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Part |l: Algorithms



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms

Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]

Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region /Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)

Differential Evolution [Storn, Price 1997]

Particle Swarm Optimization [Kennedy and Eberhart 1995]

Evolution Strategies, CMA-ES |[Rechenberg 1965, Hansen, Ostermeier 2001]
Estimation of Distribution Algorithms (EDASs) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004]

Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]



A Generic Template for Stochastic Search

Define {P,: 0 € ®}, a family of probability distributions on R”

Generic template to optimize f : R" - R

Initialize distribution parameter @, set population size 4 € N

While not terminate "
ﬂ(\l‘“ KIQ\

1. Sample xi, ..., x; according to P,

2. Evaluate x{,...,x; on f
3. Update parameters 0 «— F(0,x,, ...,x,, (X)), ..., [(x)))

the update of @ should drive P, to concentrate on the optima of f



To obtain an optimization algorithm we need:

O to define {P,,0 € O}
® to define F the update function of &



Which probability distribution to sample candidate
solutions?



Normal distribution - 1D case

Standard Normal Distribution
| ' probability density of the 1-D standard normal
distribution N (0, 1)

probability density
o
N

g
—

p(x) = \/127 exp (—%)

% 2 0 2

General case

> Normal distribution ' (m, c%)
m
m

» A normal distribution is entirely determined by its mean value and

variance
» The family of normal distributions is closed under linear transformations:

if X is normally distributed then a linear transformation aX + b is also

normally distributed
> Exercice: Show that m + o N(0,1) = N (m, o?)
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Generalization to n Variables: Independent Case

Assume X1 ~ N (uy, 012) denote its density  p(x|) = Zilexp( — 2%12()@ — /41)2>

) j | 1 1 :
Assume X2~ ¥ (1, 03) denote its density  p(xy) = ——exp( - 5—(x, — ?)
2 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with

p(xp Xy) =



Generalization to n Variables: Independent Case

Assume X1 ~ N (uy, 012) denote its density  p(x|) = Zilexp( — 2%12()@ — /41)2>

) j | 1 1 :
Assume X2~ ¥ (1, o3) denote its density  p(xy) = —-exp( — 5—(r — m)?)
1 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with

pxy, xy) = pxpp(x,) = eXP( — l(x —w)'E 7 (x — ﬂ))
1>*2 1 2 2122 2

2
: 0'1 O
with x=,x)" p=,mw)' Y = ( )

2
O 62



Generalization to n Variables: Independent Case

Assume X1 ~ N (uy, 012) denote its density  p(x|) = Zilexp( — 2%12()@ — /41)2>

) j | 1 1 :
Assume X2~ ¥ (1, o3) denote its density  p(xy) = —-exp( — 5—(r — m)?)
1 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector

with —> i}(’f_@iﬁﬁj

1 1 _ o4 1
p(xy, %) = plx)p(x,) = 7.7, exp( — E(X - '“)TZ l(x B ,u)> >
6z 0
with X = (prz)T H = (ﬂlaﬂz)T 2= ( 1 2
O 62
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Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution

A random vector X = (X, ..., X)) € R" is a Gaussian vector
(or multivariate normal) if and only if for all real numbers
a, ...,a,, the random variable a, X, + ... + a, X, has a normal

distribution.



Gaussian Vector - Multivariate Normal Distribution

A random variable following a 1-D normal distribution is determined by its

mean value m and variance o~.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1,...,X,)" are random variables, each with
finite variance, then the covariance matrix X is the matrix whose (i, ) entries
are the covariance of (X, X;)

Y = cov(X;, Xj) = E [(Xi — i) (X — )]

where p; = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have S - \/a{[x;)

Y =E[(X —p)(X — )]



Density of a n-dimensional Gaussian vector /4 (m, C):

p./V(m.C)(x) =

exp (—%(x —m)' C7l(x — m)\

2-D Normal Distribution

Q2| C |

\C\:c\d‘(.(«)
The mean vector m:

determines the displacement

is the value with the largest density
the distribution is symmetric around the mean
N(m,C)=m+ N(0,C)
The covariance matrix:

determines the geometrical shape (see next slides)



Geometry of a Gaussian Vector

Consider a Gaussian vector /' (m, C), remind that lines of equal
densities are given by:

{x|A? = (x — m)'C~Y(x — m) = cst)

Decompose ( = UAUT with U orthogonal, i.e.

u U, 612 0 u -—
C= | | 2 U, —
0| o5
Let Y = UT(x — m) , then in the coordinate system, (u1,u2), the
lines of equal densities are given by

, Y 1
{x|A =—2+—2=CSt}
Oj %)



... any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R" |(x — m)'C *(x — m) =1}

Lines of Equal Density

N(m,o?1) ~ m+oN(0,1)  N(m,D?)~m+DN(0,1)  A/(m,C)~ m+C2N(0,1)

one degree of freedom o n degrees of freedom (2 4 1) /2 degrees of freedom
components are components are components are
independent standard independent, scaled correlated

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N(0,1) ~ A (0,AA™) holds for all
A.



Evolution Strategies

New search points are sampled normally

distributed
Xi=m+oy; for i = ]., c ey A with Yi ii.d. ~ N(O, C) ..
as perturbations of m, where x;, m € R", 0 € Ry, S
C E Ran
v
where Al \N’(m\, ° CL>

» the vector m € R" represents the favorite solution

» the so-called o € Ry controls the step length

» the C € R™" determines the shape

of the distribution ellipsoid
here, all new points are sampled with the same parameters




Evolution Strategies

New search points are sampled normally

distributed B

L]
L]
Y L]

Xi=m+oy; for i = ]., c ey A with Yi ii.d. ~ N(O, C) ..

< In fact, the covariance matrix of the sampling distribution is
but it is convenient to refer to C as the covariance matrix (it is a
covariance matrix but not of the sampling distribution)

VIINwI \w»

» the vector m € R" represents the favorite solution
» the so-called o € Ry controls the step length
» the C € R™" determines the shape

of the distribution ellipsoid

here, all new points are sampled with the same parameters
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How to update the different parameters m, o, C ?

1. Adapting the mean m



Update the Mean: a Simple Algorithm the (1+41)-ES

Notation and Terminology:

one solution kept one new solution
from one iteration (1 +1)'ES (offspring) sampled at
to the next each iteration

g
The 4+ means that we keep the best between current solution

and new solution, we talk about elitist selection

\_

(1+1)-ES algorithm (update of the mean)

sample one candidate solution from the mean m
Xx =m + o4 (0,C)
if X is better than m (i.e. if f(x) < f(m)), select m

m< X



