Derivative Free Optimization

Optimization and AMS Masters - University Paris Saclay - IP Paris
\section*{Exercices - Linear Convergence - CSA}

Anne Auger
anne.auger@inria.fr
http://www.cmap.polytechnique.fr/~anne.auger/teaching.html

I On linear convergence

For a deterministic sequence x_{t} the linear convergence towards a point x^{*} is defined as:
The sequence $\left(x_{t}\right)_{t}$ convergences linearly towards x^{*} if there exists $\mu \in(0,1)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\left\|x_{t+1}-x^{*}\right\|}{\left\|x_{t}-x^{*}\right\|}=\mu \tag{1}
\end{equation*}
$$

The constant μ is then the convergence rate.
We consider a sequence $\left(x_{t}\right)_{t}$ that converges linearly towards x^{*}.

1. Prove that (1) is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \ln \frac{\left\|x_{t+1}-x^{*}\right\|}{\left\|x_{t}-x^{*}\right\|}=\ln \mu \tag{2}
\end{equation*}
$$

2. Prove that (2) implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{k=0}^{t-1} \ln \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=\ln \mu \tag{3}
\end{equation*}
$$

3. Prove that (3) is equivalent

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \ln \frac{\left\|x_{t}-x^{*}\right\|}{\left\|x_{0}-x^{*}\right\|}=\ln \mu \tag{4}
\end{equation*}
$$

We now consider a sequence of random variables $\left(x_{t}\right)_{t}$.
4. How can you extend the definition of linear convergence when $\left(x_{t}\right)_{t}$ is a sequence of random variables?
5. Looking at equations (1), (2), (4), there are actually different ways to extend linear convergence in the case of a sequence of random variables. Are those ways equivalent?
6. When you investigate the convergence of an algorithm numerically, how can you visualize whether (5) holds? What should you plot? [hint: think about the plots you have done when looking at the convergence of the $(1+1)$-ES with one-fifth success rule]

II Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic algorithm. More precisely we consider a $(1, \lambda)$-ES algorithm whose state is given by $X_{t} \in \mathbb{R}^{n}$. At each iteration t, λ candidate solutions are sampled according to

$$
X_{t+1}^{i}=X_{t}+U_{t+1}^{i}
$$

with $\left(U_{t+1}^{i}\right)_{1 \leq i \leq \lambda}$ i.i.d. and $U_{t+1}^{i} \sim \mathcal{N}\left(0, I_{d}\right)$. Those candidate are evaluated on the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be minimized and then ranked according the their f values:

$$
f\left(X_{t+1}^{1: \lambda}\right) \leq \ldots \leq f\left(X_{t+1}^{\lambda: \lambda}\right)
$$

where $i: \lambda$ denotes the index of the $i^{\text {th }}$ best candidate solution. The best candidate solution is then selected that is

$$
X_{t+1}=X_{t+1}^{1: \lambda}
$$

We will compute for the linear function $f(x)=x_{1}$ to be minimized the conditional distribution of $X_{t+1}^{1: \lambda}$ (i.e. after selection) and compare it to the distribution of X_{i}^{t+1} (i.e. before selection).

1. What is the distribution of X_{t+1}^{i} conditional to X_{t} ? Deduce the density of each coordinate of X_{t+1}^{i}.

We remind that given λ random variables independent and identically distributed $Y_{1}, Y_{2}, \ldots, Y_{\lambda}$, the order statistics $Y_{(1)}, Y_{(2)}, \ldots, Y_{(\lambda)}$ are random variables defined by sorting the realizations of $Y_{1}, Y_{2}, \ldots, Y_{\lambda}$ in increasing order. We consider that each random variable Y_{i} admits a density $f(x)$ and we denote $F(x)$ the cumulative distribution function, that is $F(x)=\operatorname{Pr}(Y \leq x)$.
2. Compute the cumulative distribution of $Y_{(1)}$ and deduce the density of $Y_{(1)}$.
3. Let $U_{t+1}^{1: \lambda}$ be the random vector such that

$$
X_{t+1}^{1: \lambda}=X_{t}+U_{t+1}^{1: \lambda}
$$

Express for the minimization of the linear function $f(x)=x_{1}$, the first coordinate of $U_{t+1}^{1: \lambda}$ as an order statistic.
4. Deduce the conditional distribution and conditional density of the random vector $X_{t+1}^{1: \lambda}$.

III Cumulative Step-size Adaptation (CSA)

In this exercice, we want to understand the normalization constants in the CSA algorithm and how they implement the idea explained during the class. The pseudo-code of the $(\mu / \mu, \lambda)$-ES with CSA step-size adaption is given in the following.
[Objective: minimize $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$]

```
Initialize \(\sigma_{0}>0, \mathbf{m}_{0} \in \mathbb{R}^{n}, \mathbf{p}_{0}=0, t=0\)
set \(w_{1} \geq w_{2} \geq \ldots w_{\mu} \geq 0\) with \(\sum w_{i}=1 ; \mu_{\mathrm{eff}}=1 / \sum w_{i}^{2}, 0<c_{\sigma}<1\) (typically \(\left.c_{\sigma} \approx 4 / n\right), d_{\sigma}>0\)
while not terminate
    Sample \(\lambda\) independent candidate solutions :
                \(\mathbf{X}_{t+1}^{i}=\mathbf{m}_{t}+\sigma_{t} \mathbf{y}_{t+1}^{i}\) for \(i=1 \ldots \lambda\)
                with \(\left(\mathbf{y}_{t+1}^{i}\right)_{1 \leq i \leq \lambda}\) i.i.d. following \(\mathcal{N}\left(\mathbf{0}, I_{d}\right)\)
        Evaluate and rank solutions:
                        \(f\left(\mathbf{X}_{t+1}^{1: \lambda}\right) \leq \ldots \leq f\left(\mathbf{X}_{t+1}^{\lambda: \lambda}\right)\)
    Update the mean vector:
\[
\mathbf{m}_{t+1}=\mathbf{m}_{t}+\sigma_{t} \underbrace{\sum_{i=1}^{\mu} w_{i} \mathbf{y}_{t+1}^{i: \lambda}}_{\mathbf{y}_{t+1}^{w}}
\]
Update the path:
\[
\mathbf{p}_{t+1}=\left(1-c_{\sigma}\right) \mathbf{p}_{t}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{\mathrm{eff}}} \mathbf{y}_{t+1}^{w}
\]
Update the step-size:
\[
\sigma_{t+1}=\sigma_{t} \exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{E\left[\left\|\mathcal{N}\left(0, I_{d}\right)\right\|\right]}-1\right)\right)
\]
\[
\mathrm{t}=\mathrm{t}+1
\]
```

1. Assume that the objective function f is random, i.e. for instance $f\left(X_{t+1}^{i}\right)_{i}$ are i.i.d. according to $\mathcal{U}_{[0,1]}$. What is the distribution of $\sqrt{\mu_{\text {eff }}} \mathbf{y}_{t+1}^{w}$?
2. Assume that $\mathbf{p}_{t} \sim \mathcal{N}\left(0, I_{d}\right)$ and that the selection is random, show that $\mathbf{p}_{t+1} \sim \mathcal{N}\left(0, I_{d}\right)$
3. Deduce that under random selection

$$
E\left[\ln \sigma_{t+1} \mid \sigma_{t}\right]=\ln \sigma_{t}
$$

and then that the expected log step-size is constant.

