Finite Element Method and applications Master 2 Acoustical engineering - Session 6

Matthieu Aussal*

*Centre de Mathématiques Appliquées de l'École Polytechnique Route de Saclay - 91128 Palaiseau CEDEX France

Monday 21 October 2019 - ENSTA

Context

- Ω : full space,
- Ω_{i} : interior domain,
- Ω_{e} : exterior domain,
- Γ : boundary smooth and oriented,
- \mathbf{n} : normal at the boundary.

Note : 「 is a singularity of $\Omega \Rightarrow$ Distribution theory...

Wave equation with neumann condition

For a wave propagating in Ω_{i} or Ω_{e} with Neumann condition (sound-hard), relative magnitude of the wave $u(\mathbf{x}, t)$ is governed by a PDE :

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta_{\mathrm{x}} u & =0 \\
\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x} \in \Gamma, \cdot) & =0 \\
u(\cdot, t=0) & =u_{0} \\
\frac{\partial u}{\partial t}(\cdot, t=0) & =v_{0}
\end{aligned}
$$

with c the sound celerity, t the time, \mathbf{x} the position in Ω and u_{0}, v_{0} the initial position and speed.

Note : Ω_{i} for room acoustic, Ω_{e} for underwater acoustic, etc.

Review of numerical methods

To solve this problem, various numerical methods are currently used in industry :

Method	Domain	Math	Advantage	Disadvantage	TP
FDTD	straight grid	Taylor expen- sions	easy, massi- vely parallel and fast	carthesian grid and no local refinment	X
Lattice- Boltzmann	edge grid	in progress	easy and fast	young, lake of proof	X
FEM	simplex or polygonal	weak formu- lation (Lax- Milgram)	generic and robust	difficult to implement	(X)
BEM	simplex or polygonal	distribution theory	precise open and open domain	very hard to imple- ment and accelerate	-
Ray-tracing	simplex or polygonal	high frequency approximation	unique way for huge do- main	not precise (at all)	X

Weak formulation (variational)

Starting with the wave equation :

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0
$$

a weak formulation is obtained multipling by an arbitrary test function $v(\mathbf{x}, t) \in L^{2}(\mathbb{R})$:

$$
v \frac{\partial^{2} u}{\partial t^{2}}-c^{2} v \Delta u=0
$$

and integrating in the whole domain of interest :

$$
\int_{\Omega} v \frac{\partial^{2} u}{\partial t^{2}} d x-c^{2} \int_{\Omega} v \Delta u d x=0
$$

Note : v not really going to be arbitrary...

Weak formulation (variational)

Using a part integration in space ${ }^{1}$ (green theorem) :

$$
\int_{\Omega} v \Delta u d x=-\int_{\Omega} \nabla u \nabla v d x+\int_{\Gamma} v \frac{\partial u}{\partial \mathbf{n}}
$$

and considering neumann condition :

$$
\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x} \in \Gamma, \cdot)=0
$$

the weak formulation is given by :

$$
\int_{\Omega} v \frac{\partial^{2} u}{\partial t^{2}} d x+c^{2} \int_{\Omega} \nabla v \cdot \nabla u d x=0
$$

Lax-Milgram theorem gives a mathematical environment to ensure existence and unicity of the solution of this equation ${ }^{2}$.

1. $\int_{a}^{b} v(x) u^{\prime}(x) d x=[v u]_{a}^{b}-\int_{a}^{b} v^{\prime}(x) u(x) d x$
2. https ://fr.wikipedia.org/wiki/Theoreme_de_Lax-Milgram

FEM step 1 : the mesh

To use weak formulation in scientific computing, we first have to discretize the continuous domain Ω using an arbitrary mesh :

$$
v t x=\left(\begin{array}{cc}
0 . & 0 . \\
0.5 & 0 . \\
1 . & 0 . \\
0 . & 0.5 \\
0.5 & 0.5 \\
1 . & 0.5 \\
0 . & 1 . \\
0.5 & 1 . \\
1 . & 1 .
\end{array}\right) \quad e l t=\left(\begin{array}{ccc}
2 & 4 & 5 \\
1 & 2 & 4 \\
5 & 6 & 3 \\
2 & 3 & 5 \\
7 & 8 & 5 \\
4 & 5 & 8 \\
8 & 9 & 5 \\
5 & 6 & 8
\end{array}\right)
$$

Note : 1 error has crept into the element table. Could you find it ?

FEM step 1 : the mesh

The Orange theater by R. Gueguen and T. Bartet

FEM step 1 : the mesh

The Orange theater by R. Gueguen and T. Bartet

FEM step 1 : the mesh

Delaunay mesh

Quadrangle mesh

Volumic mesh, apron of a bridge

Surfacic mesh, combat plane

FEM step 2 : the domain quadrature

As a weak formulation is defined by integration over the domain, we have to define a quadrature rule (rectangle, trapezoidal, simpson, gauss-legendre, etc.) ${ }^{3}$:

- Regular integration are done using a quadrature $\left(\mathrm{x}_{q}, \gamma_{q}\right)_{1 \leq q \leq n_{q}}$ for all the domain Ω :

$$
\int_{\Omega} f(\mathbf{x}) d x \approx \sum_{q=1}^{n_{q}} \gamma_{q} f\left(\mathbf{x}_{q}\right)
$$

- If necessary, singular integrations are done analytically or numerically... and it's could be hard!

