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Reminder Group Project

Tonight:
» deadline mini-report about progress

= please send it to
dimo.brockhoff<at>inria.fr and
anne.auger<at>inria.fr

24t of January (in 2 weeks):
= report (PDF) sent by email, 8 pages

31st of January (in 3 weeks):

= group presentations here in class
(12’ presentation + ~10° questions)
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Reminder Group Project

A real science project with new results

Context: Noisy optimization / outliers

= How is the performance of algorithms “perturbed” if the
objective function gets “perturbed™?

» code that wraps around deterministic test functions (from the
bbob suite of the COCO platform) and an experiment script
to do the benchmarking for varying levels of noise/outlier
probability

» What | said last time about the type of noise/outlier choice
was incorrect: by default, only additive noise is chosen (i.e.
points can only get worse). Negative/good noise can be
added via the parameters of the "noiser.py code.

Now: quick hands-on tutorial about what we expect
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Group Project Cheat Sheet

pip install --pre cocopp # without the --pre, colors don’t match values

import cocopp, glob
cocopp.main (glob.glob (‘FOLDER WITH EXPERIMENTDATA/*’))

Additionally, download (and rename with leading '0.0") comparison algos from COCO data archive
at https://coco-platform.org/testsuites/bbob/data-archive.html (this might help to find bugs in your
experimental code if the algorithm performance without noise look significantly different for both
algos)

The ? is your friend in python to get the documentation of methods and modules ©
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https://coco-platform.org/testsuites/bbob/data-archive.html

Overview of the Today’s Lecture

Introduction to multiobjective optimization
» difference to single-objective optimization, the basics

= algorithms and their design principles

introductory material (for example):

»  P.J. Fleming*, R.C. Purshouse : Evolutionary algorithms in control systems
engineering: a survey (sections 1&2 only)

= K. Deb: Introduction to Evolutionary Multiobjective Optimization, chapter 3 of
J. Branke, K. Deb, K. Miettinen, R. Stowinski (Eds.): Multiobjective Optimization
--- Interactive and Evolutionary Approaches
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A Brief Introduction to Multiobjective Optimi

Multiobjective Optimization
Multiple objectives that have to be optimized simultaneously
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A Brief Introduction to Multiobjective Optimize

Observations: © there is no single optimal solution, but
® some solutions (e) are better than others (o)
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A Brief Introduction to Multiobjective Optimize
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A Brief Introduction to Multiobjective Optimize
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Example: Understanding Pareto Domin

Given the following solutions, which ones dominate each other and
which don't for the double sphere (minimization) problem

fdoublesphere x = (- 1xl ) ?=1(xi_1)2 )?

= a =(0,0,0)
= b =(1,11)
= ¢ =(222)
= d =(2,20)
= ¢ =(0,2,2)

* f=G33)
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Example: Understanding Pareto Dominance

f2

_ N W N Ul

fdoublesphere:x =
X1 x?,

* a =(000)+m

?=1(xi_1)2 )

>
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Example: Understanding Pareto Dominance

f2 4 |
—> weak Pareto dominance
=== » no weak Pareto dominance
5 i
4_ i

fdoublesphere:x =
e x?, T (=172).

a =(0,0,0) » (0,3)
b =(1,1,1) = (3,0)
¢ =(2,22) - (12,3)
d =(2,2,0) » (8,3)
e =(0,2,2) » (8,3)

F=Ga)-dd

9 10 11 12 f
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Visualizing Dominance Relations as Grap

We can simplify the visualization of the (weak) Pareto dominance
relation by transitive reduction: C

a b f

The weak Pareto dominance is a preorder, i.e. a relation that is
» reflexive and transitive
= minimal elements = Pareto-optimal solutions

If no indifferent solutions x # y with f(x) = f(y) exist, we have

antisymmetry and a partial order ("poset")---visualizable as Hasse
diagram.

| The Pareto dominance itself is not reflexive and thus, never a poset!
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A Brief Introduction to Multiobjective Optim

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space

performance true Pareto front
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A Brief Introduction to Multiobjective Optim

decision space objective space

» f1

solution of Pareto-optimal set ® vector of Pareto-optimal front
non-optimal decision vector @ non-optimal objective vector
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Exercise: Pareto Front of Double Spher

What is the Pareto set/front of the double sphere problem
fdoublesphere:x i (Z?=1 xlz ) ?=1(xi_1)2 )?

a) what is the Pareto set?

b) what is the associated Pareto front?

