
Electronic copy available at: http://ssrn.com/abstract=1735338

Price dynamics in a Markovian limit order market

Rama CONT & Adrien de LARRARD
IEOR Dept, Columbia University, New York

&

Laboratoire de Probabilités et Modèles Aléatoires
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We propose and study a simple stochastic model for the dynamics of a limit order book, in which arrivals of
market order, limit orders and order cancellations are described in terms of a Markovian queueing system.
Through its analytical tractability, the model allows to obtain analytical expressions for various quantities of
interest such as the distribution of the duration between price changes, the distribution and autocorrelation
of price changes, and the probability of an upward move in the price, conditional on the state of the order
book. We study the diffusion limit of the price process and express the volatility of price changes in terms
of parameters describing the arrival rates of buy and sell orders and cancelations. These analytical results
provide some insight into the relation between order flow and price dynamics in order-driven markets.
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1. Introduction

An increasing number of stocks are traded in electronic, order-driven markets, in which orders to
buy and sell are centralized in a limit order book available to to market participants and market
orders are executed against the best available offers in the limit order book. The dynamics of prices
in such markets are not only interesting from the viewpoint of market participants –for trading
and order execution (Alfonsi et al. (2010), Predoiu et al. (2010))– but also from a fundamental
perspective, since they provide a rare glimpse into the dynamics of supply and demand and their
role in price formation.

Equilibrium models of price formation in limit order markets (Parlour (1998), Rosu (2009)) have
shown that the evolution of the price in such markets is rather complex and depends on the state
of the order book. On the other hand, empirical studies on limit order books (Bouchaud et al.
(2008), Farmer et al. (2004), Gourieroux et al. (1999), Hollifield et al. (2004), Smith et al. (2003))
provide an extensive list of statistical features of order book dynamics that are challenging to
incorporate in a single model. While most of these studies have focused on unconditional/steady–
state distributions of various features of the order book, empirical studies (see e.g. Harris and
Panchapagesan (2005)) show that the state of the order book contains information on short-term
price movements so it is of interest to provide forecasts of various quantities conditional on the
state of the order book. Providing analytically tractable models which enable to compute and/or
reproduce conditional quantities which are relevant for trading and intraday risk management
has proven to be challenging, given the complex relation between order book dynamics and price
behavior.

The search for tractable models of limit order markets has led to the development of stochastic
models which aim to retain the main statistical features of limit order books while remaining
computationally manageable. Stochastic models also serve to illustrate how far one can go in
reproducing the dynamic properties of a limit order book without resorting to detailed behavioral
assumptions about market participants or introducing unobservable parameters describing agent
preferences, as in more detailed market microstructure models.

Starting from a description of order arrivals and cancelations as point processes Engle and Lunde
(2003), the dynamics of a limit order book is naturally described in the language of queueing
theory. Cont et al. (2010b) model the dynamics of a limit order book as a Markovian multiclass
queueing system and compute various transition probabilities of the price conditional on the state
of the order book, using Laplace transform methods.

We propose in this work a Markovian model of a limit order market, which captures some salient
features of the dynamics of market orders and limit orders, yet is even simpler than the model of
Cont et al. (2010b) and enables a wide range of properties of the price process to be computed
analytically.

Our approach is motivated by the observation that, if one is primarily interested in the dynamics
of the price, it is sufficient to focus on the dynamics of the (best) bid and ask queues. Indeed,
empirical evidence shows that most of the order flow is directed at the best bid and ask prices
(Biais et al. (1995)) and the imbalance between the order flow at the bid and at the ask appears
to be the main driver of price changes (Cont et al. (2010a)).

Motivated by this remark, we propose a parsimonious model in which the limit order book is
represented by the number of limit orders (qbt , q

a
t ) sitting at the bid and the ask, represented as a

system of two interacting Markovian queues. The remaining levels of the order book are treated
as a ‘reservoir’ of limit orders represented by the distribution of the size of the queues at the
’next-to-best’ price levels. Through its analytical tractability, our model allows to obtain analytical
expressions for various quantities of interest such as the distribution of the duration until the
next price change, the distribution and autocorrelation of price changes, and the probability of an
upward move in the price, conditional on the state of the order book.
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Order arrivals and cancelations are very frequent and occur at millisecond time scale, whereas,
in many applications such as order execution, the metric of success is the volume-weighted average
price (VWAP) so one is interested in the dynamics of order flow over a large time scale, typically
tens of seconds or minutes. As shown in Table 1, thousands of order book events may occur over
such time scales. This aggregation of events actually simplifies much of the analysis and enables
us to use asymptotic methods. We study the link between price volatility and order flow in this
model by studying the diffusion limit of the price process. In particular, we express the volatility
of price changes in terms of parameters describing the arrival rates of buy and sell orders and
cancelations. These analytical results provide some insight into the relation between order flow and
price dynamics in order-driven markets.

