Ray-tracing for room acoutics Master 2 Acoustical engineering - Session 7

Matthieu Aussal*

*Centre de Mathématiques Appliquées de l'École Polytechnique Route de Saclay - 91128 Palaiseau CEDEX France

Thursday 25 October 2018 - ENSTA

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Punctual sound source propagation

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Acoustic modelization

Following the conservation law, the energy of a punctual sound source centered at origin is given by :

$$E = \int_{S_r} \vec{\mathbf{l}} \cdot \vec{\mathbf{ds}} \quad (= \delta_0),$$

where S_r is a r-radius sphere and \vec{l} is the acoustic intensity (flow) accros the sphere, such as :

$$\vec{\mathbf{I}} = \frac{\vec{\mathbf{r}}}{4\pi |\vec{\mathbf{r}}|^3}.$$

Useful property : Energy is constant along solid angles :

$$E_{\sigma} = \int_{\sigma} rac{ec{\mathbf{r}}}{4\pi |ec{\mathbf{r}}|^3} \cdot ec{\mathbf{ds}} = rac{\Omega_{\sigma}}{4\pi}$$

Solid angles basis

For a spherical partition, such as entire surface is subdivided into N elementary parts :

$$S = \sum_{n=1}^{N} \sigma_n,$$

energy can be rewriten into :

$$E=\sum_{i=1}^N E_i=\frac{1}{4\pi}\sum_{i=1}^N \Omega_i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful property : Solid angles form a basis for propagation directions.

Discretization

Solid angles are geometric objects that can be represented by N rays, defined by :

- Starting point : x_i,
- Direction vector (unitary) : $\vec{\mathbf{u}}_i$,
- Energy : Ω_i ,

in order to form beams.

For example, with a 3-D omnidirectional source $\sigma(\mathbf{x}_0)$ centered at the point $\mathbf{x}_0 = (x_0, y_0, z_0)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3D energy measurement

Coupled to spherical source $\sigma(\mathbf{x}_0)$, we define a spherical measurement $\nu(\mathbf{x}_m, a)$, centered at a listening point \mathbf{x}_m of radius *a*. Energy of the measure is given **statistically** by a beam, formed by the *n* rays crossing $\nu(\mathbf{x}_m, a)$:

$$E_{\nu} \approx \frac{n}{N} \left(= \frac{1}{4\pi} \sum_{i=1}^{n} \Omega_i \right)$$

We can show in 3D that :

$$\frac{n}{N}\approx\frac{\pi a^2}{4\pi|\mathbf{x}_s-\mathbf{x}_m|^2},$$

wich leads to the distance evaluation :

$$|\mathbf{x}_s - \mathbf{x}_m| \approx \frac{a}{2} \sqrt{\frac{N}{n}}.$$

Geometrical reminders

Using parametric representation, each ray *i* is described by :

$$\mathbf{x}_i + \delta \mathbf{u}_i$$
 with $\delta \in \mathbb{R}$.

Considering the carthesian representation for the measurement sphere $\nu(\mathbf{x_m}, a)$:

$$(\mathbf{x} - \mathbf{x}_m)^2 - a^2 = 0 \quad \forall \mathbf{x} \in \nu,$$

quadratic equations in δ has to be solved to define the beam :

$$|\mathbf{\vec{u}}|^2 \delta^2 + 2(\mathbf{x}_i - \mathbf{x}_m) \cdot \mathbf{\vec{u}} \delta + |\mathbf{x}_i - \mathbf{x}_m|^2 - a^2 = 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Measured rays are given by positive discriminant and positive solutions δ^+ and δ^- .

