consider the curvature of the level sets of a function

ill-conditioned means "squeezed" lines of equal function value (high curvatures)

gradient direction $-f'(\mathbf{x})^{\mathrm{T}}$ Newton direction $-\mathbf{H}^{-1}f'(\mathbf{x})^{\mathrm{T}}$

Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

Part II: Algorithms

Deterministic Algorithms

Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970] Simplex downhill [Nelder and Mead 1965] Pattern search, Direct Search [Hooke and Jeeves 1961] Trust-region/Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn, Price 1997]
Particle Swarm Optimization [Kennedy and Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001]
Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004]
Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]

Define $\{P_{\theta} : \theta \in \Theta\}$, a family of probability distributions on \mathbb{R}^{n}

Generic template to optimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameter θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- 1. Sample x_1, \ldots, x_{λ} according to P_{θ}
- 2. Evaluate x_1, \ldots, x_{λ} on f
- 3. Update parameters $\theta \leftarrow F(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

the update of θ should drive P_{θ} to concentrate on the optima of f

To obtain an optimization algorithm we need: **1** to define $\{P_{\theta}, \theta \in \Theta\}$ **2** to define F the update function of θ

Which probability distribution to sample candidate solutions?

Normal distribution - 1D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$

(expected (mean) value, variance) = (0,1)

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

General case

▶ Normal distribution $\mathcal{N}(\boldsymbol{m}, \sigma^2)$

(expected value, variance) =
$$(\boldsymbol{m}, \sigma^2)$$

density: $p_{\boldsymbol{m},\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\boldsymbol{m})^2}{2\sigma^2}\right)$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation aX + b is also normally distributed

• Exercice: Show that
$$m + \sigma \mathcal{N}(0, 1) = \mathcal{N}(m, \sigma^2)$$

Generalization to n Variables: Independent Case

Assume X1 ~
$$\mathcal{N}(\mu_1, \sigma_1^2)$$
 denote its density $p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right)$
Assume X2~ $\mathcal{N}(\mu_2, \sigma_2^2)$ denote its density $p(x_2) = \frac{1}{Z_2} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

Assume X1 and X2 are **independent**, then (X1,X2) is a Gaussian vector with

$$p(x_1, x_2) =$$

Generalization to n Variables: Independent Case

Assume X1 ~
$$\mathcal{N}(\mu_1, \sigma_1^2)$$
 denote its density $p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right)$
Assume X2~ $\mathcal{N}(\mu_2, \sigma_2^2)$ denote its density $p(x_2) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

Assume X1 and X2 are **independent**, then (X1,X2) is a Gaussian vector with

$$p(x_1, x_2) = p(x_1)p(x_2) = \frac{1}{Z_1 Z_2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

with $x = (x_1, x_2)^T$ $\mu = (\mu_1, \mu_2)^T$ $\Sigma = \begin{pmatrix} \sigma_1^2 & 0\\ 0 & \sigma_2^2 \end{pmatrix}$

Generalization to n Variables: Independent Case

Assume X1 ~
$$\mathcal{N}(\mu_1, \sigma_1^2)$$
 denote its density $p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right)$
Assume X2~ $\mathcal{N}(\mu_2, \sigma_2^2)$ denote its density $p(x_2) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

Assume X1 and X2 are **independent**, then (X1,X2) is a Gaussian vector with

$$p(x_1, x_2) = p(x_1)p(x_2) = \frac{1}{Z_1 Z_2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

with $x = (x_1, x_2)^T$ $\mu = (\mu_1, \mu_2)^T$ $\Sigma = \begin{pmatrix} \sigma_1^2 & 0\\ 0 & \sigma_2^2 \end{pmatrix}$

Gaussian Vector - Multivariate Normal Distribution

A random vector $X = (X_1, ..., X_n) \in \mathbb{R}^n$ is a Gaussian vector (or multivariate normal) if and only if for all real numbers $a_1, ..., a_n$, the random variable $a_1X_1 + ... + a_nX_n$ has a normal distribution.

Gaussian Vector - Multivariate Normal Distribution

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^2 .

In the *n*-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix

If the entries in a vector $\mathbf{X} = (X_1, \dots, X_n)^T$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of (X_i, X_j)

$$\Sigma_{ij} = \operatorname{cov}(X_i, X_j) = \operatorname{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]$$

where $\mu_i = E(X_i)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$\boldsymbol{\Sigma} = \mathrm{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^{T}]$$

 Σ is symmetric, positive definite

Density of a n-dimensional Gaussian vector $\mathcal{N}(m, C)$:

$$p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathsf{T}} C^{-1}(x-m)\right)$$

The mean vector *m*:

determines the displacement is the value with the largest density

the distribution is symmetric around the mean

$$\mathcal{N}(m,C) = m + \mathcal{N}(0,C)$$

The covariance matrix:

determines the geometrical shape (see next slides)

Consider a Gaussian vector $\mathcal{N}(m, C)$, remind that lines of equal densities are given by:

$$\{x \mid \Delta^2 = (x - m)^T C^{-1} (x - m) = \text{cst}\}\$$

Decompose $C = U \Lambda U^{\top}$ with U orthogonal, i.e.

$$C = \begin{pmatrix} u_1 & u_2 \\ | & | \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 | & \sigma_2^2 \end{pmatrix} \begin{pmatrix} u_1 & - \\ u_2 & - \end{pmatrix}$$

Let $Y = U^{\top}(x - m)$, then in the coordinate system, (u1,u2), the lines of equal densities are given by

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n | (x - m)^T C^{-1} (x - m) = 1\}$

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all A.

