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Organization of the class

When: Friday afternoon - 2pm - 5:15pm at ENSTA

29/11/2024 room 1314
06/12/2024 room 1314
13/12/2024 room 1314
20/12/2024 room 1213
10/01/2025 room 1213
17/01/2025 room 1314
24/01/2025 room 1314
31/01/2025 room 1314
07/02/2025 room 1314

14/02/2025 [EXAM] TBA



Evaluation

Written exam on 14/02/2025 

Project (in group) around benchmarking of algorithms 
•  oral presentation to the class 

(60%

740%



Syllabus

Topics covered 
Derivative Free Optimization / Black-box optimization 
Single-objective optimization 
what makes a problem difficult 
algorithm to solve those difficulties (mostly stochastic) 

Multi-objective optimization [taught D. Brockhoff] 
Benchmarking (partly taught by D. Brockhoff) 

Practical Exercices 
practical exercices: implement/manipulate algorithms  
                                                  Python / Matlab / … 
ulitmate                   ultimate goal: optimize a (real) black-box problem on your own 

• understand and visualize convergence / adaptation / invariance

• experience numerics                 numerical errors, finite machine precision



Derivative-Free / Black-box Optimization
Task: minimize a numerical objective function (also called 
fitness function or loss function)   
  

without derivatives (gradient). : search space, dimension 
of the search space 
Also called zero-order black-box optimization

Ω n :
f : Ω ⊂ ℝn → ℝ, x ↦ f(x) ∈ ℝ

x
The function is seen by the algorithm as a zero-order oracle [a 
first order oracle would also return gradients] that can be 
queried at points and the oracle returns an answer  

EIRM



Reminder: Local versus Global Optimum

global minimum local minimum

local maximum
n=1



Examples: Optimization of the Design of a Launcher



Control of the Alignement of Molecules
application domain: quantum physics or chemistry

In the case of a real lab experiment: the objective function is 
a real black-box



Coffee Tasting Problem (A real Black-box)

Xi>
,o

Exi =1

(X1
,

x2, Xs
,X)-Taste



A last Application



What is the Goal?

•We want to find  such that  for all x⋆ f(x⋆) ≤ f(x) x

x⋆ ∈ argminx f(x)

why?

•In general we will never find x⋆



What is the Goal?

•We want to find  such that  for all x⋆ f(x⋆) ≤ f(x) x

x⋆ ∈ argminx f(x)

•In general we will never find x⋆

•Because of the numerical/continuous nature of the search 
space we typically never hit exactly , we instead converge 
to a solution: 

we want to find  such that 

x⋆

xt ∈ ℝn lim
t→∞

f(xt) = min f

of course we want fast convergence



Level Sets of a Function



Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading 
(as 1-D optimization is “trivial”, see slides related to curse of 
dimensionality), we therefore often represent level-sets of 
functions 

Examples of level sets in 2D
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Level Sets: Visualization of a Function

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain 



Level Sets: Topographic Map

The function is the altitude

3-D picture

Topographic map



Level Set: Exercice

Consider a strictly convex-quadratic function 
f(x) = 1

2 (x − x⋆)⊤H(x − x⋆) = 1
2 ∑

i
hii(xi − x⋆

i ) + 1
2 ∑

i≠j
hij(xi − x⋆

i )(xj − x⋆
j )

with H a symmetric, positive, definite matrix ( ).H ≻ 0

2. Assume n=2, H =


1 0
0 1

�
plot the level sets of f 

3. Same question with H =


1 0
0 9

�

4. Same question with H = P


1 0
0 9

�
P

T with P 2 R2⇥2

P orthogonal

1. What is/are the optima of f ? What does  represent for the 
function ?

H

2



f(x) = -(x - xiTH(x-xa)Hyo
strictly convex

f(x) o because H >0

f(x)= o Es X -X
*

=0 E) X = X
&

H = Df(x) Hessian matux

WLG X
*

= 0

4 H= (20) f(x) = -(xi+ x2))

( = (x)((x+ x)) = c)
(yo

#



H = (g)( = (x= (,x)(f(xi + gx) = c)
cyo , ellipsoid .

