xx =m + o4 (0,C)
if X is better than m (i.e. if f(x) < f(m)), select m

m< X



The (141)-ES algorithm is a simple algorithm, yet:
= the elitist selection is not robust to outliers
we cannot loose solutions accepted by “chance”, for instance that
look good because the noise gave it a low function value
= there is no population (just a single solution is sampled) which
makes it less robust

In practice, one should rather use a:

The u best solutions are A solutions are
selected and recombined sampled

(to form the new mean) at each iteration



The (u/u, A)-ES - Update of the Mean Vector

Given the i-th solution point x; = m+ o y; =t e e, A
—~—
~N0,C)

Let x;.» the i-th ranked solution point, such that
f(x1a) <o < F(xan)
Notation: we denote y;.n the vector such that x;.» = m+ oy;.

Exercice: realize that y;.» is generally not distributed as N (0, C)
The new mean reads

L4
m <— E W; X\
i=1

where

1 . ~ A
wp > 2w, >0, Y owi=1 ==~ 3

= (h/P'(&\\L, e %)

The best 1 points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.




What changes in the previous slide if instead of
optimizing f, we optimize g f where g : Im(f) - R
is strictly increasing?

W,

M= x - 35 sﬁ):q g ered =
=[x



Invariance Under Monotonically Increasing Functions

Comparison-based /ranking-based algorithms:

Update of all parameters uses only the ranking:

SO < ) <0< ()

8(f(x1.0) < 8(f(xp)) < ... < g(f(xy.)
for all g : Im(f) — R strictly increasing



A Template for Comparison-based Stochastic Search

Define {P,: 0 € O}, a family of probability distributions on R”"

Generic template to optimize f : R" - R

Initialize distribution parameter @, set population size 4 € N
While not terminate

1. Sample x;, ..., x; according to P,

Evaluate x, ..., x, on f

Rank the solutions and find # the permutation such

4. Update parameters 0 « F(0,x, ..., X, x)



How to update the different parameters m, o, C ?

2. Adapting the step-size o



Why Step-size Adaptation?

Assume a (141)-ES algorithm with fixed step-size ¢ (and

C = 1) optimizing the function f(x) = inz = ||x]|* .
i=1

Initialize m, o
While (stopping criterion not met)
sample new solution:

X —m+ o/ (0,1 ook at th
] OOK 4 e convergence
f f(x) < f(m) °

of f(m)?
m < X

O Ox4,S$
elv -V, — 1 swwen—ny/
I FXQ’/ Y) 4 § h

What will happen if you



Why Step-size Adaptation?

o~ 7
10 ’{step—sizetoo small — Cf/ _(\7\'\(1\‘( u— random search .........
%J E\M“'C con tq;tep—size§ | (1+1)'ES
S 3 | red & green
g 10 , & ; ( green)
- | E ? n
'..(C:; Q i\— - — = - — — -step-size too Iérge ———————— f(x) — Z X-2
5 o N Phere BT ] i=1
\ in [~2.2,0.8]"
||y for n = 10
10_ i i i
0 0.5 1 15 2
function evaluations % 10

red curve: (1+1)-ES with optimal step-size (see later)
green curve: (1+1)-ES with constant step-size (6 = 107)
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Why Step-size Adaptation?

..................................................... randomsearCh .
O t step-size (1+1)'ES
= (red & green)
>
g . | n
'.8 R -~ -step-size too Iérge ———————— f ( X) — Z Xi2
- | | :
2107 e : i=1
_ We need step-size
. | _ . ‘ n
. e o | | adaptation to approach
10 |

0 0.5 1 15 the optimum fast

function evaluations :
(converge linearly)

red curve: (1+1)-ES with optimal step-size (see later)
green curve: (1+1)-ES with constant step-size (6 = 107)



Methods for Step-size Adaptation

1/5th success rule, typically applied with “+4" selection

[Rechenberg, 73][Schumer and Steiglitz, 78][Devroye, 72]

o-self adaptation, applied with “," selection [Schwefel, 81]

random variation is applied to the step-size and the better one, according to

the objective function value, is selected

path-length control or Cumulative step-size adaptation (CSA), applied with

. selection
[Ostermeier et al. 84][Hansen, Ostermeier, 2001]

two-point adaptation (TPA), applied with “,” selection [Hansen 2008]

test two solutions in the direction of the mean shift, increase or decrease

accordingly the step-size



Step-size control: 1/5th Success Rule

X;(Xd, X2 )

;}[x) =Xy

.....
oooooo
\d .
g .
¢ .
o .
. .
o .

o .

r "
o

f .

K .

