
Continuous Optimization
Introduction à l’optimisation continue

Assessment
(4th January 2021)

1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:

1. x 7→ |x|3/3;

2. x 7→ 3x;

3. x 7→ 〈Ax, x〉 /2 where x ∈ Rn and A is a symmetric, positive definite operator;

4. x 7→ −
√
x if x ≥ 0, +∞ if x < 0.

2. Evaluate y = proxτf (x) for f(x) = |x|3/3, τ > 0.

3. (More difficult) Evaluate the convex conjugate of the “Entropy” function:

S : Rn → [0,+∞] ; x 7→

{∑n
i=1 xi lnxi if xi ≥ 0 ∀i,

∑
i xi = 1 ,

+∞ else,

where here by convention we let t ln t = 0 when t = 0. (Hint: introduce a Lagrange multiplier
for the constraint

∑
i xi = 1.)

2. Convex analysis: Moreau-Yosida regularization

Given f : Rn →] −∞,+∞] a convex, lower-semicontinuous function, which is proper (that is,
f > −∞ and dom f 6= ∅), we recall that the Moreau-Yosida regularization of f with parameter
τ > 0 is given by:

fτ (x) = min
y
f(y) +

1

2τ
‖y − x‖2

We recall that for any x, this problem has a unique minimizer y (because the function to
minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as
y = proxτf (x), the “proximity operator” of τf evaluated at x. In particular, fτ (x) ∈ R and
dom fτ = Rn. Further properties of the proxτf operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that fτ is
convex, lower-semicontinuous.
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2. Let x ∈ Rn and p ∈ ∂fτ (x). Show that for any h ∈ Rn,

p · h ≤
(
x− proxτf (x)

τ

)
· h.

(Hint: bound from below and above fτ (x+ th), for t > 0 small, then send t to zero.)
Deduce that fτ is differentiable at x, with ∇τf(x) = (x− proxτf (x))/τ .

3. Recall why proxτf is “firmly non-expansive”. Deduce that ∇fτ is (1/τ)-Lipschitz.

4. Recall “Moreau’s” identity. Deduce that ∇fτ (x) = prox 1
τ
f∗(x/τ) where f∗ is the convex

conjugate (Legendre-Fenchel transform) of f .

In what follows, **to simplify** we let τ = 1.

5. Deduce from the previous results that for any x,

∇f1(x) +∇(f∗)1(x) = x

(here (f∗)1 is the Moreau-Yosida regularization with parameter τ = 1 of the conjugate f∗ of f ,
and not!! the conjugate of f1).

6. Therefore by integration one finds: f1(x) + (f∗)1(x) = ‖x‖2/2 + C for some constant C,
with C = f1(0) + (f∗)1(0). Let y = proxf (0), z = proxf∗(0). Show that y = −z. Deduce that
C = 0.

3. Optimization: Nonlinear gradient descent

Let ‖ · ‖ be a norm on Rn, possibly different from the standard Euclidean 2-norm: for instance,
‖x‖ =

∑n
i=1 |xi| (the 1-norm), or ‖x‖ = max{|x1|, . . . , |xn|} (the ∞-norm). (A norm is any

convex, 1-homogeneous, even, function with values in [0,+∞[ and which is strictly positive
except in 0.) We define the dual (or polar) norm ‖y‖∗ by the formula:

‖y‖∗ = sup
x:‖x‖≤1

y · x

where y ·x is the standard dot product y ·x =
∑n

i=1 yixi. In particular, one has y ·x ≤ ‖y‖∗‖x‖
for all y, x. (The “right” point of view should be that y is in the dual E∗ of E = Rn (which is
also E∗ = Rn) and that y · x is the evaluation of the linear form y at x. Then, ‖ · ‖ is the norm
on E while ‖ · ‖∗ is the norm on E∗.)