MeH = PT (1





What Makes an Optimization Problem Difficult?



What Makes a Function Difficult to Solve?
Why stochastic search?



Ruggedness

A cut of a 4-D function that can easily be solved with the 
CMA-ES algorithm
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value

easy! But how does it scale when n increases?

1-D optimization is trivial



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. 

How many points would you need to get a similar coverage (in 
terms of distance between adjacent points) in dimension 10? 



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. To get similar coverage, in terms of distance between 
adjacent points, of the 10-dimensional space [0,1]10 would 
require 10010 = 1020 points. A 100 points appear now as 
isolated points in a vast empty space. 

Consequence: a search policy (e.g. exhaustive search) that is 
valuable in small dimensions might be useless in moderate or 
large dimensional search spaces. 

I gid search



Curse of Dimensionality

How long would it take to evaluate 1020 points? 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 

!"#$%&'&!"(!&'
&!"(!&)&!"(!&*+!"#$%&',-"#.'/0',#'1''
,#)0-"*,#)$,(0*2345,#)$,(0*2344+6',-"7(%823333334'
9':)3;<23=3>?@?<:

7 seconds for 106 evaluations of  

We would need more than 108 days for evaluating 1020 points 

[As a reference: origin of human species: roughly 6 x 108 days]

f(x) =
P10

i=1 x
2
i



Separability

a weak definition of separability

The function  is a 1-D function which is a cut of  along 
the coordinate 

fx¬i(y) f
i .

Definition: A function  is separable if for all i, for all f x, x̄

argminy fx¬i(y) = argminy fx̄¬i(y)

Given  denote 
 

x = (x1, …, xiΩ1, xi, xi+1, …xn)
x¬i = (x1, …, xiΩ1, xi+1, …, xn) ⊂ ℝnΩ1

fx¬i(y) = f(x1, …, xiΩ1, y, xi+1, …, xn)

 the optimum along the coordinate , does not depend on 
how the other coordinates are fixed.
→ i



Lemma: Given  and  strictly 
increasing. If  is separable then  is separable.

f : ℝn → ℝ g : Im( f ) → ℝ
f g ↦ f

IR

Eof : >hy) Let g
: Im(h)->R strict increasing

argonic hly) = argmin gofly)
Y

Let X-
a gonn t(y) h(x)(h(y) fy

sincea strict increasing
goh) < gohly) by

=> XE agmin goh



Let i argain gotly goih(x) < gohly) by

xEg+(gh(x)) => g(gh(y)) fy
generalized

inverse
=> h(x)h . (y) Fy
=) *E agminh

Since the organic is preserved when composing witho strit

increasing to the left, then if f is separable, got is

separable

Example = xi2
IR3
,o

-

=(x2)" g(x)=Y
goft I



gt agminh = agmax gof



Proposition: Let  be a separable then for all f x

argminf(x1, …, xn) = (argminy fx¬1(y), …, argminy f n
x¬n(y))

and  can be optimized using  minimization along the 
coordinates.

f n

Exercice: prove the proposition
Let us prove

that (aminyfo (y), ---. , arguing fin(y) Cargaint

LinE
argain fixe + --,Xi,2,xite

, -, xn) i= 1, . ..

f(x) =f(x, . .

., xn)3f(an, x2, .., xn)f(n,22,x,
-, xn)

↑

by def of an by def ofC2



flys, .... - flan-.., an) #X

lay-- / an) t arguing
The other inclusion is immediate :

again f c (arguin Fuly) . ..., (



Example: Additively Decomposable Functions

Lemma: Let  for  having a unique argmin. 

