III-conditioned Problems

consider the curvature of the level sets of a function
ill-conditioned means "squeezed" lines of equal function value (high curvatures)

gradient direction $-f^{\prime}(\boldsymbol{x})^{\mathrm{T}}$
Newton direction
$-\boldsymbol{H}^{-1} \boldsymbol{f}^{\prime}(\boldsymbol{x})^{\mathrm{T}}$

Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

Part II: Algorithms

Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms

Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]
Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region/Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn, Price 1997]
Particle Swarm Optimization [Kennedy and Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001]
Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004]
Genetic Algorithms [Holland 1975, Goldberg 1989]
Simulated Annealing [Kirkpatrick et al. 1983]

A Generic Template for Stochastic Search

Define $\left\{P_{\theta}: \theta \in \Theta\right\}$, a family of probability distributions on \mathbb{R}^{n}
Generic template to optimize $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
Initialize distribution parameter θ, set population size $\lambda \in \mathbb{N}$
While not terminate

1. Sample $x_{1}, \ldots, x_{\lambda}$ according to P_{θ}
2. Evaluate $x_{1}, \ldots, x_{\lambda}$ on f
3. Update parameters $\theta \leftarrow F\left(\theta, x_{1}, \ldots, x_{\lambda}, f\left(x_{1}\right), \ldots, f\left(x_{\lambda}\right)\right)$
the update of θ should drive P_{θ} to concentrate on the optima of f

To obtain an optimization algorithm we need:
(1) to define $\left\{P_{\theta}, \theta \in \Theta\right\}$
(2) to define F the update function of θ

Which probability distribution to sample candidate solutions?

Normal distribution - 1D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$
$($ expected $($ mean $)$ value, variance $)=(0,1)$

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

General case

- Normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$

$$
\begin{array}{r}
\text { (expected value, variance })=\left(\boldsymbol{m}, \sigma^{2}\right) \\
\text { density: } p_{\boldsymbol{m}, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\boldsymbol{m})^{2}}{2 \sigma^{2}}\right)
\end{array}
$$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation $a X+b$ is also normally distributed
- Exercice: Show that $m+\sigma \mathcal{N}(0,1)=\mathcal{N}\left(m, \sigma^{2}\right)$

Generalization to n Variables: Independent Case

Assume $\mathrm{X} 1 \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ denote its density $\quad p\left(x_{1}\right)=\frac{1}{Z_{1}} \exp \left(-\frac{1}{2 \sigma_{1}^{2}}\left(x_{1}-\mu_{1}\right)^{2}\right)$
Assume X2~ $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ denote its density $\quad p\left(x_{2}\right)=\frac{1}{Z_{2}} \exp \left(-\frac{1}{2 \sigma_{2}^{2}}\left(x_{2}-\mu_{2}\right)^{2}\right)$
Assume X 1 and X 2 are independent, then $(\mathrm{X} 1, \mathrm{X} 2)$ is a Gaussian vector with

$$
p\left(x_{1}, x_{2}\right)=
$$

Generalization to n Variables: Independent Case

Assume $\mathrm{X} 1 \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ denote its density $\quad p\left(x_{1}\right)=\frac{1}{Z_{1}} \exp \left(-\frac{1}{2 \sigma_{1}^{2}}\left(x_{1}-\mu_{1}\right)^{2}\right)$
Assume $\mathrm{X} 2 \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ denote its density $\quad p\left(x_{2}\right)=\frac{1}{Z_{1}} \exp \left(-\frac{1}{2 \sigma_{2}^{2}}\left(x_{2}-\mu_{2}\right)^{2}\right)$
Assume X 1 and X 2 are independent, then $(\mathrm{X} 1, \mathrm{X} 2)$ is a Gaussian vector with

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)=\frac{1}{Z_{1} Z_{2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

with $\quad x=\left(x_{1}, x_{2}\right)^{T} \quad \mu=\left(\mu_{1}, \mu_{2}\right)^{T} \quad \Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2}\end{array}\right)$