Average no. of Price changes
orders in 10s in 1 day

Citigroup 4469 12499
General Electric 2356 7862
General Motors 1275 9016

Table 1 Average number of orders in 10 seconds and number of price changes (June 26th, 2008).

The paper is organized as follows. Section 2 introduces a reduced-form representation of a limit
order book and presents a Markovian model in which limit orders, market orders and cancellations
occur according to Poisson processes. Section 3 presents various analytical results for this model: we
compute the distribution of the duration until the next price change (section 3.1), the probability
of upward move in the price (section 3.2) and the dynamics of the price (section 3.3). In Section
4, we show that the price behaves, at longer time scales, as a Brownian motion whose variance is
expressed in terms of the parameters describing the order flow, thus establishing a link between
volatility and order flow statistics.

2. A Markov model of limit order book dynamics

2.1. Simplified representation of a limit order book

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). Furthermore, studies on the price
impact of order book events show that the net effect of orders on the bid and ask queue sizes is
the main factor driving price variations (Cont et al. (2010a)). These observations, together with
the fact that queue sizes at the best bid and ask (“Level I” order book) are more easily obtainable
(from trades and best quotes) than Level II data, motivate a reduced-form modeling approach in
which we represent the state of the limit order book by
• the bid price sbt and the ask price sat
• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and
• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 1 summarizes this representation.
The bid and ask prices are multiples of the tick size δ. As shown in Table 2.1, for liquid stocks

the bid-ask spread sat − sbt is equal to one tick for more than 98% of observations. We will therefore
make the simplifying assumption that the spread is equal to one tick, i.e. sat = sbt + δ, resulting in
a further reduction of dimension in the model.

The state of the limit order book is thus described by the triplet Xt = (sbt , q
b
t , q

a
t ) which takes

values in the discrete state space δ.Z×N2.
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Figure 1 Simplified representation of a limit order book.

Bid-ask spread 1 tick 2 tick ≥ 3 tick
Citigroup 98.82 1.18 0
General Electric 98.80 1.18 0.02
General Motors 98.71 1.15 0.14

Table 2 Percentage of observations with a given bid-ask spread (June 26th, 2008).

2.2. Order book dynamics

The state Xt of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp.
sell) order decreases the corresponding queue size by x. Cancellation of x orders in a given queue
reduces the queue size by x. Given that we are interested in the queue sizes at the best bid/ask
levels, market orders and cancellations have the same effect on the state variable Xt.

We will assume that these events occur according to independent Poisson processes:
• Market buy (resp. sell) orders arrive at independent, exponential times with rate µ,
• Limit buy (resp. sell) orders at the (best) bid (resp. ask) arrive at independent, exponential

times with rate λ,
• Cancellations occur at independent, exponential times with rate θ.
• These events are mutually independent.
• All orders sizes are equal (assumed to be 1 without loss of generality).

Denoting by (T ai , i≥ 1) (resp. T bi ) the times at which the size of ask (resp. the bid) queue changes
and V a

i (resp. V a
i ) the size of the associated change in queue size, the above assumptions translate

into the following properties for the sequences T ai , T
b
i , V

a
i , V

b
i :

(i) (T ai+1 − T ai )i≥0 is a sequence of independent random variables with exponential distribution
with parameter λ+ θ+µ,

(ii) (T bi+1− T bi )i≥0 is a sequence of independent random variables with exponential distribution
with parameter λ+ θ+µ,

(iii) (V a
i )i≥0 is a sequence of independent random variables with

P[V a
i = 1] =

λ

λ+µ+ θ
and P[V a

i =−1] =
µ+ θ

λ+µ+ θ
, (1)
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(iv) (V b
i )i≥0 is a sequence of independent random variables with