Then  is separable. We say in this case that  is additively 
decomposable.

f(x1, …, xn) =
n

∑
i=1

hi(xi) hi

f f

Example: Rastrigin function

f(x) = 10n +
n

∑
i=1

(x2
i Ω 10 cos(2πxi))
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Consequence

Consider  with  Then it is separable.f(x) =
n

∏
i=1

hi(xi) hi(xi) > 0.

Proof :

-

f(x) = exp(ti(x)
=exphi(xi)
= go additively decomposable

g(x) = exp(X) Strict in

(x=hi(xi) : additively decomposable
↳ separable



Non-separable Problems

Separable problems are typically easy to optimize. Yet difiicult 
real-word problems are non-separable. 

One needs to be careful when evaluating optimization algorithms 
that not too many test functions are separable and if so that the 
algorithms do not exploit separability. 

Otherwise: good performance on test problems will not refiect 
good performance of the algorithm to solve diflicult problems

Algorithms known to exploit separability:  
Many Genetic Algorithms (GA), Most Particle Swarm Optimization 
(PSO)



Non-separable Problems
Building a non-separable problem from a separable one



Ill-conditioned Problems - Case of Convex-quadratic functions

Consider a strictly convex-quadratic function 
 for  and 

 with  a symmetric, positive, deffnite (SPD) matrix. 
Remember that . 
The condition number of the matrix  (with respect to the 
Euclidean norm) is deffned as

f(x) = 1
2 (x Ω x⊂)ℝH(x Ω x⊂) x = (x1, …, xn)ℝ → ↦n

x⊂ → ↦n H
H = ∈2f(x)

H

cond(H) = λmax(H)
λmin(H)

with  and  being respectively the largest and smallest 
eigenvalues.

λmax() λmin()



Ill-conditioned means a high condition number of the Hessian 
matrix .H

Consider now the speciffc case of the function  

  1. Compute its Hessian matrix, its condition number 
  2. Plots the level sets of , relate the condition number to the 
axis ratio of the level sets of  
  3. Generalize to a general convex-quadratic function 

f(x) = 1
2 (x2

1 + 9x2
2)

f
f

Real-world problems are often ill-conditioned.  
   4. Why do you think it is the case? 
   5. why are ill-conditioned problems difiicult?  

H=(j)
cond(H)= 9

-

-> physical variables optimized
can live on different scales.



Ill-conditioned Problems

Ino6
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Pure RandomSearch (DRS)

-ssume F:EITx) - f(x)

EIRS :

Initialize xbest = Unit ([1, 13h) /uniformal
WHILE NOT HAPPY (while stop criterion not met)

Sample Xu Unif ([_1,134)
If f(x) - Alxbest)

(see also Exercise 1)

XbestX

Does this algorithm converge : Yes under mild assumptions of
(I need to have "volume" in aneighborhood

of global optimu



---

Simplified proof setting
f(x)= 11 x 1100 = max ((1), -- , (xn)

·

Levelsets : n= 2

T
=

In exervice 1 : uniform samples (Vo,U. --

,
Ut, ... (

Vir Unif([1, 14)
Xt : best solution at iteration +

f(xt) = min( f(U), . . . , flut]



By induction.

Prove that Faso him1. (11X+ 1100 =2) = 0

tetoo

↳ give CV in probability.

1IXt1loo = min & /Villoo
, -.../ llutlloo]

GlIXt100 > <] = [EllUKlo2=
#r (GIXA023) =(GU0023)

= Ar(IIUlloo, 3) =(1101160034)
t

by ind of
k= 1

i-aust
Sur,=1... ] because

uk are identically
distributed.



# (II Velloo >) En1l00_> )
= 1-

/4x11x100<3)
X rol(4 x 11(x110011]

(each coordinate (2) =e -= n

#(1t002) = (e- 2) - o

--too

Hence ERS converges in probability to the optimum off-

Let's look at how fast it
converges.
-(Ball for infinityTc = inf + 1 Xt -> B(x*, s)) 10

↑

4 x 111 x 100<)



IRS is similar to
game :

sample Ut
,

win if fluted# Es U+ EB(o,a)
Look otherwise.

