Part II: Algorithms

Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms

```
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970] Simplex downhill [Nelder and Mead 1965]
```

Pattern search, Direct Search [Hooke and Jeeves 1961]

Trust-region/Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)

Differential Evolution [Storn, Price 1997]

Particle Swarm Optimization [Kennedy and Eberhart 1995]

= Exploits separability

Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001]

Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]

Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004]

Genetic Algorithms [Holland 1975, Goldberg 1989] -> originally for whete.

Simulated Annealing [Kirkpatrick et al. 1983]

A Generic Template for Stochastic Search

Define $\{P_{\theta}: \theta \in \Theta\}$, a family of probability distributions on \mathbb{R}^n

Generic template to optimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameter θ , set population size $\lambda \in \mathbb{N}$

- While not terminate x_1, \dots, x_{λ} according to P_{θ} (typically ind).
 - 2. Evaluate $x_1, ..., x_{\lambda}$ on f
 - 3. Update parameters $\theta \leftarrow F(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

the update of θ should drive P_{θ} to concentrate on the optima of f

To obtain an optimization algorithm we need:

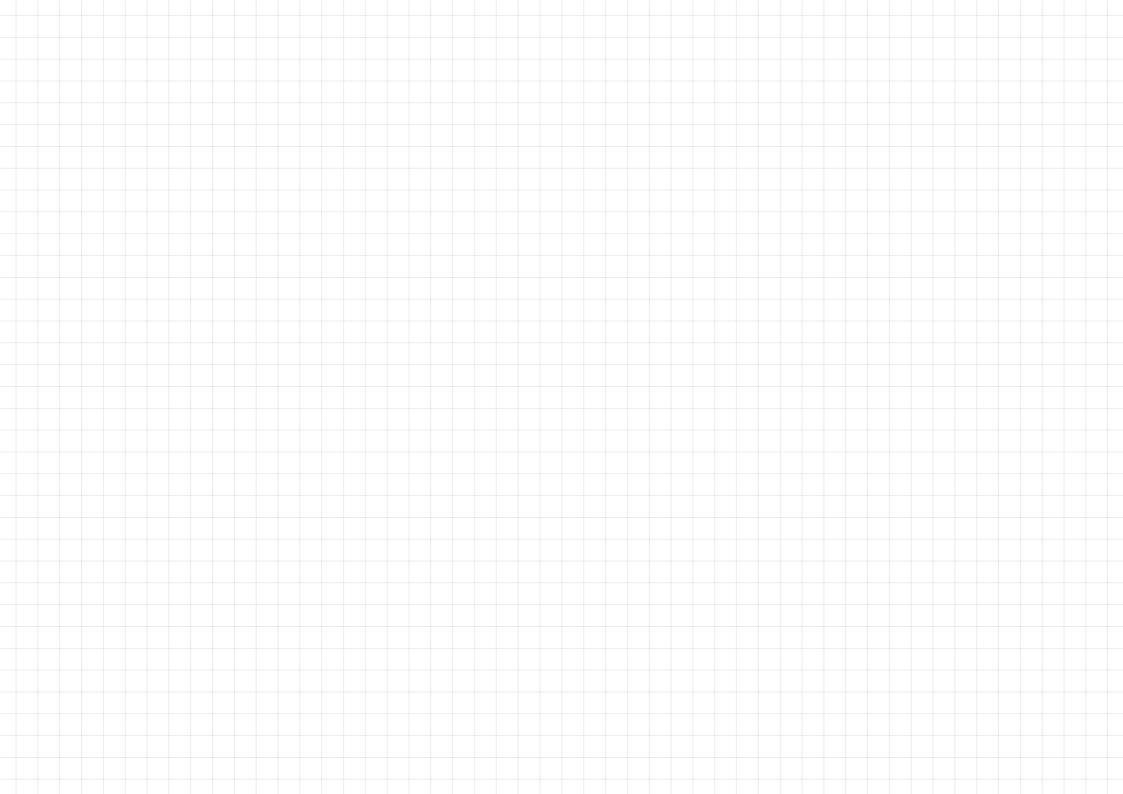
- **1** to define $\{P_{\theta}, \theta \in \Theta\}$
- $oldsymbol{2}$ to define F the update function of $oldsymbol{\theta}$

Assume n=1, we can sample with a normal distribution.

