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microscopic stochastic model for the variations of a multivariate financial
asset, based on Hawkes processes and that is confined to live on a tick
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1 Introduction

1.1 Motivation and setting

Point processes have long served as a representative model for event-time
based stochastic phenomena that evolve in continuous time. A comprehen-
sive mathematical development of the theory of point processes can be found
in the celebrated textbook of Daley and Vere-Jones [12], see also the refer-
ences therein. In this context, mutually exciting processes form a specific but
quite important class of point processes that are mathematically tractable and
widely used in practice. They were first described by Hawkes in 1971 [17, 16].
Informally, to a multivariate d-dimensional counting process N = (N1, . . . , Nd)
with values in Nd is associated an intensity function (λ1, . . . , λd) defined by

P
(
Ni has a jump in [t, t+ dt]

∣∣ Ft) = λi,t dt, i = 1, . . . , d

where P stands for probability and Ft is the sigma-field generated by N up
to present time t. A multivariate Hawkes process has intensity

λi,t = µi +

∫
(0,t)

d∑
j=1

ϕij(t− s)dNj,s, i = 1, . . . , d (1)

and is specified by µi ∈ R+ = [0,∞) and for i = 1, . . . , d, the ϕij are functions
from R+ to R+. More in Section 2 below for rigorous definitions.

The properties of Hawkes processes are fairly well known: from a proba-
bilistic point a view, the aforementioned book of Daley and Vere-Jones [12]
gives a concise synthesis of earlier results published by Hawkes [17, 16, 18] that
focus on spectral analysis following Bartlett [9] and cluster representation, see
Hawkes and Oakes [19]. From a statistical perspective, Ogata studied in [25]
the maximum likelihood estimator. Recently, the nonparametric estimation of
the intensity functions has been investigated by Reynaud-Bouret and Schbath
[26] and Al Dayri et al. [13].

However, in all these papers and the references therein, the focus is on the
“microscopic properties” of Hawkes processes, i.e. their infinitesimal evolu-
tion, possibly under a stationary regime or for a large time horizon [0, T ] in
order to guarantee a large number of jumps for statistical inference purposes.
In the present work, we are rather interested in the “macroscopic properties”
of Hawkes processes, in the sense of obtaining a limit behaviour for the mul-
tivariate process (NTv)v∈[0,1] as T → ∞, for a suitable normalisation. Our
interest originates in financial data modelling: in [7], we introduced a stochas-
tic model for the price S = (S1, . . . , Sn) of a multivariate asset, based on a
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d = 2n dimensional Hawkes process of the form (1), with representation

S1 = N1 −N2, S2 = N3 −N4, . . . , Sn = Nd−1 −Nd. (2)

In this context, the fact that the Si take values on Z accounts for the discret-
ness of the price formation under a limit order book. If we take µ2i−1 = µ2i

for every 1 ≤ i ≤ d, the process S is centred and the mutually exciting prop-
erties of the intensity processes λi under (1) allow to reproduce empirically
microstructure noise and the Epps effect, as demonstrated in [7]. Microstruc-
ture noise – a major stylised fact in high frequency financial data (see e.g.
[6, 4, 5, 27, 28, 8]) – is characterised by the property that in microscopic scales1,
an upward change of price for the component Si is more likely to be followed
by a downward jump of Si and vice versa. Similarly, a jump of a component
N2i−1 or N2i of Si at time t will increase the conditional probability, given the
history up to time t, that a jump occurs for the component N2j−1 or N2j of Sj
through the exciting effect of the kernels ϕ2i−1,2j−1, ϕ2i−1,2j , ϕ2i,2j−1 or ϕ2i,2i,
thus creating a certain dependence structure and the Epps effect, another well-
documented stylised fact implying that the empirical correlation between two
assets vanishes on microscopic scales [15]. However, both microstructure noise
and the Epps effect vanish at coarser scales where a standard diffusion regime
dominates. Thus, a certain macroscopic stability property is desirable, namely
the property that S behaves like a continuous diffusion on coarse scales. Also,
one would like to be able to track the aforementioned microscopic effects pro-
duced by the kernels ϕij in the diffusion limit of S. This is the main topic of
the paper.

The importance of mutually exciting processes has expanded in financial
econometrics over the last years, see [3, 10, 14, 20] among others. From a
wider perspective however, a mathematical analysis of the limiting behaviour
of Hawkes processes has a relevance beyond finance: these include seismology
of course, for which Hawkes processes were originally introduced (see [24] for
instance), and in a more prospective way, one could mention recent related
areas such as traffic networks [11] or genomic analysis [26] where mutually
exciting processes take a growing importance.

1.2 Main results and organisation of the paper

We present our results in a general setting in Sections 2, 3 and 4 with rela-
tively minimal assumptions. It is only in the subsequent Section 5 that we
consistently apply our results to the multivariate price model S described by
(1)-(2) for financial data modelling.

1when the data are sampled every few seconds or less.

3



In Section 2, we recall the construction of Hawkes processes in a rigorous
and general setting. We state in particular the fact that as soon as the kernels
ϕij that define the intensity process λ are locally integrable, the existence of
N with uniqueness in law is guaranteed on a rich enough space, as follows
from the theory of predictable projection of integer-valued random measures
of Jacod [22]. We state in Section 3 a law of large numbers (Theorem 1) and a
functional central limit theorem (Theorem 2). The law of large numbers takes
the form

sup
v∈[0,1]

∥∥T−1NTv − v (Id−K)−1µ
∥∥→ 0 as T →∞ (3)

almost surely and in L2(P ). We set ‖ · ‖ for the Euclidean norm on Rd. The
limit is described by µ = (µ1, . . . , µd) identified with a column vector and
the d × d matrix K =

∫∞
0 ϕ(t) dt, where ϕ = (ϕij) is a matrix of functions

from R+ to R+. The convergence (3) holds under the assumption that the
spectral radius of K is strictly less than 1, which guarantees in particular all
the desirable integrability properties for N . As for a central limit theorem,
under the additional condition that t1/2ϕ(t) is integrable componentwise, a
consequence of Theorem 2 is the convergence of the processes

√
T
(
T−1NTv − v(Id−K)−1µ

)
, v ∈ [0, 1]

to (Id−K)−1Σ1/2Wv, v ∈ [0, 1] in law for the Skorokod topology. The limit
is described by a standard d-dimensional Brownian motion (Wv)v∈[0,1] and
the d × d diagonal matrix Σ defined by Σii =

(
(Id−K)−1µ

)
i
. The proof

of Theorems 1 and 2 relies on the intensity theory of point processes: using
that Nt −

∫ t
0 λs ds is a d-dimensional martingale, if we set Xt = Nt − E(Nt)

with E(·) denoting expectation, we then have the fundamental representation
Xt = Mt +

∫ t
0 ϕ(t− s)Xs ds of X as a sum of a martingale and a convolution

product of ϕ with X itself. Separating the two components, we can then
take advantage of the powerful theory of limit theorems of semimartingales,
as exposed in the comprehensive book of Jacod and Shiryaev [23].

In Section 4, we consider yet another angle of study that is useful for
applications. Given two square integrable point processes N and N ′ with
values in Nd, setting Xt = Nt − E(Nt) and X ′t = N ′t − E(N ′t), one can define
the empirical cross-correlation of N and N ′ at scale ∆ over [0, T ] as

V∆,T (N,N ′) =
1

T

bT/∆c∑
i=1

(
Xi∆ −X(i−1)∆

)(
X ′i∆ −X ′(i−1)∆

)>
,

where Xt and X ′t are identified as column vectors and (·)> denotes transposi-
tion in Rd. In rigorous terms, V∆,T (N,N ′) shall rather be called the empirical
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correlation matrix of the increments of X and X ′ sampled at scale ∆ over
[0, T ]. This object is of major importance in practice: viewed as a function
of ∆, it reveals the correlation structure across scales between N and N ′. It
is crucial for the understanding of the transition of (NTv)v∈[0,1] from a micro-
scopic regime of a point process to the macroscopic behaviour of a Brownian
diffusion, up to appropriate normalisation, as T →∞. More precisely, given a
time shift τ = τT ∈ R, we focus in the paper on the τ -shifted empirical corre-
lation matrix of N at scale ∆, namely2 V∆,T (N,Nτ+·). We prove in Theorem
3 that V∆,T (N,Nτ+·) is close in L2(P ) to a deterministic explicit counterpart

v∆,τ =

∫
R2

+

(
1− |t−s−τ |∆

)+(
Id δ0(ds) +ψ(s)ds

)
Σ
(
Id δ0(dt) +ψ(t)>dt

)
under appropriate conditions on τ and ∆ relative to T as T → ∞. The ap-
proximation v∆,τ is described by Σ that already appears in Theorems 1 and 2
and ψ =

∑
n≥1ϕn, where ϕn is the matrix of n-fold convolution product of ϕ.