T : time it takes to win this
game.

Given a

game
with 2 outcomes win with proba p and loose with

proba (1-p) ,
wher the outcome is sampled randomly and independently,

I example : flip a voin]
,

the time it takes to win a game is

distributed according to a geometric distribution.

E[Ta] =
1

P

Back # PRS . p=r( "win") = # (llVt_2) =
s



E(Ta) = Yu
Is it fast ? No

compare : Linear or Ts ~ nlog() [gradienta
strongly cory)

The algorithm is "blind"
,

does not take into account the

information gathered on f , through the sampling of points to

sample "better" solutions.



Part II: Algorithms



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]
Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region/Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

Differential Evolution [Storn, Price 1997] 
Particle Swarm Optimization [Kennedy and Eberhart 1995] 
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001] 
Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002] 
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004] 
Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]



A Generic Template for Stochastic Search 

Define , a family of probability distributions on  {Pπ : π Ω ⊂} ℝn

Generic template to optimize f : ℝn → ℝ
Initialize distribution parameter , set population size  π λ Ω ↦
While not terminate

1. Sample  according to  
2. Evaluate  on  
3. Update parameters 

x1, …, xλ Pπ
x1, …, xλ f

π ∈ F(π, x1, …, xλ, f(x1), …, f(xλ))

the update of  should drive  to concentrate on the optima of π Pπ f

R xiRh



To obtain an optimization algorithm we need: 
         ➊ to define  
         ➋ to define  the update function of 

{Pπ, π Ω ⊂}
F π



Which probability distribution to sample candidate 
solutions?



Normal distribution - 1D case



m + o W
,1) is normally distributed

We only need to identify its mean and variance :

E(m + oc(,1)) = m + o E(vo,x) = m
-

by linarity =O

OnE

Var (m+ oM(o,1)
= E((m + oc(, 1) - m)2)-
= EatM1)

= o2 E(W(,1)) = 02
-

= 1

= meslo
, 1) Eup(m, 02)



#) m + 5M(o
,1) t) = # (((o,1)]t-)

=Ep(-+z )e dy=
odX

y = 0x + m

t

= SPYby
X = +

m

y = t



Assume X1 ~ Ω(π1, λ2
1) denote its density p(x1) = 1

Z1
exp( ⊂ 1

2λ2
1

(x1 ⊂ π1)2)
Assume X2~ Ω(π2, λ2

2) denote its density p(x2) = 1
Z2

exp( ⊂ 1
2λ2

2
(x2 ⊂ π2)2)

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
with

Generalization to n Variables: Independent Case

p(x1, x2) =



Assume X1 ~ Ω(π1, λ2
1) denote its density p(x1) = 1

Z1
exp( ⊂ 1

2λ2
1

(x1 ⊂ π1)2)
Assume X2~ Ω(π2, λ2

2) denote its density p(x2) = 1
Z1

exp( ⊂ 1
2λ2

2
(x2 ⊂ π2)2)

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
with

p(x1, x2) = p(x1)p(x2) = 1
Z1Z2

exp( ⊂ 1
2 (x ⊂ π)Tℝ⊂1(x ⊂ π))

ℝ = (λ2
1 0

0 λ2
2)π = (π1, π2)Tx = (x1, x2)Twith

Generalization to n Variables: Independent Case



Assume X1 ~ Ω(π1, λ2
1) denote its density p(x1) = 1

Z1
exp( ⊂ 1

2λ2
1

(x1 ⊂ π1)2)
Assume X2~ Ω(π2, λ2

2) denote its density p(x2) = 1
Z1

exp( ⊂ 1
2λ2

2
(x2 ⊂ π2)2)

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
with

p(x1, x2) = p(x1)p(x2) = 1
Z1Z2

exp( ⊂ 1
2 (x ⊂ π)Tℝ⊂1(x ⊂ π))

ℝ = (λ2
1 0

0 λ2
2)π = (π1, π2)Tx = (x1, x2)Twith

λ1 > λ2
(π1, π2)

Generalization to n Variables: Independent Case

-> -m



A random vector  is a Gaussian vector 
(or multivariate normal) if and only if for all real numbers 

, the random variable  has a normal 
distribution. 