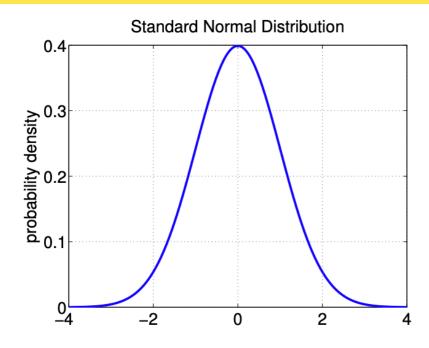
Definition: A random variable $X: (D,R) \rightarrow R$ is a mormal distribution with mean m and variance σ^2 if it probability dentity function equals: $P(x) = \frac{1}{2\pi^2} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$ We denote $x \sim W(m, \sigma^2)$

If m=0 and 0=1, we talk about standard normal distribution.

The following holds: m + o or (0, 1) v w (m, o2)



Normal distribution - 1D case



probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$

(expected (mean) value, variance) = (0,1)

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

General case

Normal distribution $\mathcal{N}(\mathbf{m}, \sigma^2)$

(expected value, variance) =
$$(\mathbf{m}, \sigma^2)$$

density: $p_{\mathbf{m},\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mathbf{m})^2}{2\sigma^2}\right)$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation aX + b is also normally distributed
- **Exercice:** Show that $m + \sigma \mathcal{N}(0, 1) = \mathcal{N}(m, \sigma^2)$

Generalization to n Variables: Independent Case

Assume X1 ~
$$\mathcal{N}(\mu_1, \sigma_1^2)$$
 denote its density $p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right)$

$$p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2\right)$$

Assume X2~
$$\mathcal{N}(\mu_2, \sigma_2^2)$$
 denote its density

Assume X2~
$$\mathcal{N}(\mu_2, \sigma_2^2)$$
 denote its density $p(x_2) = \frac{1}{Z_2} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector with

$$p(x_1, x_2) =$$

Generalization to n Variables: Independent Case

Assume X1 ~ $\mathcal{N}(\mu_1, \sigma_1^2)$ denote its density $p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right)$

Assume X2~ $\mathcal{N}(\mu_2, \sigma_2^2)$ denote its density $p(x_2) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

Assume X1 and X2 are **independent**, then (X1,X2) is a Gaussian vector with

$$p(x_1, x_2) = p(x_1)p(x_2) = \frac{1}{Z_1 Z_2} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

with
$$x = (x_1, x_2)^T$$
 $\mu = (\mu_1, \mu_2)^T$ $\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$

Generalization to n Variables: Independent Case

Assume X1 ~ $\mathcal{N}(\mu_1, \sigma_1^2)$ denote its density $p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right)$

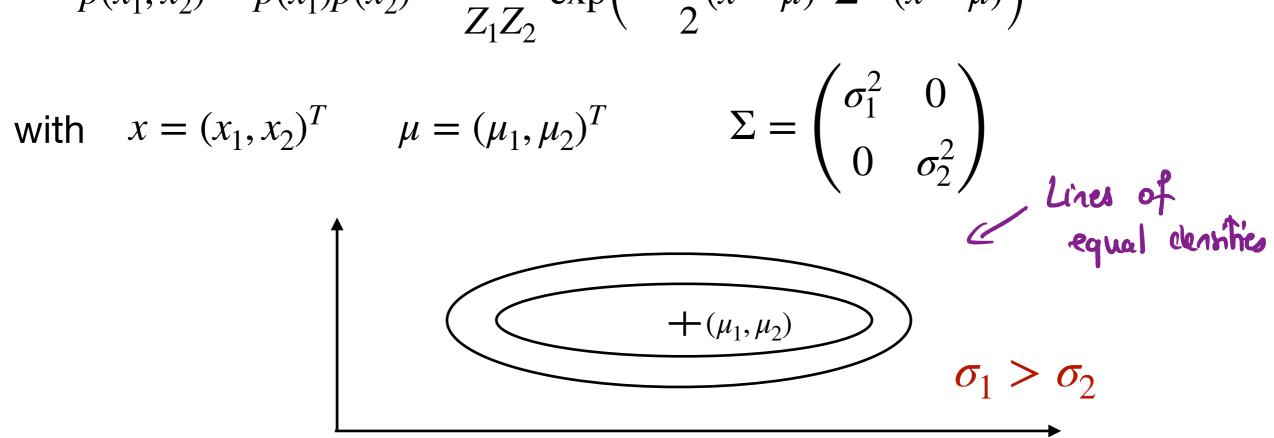
$$p(x_1) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2\right)$$