Tips:

= where are the single-objective optima?

= display some solutions in the search space (let's say in 2-D)

* investigate where dominating/dominated/incomparable solutions
lie

= finally, show graphically that what you think is the Pareto set is
actually the Pareto set (take a point anywhere within your

guessed set and show in which direction you can improve and
where you cannot improve anymore)
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A Necessary Condition On the Pareto Set

Necessary Condition:

For a Pareto-optimal solution p, the gradients of all objective
functions in p must be collinear.

(Visual) Reasoning:
If this is not the case, we can move along one level set and

Improve on the other objective.
[remember the KKT conditions for constrained optimization]

/Q 1z
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Ideal and Nadir Point

min |

ideal point: best values } obtained for Pareto-optimal points
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Optimization vs. Decision Making

Multiobjective Optimization
combination of optimization of a set and a decision for a solution

performance
e
20 2 . Selecting a B Q .
solution —
TR Q
10 o Q flndlr?g the good
o O solutions -é’
Q
maxT
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Selecting a Solution: Examples

Possible © ranking: performance more important than cost
Approaches:

performance
A

20 — |
15 — ®

10 —

— | | | | | | > cost
min 500 1000 1500 2000 2500 3000 3500
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Selecting a Solution: Examples

Possible © ranking: performance more important than cost
Approaches: ® constraints: cost must not exceed 2400

performance
A

20

15 —
too expensive
10 —

— | | | | | | > cost
min 500 1000 1500 2000 2500 3000 3500
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When to Make the Decision

Before Optimization:

g .
“ rank objectives, L

define constraints,...

v

\ (good) solution

!
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When to Make the Decision

Before Optimization:

A
up r

ank objectives,

performance .
A : .
(good) solution o - Q
F 15 ° G. _
‘ ® = t00 expensive
|
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Q | |
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When to Make the Decision

Before Optimization:

u rank objectives,

l define constraints,...

=

e search for one
(good) solution

© Anne Auger and Dimo Brockhoff, Inria

v

After Optimization:

| search for a set of
(good) solutions

N
u select one solution

considering

l constraints, etc.
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When to Make the Decision

Before Optimization: After Optimization:
"N

u rank objectives,

l define constraints, .

| search for a set of
(good) solutions

o]
geamh for one T @ ' select one solution
(good) solution o | considering
’ . l constraints, etc.

Focus: learning about a problem
» trade-off surface

* Interactions among criteria

» structural information

= also: interactive optimization
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All slides with blue background have not been discussed in class
and are thus also not considered for the exam.
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Two Communities...

- International Society on
M Multiple Criteria Decision Making
P g

= established field = relatively young field
(beginning in 1950s/1960s) (first papers in mid 1980s)

» bi-annual conferences since 1975 = bi-annual conference since
= background in economics, math, mana§érhent and

social sciences = background in computer
= focus on optimization and decision mairgnce, applied math and
engineering

= focus on optimization
algorithms

© Anne Auger and Dimo Brockhoff, Inria



...Slowly Merge Into One

a . International Society on
M’ Multiple Criteria Decision Making
) P g

= MCDM track at EMO conference since 2009
= gspecial sessions on EMO at the MCDM conference since 2008

= joint Dagstuhl seminars since 2004
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One of the Main Differences

Blackbox optimization

x € R"

(f1(x), -, fi (%))

only mild assumptions

—> EMO therefore well-suited for real-world engineering problems

non-linear ~ NOISy many objectives

uncertain huge
objectives problem search
expensive spaces

non-differentiable (integrated simulations, many constraints
real experiments)
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The Other Main Difference

Evolutionary Multiobjective Optimization
= set-based algorithms
= therefore possible to approximate the Pareto front in one run

performance Pareto front
environmental = A . 4 > T
_ mating approximation
selection :
selection
+:°** iy
* R e
» defies’
evaluation - T
variation Ty it
) S maxT ’
» COSt
-
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP ‘4
[Knowles et al. 2001] g

mESy > f(mr) meSy, - (filmab),
Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], VRP [Watanabe and Sakakibara 2007], ...