X = (X1, …, Xn) → ↦n

a1, …, an a1X1 + … + anXn

Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution



Gaussian Vector - Multivariate Normal Distribution

Zii = Var(Xi)



Density of a n-dimensional Gaussian vector :Ω(m, C)

pΩ(m.C)(x) = 1
(2θ)n/2 |C |1/2 exp (⊂ 1

2 (x ⊂ m)∈C⊂1(x ⊂ m))
The mean vector : 
     determines the displacement 
     is the value with the largest density 
     the distribution is symmetric around the mean

m

Ω(m, C) = m + Ω(0,C)
The covariance matrix: 
        determines the geometrical shape (see next slides) 

1 Cl = det (c)



Geometry of a Gaussian Vector

Consider a  Gaussian vector , remind that lines of equal 
densities are given by:

Ω(m, C)

{x |⋆2 = (x ⊂ m)TC⊂1(x ⊂ m) = cst}

Decompose                           with U orthogonal, i.e.C = U≤U∈

C = (u1 u2
| | ) (λ2

1 0
0 | λ2

2) (u1 ⊂
u2 ⊂)

Let                                , then in the coordinate system, (u1,u2), the 
lines of equal densities are given by

Y = U∈(x ⊂ m)

{x |⋆2 = Y2
1

λ2
1

+ Y2
2

λ2
2

= cst}
u1

u2

λ1

λ2

(π1, π2)





Evolution Strategies

Xiv(m, orc)



Evolution Strategies

In fact, the covariance matrix of the sampling distribution is  
but it is convenient to refer to  as the covariance matrix (it is a 

covariance matrix but not of the sampling distribution)

λ2C
C



How to update the difierent parameters  ?m, λ, C
1. Adapting the mean  
2. Adapting the step-size  
3. Adapting the covariance matrix 

m
λ

C



Update the Mean: a Simple Algorithm the (1+1)-ES

(1+1)-ES
Notation and Terminology:

one new solution 
(offspring) sampled at 

each iteration

one solution kept 
from one iteration 

to the next

The + means that we keep the best between current solution 
and new solution, we talk about elitist selection

(1+1)-ES  algorithm (update of the mean)
sample one candidate solution from the mean m

x = m + λΩ(0,C)
if  is better than  (i.e. if ), select x m f(x) ∞ f(m) m

m ℒ x



The (1+1)-ES algorithm is a simple algorithm, yet: 
•the elitist selection is not robust to outliers  
we cannot loose solutions accepted by “chance”, for instance that 

look good because the noise gave it a low function value 
•there is no population (just a single solution is sampled) which 
makes it less robust

In practice, one should rather use a:
-ES(π/π, μ)
 solutions are 

sampled 
at each iteration

μThe  best solutions are 
selected and recombined 
(to form the new mean)

π



The -ES - Update of the Mean Vector(π/π, μ)

E=1, . . .,
X

Ctypically u= 1)



What changes in the previous slide if instead of 
optimizing , we optimize  where  

is strictly increasing?
f g − f g : Im( f ) ⊤ ↦

f(x=
X 2 gof() = (4

* gWexent-XY4
=Mi



Invariance Under Monotonically Increasing Functions

Comparison-based/ranking-based algorithms:
Update of all parameters uses only the ranking:

f(x1:μ) ∞ f(x2:μ) ∞ … ∞ f(xμ:μ)

  
for all  strictly increasing
g( f(x1:μ)) ∞ g( f(x2:μ)) ∞ … ∞ g( f(xμ:μ))

g : Im( f ) ⊤ ↦



A Template for Comparison-based Stochastic Search 

Define , a family of probability distributions on  {Pσ : σ → ≠} ↦n

Generic template to optimize f : ↦n ⊤ ↦
Initialize distribution parameter , set population size  σ μ → ≻
While not terminate

