Finite Difference Time Domain Application to room acoustics

Master 2 Acoustical Engineering

 Numerical Techniques for Acoustics - Session 4
Matthieu Aussal*

*Centre de Mathématiques Appliquées de l'École Polytechnique Route de Saclay - 91128 Palaiseau CEDEX France

Monday 07 October 2019 - ENSTA

Wave equation in time domain

For a wave on a vibrating string, magnitude of the vibration $y(x, t)$ is governed by a Partial Derivative Equation (PDE) :

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial^{2} y}{\partial x^{2}} & =0 \\
y(x=0, \cdot) & =0 \\
y(x=L, \cdot) & =0 \\
y(\cdot, t=0) & =y_{0} \\
\frac{\partial y}{\partial t}(\cdot, t=0) & =v_{0}
\end{aligned}
$$

with c the sound celerity, t the time, x the position on the string, L the length of the string and y_{0}, v_{0} the initial position and speed.

Note : 4 derivatives $\rightarrow 4$ initial conditions.

Classical scheme for space derivative

As usual, we consider Taylor's expansion for all functions $y \in C^{4}([0, L])$:

$$
y^{\prime \prime}(x)=\frac{y(x+h)-2 y(x)+y(x-h)}{h^{2}}+O\left(h^{4}\right)
$$

Considering a string discretization by a regular grid $X=\left(x_{0}, \ldots, x_{N}\right)$, such as :

- $x_{0}=0$,
- $x_{N}=L$,
- $x_{n}=n \delta_{x}$ with $\delta_{x}=\frac{L}{N+1}$ and $n \in[0, N]$,
a centered scheme can be used :

$$
\begin{aligned}
y^{\prime \prime}(x) & =\frac{y\left(x+\delta_{x}\right)-2 y(x)+y\left(x-\delta_{x}\right)}{\delta_{x}^{2}}+O\left(\delta_{x}^{4}\right) \\
y_{n}^{\prime \prime} & \approx \frac{y_{n+1}-2 y_{n}+y_{n-1}}{\delta_{x}^{2}}
\end{aligned}
$$

Classical scheme for time derivative

Fixing a final time t_{f} for the wave propagation, a time discretisation $T=\left(t_{0}, \ldots, t_{P}\right)$ can be defined such as:

- $t_{0}=0$,
- $t_{P}=t_{f}$,
- $t_{p}=p \delta_{t}$ with $\delta_{t}=\frac{t_{f}}{P+1}$ and $p \in[0, P]$.

In the same way as for space, second order derivative in time leads to another centered sheme :

$$
\begin{aligned}
y^{\prime \prime}(t) & =\frac{y\left(t+\delta_{t}\right)-2 y(t)+y\left(t-\delta_{t}\right)}{\delta_{t}^{2}}+O\left(\delta_{t}^{4}\right) \\
y_{p}^{\prime \prime} & \approx \frac{y_{p+1}-2 y_{p}+y_{p-1}}{\delta_{t}^{2}}
\end{aligned}
$$

Note : Not so far from the space scheme...

Classical scheme for wave equation

Combine each partial derivative approximation leads to the leap-frog scheme:

$$
\begin{gathered}
\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial^{2} y}{\partial x^{2}}=0 \\
\frac{1}{c^{2}} \frac{y_{n}^{p+1}-2 y_{n}^{p}+y_{n}^{p-1}}{\delta_{t}^{2}}-\frac{y_{n+1}^{p}-2 y_{n}^{p}+y_{n-1}^{p}}{\delta_{x}^{2}}=0
\end{gathered}
$$

- Time indices up, space indices down,
- Implicit scheme in space,
- Explicit scheme in time (two step scheme),
- Stable $\Longleftrightarrow \frac{\delta_{x}}{\delta_{t}} \geq c$ (CFL condition) .

Note: CFL from Richard Courant, Kurt Friedrichs and Hans Lewy : the "speed" of the scheme has to be greater than the speed of the equation.