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Hand! et al. 2008a], ...

also backed up by theory e.g. [Brockhoff et al. 2009, Handl et al. 2008b]
related to constrained and multimodal single-objective optimization
see also this overview: [Sequra et al. 2013]

© Anne Auger and Dimo Brockhoff, Inria Derivative-free Optimization



Innovization

Cantilever
topology optimi:

[Bandaru and Dek

Minimum Compliance Solution

Intermediate Solution

Compliance = 868.7 units inimum Weight Solution
Weight = 69.5 units

0O «<= 500 1000 1500 2000 2500 3000 3500
min Compliance
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Innovization

NSGA-II °
l-obj X

NCM O

NSGA-II (r i=80mm)

04 06 08 | 12 14 16

1.8
Brake Mass (kg)

70 90 1.5
80 110 1.5

1000 3
1000 9

0.4704 11.7617
2.0948  3.3505
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Innovization

Often innovative design principles among solutions are found

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and innovative
design principles among solution sets

= learning from/about a multiobjective optimization problem

Other examples:

»  Self-Organizing Maps for supersonic wing design [Obayashi
and Sasaki 2003]

= Biclustering for processor design and knapsack [Ulrich et al.
2007]

= Successful case studies in engineering

(noise barrier design, polymer extrusion, friction stir welding)
[Deb et al. 2014]
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Approaches to Multiobjective Optimization

aggregation-based criterion-based dominance-based

problem decomposition VEGA SPEA2, NSGA-II
(multiple single-objective ‘modern” EMOA
optimization problems)
y P S
changing
/ /Q/ g goals g
Q / o o
(// A S
e . "..
7 :
Q Q /1 /, Q Q 4 Q
max T Q % max T Q . max T Q 3
= ~>yi = -y T= >y
max max max
solution-oriented > EEXTTXRRRRETRRR! 2 set-oriented

scaling-dependent less scaling-independent
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Approaches to Multiobjective Optimization

criterion-based

. changing
® goals
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Approaches to Multiobjective Optimization

aggregation-based

max T Q * max

max

solution-oriented
scaling-dependent

© Anne Auger and Dimo Brockhoff, Inria
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Solution-Oriented Problem Transformation

_ parameters _
multiple single
objectives ! objective
(f1(x), fa(x), ..., fi(X)) —>transformation —> s(x)

A scalarizing function s is a function s: Z - R that maps each
objective vector u = (u4, ..., u,) € Z to areal value s(u) € R

© Anne Auger and Dimo Brockhoff, Inria
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Solution-Oriented Problem Transformations

_ parameters _
multiple single
objectives ! objective
(f1(x), fa(x), ..., fi(X)) —>transformation —> s(x)

A
X /\
PN
Ny % >'\

/AN
maXT x\/ \:--»ﬁ

max

Example 1: weighted sum approach

(Wq, Wy, ..., W)
|

y=wiy, + ..

-+ WYk
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Exercise: Weighted Sum

f2 4

Which weights are optimal for the
following three points?

a =04 b=(0Q2) c=(6G1)

Helper questions:

= what are the lines of equal
weighted sum for a given weight?

= what happens if you optimize wrt.
a given weighted sum?