Generalization to n Variables: Independent Case

Assume X1 $\sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ denote its density $\quad p\left(x_{1}\right)=\frac{1}{Z_{1}} \exp \left(-\frac{1}{2 \sigma_{1}^{2}}\left(x_{1}-\mu_{1}\right)^{2}\right)$
Assume $\mathrm{X} 2 \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ denote its density $\quad p\left(x_{2}\right)=\frac{1}{Z_{1}} \exp \left(-\frac{1}{2 \sigma_{2}^{2}}\left(x_{2}-\mu_{2}\right)^{2}\right)$
Assume X 1 and X 2 are independent, then $(\mathrm{X} 1, \mathrm{X} 2)$ is a Gaussian vector with

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)=\frac{1}{Z_{1} Z_{2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

with $\quad x=\left(x_{1}, x_{2}\right)^{T} \quad \mu=\left(\mu_{1}, \mu_{2}\right)^{T} \quad \Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2}\end{array}\right)$

Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution

A random vector $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ is a Gaussian vector (or multivariate normal) if and only if for all real numbers a_{1}, \ldots, a_{n}, the random variable $a_{1} X_{1}+\ldots+a_{n} X_{n}$ has a normal distribution.

Gaussian Vector - Multivariate Normal Distribution

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^{2}.

In the n-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix

If the entries in a vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of $\left(X_{i}, X_{j}\right)$

$$
\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

where $\mu_{i}=\mathrm{E}\left(X_{i}\right)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$
\Sigma=\mathrm{E}\left[(X-\mu)(X-\mu)^{T}\right]
$$

Density of a n-dimensional Gaussian vector $\mathcal{N}(m, C)$:

$$
p_{\mathcal{N}(m . C)}(x)=\frac{1}{(2 \pi)^{n / 2}|C|^{1 / 2}} \exp \left(-\frac{1}{2}(x-m)^{\top} C^{-1}(x-m)\right)
$$

The mean vector m :
determines the displacement is the value with the largest density
 the distribution is symmetric around the mean

$$
\mathcal{N}(m, C)=m+\mathcal{N}(0, C)
$$

The covariance matrix: determines the geometrical shape (see next slides)

Geometry of a Gaussian Vector

Consider a Gaussian vector $\mathcal{N}(m, C)$, remind that lines of equal densities are given by:

$$
\left\{x \mid \Delta^{2}=(x-m)^{T} C^{-1}(x-m)=\mathrm{cst}\right\}
$$

Decompose $C=U \Lambda U^{\top}$ with U orthogonal, i.e.

$$
C=\left(\begin{array}{cc}
u_{1} & u_{2} \\
\mid & \mid
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 \mid & \sigma_{2}^{2}
\end{array}\right)\left(\begin{array}{ll}
u_{1} & - \\
u_{2} & -
\end{array}\right)
$$

Let $Y=U^{\top}(x-m)$, then in the coordinate system, ($\mathrm{u} 1, \mathrm{u} 2$), the lines of equal densities are given by

$$
\left\{x \left\lvert\, \Delta^{2}=\frac{Y_{1}^{2}}{\sigma_{1}^{2}}+\frac{Y_{2}^{2}}{\sigma_{2}^{2}}=\operatorname{cst}\right.\right\}
$$

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(m, \sigma^{2} \mathbf{I}\right) \sim m+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad \mathcal{N}\left(m, \mathbf{D}^{2}\right) \sim m+\mathbf{D} \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A A}^{\mathrm{T}}\right)$ holds for all A.

Evolution Strategies

New search points are sampled normally distributed
$\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m}+\sigma \boldsymbol{y}_{\boldsymbol{i}} \quad$ for $i=1, \ldots, \lambda$ with \boldsymbol{y}_{i} i.i.d. $\sim \mathcal{N}(\mathbf{0}, \mathrm{C})$:
as perturbations of m, where $\boldsymbol{x}_{i}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, $C \in \mathbb{R}^{n \times n}$
where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
here, all new points are sampled with the same parameters

Evolution Strategies

New search points are sampled normally distributed

$$
\boldsymbol{x}_{i}=\boldsymbol{m}+\sigma \boldsymbol{y}_{i} \quad \text { for } i=1, \ldots, \lambda \text { with } \boldsymbol{y}_{i} \text { i.i.d. } \sim \mathcal{N}(\mathbf{0}, \mathrm{C}):
$$

In fact, the covariance matrix of the sampling distribution is but it is convenient to refer to C as the covariance matrix (it is a covariance matrix but not of the sampling distribution)

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
here, all new points are sampled with the same parameters

How to update the different parameters m, σ, \mathbf{C} ?