This apparently cumbersome formula paves the way to explicit computations
that yield crucial information about the dependence structure of functionals
of N , as later developed in the paper.

Section 5 is devoted to some applications of Theorems 1, 2 and 3 to the
study of the multivariate price model S described by (1)-(2) for financial data
modelling. We elaborate on particular examples the insight given by v∆,τ .
Concerning macroscopic limits of a univariate price S = N1 − N2 obtained
for d = 2, we derive in Proposition 1 the limiting variance of the rescaled
process T−1/2(N1,T v − N2,T v) in the special case where ϕ1,2 = ϕ2,1 = ϕ and
ϕ1,1 = ϕ2,2 = 0. This oversimplification enables to focus on the phenomenon
of microstructure noise and reveals the macroscopic trace of ϕ in the variance
of the limiting Brownian motion. We discuss the theoretical implications of
the obtained formulas in statistical finance. In the same way, we explicitly
characterise in Proposition 2 the macroscopic correlation structure obtained
with a bivariate price process S = (S1, S2) = (N1 − N2, N3 − N4) when only
cross-excitations ϕ1,3 = ϕ3,1 and ϕ2,4 = ϕ2,4 are considered, the other com-
ponents ϕij being set to 0 for simplicity. Again, we obtain an illuminating
formula that characterises the influence of the microscopic dynamics on the
macroscopic correlation of the Brownian limit. This enables in particular in
Proposition 3 to demonstrate how Hawkes process can account for the Epps
effect [15] and also the lead-lag effect between two financial assets that has
been given some attention in the literature recently [21, 2, 1].

2This is actually a more general object since we can formally recover V∆,T (N,N ′) from
V∆,T (N ′′, N ′′τ+·), where N ′′ = (N,N ′) is a 2d-dimensional point process by letting τ → 0 in

V∆,T (N
′′
, N

′′
τ+·).
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Section 6 develops some preliminary tools for the proofs. Section 7, 8 and 9
are devoted to the proof of Theorems 1, 2 and 3 respectively. Some technical
results and computations of the application Section 5 are delayed until an
appendix.

2 Multivariate Hawkes processes

Consider a measurable space (Ω,F) on which is defined a non-decreasing se-
quence of random variables (Tn)n≥1 taking their values in (0,∞], and such
that Tn < Tn+1 on the event {Tn <∞}, for all n ≥ 1. Let (Zn)n≥1 be a se-
quence of discrete random variables taking their values in {1, . . . , d} for some
positive integer d. Define, for t ≥ 0

Ni,t =
∑
n≥1

1{Tn≤t}∩{Zn=i}.

Remark that Ni,0 = 0 by construction. We endow Ω with the filtration (Ft)t≥0

where Ft is the σ-algebra generated by the random variables Ni,s, s ≤ t,
1 ≤ i ≤ d. According to Jacod [22], for any progressively measurable non-

negative processes (λ1,t)t≥0, . . . , (λd,t)t≥0 satisfying
∫ Tn

0 λi,s ds < ∞ almost
surely, there exists at most one probability measure P on (Ω,F∞) such that the
compensator (or predictable projection) of the integer-valued random measure

N(dt, dx) =
∑
n≥1

1{Tn<∞}δ(Tn,Zn)(dt, dx)

on (0,∞)×{1, . . . , d} is ν(dt, dx) =
∑d

i=1 λi,t dt⊗ δi(dx), where δ is the Dirac
mass. In other words, for all n ≥ 1, for all i ∈ {1, . . . , d}, the process

Ni,t∧Tn −
∫ t∧Tn

0
λi,s ds

is a (Ft)-martingale. This implies that the law of the d-dimensional process
(N1, . . . , Nd) is characterised by (λ1, . . . , λd). Moreover if Ω is rich enough we
have the existence of such a probability measure P .

Definition 1. We say that N = (N1, . . . , Nd) is a multivariate Hawkes process
when

λi,t = µi +

∫
(0,t)

d∑
j=1

ϕij(t− s)dNj,s (4)

where µi ∈ R+ and ϕi,j is a function from R+ to R+.
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We have a non-explosion criterion, as a consequence for instance of equality
(10) in Lemma 2, Section 6 below.

Lemma 1 (Non-explosion criterion). Set T∞ = limn Tn. Assume that the
following holds: ∫ t

0
ϕij(s)ds <∞ for all i, j, t. (5)

Then T∞ =∞ almost surely.

3 Law of large numbers and functional central limit
theorem

On a rich enough probability space (Ω,F , P ), we consider a Hawkes process
N = (Nt)t≥0 according to Definition 1, satisfying (5) and specified by the
vector µ = (µ1, . . . , µd) and the d×d-matrix valued function ϕ = (ϕi,j)1≤i,j≤d.
Note that in this setting, we do not assume a stationary regime forN . Consider
the assumption

For all i, j we have
∫∞

0 ϕij(t)dt <∞ and the spectral radius
ρ(K) of the matrix K =

∫∞
0 ϕ(t) dt satisfies ρ(K) < 1.

(A1)

First we have a law of large numbers in the following sense:

Theorem 1. Assume that (A1) holds. Then Nt ∈ L2(P ) for all t ≥ 0 and
we have supv∈[0,1]

∥∥T−1NTv − v (Id−K)−1µ
∥∥ → 0 as T → ∞ almost-surely

and in L2(P ).

Next we have an associated functional central-limit theorem. Introduce
the functions ϕn defined on R+ and with values in the set of d × d-matrices
with entries in [0,∞] by

ϕ1 = ϕ, ϕn+1(t) =

∫ t

0
ϕ(t− s)ϕn(s) ds, n ≥ 1. (6)

Under (A1) we have
∫∞

0 ϕn(t) dt = Kn hence the series
∑

n≥1ϕn converges

in L1(dt). We set

ψ =
∑
n≥1

ϕn. (7)

Theorem 2. Assume that (A1) holds. We have

E(Nt) = tµ+
(∫ t

0
ψ(t− s)s ds

)
µ
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where ψ ∈ L1(dt) is given by (7). Moreover, the processes

1√
T

(
NTv − E(NTv)

)
, v ∈ [0, 1]

converge in law for the Skorokod topology to (Id−K)−1Σ1/2Wv, v ∈ [0, 1] as
T →∞, where (Wv)v∈[0,1] is a standard d-dimensional Brownian motion and

Σ is the diagonal matrix such that Σii = ((Id−K)−1µ)i.

Consider now the following restriction on ϕ:∫ ∞
0
ϕ(t) t1/2 dt <∞ componentwise. (A2)

Using Theorem 1 and Assumption (A2), we may replace T−1E(NTv) by its
limit in Theorem 2 and obtain the following corollary.

Corollary 1. Assume that (A1) and (A2) hold. Then the processes

√
T
( 1

T
NTv − v(Id−K)−1µ

)
, v ∈ [0, 1]

converge in law for the Skorokod topology to (Id−K)−1Σ1/2Wv, v ∈ [0, 1] as
T →∞.

4 Empirical covariation across time scales

For two square integrable counting processes N and N ′ with values in Nd, set

Xt = Nt − E(Nt), X ′t = N ′t − E(N ′t).

