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Context

I Ω : full space,
I Ωi : interior domain,
I Ωe : exterior domain,
I Γ : boundary smooth and

oriented,
I n : normal at the boundary.

Note : Γ is a singularity of Ω ⇒ Distribution theory...



Wave equation with neumann condition

For a wave propagating in Ωi or Ωe with Neumann condition
(sound-hard), relative magnitude of the wave u(x, t) is governed by
a PDE :

∂2u
∂t2 − c2∆xu = 0,

∂u
∂n(x ∈ Γ, ·) = 0,

u(·, t = 0) = u0,
∂u
∂t (·, t = 0) = v0,

with c the sound celerity, t the time, x the position in Ω and u0, v0
the initial position and speed.

Note : Ωi for room acoustic, Ωe for underwater acoustic, etc.



Review of numerical methods

To solve this problem, various numerical methods are currently
used in industry :

Method Domain Math Advantage Disadvantage TP
FDTD straight grid Taylor expen-

sions
easy, massi-
vely parallel
and fast

carthesian
grid and
no local
refinment

X

Lattice-
Boltzmann

edge grid in progress easy and
fast

young, lake
of proof

X

FEM simplex or
polygonal

weak formu-
lation (Lax-
Milgram)

generic and
robust

difficult to
implement

(X)

BEM simplex or
polygonal

distribution
theory

precise
and open
domain

very hard
to imple-
ment and
accelerate

-

Ray-tracing simplex or
polygonal

high frequency
approximation

unique way
for huge do-
main

not precise
(at all)

X



Weak formulation (variational)
Starting with the wave equation :

∂2u
∂t2 − c2∆u = 0,

a weak formulation is obtained multipling by an arbitrary test
function v(x, t) ∈ L2(R) :

v ∂
2u
∂t2 − c2v∆u = 0,

and integrating in the whole domain of interest :∫
Ω

v ∂
2u
∂t2 dx − c2

∫
Ω

v∆udx = 0.

Note : v not really going to be arbitrary...



Weak formulation (variational)
Using a part integration in space 1 (green theorem) :∫

Ω
v∆udx = −

∫
Ω
∇u∇vdx +

∫
Γ

v ∂u
∂n ,

and considering neumann condition :

∂u
∂n(x ∈ Γ, ·) = 0,

the weak formulation is given by :∫
Ω

v ∂
2u
∂t2 dx+c2

∫
Ω
∇v · ∇udx = 0.

Lax-Milgram theorem gives a mathematical environment to ensure
existence and unicity of the solution of this equation 2.

1.
∫ b

a v(x)u′(x)dx = [vu]ba −
∫ b

a v ′(x)u(x)dx
2. https ://fr.wikipedia.org/wiki/Theoreme_de_Lax-Milgram



FEM step 1 : the mesh

To use weak formulation in scientific computing, we first have to
discretize the continuous domain Ω using an arbitrary mesh :

vtx =



0. 0.
0.5 0.
1. 0.
0. 0.5
0.5 0.5
1. 0.5
0. 1.
0.5 1.
1. 1.


elt =



2 4 5
1 2 4
5 6 3
2 3 5
7 8 5
4 5 8
8 9 5
5 6 8



Note : 1 error has crept into the element table. Could you find it ?



FEM step 1 : the mesh

The Orange theater by R. Gueguen and T. Bartet



FEM step 1 : the mesh

The Orange theater by R. Gueguen and T. Bartet



FEM step 1 : the mesh

Delaunay mesh

Quadrangle mesh

Volumic mesh, apron of a bridge

Surfacic mesh, combat plane



FEM step 2 : the domain quadrature

As a weak formulation is defined by integration over the domain,
we have to define a quadrature rule (rectangle, trapezoidal,
simpson, gauss-legendre, etc.) 3 :
I Regular integration are done using a quadrature

(xq, γq)1≤q≤nq for all the domain Ω :

∫
Ω

f (x)dx ≈
nq∑

q=1
γqf (xq).

I If necessary, singular integrations are done analytically or
numerically... and it’s could be hard !

3. https ://en.wikipedia.org/wiki/Numerical_integration#Quadrature_rules_based_on_interpolating_functions



FEM step 2 : the domain quadrature

Rectangle rule

Trapezoidal rule



FEM step 3 : the Galerkin formulation

Galerkin formulation is an
approximation of the final
solution u such that :

u(x, t) ≈
∑

j
αj(t)φj(x),

with αj(t) = u(xj , t) and φj(x) :{
φj(x)=1 if x = xj ,
φj(x)=0 else.

It’s a base decomposition and φ
is generally called the basis
function.

Basis function φ linear per piece.



FEM step 3 : the Galerkin formulation
Defining (not so arbitrarily) the test function v such as :

v(x, t) =
∑

i
φi (x),

the weak formulation :∫
Ω

v ∂
2u
∂t2 dx + c2

∫
Ω
∇v · ∇udx = 0,

can be approached for each basis function couple (i , j) :∫
Ω
φi
∂2αjφj
∂t2 dx + c2

∫
Ω
∇φi · ∇(αjφj)dx = 0,

and finally :

∂2αj
∂t2

∫
Ω
φiφjdx + c2αj

∫
Ω
∇φi · ∇φjdx = 0.



FEM step 4 : the time dicretization

Fixing a final time tf for the wave propagation, a time
discretisation T = (t0, ..., tN) can be defined such as :
I t0 = 0,
I tN = tf ,
I tn = nδt with δt = tf

N+1 and n ∈ [0,N].
Second order derivative in time leads to centered sheme :

α(t)′′ = α(t + δt)− 2α(t) + α(t − δt)
δ2t

+ O(δ4t )

(αn)′′ ≈ αn+1 − 2αn + αn−1

δ2t

Note : Stable with the CFL condtion ⇐⇒ δx
δt
≥ c.



FEM step 4 : the time dicretization

Including the time discretization to the Galerkin approximation, its
conduct to :

αn+1
j − 2αn

j + αn−1
j

δ2t

∫
Ω
φiφjdx + c2αn

j

∫
Ω
∇φi · ∇φjdx = 0,

wich lead to the explicit formulation :

αn+1
j

∫
Ω
φiφjdx = 2αn

j

∫
Ω
φiφjdx

− αn−1
j

∫
Ω
φiφjdx

− (cδt)2αn
j

∫
Ω
∇φi · ∇φjdx .



FEM step 4 : the time dicretization



FEM step 5 : the matrix formulation
But, using a matrix formulation for each basis function couple
(i , j), we get the linear system :

[M][αn+1] = 2[M][αn]− [M][αn−1]− (cδt)2[K][αn],

where :

Mij =
∫

Ω
φi (x)φj(x)dx ,

Kij =
∫

Ω
∇φi (x) · ∇φj(x)dx ,

αn
j = u(xj , tn).

I Matrix terms are numerically evaluated using quadrature rule
(xq, γq)1≤q≤nq on the mesh of the domain Ω,

I The local support of basis functions lead to sparse matrices,
I αn is computed at each time step by recursion,
I In mechanics, [M] is traditionally named the mass matrix and

[K] the stiffness matrix (or rigidity matrix).



Practical cases

Download the Gypsilab framework :
https ://github.com/matthieuaussal/gypsilab
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