P[V b
i = 1] =

λ

λ+µ+ θ
and P[V b

i =−1] =
µ+ θ

λ+µ+ θ
(2)

• All the previous sequences are independent.
Once the bid (resp. the ask) queue is depleted, the price will move to the queue at the next level,
which we assume to be one tick below (resp. above). The new queue size then corresponds to what
was previously the number of orders sitting at the price immediately below (resp. above) the best
bid (resp. ask). Instead of keeping track of these queues (and the corresponding order flow) at
all price levels (as in Cont et al. (2010b), Smith et al. (2003)), we treat these sizes as stationary
variables drawn from a certain distribution f on N2. Here f(x, y) represents the probability of
observing (qbt , q

a
t ) = (x, y) right after a price increase. Similarly, we denote f̃(x, y) the probability

of observing (qbt , q
a
t ) = (x, y) right after a price decrease. More precisely, denoting by Ft the history

of prices and order book events on [0, t],
• if qat− = 0 then (qbt , q

a
t ) is a random variable with distribution f , independent from Ft−.

• if qbt− = 0 then (qbt , q
a
t ) is a random variable with distribution f̃ , independent from Ft−.

Given the independence assumptions on event types, the probability that these two situations occur
simultaneously is zero.

The distributions f and f̃ summarize the interaction of the queues at the best bid/ask levels
with the rest of the order book, viewed here as a ’reservoir’ of limit orders. For simplicity we shall
assume f̃(x, y) = f(y,x) i.e. events occurring on the bid and on the ask side have similar statistical
properties but our analysis may be readily extended to the asymmetric case. Figure 2 shows the
(joint) empirical distribution of bid and ask queue sizes after a price move for Citigroup stock on
June 26th 2008.

Figure 2 Joint density of bid and ask queue sizes after a price move (Citigroup, June 26th 2008).

Under these assumptions qt = (qbt , q
a
t ) is thus a Markov process, taking values in N2, whose

transitions correspond to the order book events {T ai , i≥ 1}∪ {T bi , i≥ 1}:
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• At the arrival of a new limit buy (resp. sell) order the bid (resp. ask) queue increases by one
unit. This occurs at rate λ.
• At each cancellation or market order, which occurs at rate θ+µ, either:

(a) the corresponding queue decreases by one unit if it is > 1, or
(b) if the ask queue is depleted then qt is an independent draw from the distribution f .
(c) if the bid queue is depleted then qt is an independent draw from the distribution f̃ .

The values of λ and µ+ θ are readily estimated from high-frequency records of order books (see
Cont et al. (2010b) for a description of the estimation procedure). Table 2.2 gives examples of such
parameter estimates for the stocks mentioned above. We note that in all cases λ< µ+ θ but that
the difference is small.

λ̂ µ̂+ θ̂
Citigroup 2204 2331

General Electric 317 325
General Motors 102 104

Table 3 Estimates for the intensity of limit orders and market orders+cancellations, in number of batches per
second (each batch representing 100 shares) on June 26th, 2008).

2.3. Price dynamics

When the bid or ask queue is depleted, the price moves up or down to the next level of the order
book. We will assume that the order book contains no ‘gaps’ (empty levels) so that these price
increments are equal to one tick:
• When the bid queue is depleted, the price decreases by one tick.
• When the ask queue is depleted, the price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price. The price process sbt is thus a piecewise constant process whose transitions correspond
to hitting times of the {(0, y), y ∈N}∪ {(x,0), x∈N} by the Markov process qt = (qat , q

b
t ).

2.4. Summary

In summary, the process Xt = (sbt , q
b
t , q

a
t ) is a continuous-time process with right-continuous, piece-

wise constant sample paths whose transitions correspond to the order book events {T ai , i ≥ 1} ∪
{T bi , i≥ 1}. At each event:
• If an order or cancelation arrives on the ask side i.e. T ∈ {T ai , i≥ 1}:

(sbT , q
b
T , q

a
T ) = (sbT−, q

b
T−, q

a
T−+V a

i )1qa
T−>−V

a
i

+ (SbT−+ δ,Rb
i ,R

a
i )1qaT−≤−V

a
i
,

• If an order or cancelation arrives on the bid side i.e. T ∈ {T bi , i≥ 1}:

(sbT , q
b
T , q

a
T ) = (sbT−, q

b
T−+V b

i , q
a
T−)1qb

T−>−V
b
i

+ (sbT−− δ, R̃b
i , R̃

a
i )1qb

T−≤−V
b
i
,

where (V a
i )i≥1 and (V b

i )i≥1 are sequences of IID variables with distribution given by (1)-(2),
(Ri)i≥1 = (Rb

i ,R
a
i )i≥1 is a sequence of IID variables with (joint) distribution f , and (R̃i)i≥1 =

(R̃b
i , R̃

a
i )i≥1 is a sequence of IID variables with (joint) distribution f̃ .
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2.5. Quantities of interest

In applications, one is interested in computing various quantities that intervene in high frequency
trading such as:
• the conditional distribution of the duration between price moves, given the state of the order

book (Section 3.1),
• the probability of a price increase, given the state of the order book (Section 3.2),
• the dynamics of the price :autocorrelations and distribution and autocorrelations of price

changes (section 3.3), and
• the volatility of the price (section 4).

We will show that all these quantities may be characterized analytically in this model, in terms of
order flow statistics.

3. Analytical results

The high-frequency dynamics of the price may be described in terms of durations between successive
price changes and the magnitude of these price changes. Given that the state of the (Level I) order
book is observable, it is of interest to examine what information the current state of the order
book gives about the dynamics of the price. We now proceed to show how the model presented
above may be used to compute the conditional distributions of durations and price changes, given
the current state of the order book, in terms of the arrival rates of market orders, limit orders and
cancellations.

3.1. Duration until the next price change

We consider first the distribution of the duration until the next price change, starting from a given
configuration of the order book. We define
• σa the first time when the ask queue (qat , t≥ 0) is depleted,
• σb the first time when the bid queue (qbt , t≥ 0) is depleted

Since the queue sizes are constant between events, one can express these stopping times as:

σa = inf{T ai , qaTai −+V a
i = 0} σb = inf{T bi , qbT bi −+V b

i = 0}

The price (st, t≥ 0) moves when the queue qt = (qbt , q
a
t ) hits one of the axes: the duration until the

next price move is thus
τ = σa ∧σb.

The following theorem gives the distribution of the duration τ , conditional on the initial queue
sizes:

Proposition 1 (Distribution of duration until next price move). The distribution of τ
conditioned on the state of the order book is given by:

P[τ > t|qa0 = a, qb0 = b] =

√
(
µ+ θ

λ
)a+bψa,λ,θ+µ(t)ψb,λ,θ+µ(t) (3)

where ψn,λ,θ+µ(t) =

∫ ∞
t

n

u
In(2

√
λ(θ+µ)u)e−u(λ+θ+µ)du (4)

and In is the modified Bessel function of the first kind. The conditional law of τ has a regularly
varying tail
• with tail exponent 2 if λ< µ+ θ
• with tail exponent 1 if λ= µ+ θ. In particular, if λ= µ+ θ, E[τ |qa0 = a, qb0 = b] =∞ whenever

a> 0, b > 0.
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Figure 3 Left: P (τ > t|qa0 = 4, qb0 = 5) as a function of t for λ = 12, µ + θ = 13. Right: same figure in log-log
coordinates. Note the Pareto tail which decays as t−2.

Proof. Since (qat , t≥ 0) follows a birth and death process with birth rate λ and death rate µ+θ,
L(s,x) :=E[e−sσa |qa0 = x] satisfies:

L(s,x) =
λL(s,x+ 1) + (µ+ θ)L(s,x− 1)

λ+µ+ θ+ s
.

We can find the roots of the polynomial: λX2− (λ+µ+ θ+ s)X+µ+ θ; one root is > 1, the other
is < 1; since L(s,0) = 1 and limx→∞L(s,x) = 0,

L(s,x) = (
(λ+µ+ θ+ s)−

√
((λ+µ+ θ+ s))2− 4λ(µ+ θ)

2λ
)x.

Moreover if we use the relation P[τ > t|qa0 = x, qb0 = y] = P[σa > t|qa0 = x]P[σb > t|qb0 = y],

P[τ > t|qa0 = x, qb0 = y] =

∫ ∞
t

L̂(u,x)du

∫ ∞
t

L̂(u, y)du.

