Continuous Optimization
Introduction a ’optimisation continue
Assessment
(4th January 2021)

1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:
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x +— (Azx,x) /2 where x € R™ and A is a symmetric, positive definite operator;
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.o —/xifx >0, oo if z < 0.
2. Evaluate y = prox, () for f(z) = |z|3/3, 7 > 0.

3. (More difficult) Evaluate the convex conjugate of the “Entropy” function:

S R" = [0,400] ; T Simpwilnz; w2005 0 =1,

+00 else,
where here by convention we let tInt = 0 when ¢ = 0. (Hint: introduce a Lagrange multiplier
for the constraint ), x; = 1.)

2. Convex analysis: Moreau-Yosida regularization

Given f : R™ —] — 00, 400] a convex, lower-semicontinuous function, which is proper (that is,
f > —oo and dom f # (), we recall that the Moreau-Yosida regularization of f with parameter
7 > 0 is given by:

() = min £(4) + 5-lly —

We recall that for any x, this problem has a unique minimizer y (because the function to
minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as
y = prox,s(z), the “proximity operator” of 7f evaluated at z. In particular, f-(r) € R and
dom f; = R™. Further properties of the prox,; operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that f; is
convex, lower-semicontinuous.



2. Let z € R™ and p € df;(x). Show that for any h € R",
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(Hint: bound from below and above f.(x + th), for ¢ > 0 small, then send ¢ to zero.)
Deduce that f; is differentiable at =, with V. f(r) = (z — prox,;(z))/7.

3. Recall why prox,; is “firmly non-expansive”. Deduce that V f; is (1/7)-Lipschitz.

4. Recall “Moreau’s” identity. Deduce that V f;(x) = proxi,.(z/7) where f* is the convex
conjugate (Legendre-Fenchel transform) of f.

In what follows, **to simplify** we let 7 = 1.

5. Deduce from the previous results that for any =,
Vii(z) + V(f(z) ==

(here (f*); is the Moreau-Yosida regularization with parameter 7 = 1 of the conjugate f* of f,
and not!! the conjugate of f1).

6. Therefore by integration one finds: fi(x) + (f*)1(x) = ||2]|*/2 + C for some constant C,
with C'= f1(0) + (f*)1(0). Let y = prox;(0), z = prox(0). Show that y = —z. Deduce that
C=0.

3. Optimization: Nonlinear gradient descent

Let || - || be a norm on R", possibly different from the standard Euclidean 2-norm: for instance,
|zl = >°iy || (the 1-norm), or |jz|| = max{|zi|,...,|zs|} (the co-norm). (A norm is any
convex, l-homogeneous, even, function with values in [0, +00| and which is strictly positive
except in 0.) We define the dual (or polar) norm ||y||. by the formula:

lyll« = sup y-
iz <1
where y -z is the standard dot product y-z =" | y;x;. In particular, one has y -2 < ||y|+|/z||
for all y,x. (The “right” point of view should be that y is in the dual £* of £ = R™ (which is
also E* = R™) and that y - x is the evaluation of the linear form y at z. Then, || - || is the norm
on E while || - ||« is the norm on E*.)

1. Show that if F(z) := ||z|?/2, then its convex conjugate is F*(y) = ||y||2/2. Deduce that
the dual norm of || - ||, is || - ||, that is, for all x,

z]| = sup y- .
yillyll«<1



2. Compute || - ||« in the following cases:

i. 1-norm: ||z| = >0 |z ;

=

ii. 2-norm: ||z| = (Z?:l \x1]2)

N

Now, we consider a function f whose differential is L-Lipschitz in the normed space E =
(R™,]| - ||), which means precisely that for any z, 2’ € R",
IVf(z) = V@)l < Lllz — 2|

where V f(x) € E* is the vector of partial derivatives (Of/0x;)! .
3. Show that, as in the Euclidean case, one has for z,2’ € E,

Fla) < Fla) + VI@) - (& — ) + ol — |

We want to define a “gradient descent” method in the norms || - ||, || - [[«. We choose 2° € E.
Given zF, k > 0, we define ¢! = 2 — p* and we find the descent direction p* as follows: we
observe that

Pt < Fa) — V1) -+ L P

Then, we choose a p* which minimizes the expression in the right-hand side of this equation.

4. Show that one has to choose p¥ € OF *(%V f*), and that one obtains, for such a choice:
1
f ) < f@) = IV FEHIE

5. We assume the set X = {f < f(2°)} is bounded, and observe that 2* € X for any k > 1.
We also assume that f has a minimizer z* (obviously, * € X). As in the Lecture notes, show
that for all £ > 0:

(f(=") = f(=*))?

2L||zk — x|

F@h) = fa*) < f@*) = f(z¥) =

and:

where C = max,cy ||z — 2*|%.



4. Optimization: Polyak’s subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent
method, which can be used whenever the optimal value of a problem is known. One consider
a convex function f : R™ — R (dom f = R™), which has a non empty set of minimizer(s) X*,
and we assume that the minimal value f* is known. For instance:
i
— cx—b
f(a) = max ol -~ b
where a’ € R™,b € RP are such that a’ -z = b;, i = 1,...,p has a solution: in that case f* = 0.
Then, one chooses 2 € R” and computes a subgradient descent method by picking for all
k>0, p* € 0f(2*) and
k+1 k fah) = f* k
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1. Show that, if £* € X is any minimizer,

(f(z") = f*)?
”ﬂfk—H o l'*||2 < ||CCk . x*HQ o W

What do we deduce for the sequence (2%)>0?

2. Why is it true that C := supy, [|p¥|| < +00? Deduce that Z(f(:vk) — [*)? < +oo.
k=0

3. We deduce that f(2*) — f*. Show that there is one minimizer z* € X*, such that =¥ — z*.

4. We now assume that the function is “a-sharp”, a > 1, meaning that for some ~ > 0,
f(@) = f* > dist (2, X)°.
Show that
y2dist (zF, X*)2
C? ’
In case @ = 1 (which is the situation in the example mentioned in the introduction of this
exercise), what do we deduce?

dist (281, X*)? < dist (2%, X*)% —

5. We consider a sequence ag, k& > 0, with for all £ > 0, ap > 0 and a1 < ap — ¢
¢ >0, > 0. Show that:
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"= <max{ﬁ,1}(k+ 1>>
Hint: introduce b; := af , and depending on whether 8 > 1 or # < 1, try to show that
b < b — c’_lbi for some ¢’ (depending on ¢, 3). Use then the Lecture notes.

6. Deduce the rate of convergence for the distance from z* to the set X* in case a > 1.