The empirical covariation of N and N ′ is the process V∆,T (N,N ′), T > 0,
∆ > 0, taking values in the set of d× d matrices and defined as

V∆,T (N,N ′) =
1

T

bT/∆c∑
i=1

(
Xi∆ −X(i−1)∆

)(
X ′i∆ −X ′(i−1)∆

)>
where

(
Xi∆−X(i−1)∆

)
is identified as a column vector and

(
Xi∆−X(i−1)∆

)>
denotes its transpose, and we set Xt = 0 for t ≤ 0. More precisely, given
a time shift τ ∈ R, we are interested in the behaviour of V∆,T (N,Nτ+·).
In essence, V∆,T (N,Nτ+·) can be viewed as a multivariate cross-correlogram
across scales ∆ of N : it can be consistently measured from empirical data
and its limiting behaviour as T → ∞ plays a key tool in understanding the
second-order structure of linear functions of N across scales ∆.
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Theorem 3. In the same setting as in Theorem 2, let (∆T )T>0 and (τT )T>0

be two families of real numbers such that ∆T > 0. If ∆T /T → 0 and τT /T → 0
as T →∞, we have

V∆T ,T (X,XτT+·)− v∆T ,τT → 0 as T →∞ in L2(P )

where

v∆,τ =
(
1− |τ |∆

)+
Σ +

∫
R2

+

ds dt
(
1− |t−s−τ |∆

)+
ψ(s)Σψ(t)>+

+

∫ ∞
0

ds (1− |s+τ |∆ )+ψ(s)Σ +

∫ ∞
0

ds (1− |s−τ |∆ )+Σψ(s)>, (8)

or equivalently,

v∆,τ =

∫
R2

+

(
1− |t−s−τ |∆

)+(
Id δ0(ds) +ψ(s)ds

)
Σ
(
Id δ0(dt) +ψ(t)>dt

)
,

where Σ is the diagonal matrix such that Σii =
(
(Id−K)−1µ

)
i

and the func-
tion ψ is given by (7).

Remark 1. One can check that v∆,τ = E
(
(N∆−N0)(N∆+τ −Nτ )>

)
where N

is a counting process of the (unique in law) stationary multivariate Hawkes
process on R associated to µ and ϕ. Thus, another way to obtain v∆,τ is to
compute E

(
(N∆−N0)(N∆+τ−Nτ )>

)
in the stationary regime, as in [17, 16, 18]

by means of the Bartlett spectrum of N , see [9]. However, the stationary
restriction is superfluous and moreover, only very specific parametric form of
ϕij like exponential functions enable to carry such computations.

Remark 2. Obviously, we have v∆,τ = v>∆,−τ .

Remark 3. For fixed τ ∈ R, we retrieve the macroscopic variance of Theorem
2 by letting ∆→∞. More precisely, we have

v∆,τ → Γ Σ Γ> as ∆→∞

where Γ = (Id−K)−1, and the effect of τ vanishes as ∆→∞. For all τ 6= 0
we have v∆,τ → 0 as ∆ → 0. This convergence simply expresses the fact
that the two processes N and Nτ+· cannot jump at the same time, producing
a flat autocorrelogram for sufficiently small sampling mesh ∆.

In the same way as Corollary 1 is obtained from Theorem 2, we have the
following refinement of Theorem 3.
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Corollary 2. Finally, in the same setting as in Theorem 3, assume moreover
that (A2) holds. Define

X̃t =

{
Nt − t(Id−K)−1µ if t ≥ 0,
0 if t < 0.

We have V∆T ,T (X̃, X̃τT+·)− v∆T ,τT → 0 as T →∞ in L2(P ), where v∆,τ is
given by (8).

5 Application to financial statistics

5.1 The macroscopic trace of microstructure noise

Following [7], we introduce a univariate price process S = (St)t≥0 by setting

S = N1 −N2,

where (N1, N2) is a Hawkes process in the case d = 2, with
λ1,t = ν +

∫
(0,t) ϕ(t− s)dN2,s,

λ2,t = ν +
∫

(0,t) ϕ(t− s)dN1,s

for some ν ∈ R+ and ϕ : R+ → R+. With our notation, this corresponds to
having µ = (ν, ν) and

ϕ =

(
0 ϕ
ϕ 0

)
If ϕ = 0, we find back a compound Poisson process with intensity ν and
symmetric Bernoulli jumps. This corresponds to the simplest model for a
random walk in continuous time, constrained to live on a lattice, the tick-grid
in financial statistics accounting for the discreteness of price at fine scales.
Microstructure noise corresponds to the property that an upward jump of
S will be more likely followed by a downward jump and vice versa. This
phenomenon lays its roots in microeconomic analysis of price manipulation of
agents [6, 4, 5, 27, 28, 8]. In our simple phenomenological setting, it will be
reproduced by the introduction of the kernel ϕ, as empirically demonstrated in
[7]. The question we can now address is the macroscopic stability of the model.
Do we retrieve a standard diffusion in the limit T → ∞ for an approriate
scaling of S and how does the effect of ϕ influence the macroscopic volatility?
By Theorems 1 and 2, we readily obtain an explicit anwser:
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Proposition 1 (Macroscopic trace of microstructure noise). Assume that
‖ϕ‖L1 =

∫∞
0 ϕ(t)dt < 1. Then(
T−1/2STv, v ∈ [0, 1]

)
→
(
σWv, v ∈ [0, 1]

)
as T →∞,

in law for the Skorokod topology, where (Wv)v∈[0,1] is a standard Brownian
motion and

σ2 =
2ν

(1− ‖ϕ‖L1)(1 + ‖ϕ‖L1)2
.

Remark 4. Of course, a Brownian limit is too simple if financial assets are
considered over large amount of times such as a month or a year, where path
dependent or even stochastic volatility models are more appropriate. The term
macroscopic in our context shall rather be considered in the scales of a few
hours, see [7] for a discussion on empirical data.

Remark 5. Note that if we take ϕ = 0, we retrieve the standard convergence
of a compound Poisson process with symmetric jumps to a Brownian motion.

Remark 6. By assumption, 0 ≤ ‖ϕ‖L1 < 1 and a closer inspection of the
function

x σ(ν, x)2 =
2ν

(1− x)(1 + x)2
for x ∈ [0, 1)

reveals an interesting feature: for small microstructure effect (namely if x =
‖ϕ‖L1 less than 1/3) the effect of microstructure tends to stabilise the macro-
scopic variance in the sense that σ(ν, x)2 ≤ σ(ν, 0)2, whereas beyond a critical
value x ≈ 0.61, we have σ(ν, x)2 ≥ σ(ν, 0)2 and even σ(ν, x)2 →∞ as x→ 1.

5.2 Macroscopic correlations for bivariate assets

We now turn to a bivariate price model S = (S1, S2) obtained from a Hawkes
process in dimension d = 4, of the form

(S1, S2) = (N1 −N2, N3 −N4)

with µ = (µ1, µ2, µ3, µ4) such that µ1 = µ2 and µ3 = µ4 together with

ϕ =


0 0 h 0
0 0 0 h
g 0 0 0
0 g 0 0.


The upward jumps of S1 excite the intensity of the upward jumps of S2 and,
in a symmetric way, the downward jumps of S1 excite the downward jumps
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of S2 via the kernel g : R+ → R+. Likewise, the upward jumps of S2 excite
the upward jumps of S1 and the downward jumps of S2 excite the downward
jumps of S1 via the kernel h : R+ → R+. For simplicity we ignore other
cross terms that could produce microstructure noise within the inner jumps
of S1 and S2. This relativeley simple dependence structure at a microscopic
level enables to obtain a non-trivial form of the macroscopic correlation of the
diffusion limits of S1 and S2.

Proposition 2. Assume that ‖h‖L1‖g‖L1 < 1. Then, the 2-dimensional pro-
cesses T−1/2

(
S1,T v, S2,T v

)
v∈[0,1]

converge in law as T → ∞ for the Skorokod

topology to(
X1

X2

)
=

√
2

(1− ‖h‖L1‖g‖L1)3/2

(
ν

1/2
1 W1 + ν

1/2
2 ‖h‖L1 W2

ν
1/2
1 ‖g‖L1 W1 + ν

1/2
2 W2

)

with
ν1 = µ1 + ‖h‖L1µ3, ν2 = µ3 + ‖g‖L1µ1. (9)

and where (W1,W2) = (W1,t,W2,t)t∈[0,1] is a standard Brownian motion.