This Laplace transform may be inverted (see (Feller 1971, XIV.7)) and the inversion yields

L̂(t, x) =
x

t

√
(
µ+ θ

λ
)x Ix(2

√
λ(θ+µ)t)e−t(λ+θ+µ),

which gives us the expected result.
Tail behavior of τ :
• If λ< µ+ θ:

L(s,x) = α(s)x ∼
s→0

1− x(λ+µ+ θ)

2λ(µ+ θ−λ)
s,

so Karamata’s Tauberian theorem (Feller 1971, XIII.5) yields

P[σa > t|qa0 = x] ∼
t→∞

x(λ+µ+ θ)

2λ(µ+ θ−λ)

1

t
;

therefore the conditional law of the duration τ is a regularly varying with tail index 2

P[τ > t|qa0 = x, qb0 = y] ∼
t→∞

xy(λ+µ+ θ)2

λ2(µ+ θ−λ)2
1

4t2
. (5)
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• If the order flow is balanced i.e. λ= µ+ θ then

L(s,x) = (α(s))x ∼
s→0

1− x√
λ

√
s,

the law of σa is regularly-varying with tail index 1/2 and

P[σa > t|qa0 = x] ∼
t→∞

x√
πλ

1√
t
.

The duration then follows a heavy-tailed distribution with infinite first moment:

P[τ > t|qa0 = x, qb0 = y] ∼
t→∞

xy

πλ

1

t
; (6)

The expression given in (3) is easily computed by discretizing the integral in (4). Plotting (3) for
a fine grid of values of t typically takes less than a second on a laptop. Figure 3 gives a numerical
example, with λ = 12 sec−1, µ+ θ = 13 sec−1, qa0 = 4, qb0 = 5 (queue sizes are given in multiples of
average batch size).

3.2. Probability of upward move in the price for a balanced limit order book

Assume now that λ = µ+ θ, i.e. that the flow of limit orders is balanced by the flow of market
orders and cancellations. Therefore for all t ≤ τ , qt = MN2λt

, where (Mn, n ≥ 0) is a symmetric
random walk on Z2 killed when it hits either the x-axis or the y-axis and (N2λt, t≥ 0) is a Poisson
process with parameter 2λ. Hence the probability of an upward move in the price starting from
a configuration qbt = n, qat = p for the order book is equal to the probability that the random walk
M starting from (n,p) hits the x-axis before the y-axis. This probability is given by the following
proposition:

Proposition 2. For (n,p) ∈ N2, the probability φ(n,p) that the next price move is an increase,
conditioned on having the n orders on the bid side and p orders on the ask side is:

φ(n,p) =
1

π

∫ π

0

(2− cos(t)−
√

(2− cos(t))2− 1)p
sin(nt) cos( t

2
)

sin( t
2
)

dt. (7)

Proof. The generator of the bivariate random walk (Mn, n ≥ 1) is the discrete Laplacian so
φ(n,p) = P[σa <σb|qb0− = n, qa0− = p] satisfies, for all n≥ 1 and p≥ 1,

4φ(n,p) = φ(n+ 1, p) +φ(n− 1, p) +φ(n,p+ 1) +φ(n,p− 1), (8)

with the boundary conditions: φ(0, p) = 0 for all p≥ 1 and φ(n,0) = 1 for all n≥ 1. This problem
is known as the discrete Dirichlet problem; solutions of (8) are called discrete harmonic functions.
(Lawler and Limic 2010, Ch. 8) show that for all t≥ 0, the functions

ft(x, y) = exr(t) sin(yt), and f̃t(x, y) = e−xr(t) sin(yt) with r(t) = cosh−1(2− cos t)

are solutions of (8). In (Lawler and Limic 2010, Corollary 8.1.8) it is shown that the probability
that a simple random walk (Mk, k≥ 1) starting at (n,p)∈Z+×Z+ reaches the axes at (x,0) is

2

π

∫ π

0

e−r(t)p sin(nt) sin(tx)dt,

therefore

φ(n,p) =
∞∑
k=1

2

π

∫ π

0

e−r(t)p sin(tn) sin(tk)dt.
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Since
m∑
k=1

sin(kt) =
sin(mt

2
) sin( (m+1)t

2
)

sin(t/2)
=

cos( t
2
)− cos((m+ 1

2
)t)

2 sin(t/2)
,

using integration by parts we see that the second term leads to the integral:∫ π

0

e−r(t)p sin(nt)

sin(t/2)︸ ︷︷ ︸
g(t)

cos((m+ 1/2)t)dt=− 1

m+ 1
2

∫ π

0

g′(t) sin((m+
1

2
)t)dt →

m→∞
0.

since g′ is bounded. So finally:

φ(n,p) =
1

π

∫ π

0

e−r(t)p sin(tn)
cos( t

2
)

sin( t
2
)
dt.

