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ODE / PDE ?

An Ordinary Differential
Equations (ODE) is on the form :

∑
i
αi

d (ni )U(x)
dx (ni )

= F (x ,U(x))

with U is an unknown function
and x a variable.

A Partial Differential Equations
(PDE) is on the form :

∑
i
αi
∂(ni )U(x)
∂x (ni )

i
= F (x,U(x))

with U is an unknown function
and x = (x1, ..., xn) are
variableS.

NB : These equations are always delivered with their initial
conditions !
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Example 1 : Mass-spring system (EDO)

Newton principle conduct to :

md2z(t)
dt2 = −c dz(t)

dt − kx(t)

with z(t) the position of the
spring, m the mass, c the
damping factor and k the
stiffness.

(fr) https ://fr.wikipedia.org/wiki/Exemples_d’équations_différentielles
(en) https ://en.wikipedia.org/wiki/Examples_of_differential_equations
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Examples 2 : Vibration modes of a string (EDO)

Eigen-values equation :

d2u(x)
dx2 = −k2u(x)

with u(t) is the string amplitude
around initial position and k is
the wave number.

(fr) https ://fr.wikipedia.org/wiki/Onde_sur_une_corde_vibrante
(en) https ://en.wikipedia.org/wiki/String_vibration
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Examples 3 : Predator-Prey equations (EDO)

Lotka-Volterra equations :

dx(t)
dt = αx(t)− βx(t)y(t)

dy(t)
dt = δx(t)y(t)− γy(t)

with x(t) are the prey and y(t)
the predator.

Prey have an exponential
growth : αx(t)
Predator have a natural
death : γy(t)
Predator-prey interaction :
x(t)y(t)

(fr) https ://fr.wikipedia.org/wiki/équations_de_prédation_de_Lotka-Volterra
(en) https ://en.wikipedia.org/wiki/Lotka-Volterra_equations



Differential equations ODE Numerical integration Applications

Examples 3 : Predator-Prey equations (EDO)

Lotka-Volterra equations :

dx(t)
dt = αx(t)− βx(t)y(t)

dy(t)
dt = δx(t)y(t)− γy(t)

with x(t) are the prey and y(t)
the predator.

(fr) https ://fr.wikipedia.org/wiki/équations_de_prédation_de_Lotka-Volterra
(en) https ://en.wikipedia.org/wiki/Lotka-Volterra_equations



Differential equations ODE Numerical integration Applications

Examples 4 : Laplace equation (EDP)

The best known equation :

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0

⇐⇒ div(grad(Φ)) = 0
⇐⇒ ∇ · (∇Φ) = 0
⇐⇒ ∇2(Φ) = 0
⇐⇒ ∆Φ = 0

with Φ(x , y , z) is a function that we find in astronomy,
electro-static, fluid mechanics, heat propagation, quantum
mechanic, and so on.

(fr) https ://fr.wikipedia.org/wiki/Equation_de_Laplace
(en) https ://en.wikipedia.org/wiki/Laplace’s_equation
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Examples 5 : Convection diffusion (EDP)

The transport equation with a diffuse term :

∂u
∂t = ∇ · (D∇u)−∇ · (cu) + R

with u(x , y , z) is the function of interest (mass, temperature, etc.),
D is the diffusion coefficient, c is the motion celerity and R a
source.

https ://en.wikipedia.org/wiki/Convection-diffusion_equation
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Examples 6 : Wave equation (EDP)

The wave equation :

∂2u
∂2t = c2∇2u

with u(x , y , z) is the function of
interest (pressure, amplitude,
etc.) and c is the celerity (scalar,
fixed).

https ://en.wikipedia.org/wiki/Wave_equation
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Numerical Integration

Numerical Integration of First Order ODEs (1)

The generic form of a first order ODE is

dy

dt
= f(t, y); y(0) = y0

where the right hand side f(t, y) is any single-valued function of t and y.

The approximate numerical solution is obtained at discrete values of t

tj = t0 + jh

where h is the “stepsize”

NMM: Integration of ODEs page 7
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Numerical Integration

Numerical Integration of ODEs (2)

Graphical Interpretation

y0

t0

f (t0,y0) = slope at (t0,y0)

exact solution y(t)

numerical solution at t3

t1 t2 t3

h h h

NMM: Integration of ODEs page 8
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Forward Euler scheme

Euler’s Method (1)

Consider a Taylor series expansion in the neighborhood of t0

y(t) = y(t0) + (t − t0)
dy

dt

˛̨̨
˛
t0

+
(t − t0)

2

2

d2y

dt2

˛̨
˛̨
˛
t0

+ . . .