The proof is a consequence of Theorems 1 and 2 and is given in appendix.

Remark 7. The macroscopic correlation between S1 and S2 is thus equal to
the cosine of the angle of the two vectors(

ν
1/2
1 , ν

1/2
2 ‖h‖L1

)
and

(
ν

1/2
1 ‖g‖L1 , ν

1/2
2

)
.

Obviously, it is always nonnegative and strictly less than 1 since the determi-

nant ν
1/2
1 ν

1/2
2

(
1− ‖h‖L1‖g‖L1

)
of the two above vectors is positive unless the

µi are all 0.

5.3 Lead-lag and Epps effect through the cross correlations
across-scales

We keep up with the model and the notation of Section 5.2 but we now study
the quantities

V∆,T (S1, S1,τ+·), V∆,T (S2, S2,τ+·), V∆,T (S1, S2,τ+·).

In particular, the quantity V∆,T (S1, S2,τ+·) is a powerful tool for the statistical
study of lead-lag effects, i.e. the fact that the jumps of S1 can anticipate on
those of S2 and vice-versa, see for instance [1, 21]. The Epps effect – i.e.
the stylised fact statement that the correlation between the increments of two

12



assets vanishes at fine scales – can be tracked down likewise. Theorem 3
enables to characterise in principle the limiting behaviour of these functionals.
This is described in details in Proposition 3 below.

We consider g and h as functions defined on R by setting g(t) = h(t) = 0
is t < 0. Assume that ‖h‖L1‖g‖L1 < 1. Then the series F :=

∑
n≥1(h ? g)?n

converges in L1(R, dt). If f is a function on R we define f̌ by f̌(t) = f(−t).
We have

Proposition 3. Assume that ‖h‖L1‖g‖L1 < 1. Let (∆T )T>0 and (τT )T>0 be
two families of real numbers such that ∆T > 0. If ∆T /T → 0 and τT /T → 0
as T →∞ we have

V∆T ,T (S1, S1,τT+·)− C11(∆T , τT )→ 0 as T →∞ in L2(P ),

where

C11(∆, τ) = 2
1−‖h‖L1‖g‖L1

γ∆ ?
(
δ0 + F + F̌ + F ? F̌

)
?
(
ν1δ0 + ν2, h ? ȟ

)
(τ),

with γ∆(x) =
(
1− |x|/∆

)+
. We also have

V∆T ,T (S1, S2,τT+·)− C12(∆T , τT )→ 0 as T →∞ in L2(P )

and

V∆T ,T (S2, S1,τT+·)− C12(∆T ,−τT )→ 0 as T →∞ in L2(P ),

with

C12(∆, τ) = 2
1−‖h‖L1‖g‖L1

γ∆ ?
(
δ0 + F + F̌ + F ? F̌

)
?
(
ν2ȟ+ ν1g

)
(τ).

Remark 8 (The Epps effect). For f ∈ L1 we have γ∆ ? f → 0 pointwise as
∆→ 0. Therefore we obtain

C12(∆, τ)→ 0 as ∆→ 0 for every τ ∈ R

and this characterises the Epps effect. The same argument, together with
γ∆(0) = 1, yields the convergence

C11(∆, τ)→ 2ν1

1− ‖h‖L1‖g‖L1

1{τ=0} as ∆→ 0.

13



Remark 9 (The Lead-Lag effect). Following [7] and as a consensus in the
literature, we say that a lead-lag effect is present between S1 and S2 if there
exists ∆ > 0 and τ 6= 0 such that

C12(∆, τ) 6= C12(∆,−τ).

Therefore, an absence of any lead-lag effect is obtained if and only if the
function

(
δ0 + F + F̌ + F ? F̌

)
?
(
ν2ȟ + ν1g

)
is even. This is the case if

ν1g = ν2h. Now, let ε > 0. If g = h ? δε and µ1 = µ3, then

C12(∆,−τ) = C12(∆, τ + ε) for every ∆ > 0, τ ∈ R.

This particular choice for h and g models in particular the property that S1

acts on S2 in the same manner as S2 acts on S1 with an extra temporal shift
of ε. Since we always have

lim
τ→±∞

C12(∆, τ) = 0,

there exists τ0 such that C12(∆, τ0 + ε) 6= C12(∆, τ0), or in other words, we
have a lead-lag effect.

Remark 10 (Macroscopic correlations). Since γ∆ → 1 as ∆ → ∞, we obtain
the convergence

C11(∆, τ)→ 2
1−‖h‖L1‖g‖L1

∫ (
δ0 + F + F̌ + F ? F̌

)
?
(
ν1δ0 + ν2h ? ȟ

)
= 2

1−‖h‖L1‖g‖L1

(
1 + 2 ∫ F + (∫ F )2

)(
ν1 + ν2(∫ h)2

)
= Var(X1).

Likewise, we have C12(∆, τ)→ Cov(X1, X2) as ∆→∞.

6 Preparation for the proofs

In the sequel, we work in the setting of Sections 2 and 3 under Assumption
(A1).

Lemma 2. For all finite stopping time S one has:

E(NS) = µE(S) + E
(∫ S

0
ϕ(S − t)Ntdt

)
(10)

E(NS) ≤ (Id−K)−1µE(S) componentwise. (11)

14



Proof. Recall that (Tp)p≥1 denote the successive jump times of N and set
Sp = S ∧ Tp. Since the stochastic intensities λi are given by (4) one has

E(NSp) = µE(Sp) + E
(∫ Sp

0
dt

∫
(0,t)

ϕ(t− s)dNs

)
.

Moreover, by Fubini theorem
∫ Sp

0 dt
∫

(0,t)ϕ(t− s)dNs is equal to∫
[0,Sp)

(∫ Sp

s
ϕ(t− s)dt

)
dNs =

∫
[0,Sp)

(∫ Sp−s

0
ϕ(t)dt

)
dNs.

Now, integrating by part with Φ(t) =
∫ t

0 ϕ(s)ds, we can write

0 = Φ(0)NSp −Φ(Sp)N0 =

∫
(0,Sp]

Φ(Sp − t)dNt −
∫ Sp

0
ϕ(Sp − t)Ntdt.

Remark that both sides of the above equality are finite since
∑d

i=1Ni,Sp ≤ p.
We obtain

E(NSp) = µE(Sp) + E
(∫ Sp

0
ϕ(Sp − t)Ntdt

)
and derive (10) using that NSp ↑ NS as p→∞ and∫ Sp

0
ϕ(Sp − t)Ntdt =

∫ Sp

0
ϕ(t)NSp−tdt ↑

∫ S

0
ϕ(t)NS−tdt =

∫ S

0
ϕ(S − t)Ntdt.

We next prove (11). We have (componentwise)

E(NSp) = E
(
Spµ+

∫ Sp

0
ϕ(Sp − t)Nt dt

)
≤ E(Sp)µ+ E

(∫ ∞
0
ϕ(Sp − t)Nt dt

)
= E(Sp)µ+ KE(NSp).

By induction, E(NSp) ≤
(
Id + K + · · ·+ Kn−1

)
E(Sp)µ+ KnE(NSp) compo-

nentwise for all integer n. On the one hand,
∑d

i=1Ni,Sp ≤ p. On the other
hand, since ρ(K) < 1 we have Kn → 0 as n→∞ and

∑∞
n=0 Kn = (Id−K)−1,

therefore E(NSp) ≤ (Id−K)−1E(S)µ. This readily yields (11) since E(NS) =
limpE(NSp).