Assume X2~
$$\mathcal{N}(\mu_2, \sigma_2^2)$$
 denote its density $p(x_2) = \frac{1}{Z_1} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector with

$$p(x_1, x_2) = p(x_1)p(x_2) = \frac{1}{Z_1 Z_2} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

with
$$x = (x_1, x_2)^T$$
 $\mu = (\mu_1, \mu_2)^T$ $\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$



Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution

A random vector $X = (X_1, ..., X_n) \in \mathbb{R}^n$ is a Gaussian vector (or multivariate normal) if and only if for all real numbers $a_1, ..., a_n$, the random variable $a_1X_1 + ... + a_nX_n = \langle a, X \rangle$ has a normal distribution.

A random variable following a 1-D normal distribution is determined by its mean m and variance σ^2 .

In the n-dimensional case a multivariate normal distribution is determined by its mean vector \mathbf{m} and covariance matrix C.

Reminder: Covariance matrix

If the entries in a vector $X=(X_1,\ldots,X_n)$ are random variables each with finite variance, then the covariance matrix Σ is the matrix whose entry (i,j) are the covariances of (X_i,X_j)

$$\Sigma_{i,j} = \text{cov}(X_i, X_j) = E[(X_i - \mu_i) \ (X_j - \mu_j)]$$

where $\mu_i = E[X_i]$. Considering the operator that take the expectation of each entry of a matrix: $\Sigma = E[(X - \mu)^T(X - \mu)]$.

$$Zii = Var(Xi) = E(Xi) - E(Xi)^2$$

positive semidefinite

Density of a n-dimensional Gaussian vector $\mathcal{N}(m, C)$ (with invertible C):

$$p_{\mathcal{N}(m.C)}(x) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathsf{T}}C^{-1}(x-m)\right)$$

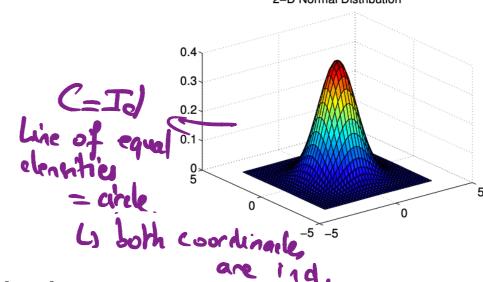
ICl = det(C)

The mean vector *m*:

determines the displacement

is the value with the largest density

the distribution is symmetric around the mean



$$\mathcal{N}(m,C) \sim m + \mathcal{N}(0,C) \sim m + C^{1/2} \mathcal{N}(0,I_d)$$

The covariance matrix:

determines the geometrical shape (see next slides)

C 1/2 St C 1/2 = C symetric definite positive C = UTD U where UTO = Id define C12 = UT VDT U -> This is the square can D 12 diagonal with Dii > 0 C 1) de finite posite.

(Din (0)

1) Dun

Geometry of a Gaussian Vector

Consider a Gaussian vector $\mathcal{N}(m, C)$, remind that lines of equal densities are given by:

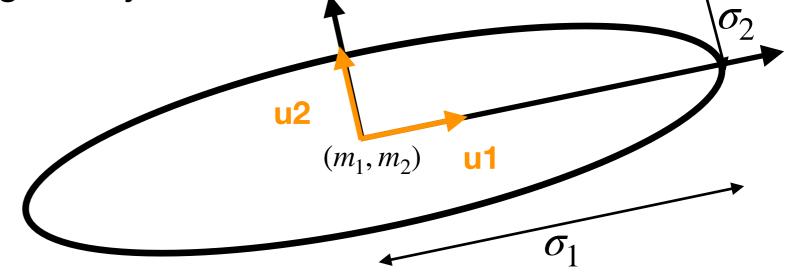
$$\{x \mid \Delta^2 = (x - m)^T C^{-1} (x - m) = \text{cst}\}\$$