3. https://en.wikipedia.org/wiki/Numerical_integration\#Quadrature_rules三based

FEM step 2 : the domain quadrature

Rectangle rule

Trapezoidal rule

FEM step 3 : the Galerkin formulation

Galerkin formulation is an approximation of the final solution u such that :

$$
u(\mathbf{x}, t) \approx \sum_{j} \alpha_{j}(t) \phi_{j}(\mathbf{x})
$$

with $\alpha_{j}(t)=u\left(\mathbf{x}_{j}, t\right)$ and $\phi_{j}(\mathbf{x}):$

$$
\begin{cases}\phi_{j}(\mathbf{x})=1 & \text { if } \mathbf{x}=\mathbf{x}_{j} \\ \phi_{j}(\mathbf{x})=0 & \text { else }\end{cases}
$$

Basis function ϕ linear per piece.
It's a base decomposition and ϕ is generally called the basis function.

FEM step 3 : the Galerkin formulation

Defining (not so arbitrarily) the test function v such as :

$$
v(\mathbf{x}, t)=\sum_{i} \phi_{i}(\mathbf{x})
$$

the weak formulation :

$$
\int_{\Omega} v \frac{\partial^{2} u}{\partial t^{2}} d x+c^{2} \int_{\Omega} \nabla v \cdot \nabla u d x=0
$$

can be approached for each basis function couple (i, j) :

$$
\int_{\Omega} \phi_{i} \frac{\partial^{2} \alpha_{j} \phi_{j}}{\partial t^{2}} d x+c^{2} \int_{\Omega} \nabla \phi_{i} \cdot \nabla\left(\alpha_{j} \phi_{j}\right) d x=0
$$

and finally :

$$
\frac{\partial^{2} \alpha_{j}}{\partial t^{2}} \int_{\Omega} \phi_{i} \phi_{j} d x+c^{2} \alpha_{j} \int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} d x=0
$$

FEM step 4 : the time dicretization

Fixing a final time t_{f} for the wave propagation, a time discretisation $T=\left(t_{0}, \ldots, t_{N}\right)$ can be defined such as:

- $t_{0}=0$,
- $t_{N}=t_{f}$,
- $t_{n}=n \delta_{t}$ with $\delta_{t}=\frac{t_{f}}{N+1}$ and $n \in[0, N]$.

Second order derivative in time leads to centered sheme :

$$
\begin{aligned}
\alpha(t)^{\prime \prime} & =\frac{\alpha\left(t+\delta_{t}\right)-2 \alpha(t)+\alpha\left(t-\delta_{t}\right)}{\delta_{t}^{2}}+O\left(\delta_{t}^{4}\right) \\
\left(\alpha^{n}\right)^{\prime \prime} & \approx \frac{\alpha^{n+1}-2 \alpha^{n}+\alpha^{n-1}}{\delta_{t}^{2}}
\end{aligned}
$$

Note : Stable with the CFL condtion $\Longleftrightarrow \frac{\delta_{x}}{\delta_{t}} \geq c$.

FEM step 4 : the time dicretization

Including the time discretization to the Galerkin approximation, its conduct to :

$$
\frac{\alpha_{j}^{n+1}-2 \alpha_{j}^{n}+\alpha_{j}^{n-1}}{\delta_{t}^{2}} \int_{\Omega} \phi_{i} \phi_{j} d x+c^{2} \alpha_{j}^{n} \int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} d x=0,
$$

wich lead to the explicit formulation :

$$
\begin{aligned}
\alpha_{j}^{n+1} \int_{\Omega} \phi_{i} \phi_{j} d x & =2 \alpha_{j}^{n} \int_{\Omega} \phi_{i} \phi_{j} d x \\
& -\alpha_{j}^{n-1} \int_{\Omega} \phi_{i} \phi_{j} d x \\
& -\left(c \delta_{t}\right)^{2} \alpha_{j}^{n} \int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} d x
\end{aligned}
$$

FEM step 4 : the time dicretization

FEM step 5 : the matrix formulation

But, using a matrix formulation for each basis function couple (i, j), we get the linear system :

$$
[\mathbf{M}]\left[\alpha^{n+1}\right]=2[\mathbf{M}]\left[\alpha^{n}\right]-[\mathbf{M}]\left[\alpha^{n-1}\right]-\left(c \delta_{t}\right)^{2}[\mathbf{K}]\left[\alpha^{n}\right]
$$

where:

$$
\begin{aligned}
M_{i j} & =\int_{\Omega} \phi_{i}(\mathbf{x}) \phi_{j}(\mathbf{x}) d x \\
K_{i j} & =\int_{\Omega} \nabla \phi_{i}(\mathbf{x}) \cdot \nabla \phi_{j}(\mathbf{x}) d x \\
\alpha_{j}^{n} & =u\left(\mathbf{x}_{j}, t_{n}\right)
\end{aligned}
$$

- Matrix terms are numerically evaluated using quadrature rule $\left(\mathbf{x}_{q}, \gamma_{q}\right)_{1 \leq q \leq n_{q}}$ on the mesh of the domain Ω,
- The local support of basis functions lead to sparse matrices,
- α^{n} is computed at each time step by recursion,
- In mechanics, [M] is traditionally named the mass matrix and [K] the stiffness matrix (or rigidity matrix).

Practical cases

Download the Gypsilab framework:
https ://github.com/matthieuaussal/gypsilab