.
. R
* .
N .
.. Ll
.....
------

Increase o decrease o



Step-size control: 1/5th Success Rule

Probability of success (ps) Probability of success (ps)

1/2 1/5 “too small”



Step-size control: 1/5th Success Rule

probability of success per iteration:

#candidate solutions better than m

S
P #candidate solutions

1 —
oo xexp| = x Ps ptarget
3 1 — Ptarget

(1+ 1)-ES
Ptarget — 1/5

Increase o if ps > prarget
Decrease o if ps < prarget

IF offspring better parent [f(x) < f(m)]
ps =1, 0 < o x exp(1/3)

ELSE

g’\/\, )
AT Cinexerute)

ps =0, 0 — o/exp(1/3)/4

1,514



(14-1)-ES with One-fifth Success Rule - Convergence

(1 + 1)-ES with one-fifth success rule (blue) H we d':“f(“y W N
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Path Length Control - Cumulative Step-size Adaptation (CSA)

step-size adaptation used in the (u/pu,, 4)-ES algorithm framework (in
CMA-ES in particular)

Main ldea:

X = m -
m < M- 0Yw

Measure the length of the evolution path

the pathway of the mean vector m in the iteration sequence

A VS

Y Y

decrease o Increase o




CSA-ES The Equations

Sampling of solutions, notations as on slide “The (u/u, A)-ES - Update of
the mean vector’ with C equal to the identity.

pg('[o,'fd)

Initialize m € R”, 0 € R, evolution path p, = 0,
set ¢, ~4/n, d, ~ 1.

m < m+oy, wherey, =>"" wyi, update mean

pr — (1—c)p, +1/1—-(1—-¢c,)* Vitw Yw
N— ——— SN

accounts for 1—c, accounts for w;

o 4 o0 X exp (;—Z (EHA‘/'IZO(-)‘}I) i 1)) update step-size

>1 <= ||p,|| is greater than its expectation
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Convergence of (u/u,,1)-CSA-ES

10° —[ ~ """""""" — with optimal step-size |;
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10 i i i N
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function evaluations

2x11 runs

for n =10
and
x? € [-0.2,0.8]"

with optimal versus adaptive step-size o with too small initial o



Convergence of (u/u,,,1)-CSA-ES

10° Ry B e — with optimal step-size |
f ; — with step-size control |
N X X
X ‘ ‘ | — respective step-size ||
N— 10 T NN N M . : .
"y
n
E : 2
|| 102 ......................................................................................................... f(X) — XI'
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= g | and
107 po S NN\ o o\ S x0 ¢ [—0.2,0.8]"
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function evaluations
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comparing number of f-evals to reach ||m| = 107>:

Note: initial step-size taken too small (6, = 107%) to illustrate the

step-size adaptation



Convergence of (u/u,,,1)-CSA-ES
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Optimal Step-size - Lower-bound for Convergence Rates

In the previous slides we have displayed some runs with “optimal”

step-size.

Optimal step-size relates to step-size proportional to the distance to

the optimum: o, = o||x — x™|| where x* is the optimum of the

optimized function (with o properly chosen).

The associated algorithm is not a real algorithm (as it needs to
know the distance to the optimum) but it gives bounds on
convergence rates and allows to compute many important

quantities.
The goal for a step-size adaptive algorithm is to achieve convergence rates
close to the one with optimal step-size



We will formalize this in the context of the (1+1)-ES. Similar

results can be obtained for other algorithm frameworks.



Optimal Step-size - Bound on Convergence Rate - (1+1)-ES

Consider a (1+41)-ES algorithm with any step-size adaptation
mechanism;

Y = X+ oV iy it f(X+ o 1) < AX)
e X, otherwise

with {4 ,t > 1} iid. ~ 40,1

equivalent writing;:

Xt 1] = X; + Ur/’/ t+11{ fXAo N, DSSf(X)]}



Bound on Convergence Rate - (1+1)-ES

Theorem: For any objective function f: R" — R, for any
y*ezﬂQn
E[HXt+1 — y*H] > E[HXt — y*H] =7
where 7 = max E[ln" ||e; + 0/VH] with e; = (1,0,...,0)

ceER>

= 40(0)

Theorem: The convergence rate lower-bound is reached on
spherical functions f(x) = g(Jlx — x™|) (with g : R,, — R strictly
increasing) and step-size proportional to the distance to the

optimum o; = o, lx — x*|| with o, such that ¢(c,,) = 7.



Log-Linear Convergence of scale-invariance step-size ES

Theorem: The (1+1)-ES with step-size proportional to the

distance to the optimum o, = o||x|| converges (log)-linearly

on the sphere function f(x) = g(||x||) almost surely:

lln XA () = CR .. ()
fIX|| —oo U

0
-0.05
0.1
0 = —-0.15f
g 10 2 \ ——dim=2
g § -0.2r \ + min fordim=2 ||
= £ i dim=3 |
(@) 58 -0.25 min for dim=3
e) .
o £ _ dim=5
© 410 & 03 * min for dim=5
o 10 2} .
= © _0.35 dim=10
S min for dim=10
% —0.4} ——dim=20
O min for dim=20
-0.45¢f ——dim=160
1 0-20 . . ¢ min for dim=160
0 1000 2000 3000 4000 5000 ‘0-50 2 4 6 8 10

function evaluations sigma*dimension

n=20and 0 =0.6/n



Asymptotic Results (n — o)

Theorem
Let o > 0, the convergence rate of the (1+1)-ES with
scale-invariant step-size on spherical functions satisfies at the limit

i O —0 0'2 0'2 0O
lim nx CRuy (1) = —Zew (=5 )+ 50 (-3)

where ® is the cumulative distribution of a normal distribution.
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