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Pure RandomSearch (DRS)

-ssume F:EITx) - f(x)

EIRS :

Initialize xbest = Unit ([1, 13h) /uniformal
WHILE NOT HAPPY (while stop criterion not met)

Sample Xu Unif ([_1,134)
If f(x) - Alxbest)

(see also Exercise 1)

XbestX

Does this algorithm converge : Yes under mild assumptions of
(I need to have "volume" in aneighborhood

of global optimu



---

Simplified proof setting
f(x)= 11 x 1100 = max ((1), -- , (xn)

·

Levelsets : n= 2

T
=

In exervice 1 : uniform samples (Vo,U. --

,
Ut, ... (

Vir Unif([1, 14)
Xt : best solution at iteration +

f(xt) = min( f(U), . . . , flut]



By induction.

Prove that Faso him1. (11X+ 1100 =2) = 0

tetoo

↳ give CV in probability.

1IXt1loo = min & /Villoo
, -.../ llutlloo]

GlIXt100 > <] = [EllUKlo2=
#r (GIXA023) =(GU0023)

= Ar(IIUlloo, 3) =(1101160034)
t

by ind of
k= 1

i-aust
Sur,=1... ] because

uk are identically
distributed.



# (II Velloo >) En1l00_> )
= 1-

/4x11x100<3)
X rol(4 x 11(x110011]

(each coordinate (2) =e -= n

#(1t002) = (e- 2) - o

--too

Hence ERS converges in probability to the optimum off-

Let's look at how fast it
converges.
-(Ball for infinityTc = inf + 1 Xt -> B(x*, s)) 10

↑

4 x 111 x 100<)



#
IRS is similar to

game :

sample Ut
,

win if fluted
Es U+ EB(o,a)

Look otherwise.

T : time it takes to win this
game.

Given a

game
with 2 outcomes win with proba p and loose with

proba (1-p) ,
wher the outcome is sampled randomly and independently,

I example : flip a voin]
,

the time it takes to win a game is

distributed according to a geometric distribution.

E[Ta] =
1

P

Back # PRS . p=r( "win") = # (llVt_2) =
s



E(Ta) = Yu
Is it fast ? No

compare : Linear or Ts ~ nlog() [gradienta
strongly cory)

The algorithm is "blind"
,

does not take into account the

information gathered on f , through the sampling of points to

sample "better" solutions.



Part II: Algorithms



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]
Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region/Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

Di!erential Evolution [Storn, Price 1997] 
Particle Swarm Optimization [Kennedy and Eberhart 1995] 
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001] 
Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002] 
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004] 
Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]



A Generic Template for Stochastic Search 

De"ne , a family of probability distributions on  {Pθ : θ ∈ Θ} ℝn

Generic template to optimize f : ℝn → ℝ
Initialize distribution parameter , set population size  θ λ ∈ ℕ
While not terminate

1. Sample  according to  
2. Evaluate  on  
3. Update parameters 

x1, …, xλ Pθ
x1, …, xλ f

θ ← F(θ, x1, …, xλ, f(x1), …, f(xλ))

the update of  should drive  to concentrate on the optima of θ Pθ f

R xiRh



To obtain an optimization algorithm we need: 
         ➊ to de"ne  
         ➋ to de"ne  the update function of 

{Pθ, θ ∈ Θ}
F θ



Which probability distribution to sample candidate 
solutions?



Normal distribution - 1D case



m + o W
,1) is normally distributed

We only need to identify its mean and variance :

E(m + oc(,1)) = m + o E(vo,x) = m
-

by linarity =O

OnE

Var (m+ oM(o,1)
= E((m + oc(, 1) - m)2)-
= EatM1)

= o2 E(W(,1)) = 02
-

= 1

= meslo
, 1) Eup(m, 02)



#) m + 5M(o
,1) t) = # (((o,1)]t-)