Let ϕn, n ≥ 1, and ψ =
∑

n≥1ϕn be defined as in Theorem 2. By

induction it is easily shown that
∫∞

0 ϕn(t)dt = Kn for all n. Therefore∫∞
0 ψ(t)dt =

∑
n≥1 Kn is finite componentwise by assumption (A1). We next

state a multivariate version of the well known renewal equation (we recall the
proof for sake of completeness).
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Lemma 3. Let h be a Borel and locally bounded function from R+ to Rd.
Then there exists a unique locally bounded function f : R+ → Rd solution to

f(t) = h(t) +

∫ t

0
ϕ(t− s)f(s)ds ∀t ≥ 0, (12)

given by

fh(t) = h(t) +

∫ t

0
ψ(t− s)h(s)ds.

Proof. Since ψ ∈ L1(dt) and h is locally bounded, the function fh is locally
bounded. Moreover fh satisfies (12). It follows that∫ t

0
ϕ(t− s)fh(s)ds =

∫ t

0
ϕ(t− s)h(s)ds+

∫ t

0
dsϕ(t− s)

∫ s

0
ψ(s− r)h(r)dr

=

∫ t

0
ϕ(t− s)h(s)ds+

∫ t

0
dr

∫ t

r
dsϕ(t− s)ψ(s− r)h(r)

=

∫ t

0
ψ(t− r)h(r)dr

since
∫ t

0 ϕ(t − s)ψ(s)ds = ψ(t) − ϕ(t). As for the uniqueness, if f satisfies
(12) then

fh(t)− f(t) =

∫ t

0
ϕ(t− s)(fh(s)− f(s))ds

thus if gi(t) = |fh,i(t) − fi(t)|, 1 ≤ i ≤ d, one has g(t) ≤
∫ t

0 ϕ(t − s)g(s)ds
componentwise, which yields

∫∞
0 g(t)dt ≤ K

∫∞
0 g(t)dt componentwise. Since

ρ(K) < 1 it follows that f = fh almost everywhere. Therefore∫ t

0
ϕ(t− s)f(s)ds =

∫ t

0
ϕ(t− s)fh(s)ds for all t

and thus f = fh since both function satisfy (12).

Define the d-dimensional martingale (Mt)t≥0 by Mt = Nt −
∫ t

0 λs ds with
λ = (λ1, . . . , λd).

Lemma 4. For all t ≥ 0:

E(Nt) = tµ+
(∫ t

0
ψ(t− s)s ds

)
µ, (13)

Nt − E(Nt) = Mt +

∫ t

0
ψ(t− s)Msds. (14)
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Proof. By (10) of Lemma 2 and Fubini theorem, we get

E(Nt) = tµ+

∫ t

0
ϕ(t− s)E(Ns) ds.

Besides, t E(Nt) is locally bounded in view of (11). Applying Lemma 3 we
obtain (13). The second formula follows from Lemma 3 and the fact that, if
Xt = Nt−E(Nt), representation (13) entails Xt = Mt +

∫ t
0 ϕ(t− s)Xs ds.

7 Proof of Theorem 1

Lemma 5. Let p ∈ [0, 1) and assume that
∫∞

0 tpϕ(t) dt <∞ componentwise.
Then

1. If p < 1, we have T p
(
T−1E(NTv) − v(Id−K)−1µ

)
→ 0 as T → ∞

uniformly in v ∈ [0, 1].

2. If p = 1, we have (as T →∞)

T
( 1

T
E(NT )−(Id−K)−1µ

)
→ −(Id−K)−1

( ∫ ∞
0

tϕ(t) dt
)
(Id−K)−1µ.

Proof. Let p ∈ [0, 1] and assume that
∫∞

0 tpϕ(t) dt < ∞ componentwise. We
first prove that

∫∞
0 tpψ(t) dt < ∞ componentwise. For n ≥ 1, setting An =∫∞

0 tpϕn(t) dt, we can write

An+1 =

∫ ∞
0

tp
(∫ t

0
ϕ(t− s)ϕn(s) ds

)
dt =

∫ ∞
0

(∫ ∞
0

(t+ s)pϕ(t) dt
)
ϕn(s) ds

≤
∫ ∞

0
tpϕ(t) dtKn + K

∫ ∞
0

spϕn(s) ds with equality if p = 1,

= A1K
n + KAn.

Therefore for all integer N , we have

N∑
n=1

An ≤ A1 + A1

N−1∑
n=1

Kn + K
N−1∑
n=1

An,

(Id−K)
N−1∑
n=1

An + AN ≤ A1 + A1

N−1∑
n=1

Kn,

N−1∑
n=1

An ≤ (Id−K)−1(A1 + A1

N−1∑
n=1

Kn).
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Letting N →∞ we derive∫ ∞
0

tpψ(t) dt =
∑
n≥1

An ≤ (Id−K)−1A1(Id−K)−1

with equality if p = 1. From (13) it follows that for all v ∈ [0, 1]:

v(Id−K)−1µ− 1

T
E(NTv) =

(
v

∫ ∞
Tv
ψ(t)dt+

1

T

∫ Tv

0
tψ(t)dt

)
µ. (15)

Since tpψ(t) is integrable, we have T p
∫∞
Tv ψ(t)dt ≤ v1−p ∫∞

Tv t
pψ(t) dt→ 0 as T →

∞ and this convergence is uniform in v ∈ [0, 1] in the case p < 1. It remains
to prove that if p < 1, we have

1

T 1−p

∫ T

0
tψ(t)dt→ 0 as T →∞.

With G(t) =
∫ t

0 s
pψ(s)ds, integrating by part, we obtain

T 1−pG(T ) =

∫ T

0
tψ(t) dt+ (1− p)

∫ T

0
t−pG(t) dt

and
1

T 1−p

∫ T

0
ψ(t)tdt = G(T )− 1− p

T 1−p

∫ T

0
t−pG(t) dt.

Since G(t) is convergent as t → ∞ we finally derive that the right-hand-side
in the above equality converges to 0 as T →∞.

Denote by ‖ · ‖ the Euclidean norm either on Rd or on the set of d × d
matrices.

Lemma 6. There exists a constant Cµ,ϕ such that for all t,∆ ≥ 0:

E
(

sup
t≤s≤t+∆

‖Ms −Mt‖2
)
≤ Cµ,ϕ ∆.

Proof. Doob’s inequality yields

E
(

sup
t≤s≤t+∆

‖Ms −Mt‖2
)
≤ 4

d∑
i=1

E
(
(Mi,t+∆ −Mi,t)

2
)
.

For each i ∈ {1, . . . , d}, the quadratic variation of the martingale (Mi,t)t≥0 is[
Mi,Mi

]
t

=
∑
s≤t

(Mi,s −Mi,s−)2 = Ni,t.
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Thus we have
E((Mi,t+∆ −Mi,t)

2) = E(Ni,t+∆ −Ni,t).

Besides, in view of Lemma 4 and the fact that
∫∞

0 ψ(t)dt = (Id−K)−1− Id,
we obtain

E(Nt+∆ −Nt) ≤ ∆(Id−K)−1µ componentwise.

Completion of proof of Theorem 1. Lemma 5 with p = 0 implies that it is
enough to prove the following convergence

T−1 sup
v∈[0,1]

∥∥NTv − E(NTv)
∥∥→ 0 as T →∞ (16)

almost surely and in L2(P ). Thanks to (14) of Lemma 4, we have

sup
v∈[0,1]

‖NTv − E(NTv)‖ ≤
(
1 +

∫ T

0
‖ψ(t)‖dt

)
sup
t≤T
‖Mt‖ ≤ Cϕ sup

t≤T
‖Mt‖

since ψ is integrable. Moreover E
(
supt≤T ‖Mt‖2

)
≤ Cµ,ϕT by Lemma 6,

therefore convergence (16) holds in L2(P ). In order to prove the almost-sure
convergence, it is enough to show that

T−1 sup
v∈[0,1]

∥∥MTv

∥∥→ 0 as T →∞ almost-surely.

Let Zt = (Z1,t, . . . , Zd,t) =
∫

(0,t]
1
s+1dMs. The quadratic variation of the mar-

tingale Zi satisfies

[Zi, Zi]t =
∑

0<s≤t
(Zi,s − Zi,s−)2 =

∫
(0,t]

1

(s+ 1)2
dNi,s

and moreover, using integration by part and (13), we have

E
(∫

(0,∞)

1

(s+ 1)2
dNs

)
= 2E

(∫
(0,∞)

Ns

(1 + s)3
ds
)
<∞.