© Anne Auger and Dimo Brockhoff, Inria
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Solution-Oriented Problem Transformations

_ parameters _
multiple single
objectives ! objective
(f1(x), fa(x), ..., fi(X)) —>transformation —> s(x)

Example 1

: weighted sum approach

(Wq, Wy, ..., W)

|

y =Wyt WY '

Disadvantage: not all Pareto-

optimal

solutions can be found if

the front is not convex (for

minimization)

Derivative-Free Optimization

© Anne Auger and Dimo Brockhoff, Inria



Solution-Oriented Problem Transformations

_ parameters _
multiple single
objectives ! objective

(f1(x), f(x), ..., fi(x)) = transformation —> s(x)

N Example 2: weighted p-norm

(Wi, Wy, ..., Wy,)
9 !

>y = zt1/(W1)’1)p + .+ Wy —

p = 1: weighted sum
p = oo: weighted Tchebycheff
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Solution-Oriented Problem Transformation

_ parameters _
multiple single
objectives ! objective

(f1(x), f(x), ..., fi(x)) = transformation —> s(x)

N Example 2: weighted p-norm

(W, wy, ..., wy,)

k
|y z(lwi(yi—zi)l)*’ —
Vi=1

p = 1: weighted sum
p = oo: weighted Tchebycheff

.'->f1
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Solution-Oriented Problem Transformations

_ parameters _
multiple single
objectives ! objective

(f1(x), f(x), ..., fi(x)) = transformation —> s(x)

R Example 2: weighted Tchebycheff
.’.. ()\1, )\2, “aay )\k)
* l
° . . , —| y=max| Nu-2) —

. Several other scalarizing functions
iy f1 are known, see e.g. [Miettinen 1999

max T
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Solution-Oriented Problem Transformations

_ parameters _
multiple single
objectives ! objective

(f1(x), f(x), ..., fi(x)) = transformation —> s(x)

f2 — Example 2: weighted Tchebycheff

- (M Ags ey A
l

— Y= m?x | A(u;—2zZ)| —

. Several other scalarizing functions
iy f1 are known, see e.g. [Miettinen 1999

max T
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Approaches to Multiobjective Optimization

© Anne Auger and Dimo Brockhoff, Inria
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dominance-based
XZ
¢
o
Q
axT .
Y1 T > y1
max
> set-oriented

, scaling-independent
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General Scheme of Most Set-Oriented EMC

mating selection (stochastic)
A

fitness assignment
partitioning into
dominance classes

: v
population (archiv) offspring

v rank refinement within
dominance classes

environmental selection (greedy heuristic)
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

... Is based on pairwise comparisons of the individuals only.

dominance rank: by how
many individuals is an
individual dominated?
MOGA, NPGA

dominance count: how many
individuals does an individual
dominate?

SPEA, SPEA?2

dominance depth: at which
front is an individual located?

NSGA, NSGA-II, most of the
recently proposed algorithms

max T

Q

dominance
count

B 5 f1

—
max

© Anne Auger and Dimo Brockhoff, Inria
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Exercise: Dominance-Based Partitioning

min |
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lllustration of Dominance-Based Partit

f,  dominance depth

min |

min

© Anne Auger and Dimo Brockhoff, Inria Derivative-Free Optimization



Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Diversity information

Kernel method k-th nearest neighbor Histogram method
diversity = diversity = diversity =
function of the function of distance number of elements
distances to k-th nearest neighbor within box(es)
Q Q
f f
f 9 Q sl ©
o @ Q

® (Contribution to a) quality indicator
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Example: NSGA-Il Diversity Preservation

Crowding Distance (CD)

= sort solutions with regard to
each objective

= assign CD maximum value to
extremal objective vectors

= compute CD based on the
distance to the neighbors in

>f1

each objective

CD(Z) _ dl(z) 4.t dm(z)

fl,ma.x — fl,min fm,max — fm,min

© Anne Auger and Dimo Brockhoff, Inria Derivative-Free Optimization



SPEA2 and NSGA-Il: Deteriorative Cycles

Selection in SPEA2 and NSGA-II can result in
deteriorative cycles S ' ' " Parcto st -

Archive elements after t=5.000,000 <
Archive elements after t=10.000.000 o

e

]

=

(=]
T

- B9, Q{E

non-dominated
solutions already
found can be lost
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Remark: Many-Objective Optimization