Algorithm

- Use sparse matrix for the discrete derivative of the space part:

$$
M_{x}=\frac{1}{\delta_{x}^{2}}\left(\begin{array}{cccccc}
-2 & 1 & 0 & \ldots & 0 & 0 \\
1 & -2 & 1 & \ldots & 0 & 0 \\
0 & 1 & -2 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -2 & 1 \\
0 & 0 & 0 & \ldots & 1 & -2
\end{array}\right)
$$

- Add initial condition to the linear system :

$$
M_{x}=\frac{1}{\delta_{x}^{2}}\left(\begin{array}{cccccc}
\delta_{x}^{2} & 0 & 0 & \ldots & 0 & 0 \\
1 & -2 & 1 & \ldots & 0 & 0 \\
0 & 1 & -2 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -2 & 1 \\
0 & 0 & 0 & \ldots & 0 & \delta_{x}^{2}
\end{array}\right)
$$

Algorithm

- Initialize 2 vectors of unknowns in space:

$$
\begin{gathered}
Y^{0}=\left(\begin{array}{c}
y_{0}^{0} \\
y_{1}^{0} \\
\ldots \\
y_{N}^{0}
\end{array}\right)=\left(\begin{array}{c}
y\left(x_{0}, 0\right) \\
y\left(x_{1}, 0\right) \\
\ldots \\
y\left(x_{N}, 0\right)
\end{array}\right) \\
Y^{1}=\left(\begin{array}{c}
y_{0}^{1} \\
y_{1}^{1} \\
\ldots \\
y_{N}^{1}
\end{array}\right)=Y^{0}+\delta_{t}\left(\begin{array}{c}
\partial_{t} y\left(x_{0}, 0\right) \\
\partial_{t} y\left(x_{1}, 0\right) \\
\ldots \\
\partial_{t} y\left(x_{N}, 0\right)
\end{array}\right)
\end{gathered}
$$

- Compute Y^{2}, using the leap-frog scheme:

$$
Y^{2}=2 Y^{1}-Y^{0}+\left(c \delta_{t}\right)^{2} M x Y^{1}
$$

- Make a recursion until the final time t_{f}.

Starting code

```
% Clean up
clear all
close all
clc
% Physical parameters
L = 1; % String size
x0 = 0.3; % Initial position
tf = 1; % Final time
c = 1; % Sound celerity
```

\% Initial condition for magnitude and speed
$u 0=@(x) \exp (-(x-x 0) . \wedge 2 / 1 e-2) ; \%$ gaussian
$\mathrm{v} 0=$ @ (x) zeros (size (x)); $\%$ null
\% Numerical discretization
$\mathrm{dx}=0.01 ; \quad$ \% Space step
$\mathrm{dt}=0.5 * \mathrm{dx} / \mathrm{c} ; \quad$ \% Time step (following CFL)

Numerical result

1-D air propagation

1-D room acoustic

For a wave propagating in a 1-D room, relative magnitude of the wave $u(x, t)$ is governed by a PDE:

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}} & =0 \\
\frac{\partial u}{\partial x}(x=0, \cdot) & =0 \\
\frac{\partial u}{\partial x}(x=L, \cdot) & =0 \\
u(\cdot, t=0) & =u_{0} \\
\frac{\partial u}{\partial t}(\cdot, t=0) & =v_{0}
\end{aligned}
$$

with c the sound celerity, t the time, x the position in the room, L the length of the room and u_{0}, v_{0} the initial position and speed.

Note : Physics is completely different, but equation is almost the same. Only initial conditions in space have changed.

Algorithm modifications

As only initial conditions in space has changed, only sparse matrix has to be modified :

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(x=0, \cdot)=0 \Longleftrightarrow \frac{u_{0}-u_{1}}{\delta_{x}}=0 \\
& \frac{\partial u}{\partial x}(x=L, \cdot)=0 \Longleftrightarrow \frac{u_{N-1}-u_{N}}{\delta_{x}}=0
\end{aligned}
$$

which implies:

$$
M_{x}=\frac{1}{\delta_{x}^{2}}\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
1 & -2 & 1 & \ldots & 0 & 0 \\
0 & 1 & -2 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -2 & 1 \\
0 & 0 & 0 & \ldots & 1 & -1
\end{array}\right)
$$

Note : $u(x=0, \cdot)=0$ is a Dirichlet condition, $\frac{\partial u}{\partial x}(x=0, \cdot)=0$ is a Neumann condition.