1. Show that if F(x) := ‖x‖2/2, then its convex conjugate is F∗(y) = ‖y‖2∗/2. Deduce that
the dual norm of ‖ · ‖∗ is ‖ · ‖, that is, for all x,

‖x‖ = sup
y:‖y‖∗≤1

y · x.
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2. Compute ‖ · ‖∗ in the following cases:

i. 1-norm: ‖x‖ =
∑n

i=1 |xi| ;

ii. 2-norm: ‖x‖ =
(∑n

i=1 |xi|2
) 1

2 =
√
x · x.

Now, we consider a function f whose differential is L-Lipschitz in the normed space E =
(Rn, ‖ · ‖), which means precisely that for any x, x′ ∈ Rn,

‖∇f(x)−∇f(x′)‖∗ ≤ L‖x− x′‖

where ∇f(x) ∈ E∗ is the vector of partial derivatives (∂f/∂xi)
n
i=1.

3. Show that, as in the Euclidean case, one has for x, x′ ∈ E,

f(x′) ≤ f(x) +∇f(x) · (x′ − x) +
L

2
‖x− x′‖2.

We want to define a “gradient descent” method in the norms ‖ · ‖, ‖ · ‖∗. We choose x0 ∈ E.
Given xk, k ≥ 0, we define xk+1 = xk − pk and we find the descent direction pk as follows: we
observe that

f(xk+1) ≤ f(xk)−∇f(xk) · pk +
L

2
‖pk‖2.

Then, we choose a pk which minimizes the expression in the right-hand side of this equation.

4. Show that one has to choose pk ∈ ∂F∗( 1
L∇f

∗), and that one obtains, for such a choice:

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∗.

5. We assume the set X = {f ≤ f(x0)} is bounded, and observe that xk ∈ X for any k ≥ 1.
We also assume that f has a minimizer x∗ (obviously, x∗ ∈ X). As in the Lecture notes, show
that for all k ≥ 0:

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− (f(xk)− f(x∗))2

2L‖xk − x∗‖2
,

and:

f(xk)− f(x∗) ≤ 2LC

k + 1

where C = maxx∈X ‖x− x∗‖2.
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4. Optimization: Polyak’s subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent
method, which can be used whenever the optimal value of a problem is known. One consider
a convex function f : Rn → R (dom f = Rn), which has a non empty set of minimizer(s) X∗,
and we assume that the minimal value f∗ is known. For instance:

f(x) = max
1≤i≤p

|ai · x− bi|

where ai ∈ Rn, b ∈ Rp are such that ai · x = bi, i = 1, . . . , p has a solution: in that case f∗ = 0.
Then, one chooses x0 ∈ Rn and computes a subgradient descent method by picking for all

k ≥ 0, pk ∈ ∂f(xk) and

xk+1 = xk − f(xk)− f∗

‖pk‖2
pk.

1. Show that, if x∗ ∈ X∗ is any minimizer,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (f(xk)− f∗)2

‖pk‖2
.

What do we deduce for the sequence (xk)k≥0?

2. Why is it true that C := supk ‖pk‖ < +∞? Deduce that
∞∑
k=0

(f(xk)− f∗)2 < +∞.

3. We deduce that f(xk)→ f∗. Show that there is one minimizer x∗ ∈ X∗, such that xk → x∗.

4. We now assume that the function is “α-sharp”, α ≥ 1, meaning that for some γ > 0,

f(x)− f∗ ≥ γdist (x,X∗)α.

Show that

dist (xk+1, X∗)2 ≤ dist (xk, X∗)2 − γ2dist (xk, X∗)2α

C2
.

In case α = 1 (which is the situation in the example mentioned in the introduction of this
exercise), what do we deduce?

5. We consider a sequence ak, k ≥ 0, with for all k ≥ 0, ak ≥ 0 and ak+1 ≤ ak − c−1a1+βk ,
c > 0, β > 0. Show that:

ak ≤
(

c

max{β, 1}(k + 1)

)1/β

.

Hint: introduce bk := aβk , and depending on whether β ≥ 1 or β ≤ 1, try to show that

bk ≤ bk − c′−1b2k for some c′ (depending on c, β). Use then the Lecture notes.

6. Deduce the rate of convergence for the distance from xk to the set X∗ in case α > 1.
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