Ordindary Differential Equations Master 2 Acoustical Engineering Numerical Techniques for Acoustics - Session 1

Matthieu Aussal*

*Centre de Mathématiques Appliquées de l'École Polytechnique Route de Saclay - 91128 Palaiseau CEDEX France

Monday 23 September 2019 - ENSTA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Computational Science Fuses Three Distinct Elements:

ODE / PDE?

An Ordinary Differential Equations (ODE) is on the form :

$$\sum_{i} \alpha_{i} \frac{d^{(n_{i})} U(x)}{dx^{(n_{i})}} = F(x, U(x))$$

with U is an unknown function and x a variable.

A Partial Differential Equations (PDE) is on the form :

$$\sum_{i} \alpha_{i} \frac{\partial^{(n_{i})} U(\mathbf{x})}{\partial x_{i}^{(n_{i})}} = F(\mathbf{x}, U(\mathbf{x}))$$

with U is an unknown function and $\mathbf{x} = (x_1, ..., x_n)$ are variableS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NB : These equations are always delivered with their initial conditions !

Example 1 : Mass-spring system (EDO)

Newton principle conduct to :

$$m\frac{d^2z(t)}{dt^2} = -c\frac{dz(t)}{dt} - kx(t)$$

with z(t) the position of the spring, m the mass, c the damping factor and k the stiffness.

(fr) https ://fr.wikipedia.org/wiki/Exemples_d'équations_différentielles(en) https ://en.wikipedia.org/wiki/Examples_of_differential_equations

Applications 00000000

Examples 2 : Vibration modes of a string (EDO)

Eigen-values equation :

$$\frac{d^2u(x)}{dx^2} = -k^2u(x)$$

with u(t) is the string amplitude around initial position and k is the wave number.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(fr) https ://fr.wikipedia.org/wiki/Onde_sur_une_corde_vibrante
(en) https ://en.wikipedia.org/wiki/String_vibration

Examples 3 : Predator-Prey equations (EDO)

Lotka-Volterra equations :

$$\frac{dx(t)}{dt} = \alpha x(t) - \beta x(t)y(t)$$
$$\frac{dy(t)}{dt} = \delta x(t)y(t) - \gamma y(t)$$

with x(t) are the prey and y(t) the predator.

- Prey have an exponential growth : \alpha x(t)
- Predator have a natural death : γy(t)
- Predator-prey interaction :
 x(t)y(t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(fr) https ://fr.wikipedia.org/wiki/équations_de_prédation_de_Lotka-Volterra(en) https ://en.wikipedia.org/wiki/Lotka-Volterra_equations

Examples 3 : Predator-Prey equations (EDO)

Lotka-Volterra equations :

$$\frac{dx(t)}{dt} = \alpha x(t) - \beta x(t)y(t)$$
$$\frac{dy(t)}{dt} = \delta x(t)y(t) - \gamma y(t)$$

with x(t) are the prey and y(t) the predator.

Population Prey Prey Time

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(fr) https ://fr.wikipedia.org/wiki/équations_de_prédation_de_Lotka-Volterra(en) https ://en.wikipedia.org/wiki/Lotka-Volterra_equations

Examples 4 : Laplace equation (EDP)

The best known equation :

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

$$\iff div(\operatorname{grad}(\Phi)) = 0$$

$$\iff \nabla \cdot (\nabla \Phi) = 0$$

$$\iff \nabla^2(\Phi) = 0$$

$$\iff \Delta \Phi = 0$$

with $\Phi(x, y, z)$ is a function that we find in astronomy, electro-static, fluid mechanics, heat propagation, quantum mechanic, and so on.

(fr) https ://fr.wikipedia.org/wiki/Equation_de_Laplace
(en) https ://en.wikipedia.org/wiki/Laplace's_equation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples 5 : Convection diffusion (EDP)

The transport equation with a diffuse term :

$$\frac{\partial u}{\partial t} = \nabla \cdot (D \nabla u) - \nabla \cdot (\mathbf{c}u) + R$$

with u(x, y, z) is the function of interest (mass, temperature, etc.), D is the diffusion coefficient, **c** is the motion celerity and R a source.

https://en.wikipedia.org/wiki/Convection-diffusion_equation

Examples 6 : Wave equation (EDP)

The wave equation :

$$\frac{\partial^2 u}{\partial^2 t} = c^2 \nabla^2 u$$

with u(x, y, z) is the function of interest (pressure, amplitude, etc.) and **c** is the celerity (scalar, fixed).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

https://en.wikipedia.org/wiki/Wave_equation

Computational Science Fuses Three Distinct Elements:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Applications 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gerald Recktenwald - Portland State University

Numerical Integration of Ordinary Differential Equations for Initial Value Problems

Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Numerical Integration

Numerical Integration of First Order ODEs (1)

The generic form of a first order ODE is

$$\frac{dy}{dt} = f(t, y); \qquad y(0) = y_0$$

where the right hand side f(t, y) is any single-valued function of t and y.