1. Adapting the mean m
2. Adapting the step-size σ
3. Adapting the covariance matrix C

Update the Mean: a Simple Algorithm the (1+1)-ES
Notation and Terminology:
one solution kept from one iteration to the next

(offspring) sampled at each iteration

The + means that we keep the best between current solution and new solution, we talk about elitist selection
$(1+1)$-ES algorithm (update of the mean)
sample one candidate solution from the mean \mathbf{m}

$$
\mathbf{x}=\mathbf{m}+\sigma \mathcal{N}(0, \mathbf{C})
$$

if \mathbf{x} is better than \mathbf{m} (i.e. if $f(\mathbf{x}) \leq f(\mathbf{m})$), select \mathbf{m}
$\mathbf{m} \leftarrow \mathbf{X}$

The $(1+1)$-ES algorithm is a simple algorithm, yet:

- the elitist selection is not robust to outliers
we cannot loose solutions accepted by "chance", for instance that look good because the noise gave it a low function value - there is no population (just a single solution is sampled) which makes it less robust

In practice, one should rather use a:

$$
(\mu / \mu, \lambda)-E S
$$

The μ best solutions are selected and recombined (to form the new mean)
λ solutions are
sampled
at each iteration

Given the \boldsymbol{i}-th solution point $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m}+\sigma$

$$
\underbrace{\boldsymbol{y}_{i}}_{\sim \mathcal{N}(0, C)}
$$

Let $\boldsymbol{x}_{i: \lambda}$ the i-th ranked solution point, such that $f\left(x_{1: \lambda}\right) \leq \cdots \leq f\left(x_{\lambda: \lambda}\right)$.

Notation: we denote $\boldsymbol{y}_{i: \lambda}$ the vector such that $x_{i: \lambda}=\boldsymbol{m}+\sigma y_{i: \lambda}$ Exercice: realize that $y_{i: \lambda}$ is generally not distributed as $\mathcal{N}(\mathbf{0}, \mathbf{C})$
The new mean reads

$$
m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}
$$

where

$$
w_{1} \geq \cdots \geq w_{\mu}>0, \quad \sum_{i=1}^{\mu} w_{i}=1, \quad \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}}=: \mu_{w} \approx \frac{\lambda}{4}
$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied

What changes in the previous slide if instead of optimizing f, we optimize $g \circ f$ where $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ is strictly increasing?

Invariance Under Monotonically Increasing Functions

Comparison-based/ranking-based algorithms:
Update of all parameters uses only the ranking:

$$
f\left(x_{1: \lambda}\right) \leq f\left(x_{2: \lambda}\right) \leq \ldots \leq f\left(x_{1: \lambda}\right)
$$

$g\left(f\left(x_{1: \lambda}\right)\right) \leq g\left(f\left(x_{2: \lambda}\right)\right) \leq \ldots \leq g\left(f\left(x_{\lambda: \lambda}\right)\right)$
for all $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ strictly increasing

A Template for Comparison-based Stochastic Search

Define $\left\{P_{\theta}: \theta \in \Theta\right\}$, a family of probability distributions on \mathbb{R}^{n}
Generic template to optimize $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
Initialize distribution parameter θ, set population size $\lambda \in \mathbb{N}$
While not terminate

1. Sample $x_{1}, \ldots, x_{\lambda}$ according to P_{θ}
2. Evaluate $x_{1}, \ldots, x_{\lambda}$ on f
3. Rank the solutions and find π the permutation such

$$
f\left(x_{\pi(1)}\right) \leq f\left(x_{\pi(2)}\right) \leq \ldots \leq f\left(x_{\pi(\lambda)}\right)
$$

4. Update parameters $\theta \leftarrow F\left(\theta, x_{1}, \ldots, x_{\lambda}, \pi\right)$