= high number of objectives

- percentage of non-dominated solutions within a
random sample quickly approaches 100 %

—> optimization is mainly guided by diversity criterion
—> apply secondary criterion compliant with dominance relation

600

! i [
\ A 34,.‘., b, HYETE UTEL N ,|' y ‘....l‘,‘d 8 “'v 2k 8 Ay L [y
200 '..«.“:‘H.:‘vm‘:;“‘%‘ﬁeﬁfw’ﬁ WA R R ﬁ*.»"W:’*‘.—*-,’f:'w‘v‘m“z?r*“‘*‘*‘ﬂ-5*-‘*\W‘!‘?.',;“r“r.r«w“g'ﬁ%.a
ro I =1 ! ' e

o 400
?
©
]
£
& 300f NSCAT ——
@ | SPEA2 -------
/2 % B NSGA-II with modified crowding distance =:------
fs 2 : e-MOEA archive
g £=MOEA population
S 200 b ¢

100 p

7 -A ] 1l ') '} 'l L a 'l ')
_/’ 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006
g function evaluations
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

Main idea
Delete solutions with
the smallest

hypervolume improvement \
d(s) = Iy(P}-u(P /{s}) | |
iteratively H— —

minimize

© Anne Auger and Dimo Brockhoff, Inria Derivative-Free Optimization



Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

Main idea - oint 7

Delete solutions with
the smallest

hypervolume improvemeﬂ
d(s) = I(P)-1,(P / {s}) |
iteratively

minimize ‘
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

Main idea - point T
Delete solutions with Hypervolume of A:
r
the smallest rH(A)=ja(2)d2
]

hypervolume improvemeﬂ
d(s) = I(P)-1,(P / {s}) |
iteratively

minimize ‘

a(z)=0 _I
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

Main idea . pointT
Delete solutions with Hypervolume of A: '
r
the smallest ;H(A)=ja(f)df

hypervolume improvemeﬂ
d(s) = I(P)-1,(P / {s}) |

iteratively — a(2)=1
minimize ‘
a(2)=0 fitness Df point:
But: can also result in contribution to
hypervolume

cycles if reference
point is not constant [Judt et al. 2011]
and is expensive to compute exactly [Bringmann and Friedrich 2009]
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COMO-CMA-ES: latest multiobjective CMA-ES

= p single-objective CMA-ESs optimize their hypervolume
improvement to the other p-1 CMA-ES means

= for this to work, a slightly modified hypervolume improvement,

the

UHVI has been introduced

Level sets of HVC after non-dominated sorting Level sets of HVID

T T T T T T T . T T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

fl fl

= Source code available at https://github.com/CMA-ES/pycomocma
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Indicator-Based Selection

= Concept can be generalized to any quality indicator

A (unary) quality indicator I is a function I : ¥ = 2% » R
that assigns a Pareto set approximation a real value.

Multiobjective Indicator _ Single-objective
Problem Problem

» for example: R2-indicator [Erockhoff et al. 2012], [Trautmann et al. 2013],
[Diaz-Manriquez et al. 2013]

» Generalizable also to contribution to larger sets

HypE [Bader and Zitzler 2011]: Hypervolume sampling + contribution
if more than 1 (random) solution deleted

© Anne Auger and Dimo Brockhoff, Inria



Decomposition-Based Selectio

MOEA/D: Multiobjective Evolutionary Algorithm Based on

Decomposition [Zhang and Li 2007]

Ideas:

optimize N scalarizing functions in parallel

use best solutions of neighbor subproblems for mating
keep the best solution for each scalarizing function
update neighbors

use external archive for P
non-dominated solutions

several variants and enhancements

© Anne Auger and Dimo Brockhoff, Inria



Conclusions: EMO as Interactive Decision Supj

optimization

visualization

I
preference
articulation

decision making

© Anne Auger and Dimo Brockhoff, Inria Derivative-Free Optimization, M2 Optimization, U. Paris-Saclay, Jan.
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