Noting that e−r(t) = (2− cos(t)−
√

(2− cos(t))2− 1) we obtain the result.

Figure 4 Left: Conditional probability of a price increase, as a function of the bid and ask queue size. Right:
comparison with transition frequencies for CitiGroup tick-by-tick data on June 26, 2008.

It is remarkable that the conditional probabilities (7) are, in the case of a balanced order book,
independent of the parameters describing the order flow. The expression (7) is easily computed
numerically: Figure 4 displays the shape of the function Φ. The comparison with the correspond-
ing empirical transition frequencies for CitiGroup tick-by-tick data on June 26, 2008 (Figure 4,
right) shows good agreement between the theoretical conditional probabilities and their empirical
counterparts.

3.3. Dynamics of the price

The high-frequency dynamics of the price in this model is described by a piecewise constant, right
continuous process (st, t≥ 0) whose jumps times correspond to times when the order book process
(qt, t≥ 0) hits one of the axes. Denote by (τ1, τ2, ...) the successive durations between price changes.
The number of price changes that occur during [0, t] is given by

Nt := max{ n≥ 0, τ1 + ...+ τn ≤ t }



Rama Cont & Adrien de Larrard: Price dynamics in a Markovian limit order market
11

At t = τi, sτi = sτi− + 1 if qτai− = 0 and sτi = sτi− − 1 if qτbi−
= 0. (X1,X2,X3, ...,Xn, ...) are the

successive moves in the price. Note that in general this is not a sequence of independent random
variables. We define for n≥ 1,

Zn =
n∑
i=1

Xi

the value of the price, after n changes. Hence, for all t≥ 0, st =ZNt .

Proposition 3. Let pcont = P[X2 = δ|X1 = δ] = P[X2 = −δ|X1 = −δ] be the probability of two
successive price moves in the same direction.
• ∀k≥ 1, Cov(X1,Xk) = (2pcont− 1)k−1.
• Conditional on the current state of the limit order book, the distribution of the n-th subsequent

price change Xn is:

pn(x, y) := P[Xn = δ|qa0 = x, qb0 = y] =
1 + (2pcont− 1)n−1(2p1(x, y)− 1)

2
,

Proof. Let, for (x, y) ∈N2, and for all n≥ 2, pn(x, y) the probability that Xn = δ, conditioned
on qa0 = x and qb0 = y. To simplify, we note pn for pn(x, y). pn is characterized by the following
recurrence relation: (

pn
1− pn

)
=

(
pcont 1− pcont

1− pcont pcont

)(
pn−1

1− pn−1

)
,

hence (
pn

1− pn

)
=

(
pcont 1− pcont

1− pcont pcont

)n−1(
p1

1− p1

)
.

The eigenvalues of this matrix are 1 and 2pcont− 1:(
pcont 1− pcont

1− pcont pcont

)
=

(
1 1
1 −1

)(
1 0
0 2pcont− 1

)(
1/2 1/2
1/2 −1/2

)
.

Therefore

pn =
1 + (2pcont− 1)n−1(2p1− 1)

2
.

Moreover for all n≥ 2,

Cov(X1,Xn) = p1pn + (1− pn)(1− p1)− p1(1− pn)− pn(1− p1)

Cov(X1,Xn) = (1 + 2pnp1− pn− p1)

Cov(X1,Xn) = (2pcont− 1)n−1.