Numerical result

2-D air propagation

2-D bounded domain

2-D room acoustic

For a wave propagating in a 2-D room Ω^{i}, relative magnitude of the wave $u(\mathbf{x}, t)=u(x, y, t)$ is governed by a PDE :

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\Delta_{\mathrm{x}} u & =0 \\
\frac{\partial u}{\partial n}(\mathbf{x} \in \Gamma, \cdot) & =0 \\
u(\cdot, t=0) & =u_{0} \\
\frac{\partial u}{\partial t}(\cdot, t=0) & =v_{0}
\end{aligned}
$$

with c the sound celerity, t the time, $\mathbf{x}=(x, y)$ the position in the room and u_{0}, v_{0} the initial position and speed.
Reminder :

$$
\Delta_{\mathrm{x}} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} .
$$

Note : Physics is completely different, but equation is almost the same. Only initial conditions in space have changed!

Still the same approach...

Considering a tensor product with two regular grids :

- $x_{m}=m \delta_{\mathbf{x}}$ for all $m \in[0, M]$,
- $y_{n}=n \delta_{\mathrm{x}}$ for all $n \in[0, N]$,

Taloyr expansion can be applied simultaneously :

$$
\begin{aligned}
\Delta_{\mathbf{x}} u(x, y)= & \frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y) \\
\Delta_{\mathbf{x}} u(x, y)= & \frac{u(x+h, y)-2 u(x, y)+u(x-h, y)}{h^{2}}+ \\
& \frac{u(x, y+h)-2 u(x, y)+u(x, y-h)}{h^{2}}+O\left(h^{4}\right) \\
\Delta_{\mathbf{x}} u_{m, n} \approx & \frac{u_{m+1, n}+u_{m, n+1}-4 u_{m, n}+u_{m-1, n}+u_{m, n-1}}{\delta_{\mathbf{x}}^{2}}
\end{aligned}
$$

Note: It's a five points sheme (e.g. blackboard).

Algorithm

- Use sparse matrix for the discrete derivative of the Laplacian,
- Add initial condition (Dirichlet or Neumann)

Example with $-\delta_{\mathbf{x}}^{2} \Delta_{\mathbf{x}}$ matrix with Dirichlet condition.

Algorithm

- Initialize 2 vectors of unknowns in space :

$$
U^{0}=\left(\begin{array}{c}
u_{0,0}^{0} \\
u_{1,0}^{0} \\
\ldots \\
u_{M, 0}^{0} \\
u_{0,1}^{0} \\
u_{1,1}^{0} \\
\ldots \\
u_{M, N}^{0}
\end{array}\right)=\left(\begin{array}{c}
u\left(x_{0}, y_{0}, 0\right) \\
u\left(x_{1}, y_{0}, 0\right) \\
\ldots \\
y\left(x_{M}, y_{0}, 0\right) \\
u\left(x_{0}, y_{1}, 0\right) \\
u\left(x_{1}, y_{1}, 0\right) \\
\ldots \\
y\left(x_{M}, y_{N}, 0\right)
\end{array}\right)
$$

and $U^{1}=U^{0}+\delta_{t} v_{0}$.

- Compute Y^{2}, using the leap-frog scheme :

$$
Y^{2}=2 Y^{1}-Y^{0}+\left(c \delta_{t}\right)^{2} M_{x y} Y^{1}
$$

- Make a recursion until the final time t_{f}.

Starting code

```
% Clean up
clear all
close all
clc
```

\% Physical parameters
$\mathrm{L}=\left[\begin{array}{ll}3 & 2\end{array}\right] ; \quad$ \% Room size
XX $=\left[\begin{array}{ll}2.2 & 1.2\end{array}\right] ; \quad \%$ Initial position
$\mathrm{tf}=5 ; \quad$ \% Final time
c $=1 ; \quad$ \% Sound celerity
\% Initial condition for magnitude and speed
wi $=@(x, y) \exp (-(x-X 0(1)) \cdot \wedge 2 / 1 e-2) \cdot * \ldots$
$\exp (-(y-X 0(2)) . \wedge 2 / 1 e-2) ; \quad \%$ gaussian
vi $=$ @(x,y) zeros(size(x));
\% null
\% Numerical discretization

```
dx = 0.01; % Space step (both for }x\mathrm{ and y)
dt = 0.5*dx/c;
    % Time step (CFL)
```

Numerical result