Evolution Strategies

New search points are sampled normally distributed

$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
 for $i = 1, \dots, \lambda$ with \mathbf{y}_i i.i.d. $\sim \mathcal{N}(\mathbf{0}, \mathbf{C})$

as perturbations of *m*,

where
$$\mathbf{x}_i, \mathbf{m} \in \mathbb{R}^n, \ \sigma \in \mathbb{R}_+, \mathbf{C} \in \mathbb{R}^{n \times n}$$

where

- the mean vector $\mathbf{m} \in \mathbb{R}^n$ represents the favorite solution
- ▶ the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

Evolution Strategies

New search points are sampled normally distributed

$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
 for $i = 1, \dots, \lambda$ with \mathbf{y}_i i.i.d. $\sim \mathcal{N}(\mathbf{0}, \mathbf{C})$

- In fact, the covariance matrix of the sampling distribution is $\sigma^2 \mathbb{C}$ but it is convenient to refer to \mathbb{C} as the covariance matrix (it is a covariance matrix but not of the sampling distribution)
 - the mean vector $\boldsymbol{m} \in \mathbb{R}^n$ represents the favorite solution
 - ▶ the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
 - the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

How to update the different parameters m, σ, \mathbf{C} ?

1. Adapting the mean *m*

- 2. Adapting the step-size σ
- **3.** Adapting the covariance matrix C

Update the Mean: a Simple Algorithm the (1+1)-ES

Notation and Terminology:

one solution kept from one iteration to the next

one new solution (offspring) sampled at each iteration

The + means that we keep the best between current solution and new solution, we talk about *elitist* selection

(1+1)-ES

(1+1)-ES algorithm (update of the mean)

sample one candidate solution from the mean ${\boldsymbol{m}}$

 $\mathbf{x} = \mathbf{m} + \sigma \mathcal{N}(0, \mathbf{C})$

if **x** is better than **m** (i.e. if $f(\mathbf{x}) \leq f(\mathbf{m})$), select **m**

 $\mathbf{m} \leftarrow \mathbf{x}$

The (1+1)-ES algorithm is a simple algorithm, yet:
the elitist selection is not robust to outliers
we cannot loose solutions accepted by "chance", for instance that look good because the noise gave it a low function value
there is no population (just a single solution is sampled) which makes it less robust

In practice, one should rather use a:

 $(\mu/\mu, \lambda)$ -ES

The μ best solutions are selected and recombined (to form the new mean)

 λ solutions are sampled at each iteration

The $(\mu/\mu, \lambda)$ -ES - Update of the Mean Vector

Given the *i*-th solution point $\mathbf{x}_i = \mathbf{m} + \sigma \underbrace{\mathbf{y}_i}_{\sim \mathcal{N}(\mathbf{0}, \mathbf{C})}$

Let $\mathbf{x}_{i:\lambda}$ the *i*-th ranked solution point, such that $f(\mathbf{x}_{1:\lambda}) \leq \cdots \leq f(\mathbf{x}_{\lambda:\lambda})$.

Notation: we denote $y_{i:\lambda}$ the vector such that $x_{i:\lambda} = m + \sigma y_{i:\lambda}$ Exercice: realize that $y_{i:\lambda}$ is generally not distributed as $\mathcal{N}(\mathbf{0}, \mathbf{C})$ The new mean reads

$$m{m} \leftarrow \sum_{i=1}^{\mu} m{w}_i \, m{x}_{i:\lambda}$$

where

$$w_1 \geq \cdots \geq w_\mu > 0, \quad \sum_{i=1}^\mu w_i = 1, \quad rac{1}{\sum_{i=1}^\mu w_i^2} =: \mu_w pprox rac{\lambda}{4}$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

What changes in the previous slide if instead of optimizing f, we optimize $g \circ f$ where $g : \text{Im}(f) \to \mathbb{R}$ is strictly increasing?

Invariance Under Monotonically Increasing Functions

Comparison-based/ranking-based algorithms:

Update of all parameters uses only the ranking:

 $f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \dots \le f(x_{\lambda:\lambda})$

 $g(f(x_{1:\lambda})) \le g(f(x_{2:\lambda})) \le \dots \le g(f(x_{\lambda:\lambda}))$ for all $g : \operatorname{Im}(f) \to \mathbb{R}$ strictly increasing

A Template for Comparison-based Stochastic Search

Define $\{P_{\theta} : \theta \in \Theta\}$, a family of probability distributions on \mathbb{R}^{n}

Generic template to optimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameter θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- 1. Sample x_1, \ldots, x_{λ} according to P_{θ}
- 2. Evaluate x_1, \ldots, x_{λ} on f
- 3. Rank the solutions and find π the permutation such $f(x_{\pi(1)}) \leq f(x_{\pi(2)}) \leq \ldots \leq f(x_{\pi(\lambda)})$
- 4. Update parameters $\theta \leftarrow F(\theta, x_1, ..., x_{\lambda}, \pi)$