Therefore limt→∞ Zt exists and is finite almost surely. It follows that

1

t+ 1
Mt = Zt −

1

t+ 1

∫ t

0
Zs ds→ 0 as T →∞ almost surely.

We deduce that almost surely, for all family vT ∈ [0, 1], T > 0, such that
TvT →∞ the convergenceMTvT /T → 0 holds. Moreover, we have MTvT /T →
0 if supT TvT < ∞. In other words T−1MTv → 0 uniformly in v ∈ [0, 1],
almost-surely. The proof of Theorem 1 is complete.
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8 Proof of Theorem 2

Let W = (W1, . . . ,Wd) be a standard d-dimensional Brownian motion. For
i = 1, . . . , d, put σi = (Σii)

1/2.

Lemma 7. The martingales M (T ) := (T−1/2MTv)v∈[0,1] converge in law for
the Skorokod topology to (σ1W1, . . . , σdWd).

Proof. According to Theorem VIII-3.11 of [23], since the martingales M (T )

have uniformly bounded jumps, a necessary and sufficient condition to obtain
the lemma is: for all v ∈ [0, 1], for all 1 ≤ i < j ≤ d

[M
(T )
i ,M

(T )
i ]v → σ2

i v, [M
(T )
i ,M

(T )
j ]v → 0, as T →∞ in probability.

We have [M
(T )
i ,M

(T )
i ]v = 1

TNi,Tv → σ2
i v in L2(P ) by Theorem 1 and also

[M
(T )
i ,M

(T )
j ]v = 0 since the processes Ni for 1 ≤ i ≤ d, have no common jump

by construction.

Completion of proof of Theorem 2. SetX
(T )
v = T−1/2

(
NTv−E(NTv)

)
. In view

of Lemma 7, it is enough to prove that

sup
v∈[0,1]

∥∥X(T )
v − (Id−K)−1M (T )

v

∥∥→ 0 as T →∞ in probability.

By Lemma 4, we have X
(T )
v = M

(T )
v +

∫ v
0 Tψ(Tu)M

(T )
v−u du, hence we need to

prove that

sup
v∈[0,1]

∥∥∫ v

0
Tψ(Tu)M

(T )
v−u du−

(∫ ∞
0
ψ(t)dt

)
M (T )
v

∥∥→ 0 as T →∞ (17)

in probability. We plan to use the fact that ψ is integrable and the C-tightness
of the family (M (T ))T>0. The tightness is a consequence of Lemma 7 and reads:

∀ε > 0 lim sup
T

P
(

sup
|u−u′|≤η

∥∥M (T )
u −M (T )

u′

∥∥ > ε
)
→ 0 as η → 0. (18)

using also that M
(T )
0 = 0. For η > 0 and v ∈ [0, 1] we have

∥∥∫ v

v∧η
Tψ(Tu)M

(T )
v−udu

∥∥ ≤ sup
0≤u≤1

‖M (T )
u ‖

∫ 1

η
T‖ψ(Tu)‖du

≤ sup
0≤u≤1

‖M (T )
u ‖

∫ ∞
Tη
‖ψ(t)‖dt→ 0
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as T → ∞ in probability, since sup0≤u≤1 ‖M
(T )
u ‖ is bounded in probability

and
∫∞
Tη ‖ψ(t)‖dt→ 0 as T →∞. Moreover

∥∥∫ v∧η

0
Tψ(Tu)

(
M (T )
v −M (T )

v−u
)
du
∥∥ ≤ sup

|u−u′|≤η

∥∥M (T )
u −M (T )

u′

∥∥ ∫ ∞
0
‖ψ(t)‖dt,

therefore, in order to prove (17) it suffices to show that for all η > 0, the
convergence

sup
v∈[0,1]

∥∥(∫ ∞
0
ψ(t)dt−

∫ v∧η

0
Tψ(Tu)du

)
M (T )
v

∥∥→ 0 as T →∞

holds in probability. It readily follows from (18) and the fact that
∥∥(∫∞

0 ψ(t)dt−∫ v∧η
0 Tψ(Tu)du

)
M

(T )
v

∥∥ is less than
∫∞
Tδ ‖ψ(t)‖dt supu ‖M

(T )
u ‖ if v > δ, and

less than
∫∞

0 ‖ψ(t)‖dt supu≤δ ‖M
(T )
u ‖ if v ≤ δ, with 0 < δ < η.

Proof of Corollary 1. By (A2), Lemma 5 with p = 1/2 yields

T 1/2
(
T−1E(NTv)− v(Id−K)−1µ

)
→ 0 as T →∞

uniformly in v ∈ [0, 1]. Moreover, by (A1), Theorem 2 yields

T 1/2
(
T−1NTv − T−1E(NTv)

)
→ (Id−K)−1Σ1/2W

in distribution as T →∞ and the result follows.

9 Proof of Theorem 3

Set

Yt =

∫ t

0
ψ(t− s)Ms ds (19)

in order that X = M + Y , see Lemma 4. For all 0 ≤ ε ≤ η ≤ 1, for all integer
1 ≤ k0 ≤ T/∆, define

Dk0,ε,η(X)T,∆ =
1

T

bT/∆c∑
k=k0

(
X(k−1)∆+η∆ −X(k−1)∆+ε∆

)
.

Lemma 8. There exists a function T  ξµ,ϕ(T ) such that ξµ,ϕ(T ) → 0 as
T →∞ and such that for all 0 ≤ ε ≤ η ≤ 1 and all integer 1 ≤ k0 ≤ T/∆, we
have

E
(∥∥(1− k0∆

T
)(η − ε)(Id−K)−1µ−Dk0,ε,η(N)T,∆

∥∥2) ≤ ξµ,ϕ(T ).
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Proof. First we prove that

E
(∥∥Dk0,ε,η(X)T,∆‖2

)
≤ Cµ,ϕT−1 (20)

for some constant Cµ,ϕ that depends on µ and ϕ only. Using

X(k−1)∆+η∆ −X(k−1)∆+ε∆ = M(k−1)∆+η∆ −M(k−1)∆+ε∆

+

∫ ∞
0

dsψ(s)
(
M(k−1)∆+η∆−s −M(k−1)∆+ε∆−s

)
and the fact that ψ is integrable, it suffices to prove that

E
(∥∥Dk0,ε,η(M·−s)T,∆‖2

)
≤ Cµ,ϕT−1.

Set Sn =
∑n

k=1

(
M(k−1)∆+η∆−s−M(k−1)∆+ε∆−s

)
. Clearly (Sn)n≥1 is a discrete

martingale thus

E
(∥∥SbT∆c − Sk0−1

∥∥2)
=

bT∆c∑
k=k0

E
(∥∥M(k−1)∆+η∆−s −M(k−1)∆+ε∆−s

∥∥2)
.

By Lemma 6 we have E
(∥∥SbT∆c

∥∥2) ≤ Cµ,ϕ(η − ε)T and (20) follows. It
remains to prove that∥∥(1− k0∆

T
)(η − ε)(Id−K)−1µ− E

(
Dk0,ε,η(N)T,∆

)∥∥ ≤ ξ̃µ,ϕ(T )

where ξ̃µ,ϕ(T )→ 0 as T →∞. By Lemma 4, we have

E
(
N(k−1)∆+η∆ −N(k−1)∆+ε∆

)
= (η − ε)∆

(
µ+

∫ (k−1)∆+ε∆

0
drψ(r)µ

)
+

∫ (k−1)∆+η∆

(k−1)∆+ε∆
drψ(r)((k − 1)∆ + η∆− r)µ

= (η − ε)∆(Id−K)−1µ− (η − ε)∆
∫ ∞

(k−1)∆+ε∆
drψ(r)

+

∫ (k−1)∆+η∆

(k−1)∆+ε∆
drψ(r)

(
(k − 1)∆ + η∆− r

)
µ.