Decompose $C = U\Lambda U^{\mathsf{T}}$ with U orthogonal, i.e.

$$C = \begin{pmatrix} u_1 & u_2 \\ | & | \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 | & \sigma_2^2 \end{pmatrix} \begin{pmatrix} u_1 & - \\ u_2 & - \end{pmatrix}$$

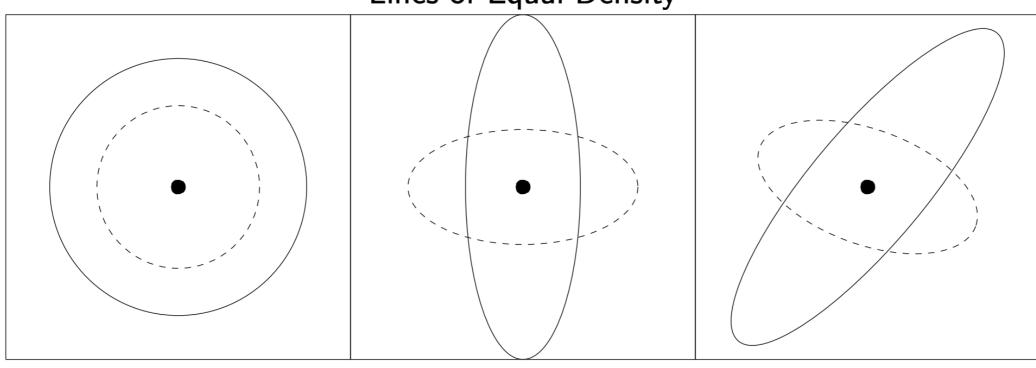
Let $Y = U^{\top}(x - m)$, then in the coordinate system, (u1,u2), the lines of equal densities are given by

$$\{x \mid \Delta^2 = \frac{Y_1^2}{\sigma_1^2} + \frac{Y_2^2}{\sigma_2^2} = \text{cst}\}$$



...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \,|\, (x-m)^{\mathrm{T}}\mathbf{C}^{-1}(x-m)=1\}$

Lines of Equal Density



 $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{I}) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

 $\mathcal{N}(\mathbf{m}, \mathbf{D}^2) \sim \mathbf{m} + \mathbf{D} \mathcal{N}(\mathbf{0}, \mathbf{I})$ n degrees of freedom components are independent, scaled $\mathcal{N}(m, \mathbf{C}) \sim m + \mathbf{C}^{\frac{1}{2}} \mathcal{N}(\mathbf{0}, \mathbf{I})$ $(n^2 + n)/2$ degrees of freedom components are correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Evolution Strategies

Introduced in the 70's

New search points are sampled normally distributed

$$oldsymbol{x}_i = oldsymbol{m} + \sigma \, oldsymbol{y}_i \quad ext{for } i = 1, \ldots, \lambda \text{ with } oldsymbol{y}_i \text{ i.i.d.} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$$
 as perturbations of $oldsymbol{m}$, where $oldsymbol{x}_i, oldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $oldsymbol{C} \in \mathbb{R}^{n \times n}$

where

- **•** the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- ▶ the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

Evolution Strategies

New search points are sampled normally distributed

$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
 for $i = 1, ..., \lambda$ with \mathbf{y}_i i.i.d. $\sim \mathcal{N}(\mathbf{0}, \mathbf{C})$

In fact, the covariance matrix of the sampling distribution is $\sigma^2 C$ but it is convenient to refer to C as the covariance matrix (it is a covariance matrix but not of the sampling distribution)

- **•** the mean vector $m{m} \in \mathbb{R}^n$ represents the favorite solution
- ▶ the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- ▶ the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

How to update the different parameters m, σ, \mathbb{C} ?

- 1. Adapting the mean m
- 2. Adapting the step-size σ
- 3. Adapting the covariance matrix C

How to adapt m? C = Id Assume f: R" -> R mti = 1 2 1 xt temperature
2 fixty)

rormalik

-> Take exponen zna × X fH Introduce a notation: $f(x_{t_1}^{1:\lambda}) \leq f(x_{t_1}^{2:\lambda}) \leq \dots \leq f(x_{t_n}^{1:\lambda})$ Other idea:

mt1 = Xt11 _, (ハ, ハ) - E1.