Retain only first derivative term and define

f(t0, y0) ≡ dy

dt

˛̨
˛̨
t0

to get

y(t) ≈ y(t0) + (t − t0)f(t0, y0)

NMM: Integration of ODEs page 10
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Forward Euler scheme

Euler’s Method (2)

Given h = t1 − t0 and initial condition, y = y(t0), compute

y1 = y0 + h f(t0, y0)

y2 = y1 + h f(t1, y1)

... ...

yj+1 = yj + h f(tj, yj)

or

yj = yj−1 + h f(tj−1, yj−1)

NMM: Integration of ODEs page 11
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Numerical example

Example: Euler’s Method

Use Euler’s method to integrate

dy

dt
= t − 2y y(0) = 1

The exact solution is

y =
1

4

h
2t − 1 + 5e

−2t
i

Euler Exact Error

j tj f(tj−1, yj−1) yj = yj−1 + h f(tj−1, yj−1) y(tj) yj − y(tj)

0 0.0 NA (initial condition) 1.0000 1.0000 0

1 0.2 0 − (2)(1) = −2.000 1.0 + (0.2)(−2.0) = 0.6000 0.6879 −0.0879

2 0.4 0.2 − (2)(0.6) = −1.000 0.6 + (0.2)(−1.0) = 0.4000 0.5117 −0.1117

3 0.6 0.4 − (2)(0.4) = −0.400 0.4 + (0.2)(−0.4) = 0.3200 0.4265 −0.1065

NMM: Integration of ODEs page 12

Exercice 1.a : Recompute numerically the four error values.
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Numerical example

Reducing Stepsize Improves Accuracy (1)

Use Euler’s method to integrate

dy

dt
= t − 2y; y(0) = 1

for a sequence of smaller h (see

demoEuler).

For a given h, the largest error in

the numerical solution is the Global

Discretization Error or GDE.
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t

y

Exact    
h = 0.2  
h = 0.1  
h = 0.05 

NMM: Integration of ODEs page 13

Exercice 1.b : Reproduce this figure.
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Numerical example

Reducing Stepsize Improves Accuracy (2)

Local error at any time step is

ej = yj − y(tj)

where y(tj) is the exact solution

evaluated at tj.

GDE = max(ej), j = 1, . . .

For Euler’s method, GDE decreases

linearly with h.

Here are results for the sample problem

plotted on previous slide:

dy/dt = t − 2y; y(0) = 1

h max(ej)

0.200 0.1117

0.100 0.0502

0.050 0.0240

0.025 0.0117

NMM: Integration of ODEs page 14
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Scheme order for Euler method

First order scheme : ej = yj − y(tj) ∝ h

Exercice 1.c : Reproduce this figure.
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Midpoint scheme

Midpoint Method (1)

Increase accuracy by evaluating slope twice in each step of size h

k1 = f(tj, yj)

Compute a tentative value of y at the midpoint

yj+1/2 = yj +
h

2
f(tj, yj)

re-evaluate the slope

k2 = f(tj +
h

2
, yj +

h

2
k1)

Compute final value of y at the end of the full interval

yj+1 = yj + hk2

LDE = GDE = O(h2)

NMM: Integration of ODEs page 25
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Midpoint scheme

Midpoint Method (2)

yj–1

tj–1

yj from Euler’s method

tj

0.5h 0.5h

true solution for the given yj–1

estimate of slope
at tj–1 + 0.5h

yj from midpoint method

yj–1 + 0.5 h  k1

NMM: Integration of ODEs page 26
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Heun’s scheme

Heun’s Method (1)

Compute the slope at the starting point

k1 = f(tj, yj)

Compute a tentative value of y at the endpoint

y
∗
j = yj + hf(tj, yj)

re-evaluate the slope

k2 = f(tj + h, y
∗
j ) = f(tj + j, yj + hk1)

Compute final value of y with an average of the two slopes

yj+1 = yj + h
k1 + k2

2

LDE = GDE = O(h2)

NMM: Integration of ODEs page 30
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Heun’s scheme

Heun’s Method (2)

yj–1

tj–1

yj from Euler’s method

tj

h

estimate of slope at tj yj from Heun’s method

true solution for the given yj–1

NMM: Integration of ODEs page 31
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Runge and Kutta 4 scheme