Finally∫ (k−1)∆+η∆

(k−1)∆+ε∆
drψ(r)((k − 1)∆ + η∆− r) ≤ (η − ε)∆

∫ ∞
(k−1)∆+ε∆

drψ(r).
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We conclude noting that

∆

T

bT/∆c∑
k=k0

∫ ∞
(k−1)∆+ε∆

drψ(r) =
∆

T

∫ ∞
(k0−1)∆+ε∆

drψ(r)

bT/∆c∑
k=k0

1{(k−1)∆+ε∆<r}

≤ 1

T

∫ ∞
0

drψ(r)(r ∧ T ),

This last quantity converges to 0 as T → ∞ by an argument similar to the
end of proof of Lemma, 5, using that ψ is integrable.

Lemma 9. There exists a constant Cµ,ϕ such that for all t, h ≥ 0, we have

E
(

sup
t≤s≤t+h

‖Ms −Mt‖4
)
≤ Cµ,ϕ (h+ h2)

Proof. By BDG-inequality, E
(
supt≤s≤t+h ‖Ms −Mt‖4 | Ft

)
is less than

C
d∑
i=1

E
((

[Mi,Mi]t+h − [Mi,Mi]t
)2 | Ft) = C

d∑
i=1

E
((
Ni,t+h −Ni,t

)2 | Ft),
hence E

(
supt≤s≤t+h ‖Ms −Mt‖4

)
≤ C

(
E
(∥∥Xt+h−Xt

∥∥2)
+
∥∥E(Nt+h−Nt

)∥∥2)
.

By Lemma 4, we have E
(
Nt+h −Nt

)
≤ h(Id−K)−1µ componentwise and(

E
(∥∥Xt+h −Xt

∥∥2))1/2
≤
∫ ∞

0
‖ψ(s)‖

(
E
(∥∥Mt+h−s −Mt

∥∥2))1/2
ds.

The conclusion follows using Lemma 6 and the fact that ψ is integrable.

With the notation introduced in Section 3, the quantity V∆,T (M·−s,M·−t+τ )
is equal to

1

T

bT/∆c∑
k=1

(
Mk∆−s −M(k−1)∆−s

)(
Mk∆−t+τ −M(k−1)∆−t+τ

)>
.

Lemma 10. For all s, t ≥ 0 we have

V∆T ,T (M·−s,M·−t+τT )−
(
1− |t−s−τT |∆T

)+
Σ→ 0 as T →∞ in L2(P )

and
E
(∥∥V∆T ,T (M·−s,M·−t+τT )

∥∥2) ≤ Cµ,ϕ.
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Proof. We start with proving preliminary estimates. Let b1, b2, b
′
1, b
′
2 be real

numbers such that b1 ≤ b2, b′1 ≤ b′2 and (b1, b2)∩ (b′1, b
′
2) = ∅. Using that M is

a martingale, we successively obtain

E
(∥∥T−1

bT/∆c∑
k=1

(
M(k−1)∆+b2 −M(k−1)∆+b1

)(
M(k−1)∆+b′2

−M(k−1)∆+b′1

)>∥∥2)
=

1

T 2

bT/∆c∑
k=1

E
(∥∥(M(k−1)∆+b2 −M(k−1)∆+b1

)(
M(k−1)∆+b′2

−M(k−1)∆+b′1

)>∥∥2)
=

1

T 2

bT/∆c∑
k=1

E
(∥∥M(k−1)∆+b2 −M(k−1)∆+b1

∥∥2∥∥(M(k−1)∆+b′2
−M(k−1)∆+b′1

)>∥∥2)
.

By Cauchy-Schwarz, this last quantity is less than

1

T 2

bT/∆c∑
k=1

(
E(‖M(k−1)∆+b2−M(k−1)∆+b1‖

4)E(
∥∥(M(k−1)∆+b′2

−M(k−1)∆+b′1

)>∥∥4
)
) 1

2

which in turn, using Lemma 9, is bounded by

Cµ,ϕ
1

T∆

(
b2 − b1 + (b2 − b1)2

)1/2(
b′2 − b′1 + (b′2 − b′1)2

)1/2
. (21)

Moreover, if b2 − b1 ≤ ∆, using that [M,M ] = diag(N) and Lemma 9, we
obtain that

E
(∥∥∥ 1

T

bT/∆c∑
k=1

diag
(
N(k−1)∆+b2 −N(k−1)∆T+b1

)
− 1

T

bT/∆c∑
k=1

(
M(k−1)∆+b2 −M(k−1)∆+b1

)(
M(k−1)∆+b2 −M(k−1)∆+b1

)>∥∥∥2)
is less than

Cµ,ϕ
1

T∆

(
b2 − b1 + (b2 − b1)2

)
. (22)

We are ready to prove Lemma 10. It is a consequence of Lemma 8 and the
fact that there exists a2 = a2(s, t,∆T , τT ) ≤ a3 = a3(s, t,∆T , τT ) such that

a3 − a2 =
(
∆T − |t− s− τT |

)+
,

a2

T
→ 0 as T →∞

24



holds, together with the estimate

E
(∥∥ 1

T

bT/∆T c∑
k=1

diag
(
N(k−1)∆T+a3

−N(k−1)∆T+a2

)
−V∆T ,T (M·−s,M·−t+τT )

∥∥2)
≤ Cµ,ϕ

1

T

(
1 + ∆T

)
.

(23)

Indeed, if t − τT + ∆T ≤ s or s ≤ t − τT − ∆T then the upper bound we
obtained in (21) entails

E
(∥∥V∆T ,T (M·−s,M·−t+τT )

∥∥2) ≤ Cµ,ϕ 1

T

(
1 + ∆T

)
.

Let us first consider the case t− τT ≤ s ≤ t− τT + ∆T . Set

a1 := s ≤ a2 := −t+ τT ≤ a3 := ∆T − s ≤ a4 := ∆T − t+ τT .

We use the following decomposition(
Mk∆T−s −M(k−1)∆T−s

)(
Mk∆T−t+τT −M(k−1)∆T−t+τT

)>
=
(
M(k−1)∆T+a3

−M(k−1)∆T+a2

)(
M(k−1)∆T+a3

−M(k−1)∆T+a2

)>
+
(
M(k−1)∆T+a3

−M(k−1)∆T+a1

)(
M(k−1)∆T+a4

−M(k−1)∆T+a3

)>
+
(
M(k−1)∆T+a2

−M(k−1)∆T+a1

)(
M(k−1)∆T+a3

−M(k−1)∆T+a2

)>
.

On the one hand, (21) readily yields that both

E
(∥∥ 1

T

bT/∆T c∑
k=1

(
M(k−1)∆T+a3

−M(k−1)∆T+a1

)(
M(k−1)∆T+a4

−M(k−1)∆T+a3

)>∥∥2)
and

E
(∥∥ 1

T

bT/∆T c∑
k=1

(
M(k−1)∆T+a2

−M(k−1)∆T+a1

)(
M(k−1)∆T+a3

−M(k−1)∆T+a2

)>∥∥2)
are less than Cµ,ϕ(1 + ∆T )/T . On the other hand, by (22), the same estimate
holds for

E
(∥∥ 1

T

bT/∆T c∑
k=1

diag
(
N(k−1)∆T+a3

−N(k−1)∆T+a2

)
− 1

T

bT/∆T c∑
k=1

(
M(k−1)∆T+a3

−M(k−1)∆T+a2

)(
M(k−1)∆T+a3

−M(k−1)∆T+a2

)>∥∥2)
,
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therefore (23) holds in that case. If now t− τT −∆T ≤ s ≤ t− τT , setting

a1 := −t+ τT ≤ a2 := −s ≤ a3 := ∆T − t+ τT ≤ a4 := ∆T − s,

one readily checks that (23) holds using the same arguments.

Completion of proof of Theorem 3. Since X = M + Y by (19), we have the
following decomposition

V∆,T (X,Xτ+·)

= V∆,T (M,Mτ+·) + V∆,T (Y, Yτ+·) + V∆,T (M,Yτ+·) + V∆,T (Y,Mτ+·).