2D case

Punctual source energy :

$$E = \int_{C(t)} \frac{\vec{\mathbf{r}}}{2\pi |\vec{\mathbf{r}}(t)|^2} \cdot \vec{\mathbf{ds}}.$$

• Energy is constant along angle α :

$$E_{\sigma} = \int_{\sigma} rac{ec{\mathbf{r}}}{2\pi |ec{\mathbf{r}}(t)|^2} \cdot ec{\mathbf{ds}} = rac{1}{2\pi} lpha.$$

An omnidirectional source has an energy repartition given by :

$$\alpha_i = \frac{2\pi}{N}.$$

• Energy is measured by circle $\nu(\mathbf{x}_m, a)$ following :

$$E_{\nu} \approx \frac{n}{N} \approx \frac{2a}{2\pi |\mathbf{x}_s - \mathbf{x}_m|} \quad \Rightarrow \quad |\mathbf{x}_s - \mathbf{x}_m| \approx \frac{a}{\pi} \frac{N}{n}.$$

Numerical application

n	dist (m)	time (ms)		
1000	0.0064	< 1		
100	0.064	< 1		
10	0.64	2		
1	6.4	20		

N = 100 rays, measurement radius a = 0.2m and sound speed c = 340m/s

Note : Maximum reverberation time computable is 20ms.

Numerical application

n	dist (m)	time (ms)		
1000	0.64	1.8		
100	6.4	18		
10	64	180		
1	640	1800		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $N = 10\ 000$ rays, measurement radius a = 0.2m and sound speed c = 340m/s

Note : Maximum reverberation time computable is now 2s.

Numerical application

n	dist (m)	time (ms)		
1000	0.64	1.8		
100	6.4	18		
10	64	180		
1	640	1800		

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

 $N = 10\ 000$ rays, measurement radius a = 0.2m and sound speed c = 340m/s

Specular reflections

Specular Reflection

Diffuse Reflection

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Following high frequency approximation, we consider only **specular reflexions** with **material absorption** when a ray encounter an obstacle :

$$E_{ref}(f) = E_{inc}(f)(1-\beta(f)).$$

Wall absorption coefficients

Absorption of Reflected Sound at Various Frequencies								
Material	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz		
Brick	3%	3%	3%	4%	5%	7%		
Carpet (on concrete w/foam rubber pad)	8%	24%	57%	69%	71%	73%		
Drapes (heavy velour)	14%	35%	55%	72%	70%	65%		
Drywall (1/2" on 2x4s)	29%	10%	5%	4%	7%	9%		
Linoleum (on concrete)	2%	3%	3%	3%	3%	2%		
Paneling (3/8" on 2x4s)	28%	22%	17%	9%	10%	11%		
Plaster (rough finish, over lath)	14%	10%	6%	5%	4%	9%		
Window Glass	35%	25%	18%	12%	7%	4%		
Wood	15%	11%	10%	7%	7%	4%		

Examples of absorption coefficients $\beta(f)$ in function of frequency.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Geometrical reminders (2D)

Discretizing the room with a lineic mesh of edges, each ray *i* and edge *e* can respectively be represented by right (A_i) and (B_e) :

$$\begin{array}{lll} (A_i) & : & \mathbf{A}_i + \delta \vec{\mathbf{u}}_i & \text{with} & \delta \in \mathbb{R}, \\ (B_e) & : & \mathbf{B}_e + \lambda \vec{\mathbf{v}}_e & \text{with} & \lambda \in \mathbb{R}. \end{array}$$

Intersections between N rays and M edges conduct to solve $M \times N$ equations :

$$\vec{\mathbf{OA}} + \delta \vec{\mathbf{u}} = \vec{\mathbf{OB}} + \lambda \vec{\mathbf{v}},$$

equivalent to linear systems :

$$\left(\begin{array}{cc} u_x & -v_x \\ u_y & -v_y \end{array}\right) \left(\begin{array}{c} \delta \\ \lambda \end{array}\right) = \left(\begin{array}{c} B_x - A_x \\ B_y - A_y \end{array}\right).$$

Solutions are unique \iff 0 < $\lambda \le$ 1, δ > 0 and minimal.

