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Euler for 1st order linear equation



Reminders : Taylor's expension end recursive Euler

For a function y twice derivable on [t — h, t 4 h], Taylor's
expension in the point t leads to :

2

3
Y(E+h) = y(8) 4y (6) + 2y (0) + 2y (e) + o),

2

3
y(t = 1) = (1) ~ /() + 5 y(6) — Sy () + o(h).

Recursive Euler scheme is based on :

y(t) = y(t = h)

A=)~ () + ofh).



Recursive Euler for 1st order linear ODE

Considering the first order linear Ordinary Differential Equation :
V() +y(t) =0 with y(0)=1,
the analytical solution is given by :
t

y(t) = yoe "

Exercice 1 : Retrieve analytical solution. Considering a time
sampling (tj)je[O:N] of step h, compare analytical solution to a
numerical resolution with a recursive Euler scheme :

Yji — Yj-1

h +y1=0 < yj=yj1— hyj_1.

Reproduce next slide figure.



Recursive Euler for 1st order linear ODE
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Euler scheme with 10 steps : max; (|y(tj) — y;)|) = 0.0402



Sparse matrix formulation
Considering the solution vector Y* = (y1,...,yn) ", the recursive
Euler scheme can be rewritten using sparse matrix operators :

Yji — Yj-1

p +y1=0 <= AY+BY =0

where A, B € MV(R) stand for :

1 0 O 0 0 0 O 0

1 -1 1 0 0 1 0 O 0
A:ﬁ 0 -1 1 0 B=10 1 0 0
0 0 O 1 0 0 O 0

Exercice 2a : Find the solution of (A+ B)Y* = 0. What's
happening ?



Sparse matrix formulation

Adding the initial condition to the linear system consist in solving
matrix problem considering :
y1 = Yo — hyo.

A way consist in the use of non zeros right-hand side
T
F= (%,0,...,0) , such as :

(A+B)Y* =F.

Exercice 2b : Why the first term f; is equal to % ? Compare

solutions (y;)je[o:n) and execution time between linear system
resolution and recursive Euler scheme. Try with N increasing.



Backward Euler

Using a backward formulation from Taylor’'s expension :

YEED =IO y(e) 4 o(h),

Euler scheme becomes :

WYl |0 = AY 4+ BY =0,

h
modifying B matrix and F vector as :
1 0 0 P
B_ 0 1 0 F_ 0
0 O 1 0

Exercice 3 : Why f; = % ? Compare solutions (y;);c[o:n] to
forward Euler and analytical solution.



2nd order scheme : the centered scheme

A 2nd order approximation for the first derivative is build using
both forward and backward formulation :

! (y(t) —AE=h) ) - Y(t)) = y/(¢) + o).

This leads to the centered scheme :

Yj+1 — Yj-1 o
on =0

with matrix representation :

o 1 0 .. O 1 0 0 .. O
-1 0 1
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2nd order scheme : the centered scheme
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Exercice 4 : Solve problem with Forward, Backward and Centered
sheme to reproduce figure and retrieve errors. What's is going on?



Application to 1-D string modelisation



Time domain

For a wave on a vibrating string, magnitude of the vibration y(x, t)
is governed by a Partial Derivative Equation (PDE) :

1oy &y _

2otz ox2 7
y(X:(),') = Oa
y(X: 7') = )
y(,tZO) = Yo,
dy

at(a 0) Oa

with ¢ the sound celerity, t the time, x the position on the string,
L the length of the string and yg the initial position.

(fr) https ://fr.wikipedia.org/wiki/Onde_sur_une_corde_vibrante
(en) https ://en.wikipedia.org/wiki/String_vibration



Fourier domain

Looking for solutions in an harmonic form (separated variables) :
y(x, t) = u(x) cos(wt),
an eigen-value problem can be formalized :

d?u(x)

52 = —k2u(x),
u(0) = 0,
u(l) = 0,

where k = ¢ stands for the wave number. Thus, both k and u(x)
are unknowns.



Back to time domain

Solutions (kn, us) of the eigen value equation form a basis for the
time domain solution :

Z Anun(x)cos(wpt) with  w, = ck,

Considering the initial position y(-,t = 0) = yp of the string (loose
rope case) :

= Z Antn(x)
n=1

wich fully determine A, coeffiscient. Moreover, analytical solution
are known as :

un(x) = sin(kpx)
nm
kn = —
L



Numerical modelisation for eigen value problem

Exercice 5 :

» Define a regular grid X = (xo, ..., xy) to discretize the string,
such as xg = 0, xy = L and x; = ih, where h stand for a
constant step.

» Using Taylor's expension, propose a numerical sheme to
approximate u”(x).

» Formulate the eigen value problem using sparse matrix.

» Add boundary conditions to the matrix formulation.

» Solve eigen value problem by forcing the smallest real eigen
values (see eigs function).

» Plot the first nine modes (k,, u,) and compare to analytic
values.



Numerical modelisation for eigen value problem
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Numerical modelisation for time domain

Exercice 6 (facultative) :
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>
>

>

>
>

Define an initial position (e.g. linear hat).
Compute A, coefficient solving a linear system.

Plot time domain solution using a time discretisation with
44.1 kHz sampling.

Add wave form to the final solution (attack, release, sustain,
decay) and normalize the final result.

Compute major scale using Pythagorean dimensions ratio.

Write wav files and listen the result.

BONUS : Define yourself Fourier series (A,) to design your own
sound, and become the next David Guetta.



Initialization of the synthesizer

% Gamme majeure pythagoriciene temperee
% => https://fr.wikipedia.org/wiki/Accord_pythagoricien
note = {'DO','RE','MI','FA"', 'SOL",'LA",'SI"','DO"'};

gamme = [ 1

9/8 81/64 4/3 3/2 27/16 243/128 2];

% Physical parameters

L = 1/gamme(1l); % string length associated to note chosen
here do)

N = 1000; % discretisation size (number of space step)

K = 100; % number of eigen values (eigen frequencies)

x0 = 0.2; % mediator position (where you loose rope)

¢ = 1000; % sound celerity (m/s)

fs = 44100; % time sampling frequency (CD quality!)

With this configuration, verify that you find 520 Hz for the
fundamental mode of fist note (=~ DOj).

(



Useful functions

Definition of the initial position (linear hat) :

y0 = O(x) (x/x0).%x(x<=x0) + (L—x)/(L—x0).x

Definition of a wave form :

waveForm = ©(t) (t<=0.02).x
(t>0.02) .x (t<=0.025) .x (
(t>0.025) .x (t<=0.1) .*x (
(t>0.1) .x (0.75%xexp(—10x%(

£/0.02) + ..

5) + ..
0.1)));

(
2-t/0. 02) .
0.7
t—

(x>x0);

% Attack

% Decay

% Sustain
% Release



Final solution for DO,

signal (linear scale}

time (s)
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