The approximate numerical solution is obtained at discrete values of t

$$t_j = t_0 + jh$$

where h is the "stepsize"

Numerical Integration

Numerical Integration of ODEs (2)

Graphical Interpretation

Forward Euler scheme

Euler's Method (1)

Consider a Taylor series expansion in the neighborhood of t_0

$$y(t) = y(t_0) + (t - t_0) \left. \frac{dy}{dt} \right|_{t_0} + \frac{(t - t_0)^2}{2} \left. \frac{d^2y}{dt^2} \right|_{t_0} + \dots$$

Retain only first derivative term and define

$$f(t_0, y_0) \equiv \left. \frac{dy}{dt} \right|_{t_0}$$

to get

$$y(t) \approx y(t_0) + (t - t_0)f(t_0, y_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Forward Euler scheme

Euler's Method (2)

Given $h = t_1 - t_0$ and initial condition, $y = y(t_0)$, compute

$$y_{1} = y_{0} + h f(t_{0}, y_{0})$$
$$y_{2} = y_{1} + h f(t_{1}, y_{1})$$
$$\vdots \qquad \vdots$$
$$y_{j+1} = y_{j} + h f(t_{j}, y_{j})$$

or

$$y_j = y_{j-1} + h f(t_{j-1}, y_{j-1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ODE Numerical integration

Forward Euler scheme

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Numerical example

Example: Euler's Method

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$

The exact solution is

$$y = \frac{1}{4} \left[2t - 1 + 5e^{-2t} \right]$$

			Euler	Exact	Error
j	t_j	$f(t_{j-1},y_{j-1})$	$y_j = y_{j-1} + h f(t_{j-1}, y_{j-1})$	$y(t_j)$	$y_j-y(t_j)$
0	0.0	NA	(initial condition) 1.0000	1.0000	0
1	0.2	0 - (2)(1) = -2.000	1.0 + (0.2)(-2.0) = 0.6000	0.6879	-0.0879
2	0.4	0.2 - (2)(0.6) = -1.000	0.6 + (0.2)(-1.0) = 0.4000	0.5117	-0.1117
3	0.6	0.4 - (2)(0.4) = -0.400	0.4 + (0.2)(-0.4) = 0.3200	0.4265	-0.1065

Exercice 1.a : Recompute numerically the four error values.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Numerical example

Reducing Stepsize Improves Accuracy (1)

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y; \qquad y(0) = 1$$

for a sequence of smaller h (see demoEuler).

For a given h, the largest error in the numerical solution is the *Global Discretization Error* or *GDE*.

(日)

э

Exercice 1.b : Reproduce this figure.

Numerical example

Reducing Stepsize Improves Accuracy (2)

Local error at any time step is

 $e_j = y_j - y(t_j)$

where $y(t_j)$ is the exact solution evaluated at t_j .

 $GDE = \max(e_j), \qquad j = 1, \dots$

For Euler's method, GDE decreases linearly with h.

Here are results for the sample problem plotted on previous slide:

$$dy/dt = t - 2y; \quad y(0) = 1$$

h	$\max(e_j)$
0.200	0.1117
0.100	0.0502
0.050	0.0240
0.025	0.0117

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Scheme order for Euler method

First order scheme : $e_j = y_j - y(t_j) \propto h$

Exercice 1.c : Reproduce this figure.

Midpoint scheme

Midpoint Method (1)

Increase accuracy by evaluating slope twice in each step of size h

$$k_1 = f(t_j, y_j)$$

Compute a tentative value of y at the midpoint

$$y_{j+1/2} = y_j + \frac{h}{2}f(t_j, y_j)$$

re-evaluate the slope

$$k_2 = f(t_j + \frac{h}{2}, y_j + \frac{h}{2}k_1)$$

Compute final value of \boldsymbol{y} at the end of the full interval

$$y_{j+1} = y_j + hk_2$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Midpoint scheme

Midpoint Method (2)

Heun's scheme

Heun's Method (1)

Compute the slope at the starting point

$$k_1 = f(t_j, y_j)$$

Compute a tentative value of y at the endpoint

$$y_j^* = y_j + hf(t_j, y_j)$$

re-evaluate the slope

$$k_2 = f(t_j + h, y_j^*) = f(t_j + j, y_j + hk_1)$$

Compute final value of y with an average of the two slopes

$$y_{j+1} = y_j + h \, \frac{k_1 + k_2}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Heun's scheme

Heun's Method (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Runge and Kutta 4 scheme