Geometrical reminders (3D)

Discretizing the room with a surfacic mesh of triangles, triangle e can be represented by plane (C_e), such as :

$$(C_e): \mathbf{C}_e + \lambda \vec{\mathbf{v}}_e + \mu \vec{\mathbf{w}}_e, \text{ with } \lambda, \mu \in \mathbb{R}.$$

Intersections between N rays and M triangles conduct to solve $M \times N$ linear equations :

$$\vec{\mathbf{OA}} + \delta \vec{\mathbf{u}} = \vec{\mathbf{OC}} + \lambda \vec{\mathbf{v}} + \mu \vec{\mathbf{w}},$$

equivalent to linear systems :

$$\begin{pmatrix} u_{x} & -v_{x} & -w_{x} \\ u_{y} & -v_{y} & -w_{y} \\ u_{z} & -v_{z} & -w_{z} \end{pmatrix} \begin{pmatrix} \delta \\ \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} C_{x} - A_{x} \\ C_{y} - A_{y} \\ C_{z} - A_{z} \end{pmatrix}$$

Solutions are unique $\iff 0 < \lambda, \mu \leq 1$ and $\delta > 0$ and minimal.

Geometrical reminders (nD)

Once each ray *i* is paired with an unique element *e* of the mesh, all coefficient δ_i are determined. Specular reflections lead to update rays parameters, such as :

- Starting point : $\mathbf{x}_i = \mathbf{x}_i + \delta_i \vec{\mathbf{u}}_i$
- Direction vector : $\vec{\mathbf{u}}_i = (\vec{\mathbf{u}}_i \cdot \vec{\mathbf{T}}_e) \vec{\mathbf{T}}_e (\vec{\mathbf{u}}_i \cdot \vec{\mathbf{n}}_e) \vec{\mathbf{n}}_e$

• Energy :
$$\Omega_i(f) = \Omega_i(f)(1 - \beta_e(f)).$$

where $\vec{\mathbf{T}}_e$ stand for the tangantial basis of each element and $\vec{\mathbf{n}}_e$ the associated normal.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Note : Using this geometric approach, mesh no needs to be compliant and oriented...

Multiple reflections

In case of m reflections from source to measure, energy measured is given by the law :

$$E_{\mu}(f) = rac{n}{N}\prod_{e}^{m}(1-eta_{e}(f)).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Air absorption coefficients

For long distance (time) propagation, air absorption has to be considered. For example, considering a ray starting from a source point \mathbf{x}_s to a measurement point \mathbf{x}_m :

$$E_{\mu}(f) = \frac{n}{N} e^{-m(f)|\mathbf{x}_{\mathsf{s}}-\mathbf{x}_{\mathsf{m}}|} \prod_{e}^{m} (1-\beta_{e}(f)).$$

where absorption coeffiscient m(f) is measured or computed by physical laws :

Air absorption depending on relative humidity (%), octave bands.

Source-image, representation and energy

Room Impulse Response

Source-image can be computed recursively, until beams become statistically unmeasurables by a ray basis :

$$(2D) : |\mathbf{x}_s - \mathbf{x}_m| \le \frac{a}{\pi} \frac{N}{n_0},$$

(3D) : $|\mathbf{x}_s - \mathbf{x}_m| \approx \frac{a}{2} \sqrt{\frac{N}{n_0}}$

with n_0 fixed by users. Finally, it gives P couples of :

- Spatial poistion : x_i,
- Energy in band-frequency : $E_i(f)$.

Converting spatial position to arrival time $(t_i = c |\mathbf{x}_i|)$, a finite impulse response of the room is computed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Room Impulse Response

Moreover, converting energy to signal pressure $(p_i(f) = \sqrt{E_i})$, convolution with audio signal gives the room acoustics rendering.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

・ロト ・ 同ト ・ ヨト ・ ヨト - 3

DQC

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

900

Rir computation with openRir2D

Rir computation with openRir2D

Execute script roomImpulseResponse.m associated to openRir2D.

Exercise

Using openRir2D, what is happening for an unitary circular room, perfectly reflecting, when measure and source are centered?

Solution

Image sources for a perfectly reflecting circular room.

Focalisation gives a comb of dirac, traducing the energy conservation.

This solution were computed with $N = 10^4$ rays, $M = 10^3$ edges, microphone radius a = 0.2m and statistics fixed at $n_0 = 100$.