1. Sample  according to  
2. Evaluate  on  
3. Rank the solutions and find  the permutation such  
             
4. Update parameters 

x1, …, xμ Pσ
x1, …, xμ f

θ
f(xθ(1)) ∞ f(xθ(2)) ∞ … ∞ f(xθ(μ))

σ ℒ F(σ, x1, …, xμ, θ)



How to update the difierent parameters  ?m, λ, C
1. Adapting the mean  
2. Adapting the step-size  
3. Adapting the covariance matrix 

m
λ

C



Why Step-size Adaptation?

Assume a (1+1)-ES algorithm with fixed step-size  (and 
) optimizing the function  .

λ

C = Id f(x) =
n

∑
i=1

x2
i = ∘x∘2

Initialize m, λ
While (stopping criterion not met)

sample new solution: 
 x ℒ m + λΩ(0,Id)

if f(x) ∞ f(m)
m ℒ x

What will happen if you  
look at the convergence 

of f(m)?

1ON4) -> E Succen-ruleev



red curve: (1+1)-ES with optimal step-size (see later) 
green curve: (1+1)-ES with constant step-size ( )λ = 10⊂3

Why Step-size Adaptation?

-inae(othan on



->

sampleveryclotamp
better solta

Iprogress but⑨
very small

slowly become

Step-size is small.

↳ Step-size too small

with bigger, faster progres



->
I would like to

increase the step-size

/(Ix f(x) = 72+
Region where we need to sample to

progress .

Probability to sample in this region is

very small
,

because o >) llmt-XIIya
%

~



Phas It
: The step-size has the right order of magnitude

-

compared to llmt-XII
, program is close to optimal.



red curve: (1+1)-ES with optimal step-size (see later) 
green curve: (1+1)-ES with constant step-size ( )π = 10Ω3

Why Step-size Adaptation?

We need step-size 
adaptation to approach 

the optimum fast 
(converge linearly)  



Methods for Step-size Adaptation

1/5th success rule, typically applied with “+” selection
[Rechenberg, 73][Schumer and Steiglitz, 78][Devroye, 72]

-self adaptation, applied with “,” selectionπ

random variation is applied to the step-size and the better one, according to  
the objective function value, is selected 

[Schwefel, 81]

path-length control or Cumulative step-size adaptation (CSA), applied with 
“,” selection

[Ostermeier et al. 84][Hansen, Ostermeier, 2001]

two-point adaptation (TPA), applied with “,” selection [Hansen 2008]

test two solutions in the direction of the mean shift, increase or decrease  
accordingly the step-size



Step-size control: 1/5th Success Rule
X= (xn

, Xz)

f(x) = =x1



Step-size control: 1/5th Success Rule



Step-size control: 1/5th Success Rule

probability of success per iteration:  
      
        ps = #candidate solutions better than m

#candidate solutions

[ f(x) ⊂ f(m)]

u
15 [in exercice)

--
151/4



(1+1)-ES with One-fffth Success Rule - Convergence
If we display= /I
instead of 11x112

,
then

the blue convergence graph
would have the same

slope as the step-size

↓ x
slope (black).

note t log it is



The convergence observed on the previous slide is called linear conver

gene .
We formalize it as

Convergence rate

↓ mo 1 In llmt-XIl -> - C

Vo t --too
270

(almost surely) .