Runge-Kutta Methods

Generalize the idea embodied in Heun's method. Use a *weighted average of the slope* evaluated at multiple in the step

$$y_{j+1} = y_j + h \sum \gamma_m k_m$$

where γ_m are weighting coefficients and k_m are slopes evaluated at points in the interval $t_j \leq t \leq t_{j+1}$

In general,

$$\sum \gamma_m = 1$$

Runge and Kutta 4 scheme

Fourth Order Runge-Kutta

Compute slope at four places within each step

$$k_{1} = f(t_{j}, y_{j})$$

$$k_{2} = f(t_{j} + \frac{h}{2}, y_{j} + \frac{h}{2}k_{1})$$

$$k_{3} = f(t_{j} + \frac{h}{2}, y_{j} + \frac{h}{2}k_{2})$$

$$k_{4} = f(t_{j} + h, y_{j} + hk_{3})$$

Use weighted average of slopes to obtain y_{i+1}

$$y_{j+1} = y_j + h\left(\frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

ODE Numerical integration

Applications 00000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Runge and Kutta 4 scheme

Fourth Order Runge-Kutta

ODE Numerical integration

Applications 000000000

Comparison of schemes order

First to fourth order schemes : $RK4 \propto h^4$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

3

Exercice 1.d : Reproduce this figure.

_

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Native ODE set for matlab

MATLAB's Built-in ODE Routines

Function	Description	
ode113	Variable order solution to nonstiff systems of ODEs. ode113 uses an explicit predictor-corrector method with variable order from 1 to 13.	
ode15s	Variable order, multistep method for solution to stiff systems of ODEs. ode15s uses an implicit multistep method with variable order from 1 to 5.	
ode23	Lower order adaptive stepsize routine for non-stiff systems of ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.	
ode23s	Lower order adaptive stepsize routine for moderately stiff systems of ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.	
ode45	Higher order adaptive stepsize routine for non-stiff systems of ODEs. ode45 uses Runge-Kutta schemes of order 4 and 5.	

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Computational Science Fuses Three Distinct Elements:

Mass-spring

Newton principle conduct to :

$$m\frac{d^2z(t)}{dt^2} = -c\frac{dz(t)}{dt} - kx(t)$$

with z(t) the position of the spring, *m* the mass, *c* the damping factor and *k* the stiffness. Initial condition :

•
$$z(t = 0) = z_0$$
,
• $v = \frac{dz(t)}{dt} = 0$.

(fr) https ://fr.wikipedia.org/wiki/Exemples_d'équations_différentielles (en) https ://en.wikipedia.org/wiki/Examples_of_differential_equations

・ロ・・聞・・思・・思・・ しゃくの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mass-spring linearization

Considering c = 0 (no damping), we get a two equation system :

$$egin{array}{rcl} rac{dv(t)}{dt}&=&-rac{k}{m}z(t)\ rac{dz(t)}{dt}&=&v(t) \end{array}$$

Wich can be reformulated using matrix representation. Anaytical solution is given by

$$z(t)=z_0\cos(\frac{k}{m}t)$$

Mass-spring solutions

Euler 100 steps with k = 1, m = 1, z0 = -1.

Exercice 2.a : Reproduce this figure.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mass-spring solutions

Euler 10000 steps with k = 1, m = 1, z0 = -1.

Exercice 2.b : Reproduce this figure.

ODE Numerical integration

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Mass-spring solutions

RK4 100 steps with k = 1, m = 1, z0 = -1.

Exercice 2.c : Reproduce this figure.

Predator-prey

Lotka-Volterra equations :

$$\frac{dx(t)}{dt} = \alpha x(t) - \beta x(t)y(t)$$
$$\frac{dy(t)}{dt} = \delta x(t)y(t) - \gamma y(t)$$

with x(t) are the prey and y(t) the predator.

- Prey have an exponential growth : \alpha x(t)
- Predator have a natural death : γy(t)
- Predator-prey interaction :
 x(t)y(t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(fr) https ://fr.wikipedia.org/wiki/équations_de_prédation_de_Lotka-Volterra(en) https ://en.wikipedia.org/wiki/Lotka-Volterra_equations

ODE Numerical integration

Predator-prey solutions

Predator-prey solution for $\alpha = 2$, $\beta = 0.02$, $\delta = 0.0002$ and $\gamma = 0.8$. Initial populations are 5000 prey and 100 predators. Computation wih RK4 scheme, 100 steps.

Exercice 3 : Reproduce this figure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Furthers exercices (optional)

- Mass-spring system : What's happen with *c* > 0? Compare with analytical solutions.
- **Other's schemes :** Implement others shemes as Backward euler, variable steps schemes, multi-steps, RKC, etc.
- **String modelization :** Solve EDO from N-coupled oscillators *https ://en.wikipedia.org/wiki/Normal_mode*,