Take more points to have more information like half of

Simpler setting:

Assume that that at each iteration 1=1

XIII omt

mt = $\int_{-\infty}^{\infty} Xt_{+1} \quad \text{if } f(x_{t+1}) \leq f(mt)$ mt obligher wife

-> (1+1)-EJ

Update the Mean: a Simple Algorithm the (1+1)-ES

Notation and Terminology:

one solution kept from one iteration to the next

$$(1+1)-ES$$

one new solution (offspring) sampled at each iteration

The + means that we keep the best between current solution and new solution, we talk about *elitist* selection

(1+1)-ES algorithm (update of the mean)

sample one candidate solution from the mean m

$$\mathbf{x} = \mathbf{m} + \sigma \mathcal{N}(0, \mathbf{C})$$

if \mathbf{x} is better than \mathbf{m} (i.e. if $f(\mathbf{x}) \leq f(\mathbf{m})$), select $\mathbf{m} \leftarrow \mathbf{x}$

The (1+1)-ES algorithm is a simple algorithm, yet:

the elitist selection is not robust to outliers

we cannot loose solutions accepted by "chance", for instance that look good because the noise gave it a low function value

 there is no population (just a single solution is sampled) which makes it less robust

In practice, one should rather use a:

$$(\mu/\mu, \lambda)$$
-ES

The μ best solutions are selected and recombined (to form the new mean)

λ solutions aresampledat each iteration

The $(\mu/\mu, \lambda)$ -ES - Update of the Mean Vector

Given the *i*-th solution point $\mathbf{x}_i = \mathbf{m} + \sigma \underbrace{\mathbf{y}_i}_{\sim \mathcal{N}(\mathbf{0}, \mathbf{C})}$

Let $\mathbf{x}_{i:\lambda}$ the *i*-th ranked solution point, such that $f(\mathbf{x}_{1:\lambda}) \leq \cdots \leq f(\mathbf{x}_{\lambda:\lambda})$.

Notation: we denote $y_{i:\lambda}$ the vector such that $x_{i:\lambda} = m + \sigma y_{i:\lambda}$ Exercice: realize that $y_{i:\lambda}$ is generally not distributed as $\mathcal{N}(\mathbf{0}, \mathbf{C})$

The new mean reads

$$m \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda}$$

where

$$w_1 \ge \cdots \ge w_{\mu} > 0$$
, $\sum_{i=1}^{\mu} w_i = 1$, $\frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

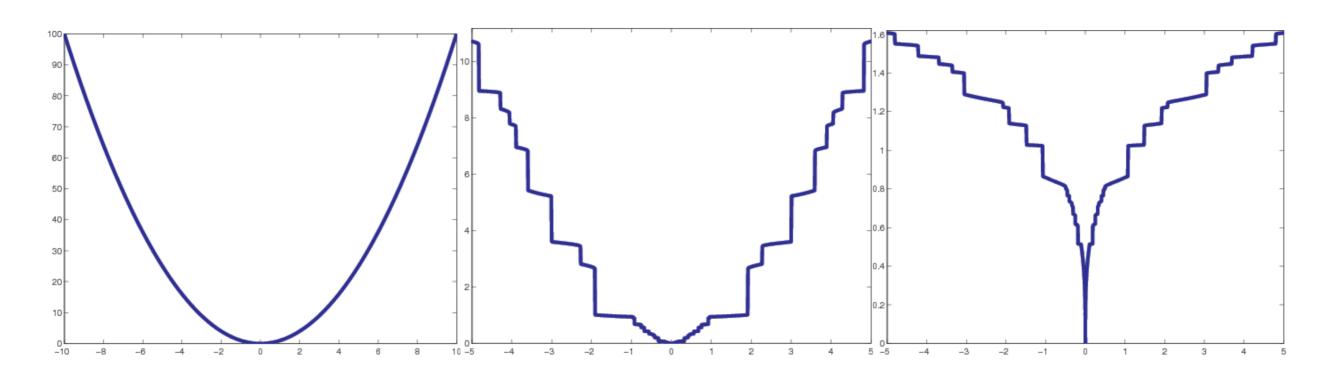
What changes in the previous slide if instead of optimizing f, we optimize $g \circ f$ where $g : \mathrm{Im}(f) \to \mathbb{R}$ is strictly increasing?