- C : slope of the black graph
slope of blue graph if we

display If



Path Length Control - Cumulative Step-size Adaptation (CSA)

step-size adaptation used in the -ES algorithm framework (in 
CMA-ES in particular)

(π/πw, λ)

Main Idea:

mj

my

my

my Mt

mo



CSA-ES                                          The Equations

Ra Mo,Ia)
Xi = m + Jyi

f(xnx)1... - f(xxix)
Xiix = m + Jyi:x



The CSA update with time index rotation writes :

Xi = m+ + ofy
3 yet ,

i =...,x]
M

mt+= m++ otiy ↓wiI
P = In-co)p+R Wat Yet

ott = of expa - = )
Mw=wil

WhenAfrandom [each time we evaluate a point of ,
it

returns a randon numer independant from
the previous ones and identically distributed]

is not true orther

then Syri ,
=, .... x) are iid -Nod)

<

functions. The selection

YI Mo, Il) ↳ I
on f, generally changes the distributi



e ~ No,d)If YIuNoid)
,

then My =
1 I wi Yt+F i=

(Hone Proof)

under randon selection

V
If pot ~Wo , Id) since Mye ~loa)

them
poth = 11-cotpot+to My No,

(d)

(Hone Proof)

Then : under random selection :

oth = of exp
,al

- = ()



log oth = toget+= = )
~

INCoal

Elogot, (mt
,of] = logot+-n)

= 0

#[log(it+ ) 1 mt ,of] = log of

↳ Formal explanation of log step-size constant

under random selection.



Convergence of -CSA-ES(π/πw, λ)
2x11 runs



Convergence of -CSA-ES(π/πw, λ)

Note: initial step-size taken too small ( ) to illustrate the 
step-size adaptation 

θ0 = 10Ω2



Convergence of -CSA-ES(π/πw, λ)



Optimal Step-size - Lower-bound for Convergence Rates

In the previous slides we have displayed some runs with “optimal” 
step-size.  

Optimal step-size relates to step-size proportional to the distance to 
the optimum:  where  is the optimum of the 
optimized function (with  properly chosen). 

The associated algorithm is not a real algorithm (as it needs to 
know the distance to the optimum) but it gives bounds on 
convergence rates and allows to compute many important 
quantities. 

θt = θ⊂x Ω xℝ⊂ xℝ

θ

The goal for a step-size adaptive algorithm is to achieve convergence rates 
close to the one with optimal step-size



We will formalize this in the context of the (1+1)-ES.  Similar 
results can be obtained for other algorithm frameworks.



Optimal Step-size - Bound on Convergence Rate - (1+1)-ES

Consider a (1+1)-ES algorithm with any step-size adaptation 
mechanism:

Xt+1 = {Xt + θt→t+1ffiffff(Xt + θt→t+1) ↦ f(Xt)
Xtffotherwiseff

Xt+1 = Xt + θt→t+11{f(Xt+θt→t+1)↦ f(Xt)}

with  i.i.d. {→t, t ∈ 1} ⋆ →(0,Id)

equivalent writing:



Bound on Convergence Rate - (1+1)-ES

Theorem: For any objective function , for any f : ≤n ∞ ≤
yℝ ℒ ≤n

E[⊂Xt+1 Ω yℝ⊂] ∈ E[⊂Xt Ω yℝ⊂] Ω μ
where  with μ = max

θℒ≤>
E[lnΩ ⊂e1 + θ→⊂]

=:σ(θ)

e1 = (1,0,…,0)

Theorem: The convergence rate lower-bound is reached on 
spherical functions  (with  strictly 
increasing) and step-size proportional to the distance to the 
optimum  with  such that .

f(x) = g(⊂x Ω xℝ⊂) g : ≤∈0 ∞ ≤

θt = θopt⊂x Ω xℝ⊂ θopt σ(θopt) = μ

lower bound



Log-Linear Convergence of scale-invariance step-size ES

Theorem: The (1+1)-ES with step-size proportional to the 
distance to the optimum  converges (log)-linearly 
on the sphere function  almost surely: 
                    

θt = θ⊂x⊂
f(x) = g(⊂x⊂)

1
t

ln ⊂Xt⊂
⊂X0⊂ t∞−

Ω σ(θ) =: CR(1+1)(θ)



Asymptotic Results (n ∞ −)


