Continuous optimization, an introduction
Assessment
(3rd January 2017)

Exercise 1

We recall that for a convex function f: X —-RU {+OQ},
prox ) = arg min ’ + — — I .

Evaluate prox, ;(z) for 7 > 0, and
1. X =R, f(z) = —Inz for z > 0, +oc0 for z < 0.

2. f(z) = ¥(||z||) where ¢ : R — RU{+o00} is a convex, even (paire) function
with ¥(0) = 0. Show first that f is a convex function, then evaluate prox,
in terms of prox,,,.

3. fa) =|l=/3.

Exercise 11

We consider X a Hilbert space and a strictly convex lower-semicontinuous (Isc)
function ¢ : X — RU {400} such that the interior of dom, denoted D, is not
empty, D = dom, 1 € CH(D)NC%(D), and d(z) = () for all z € D. In other
words, 9y (x) is either § (if x € D), or a singleton {V(z)} (if z € D). We also
assume that
lim ¢(x) = +oc0.
llz]|—o0

We define the “Bregman distance associated to ¢”, denoted Dy (x,y), as,

forye D and z € X,

Dy(z,y) == (x) —P(y) — (VY(y),z —y).

1. Show that Dy(z,y) > 0, and that Dy(zr,y) = 0 = y = . What other
estimate can we write if in addition %) is strongly convex? Why is Dy not a
distance in the classical sense?

2. Express Dy in case D = X, ¢(x) = ||z||?/2. In case X = R", D =]0, +oo[",
Plx)=>""  z;Inw,.

3. Let f: X — RU{+o0} a proper, convex, lsc function. Let Z € D. We
assume that there exists x € D with f(x) < +o00. Show that there exists a
unique point £ € X such that

f(@) + Dy (2,%) < f(x) + Dy(z,Z) Vxe X. (1)

4. Explain why O(f+1) = df +0¢. Write the first order optimality condition
for 2. Deduce that £ € D.



5. Show (from the first order optimality condition) that for all z € X,
f(@) + Dy(x,T) = f(2) + Dy(2, %) + Dy(, L). (2)
A “nonlinear” descent algorithm. We consider a minimisation problem

min f(z) 4 g(z), (P)
xeD

for f,g convex, lsc, proper functions, where f is C' in D and g is “simple” in
the following sense: one assume that one knows how to solve

. 1
min g(z) + (p,z) + —Dy(z,y)

for any 7 > 0, p € X and y € D. We suppose in addition that there exists
L > 0 such that for any y € D, z € X
Dy(z,y) < LDy(z,y). 3)

(Here Dy(z,y) = f(z) — f(y) — (Vf(y),z — y).) We assume that the minimisa-
tion problem has a solution. We denote F(z) = f(z) + g(z).

6. Show that if ¢ is 1-convex (strongly convex with parameter 1) and f has
L-Lipschitz gradient, then (3) is true.

Given Z € D, 7 > 0, we now define the following operator: we let & = T, (%)
be the solution of the minimisation problem

min £(7) + (Vf (@), 7 ~ ) + 9(z) + - Dz, 7). (4)

7. Explain why this problem is easy to solve. Show that if 7 is small enough,
one has the following descent rule: for all x € X

Flz) + %Dw(mﬁc) > F(#) + %Dw(m,ﬁ:).

8. We define the following algorithm: we choose z° € D, and for all £ > 0, let
P = T 2% where 7 < L is fixed. Show that for all £ > 0, F(xM1) < F(2).
If * is a minimiser of F in D, show that

9. We assume that F(z) — +oo when ||z|| — +o0co. Why can we find & € D
and extract a subsequence z*! such that 2% — % as | — oco? Why is & a solution
of (P)?



Application: minimisation in the unit simplex. One considers the case
where X = R¢,

d
E—{xeX:xizOW—1,...,d;zxi_1}
i=1

is the unit simplex and

(@) 0 ifxeXx
xTr) =
g +o00 else.

We choose ¢(z) = 25:1 z;Inx; and D =)0, +oo[?.
10. Give the expression of Dy(z,y) for z € ¥,y € N D.

11. Show that the algorithm described in the previous part is implementable:
express in detail the computation of the iterations. Hint: introduce the Lagrange
multiplier for the constraint ), z; = 1.

Exercise 111

We consider a maximal monotone operator A in a (real) Hilbert space X. We
consider also a “metric” M, that is, a continuous, coercive, and symmetric
operator:

IMz|| < [M]llz] Vo € X, (Mz,z) > ||z, (Maz,y) = (z, My)
for all x,y € X, where § > 0.
1. Show that (z,y) — (Mz,y) =: (x,y),, defines a scalar product which is
equivalent to the scalar product (-,-). Show that for all y € X, the problem
N ST
T P
has a unique solution. Deduce that M is invertible. We have denoted ||.||as the

Hilbertian norm induced by the M-scalar product.

2. Show that (M ~1A) is a maximal monotone operator in the M-scalar prod-
uct. Deduce from Minty’s theorem that for any y € X, there exists a unique x
such that

M(x—y)+Az>0.

3. We consider A, B two maximal monotone operators and K € £(X,X) a
continuous, linear operator in X. We define in X x X the metric, for 7,0 > 0,

I *
= K
M = <_7k 1 ) .
Here I € £(X,X) is the identity operator. Show that if To < 1/|K|?, M is
continuous and coercive in X x X.



4. Deduce that (for such 7,0) one can define the following algorithm: we let
(2°,9°) € X x X and define for each k > 0 the new point (z**+1 y*+1) as follows:

karl _ :L'k 0 K* xk+1 A$k+1
M gty T\_k o 1 + Byt 30.
Express this as a first iteration defining z**! from 2*, y* and then an iteration

defining y**1 from z¥, zF+1, y¥.

5. In what case does (z*,y*) converge? (and in what sense?) In this case,
what does the limit (Z,7) satisfy? Write, in particular, an equation for Z.

6. We now consider a maximal monotone operator Cz and the new iterative
scheme:

aFtl — gk 0 K* Lkl Aghtl Cxzk
M (yk+1 oy + K 0 Y + Blyktl > 0 )
Under which condition on 7,0, C will this iterative scheme be converging? To
which limit?