Invariance Under Monotonically Increasing Functions

Comparison-based/ranking-based algorithms:

Update of all parameters uses only the ranking:

$$f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \dots \le f(x_{\lambda:\lambda})$$



$$g(f(x_{1:\lambda})) \le g(f(x_{2:\lambda})) \le \dots \le g(f(x_{\lambda:\lambda}))$$

for all $g: \operatorname{Im}(f) \to \mathbb{R}$ strictly increasing

A Template for Comparison-based Stochastic Search

Define $\{P_{\theta}: \theta \in \Theta\}$, a family of probability distributions on \mathbb{R}^n

Generic template to optimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameter θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- 1. Sample $x_1, ..., x_{\lambda}$ according to P_{θ}
- 2. Evaluate $x_1, ..., x_{\lambda}$ on f
- 3. Rank the solutions and find π the permutation such

$$f(x_{\pi(1)}) \le f(x_{\pi(2)}) \le \dots \le f(x_{\pi(\lambda)}) \qquad \text{T(1): 1: } \lambda$$

4. Update parameters $\theta \leftarrow F(\theta, x_1, ..., x_{\lambda}, \pi)$

How to update the different parameters m, σ, \mathbb{C} ?

- 1. Adapting the mean m
- 2. Adapting the step-size σ
- 3. Adapting the covariance matrix C

Exercise: Adaptive step size alsorithms

III Auaptive step-size arguitimus

We are going to test the convergence of several algorithms on some test functions, in particular on the so-called sphere function

$$f_{\text{sphere}}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{2} \quad \blacksquare \quad ||\chi||^{2}$$

and the ellipsoid function

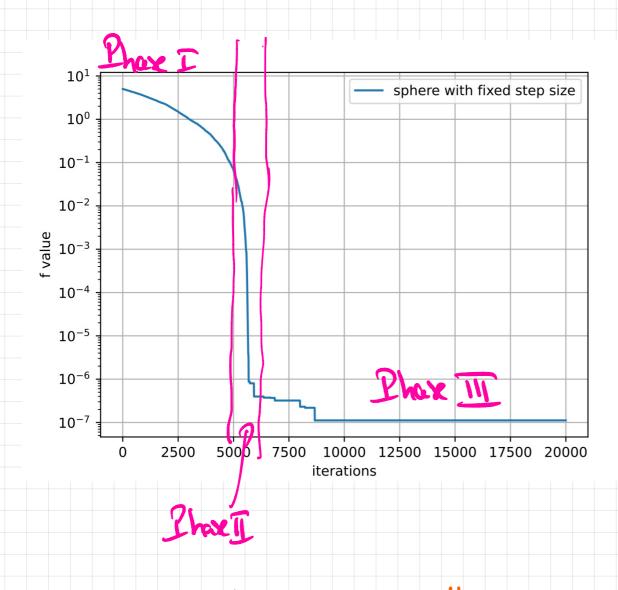
$$f_{\text{elli}}(\mathbf{x}) = \sum_{i=1}^{n} (100^{\frac{i-1}{n-1}} \mathbf{x}_i)^2$$
.

1. What is the condition number associated to the Hessian matrix of the functions above? Are the functions ill-conditioned?

$$f$$
sphere: Hessian = 2 Id -> cond = 1

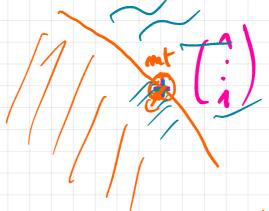
felli: Hessian = $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix}$ cond = $\begin{pmatrix} 2 & 10 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$

Convergence (1+1)-Es with fixed step-size.



on figher (x) = 11 x 112

Phax II: Step-tize well adapted compared to 11 mt 1



Phax I:

5t very small company 5 mt

_ Progress slowly

Pobability of improvement

27

v=16-3 2 one where if we sample we see a better solution Phase III

0 >> ||mt||

Probability 11xt+111 < 1m+11

very small be could probe
to sample better solutions small.

-) Progress too slow

L) decrear step-the