=Ep(-+z )e dy=
odX

y = 0x + m

t

= SPYby
X = +

m

y = t



Assume X1 ~ !(μ1, σ2
1) denote its density p(x1) = 1

Z1
exp( − 1

2σ2
1

(x1 − μ1)2)
Assume X2~ !(μ2, σ2

2) denote its density p(x2) = 1
Z2

exp( − 1
2σ2

2
(x2 − μ2)2)

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
with

Generalization to n Variables: Independent Case

p(x1, x2) =



Assume X1 ~ !(μ1, σ2
1) denote its density p(x1) = 1

Z1
exp( − 1

2σ2
1

(x1 − μ1)2)
Assume X2~ !(μ2, σ2

2) denote its density p(x2) = 1
Z1

exp( − 1
2σ2

2
(x2 − μ2)2)

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
with

p(x1, x2) = p(x1)p(x2) = 1
Z1Z2

exp( − 1
2 (x − μ)TΣ−1(x − μ))

Σ = (σ2
1 0

0 σ2
2)μ = (μ1, μ2)Tx = (x1, x2)Twith

Generalization to n Variables: Independent Case



Assume X1 ~ !(μ1, σ2
1) denote its density p(x1) = 1

Z1
exp( − 1

2σ2
1

(x1 − μ1)2)
Assume X2~ !(μ2, σ2

2) denote its density p(x2) = 1
Z1

exp( − 1
2σ2

2
(x2 − μ2)2)

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
with

p(x1, x2) = p(x1)p(x2) = 1
Z1Z2

exp( − 1
2 (x − μ)TΣ−1(x − μ))

Σ = (σ2
1 0

0 σ2
2)μ = (μ1, μ2)Tx = (x1, x2)Twith

σ1 > σ2
(μ1, μ2)

Generalization to n Variables: Independent Case

-> -m



A random vector  is a Gaussian vector 
(or multivariate normal) if and only if for all real numbers 

, the random variable  has a normal 
distribution. 

X = (X1, …, Xn) ∈ ℝn

a1, …, an a1X1 + … + anXn

Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution



Gaussian Vector - Multivariate Normal Distribution

Zii = Var(Xi)



Density of a n-dimensional Gaussian vector :!(m, C)

p!(m.C)(x) = 1
(2π)n/2 |C |1/2 exp (− 1

2 (x − m)⊤C−1(x − m))
The mean vector : 
     determines the displacement 
     is the value with the largest density 
     the distribution is symmetric around the mean

m

!(m, C) = m + !(0,C)
The covariance matrix: 
        determines the geometrical shape (see next slides) 

1 Cl = det (c)



Geometry of a Gaussian Vector

Consider a  Gaussian vector , remind that lines of equal 
densities are given by:

!(m, C)

{x |Δ2 = (x − m)TC−1(x − m) = cst}

Decompose                           with U orthogonal, i.e.C = UΛU⊤

C = (u1 u2
| | ) (σ2

1 0
0 | σ2

2) (u1 −
u2 −)

Let                                , then in the coordinate system, (u1,u2), the 
lines of equal densities are given by

Y = U⊤(x − m)

{x |Δ2 = Y2
1

σ2
1

+ Y2
2

σ2
2

= cst}
u1

u2

σ1

σ2

(μ1, μ2)





Evolution Strategies

Xiv(m, orc)



Evolution Strategies

In fact, the covariance matrix of the sampling distribution is  
but it is convenient to refer to  as the covariance matrix (it is a 

covariance matrix but not of the sampling distribution)

σ2C
C



How to update the di!erent parameters  ?m, σ, C
1. Adapting the mean  
2. Adapting the step-size  
3. Adapting the covariance matrix 

m
σ

C



Update the Mean: a Simple Algorithm the (1+1)-ES

(1+1)-ES
Notation and Terminology:

one new solution 
(o!spring) sampled at 

each iteration

one solution kept 
from one iteration 

to the next

The + means that we keep the best between current solution 
and new solution, we talk about elitist selection

(1+1)-ES  algorithm (update of the mean)
sample one candidate solution from the mean m

x = m + σ!(0,C)
if  is better than  (i.e. if ), select x m f(x) ≤ f(m) m

m ← x