Setting Mt = 0 for t ≤ 0, we can write Yt =
∫∞

0 ψ(s)Mt−s ds, therefore

(Yi∆ − Y(i−1)∆)(Yi∆+τ − Y(i−1)∆+τ )>

=

∫
R2

+

ds dtψ(s)
(
Mi∆−s −M(i−1)∆−s

)(
Mi∆−t+τ −M(i−1)∆−t+τ

)>
ψ(t)>,

hence

V∆,T (Y, Yτ+·) =

∫
R2

+

ds dtψ(s)V∆,T (M·−s,M·−t+τ )ψ(t)>.

Likewise

V∆,T (M,Yτ+·) =

∫ ∞
0

dtV∆,T (M,M·−t+τ )ψ(t)>,

V∆,T (Y,Mτ+·) =

∫ ∞
0

dtψ(t)V∆,T (M·−t,M·+τ ).

In view of Lemma 10 and the fact that ψ is integrable, by Lebesgue dominated
convergence theorem, we successively obtain

V∆T ,T (Y, YτT+·)−
∫
R2

+

ds dtψ(s)
(
1− |t− s− τT |/∆T

)+
Σψ(t)> → 0,

V∆T ,T (M,YτT+·)−
∫ ∞

0
dt
(
1− |t− τT |/∆T

)+
Σψ(t)> → 0,

and

V∆T ,T (Y,MτT+·)−
∫ ∞

0
dtψ(t)

(
1− |t+ τT |/∆T

)+
Σ→ 0

in L2(P ) as T →∞. The proof is complete.
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Proof of Corollary 2. In view of Theorem 3, we need to show

V∆T ,T (X,XτT+·)−V∆T ,T (X̃, X̃τT+·)→ 0 as T →∞ in L2(P ).

By Cauchy-Schwarz inequality, this convergence is a consequence of

sup
τ∈R

1

T

bT/∆T c∑
k=1

(
ηi(τ + k∆T )− ηi(τ + (k − 1)∆T )

)2
→ 0, 1 ≤ i ≤ d,

where η(t) =
(
t(Id−K)−1µ− E(Nt)

)
1{t≥0}. By (15), for t ≥ 0, we have the

decomposition

η(t) =
(
t

∫ ∞
t
ψ(s)ds+

∫ t

0
ψ(s)sds

)
µ

therefore η is absolutely continuous and we have η′(t) =
∫∞
t ψ(s)ds µ1{t≥0}.

We derive

1

T

bT/∆T c∑
k=1

(
ηi(τ + k∆T )− ηi(τ + (k − 1)∆T )

)2
≤ ∆T

T

∫ ∞
0

η′i(s)
2ds.

It remains is to prove
∫∞

0 ‖η
′(t)‖2dt <∞. We have

η′(t) ≤ t−1/2

∫ ∞
t

s1/2ψ(s) dsµ and ‖η′(t)‖ ≤ Cµ,ϕt−1/2

since s s1/2ψ(s) is integrable. Finally
∫∞

0 ‖η
′(t)‖2dt is less than

Cµ,ϕ

∫ ∞
0

dt t−1/2

∫ ∞
t

ds‖ψ(s)‖ = 2Cµ,ϕ

∫ ∞
0

ds‖ψ(s)‖s1/2 <∞

and the result follows.

Appendix

Proof of Proposition 2

The spectral radius of K =

(
0 0 ∫ h 0
0 0 0 ∫ h
∫ g 0 0 0
0 ∫ g 0 0

)
is equal to ∫ g ∫ h, and we have

(
Id−K

)−1
=

1

1− ∫ h ∫ g

(
1 0 ∫ h 0
0 1 0 ∫ h
∫ g 0 1 0
0 ∫ g 0 1

)
,
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therefore
(
Id−K

)−1
µ = 1

1−∫ h ∫ g

(
ν1
ν1
ν2
ν2

)
where ν1 and ν2 are given by (9). Set

X = N −E(N). By symmetry, we have N = (N2, N1, N4, N3) in distribution,
thus E(N1,t) = E(N2,t) and E(N3,t) = E(N4,t) for all t. Consequently

S1 = X1 −X2 and S2 = X3 −X4. (24)

According to Theorem 2 the processes T−1/2XTv converge in law to the process

Yv = (Id−K)−1Σ1/2Wv with Σ = 1
1−∫ h ∫ g

(
ν1 0 0 0
0 ν1 0 0
0 0 ν2 0
0 0 0 ν2

)
. Therefore the pro-

cesses T−1/2
(
S1,T v, S2,T v

)
v∈[0,1]

converge in distribution to
(
Y1 − Y2, Y3 − Y4

)
and Proposition 2 is proved.

Proof of Proposition 3

From (24) it follows that V∆T ,T (S1, S1,τT+·) = ( 1 −1 0 0 )V∆T ,T (X,XτT+·)

(
1
−1
0
0

)
and V∆T ,T (S1, S2,τT+·) = ( 1 −1 0 0 )V∆T ,T (X,XτT+·)

(
0
0
1
−1

)
. Consequently Propo-

sition 3 follows from Theorem 3 with

C11(∆, τ) = ( 1 −1 0 0 ) v∆,δ

(
1
−1
0
0

)
, C12(∆, τ) = ( 1 −1 0 0 ) v∆,δ

(
0
0
1
−1

)
.

It remains to compute C11 and C12. First we compute ψ =
∑

n≥1ϕn. We
readily check that for all s, t ≥ 0: ϕ(t − s)ϕ(s) = h(t − s)g(s)Id. Thus
ϕ2 = (h ? g)Id. We derive

ϕ2n = (h ? g)?nId, ϕ2n+1 =

 0 0 (h?g)?n?h 0
0 0 0 (h?g)?n?h

(h?g)?n?g 0 0 0
0 (h?g)?n?g 0 0

 .

and we obtain

ψ =
∑
n≥1

ϕ2n +
∑
n≥0

ϕ2n+1

=


F 0 (δ0 + F ) ? h 0
0 F 0 (δ0 + F ) ? h

(δ0 + F ) ? g 0 F 0
0 (δ0 + F ) ? g 0 F
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where F =
∑

n≥1(h ? g)?n. Set F̃ (ds) = δ0(ds) + F (t)ds. Standard computa-
tions yield

Idδ0(ds) +ψ(s)ds =


F̃ (ds) 0 F̃ ? h(s)ds 0

0 F̃ (ds) 0 F̃ ? h(s)ds

F̃ ? g(s)ds 0 F̃ (ds) 0

0 F̃ ? g(s)ds 0 F̃ (ds)


and(

Idδ0(ds) +ψ(s)ds
)
Σ
(
Idδ0(dt) +ψ(t)∗dt

)
=

1

1− ∫ h ∫ g


a11(ds, dt) 0 a13(ds, dt) 0

0 a11(ds, dt) 0 a13(ds, dt)
a31(ds, dt) 0 a33(ds, dt) 0

0 a31(ds, dt) 0 a33(ds, dt)


with:

a11(ds, dt) = ν1F̃ (ds)F̃ (dt) + ν2F̃ ? h(ds)F̃ ? h(dt),

a13(ds, dt) = ν1F̃ (ds)F̃ ? g(dt) + ν2F̃ ? h(ds)F̃ (dt),

a31(ds, dt) = ν2F̃ (ds)F̃ ? h(dt) + ν1F̃ ? g(ds)F̃ (dt),

a33(ds, dt) = ν2F̃ (ds)F̃ (dt) + ν1F̃ ? g(ds)F̃ ? g(dt).

Therefore

C11(∆, τ) =

∫
[0,∞)2

γ∆(t− s− τ)2a11(ds, dt),

and

C12(∆, τ) =

∫
[0,∞)2

γ∆(t− s− τ)2a31(ds, dt).

To complete the proof of Proposition 3, it suffices to use that for two finite
measures µ and ν on R one has (for all ∆ > 0, τ ∈ R)

∫
R2

+
γ∆(t − s −

τ)µ(ds)ν(dt) = γ∆ ? ν ? µ̌(τ) where µ̌ is the image of µ by x −x.
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