Runge-Kutta Methods

Generalize the idea embodied in Heun’s method. Use a weighted average of the slope

evaluated at multiple in the step

yj+1 = yj + h
X

γmkm

where γm are weighting coefficients and km are slopes evaluated at points in the interval

tj ≤ t ≤ tj+1

In general, X
γm = 1

NMM: Integration of ODEs page 33
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Runge and Kutta 4 scheme

Fourth Order Runge-Kutta

Compute slope at four places within each step

k1 = f(tj, yj)

k2 = f(tj +
h

2
, yj +

h

2
k1)

k3 = f(tj +
h

2
, yj +

h

2
k2)

k4 = f(tj + h, yj + hk3)

Use weighted average of slopes to obtain yj+1

yj+1 = yj + h

„
k1

6
+

k2

3
+

k3

3
+

k4

6

«

LDE = GDE = O(h4)

NMM: Integration of ODEs page 34
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Runge and Kutta 4 scheme

Fourth Order Runge-Kutta

yj –1

tj –1
tj

0.5h

1

2

3

4

0.5h

true solution for the given yj –1

NMM: Integration of ODEs page 35
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Comparison of schemes order

First to fourth order schemes : RK4 ∝ h4

Exercice 1.d : Reproduce this figure.
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Native ODE set for matlab

Matlab’s Built-in ODE Routines

Function Description

ode113 Variable order solution to nonstiff systems of ODEs. ode113 uses an

explicit predictor-corrector method with variable order from 1 to 13.

ode15s Variable order, multistep method for solution to stiff systems of

ODEs. ode15s uses an implicit multistep method with variable

order from 1 to 5.

ode23 Lower order adaptive stepsize routine for non-stiff systems of ODEs.

ode23 uses Runge-Kutta schemes of order 2 and 3.

ode23s Lower order adaptive stepsize routine for moderately stiff systems of

ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.

ode45 Higher order adaptive stepsize routine for non-stiff systems of ODEs.

ode45 uses Runge-Kutta schemes of order 4 and 5.

NMM: Integration of ODEs page 48
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Mass-spring

Newton principle conduct to :

md2z(t)
dt2 = −c dz(t)

dt − kx(t)

with z(t) the position of the
spring, m the mass, c the
damping factor and k the
stiffness. Initial condition :

z(t = 0) = z0,
v = dz(t)

dt = 0.

(fr) https ://fr.wikipedia.org/wiki/Exemples_d’équations_différentielles
(en) https ://en.wikipedia.org/wiki/Examples_of_differential_equations
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Mass-spring linearization

Considering c = 0 (no damping), we get a two equation system :

dv(t)
dt = − k

mz(t)

dz(t)
dt = v(t)

Wich can be reformulated using matrix representation.
Anaytical solution is given by

z(t) = z0cos( kmt)
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Mass-spring solutions

Euler 100 steps with k = 1, m = 1, z0 = −1.

Exercice 2.a : Reproduce this figure.
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Mass-spring solutions

Euler 10000 steps with k = 1, m = 1, z0 = −1.

Exercice 2.b : Reproduce this figure.
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Mass-spring solutions

RK4 100 steps with k = 1, m = 1, z0 = −1.

Exercice 2.c : Reproduce this figure.
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Predator-prey

Lotka-Volterra equations :

dx(t)
dt = αx(t)− βx(t)y(t)

dy(t)
dt = δx(t)y(t)− γy(t)

with x(t) are the prey and y(t)
the predator.

Prey have an exponential
growth : αx(t)
Predator have a natural
death : γy(t)
Predator-prey interaction :
x(t)y(t)

(fr) https ://fr.wikipedia.org/wiki/équations_de_prédation_de_Lotka-Volterra
(en) https ://en.wikipedia.org/wiki/Lotka-Volterra_equations
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Predator-prey solutions

Predator-prey solution for α = 2, β = 0.02, δ = 0.0002 and
γ = 0.8. Initial populations are 5000 prey and 100 predators.

Computation wih RK4 scheme, 100 steps.

Exercice 3 : Reproduce this figure.
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Furthers exercices (optional)

Mass-spring system : What’s happen with c > 0 ? Compare
with analytical solutions.
Other’s schemes : Implement others shemes as Backward
euler, variable steps schemes, multi-steps, RKC, etc.
String modelization : Solve EDO from N-coupled oscillators
https ://en.wikipedia.org/wiki/Normal_mode,
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