Remark 1 (Negative autocorrelation of price changes at first lag). It is empiri-
cally observed that high frequency price movements have a negative autocorrelation at the first lag
Cont (2001). In our model Cov(Xk,Xk+1)< 0 if and only if pcont < 1/2, which happens when

∞∑
i=1

∑
j≥i

f(i, j)> 1/2

where f is the joint distribution of queue sizes after a price increase. This condition is verified on
all high-frequency data sets we have examined. For example, for CitiGroup stock we find

∞∑
i=1

∑
j≥i

f(i, j)> 0.7
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This asymmetry condition on f corresponds to the fact that, after an upward price move, the new
bid queue is generally smaller than the ask queue since the ask queue corresponds to the limit
order previously sitting at second best ask level, while the bid queue results from the accumulation
of orders over the very short period since the last price move. Under this condition, high frequency
increments of the price are negatively correlated: an increase in the price is more likely to be
followed by a decrease in the price.

Remark 2. The sequence of price increments (X1,X2, ...) is uncorrelated if and only if pcont = 1/2
which happens when

∞∑
i=1

∑
j≥i

f(i, j) = 1/2.

4. Diffusion limit of the price process

Assume λ+ θ≤ µ and that the joint distribution f of the queue sizes after a price move satisfies:

m(f) =
∞∑
i=1

∞∑
j=1

ijf(i, j)<∞ (9)

As discussed in Section 3.3, the high frequency dynamics of the price is described by a piecewise
constant stochastic process st =ZNt where

Zn =X1 + ...+Xn and Nt = sup{k; τ1 + ...+ τk ≤ t}

is the number of price moves during [0, t].
However, over time scales much larger than the interval between individual order book events,

prices are observed to have diffusive dynamics and modeled as such. To establish the link between
the high frequency dynamics and the diffusive behavior at longer time scales, we shall consider a
time scale tn = tζ(n) over which the average number of order book events is of order n and exhibit
conditions under which the rescaled price process

(snt :=
stn√
n
, t≥ 0)n≥1

verifies a functional central limit theorem i.e. converges in distribution to a non-degenerate process
(pt, t≥ 0) as n→∞. The choice of the time scale tn = tζ(n) cannot be arbitrary: it is imposed by
the distributional properties of the durations which, as observed in Section 3.1, are heavy tailed.
More precisely, ζ(n) is chosen such that

τ1 + ...+ τn
ζ(n)

has a well-defined limit.
We will show that the limit p is then a diffusion process which describes the dynamics of the

price at lower frequencies. In particular, we will compute the volatility of this diffusion limit p and
relate it to the properties of the order flow.

In the following D denotes the space of right continuous paths ω : [0,∞)→R2 with left limits,
equipped with the Skorokhod topology J1, and ⇒ will designate weak convergence on (D, J1) (see
Billingsley (1968) for definitions).
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4.1. Balanced order book

We first consider the case of a balanced order flow for which the intensity of market orders and
cancelations is equal to the intensity of limit orders. The study of high-frequency quote data
indicates that this is an empirically relevant case for many liquid stocks.

Theorem 1 If λ= µ+ θ, (
sn lognt√

n
, t≥ 0

)
n→∞⇒

(
δ

√
πλ

m(f)
Wt, t≥ 0

)

where δ is the tick size, m(f) is given by (9) and W is a standard Brownian motion.

Denote by τ0 = 1/λ the typical time scale separating order book events. Typically τ0 is of the order
of milliseconds. In plain terms, Theorem 1 states that, observed over a time scale τ2 >> τ0 (say, 10
minutes), the price has a diffusive behavior with a diffusion coefficient given by

σ= δ

√
nπλ

m(f)
(10)

where δ is the tick size and n lnn τ0 = τ2. In particular, this formula shows that the microstructure
of order flow affects price volatility through the ratio λ/m(f) where λ is the rate of arrival of
limit orders and m(f), given by (9), is a measure of market depth: in fact, our model predicts
a proportionality between the variance of price increments and this ratio. This is an empirically
testable prediction: Figure 5 compares, for stocks in the Dow Jones index, the standard deviation
of 10-minute price increments with

√
λ/m(f). We observe that, indeed, stocks with a higher value

of the ratio λ/m(f) have a higher variance, and standard deviation of price increments increases
roughly proportionally to

√
λ/m(f).

Remark 4.1 The short range correlations present in the increments of st vanish in the diffusion
limit. This is consistent with empirical observations: price changes exhibit autocorrelations at the
first few lags at high frequency but returns at lower frequency (say, hourly or daily) do not exhibit
any significant autocorrelation.

Proof. For all t≥ 0 and n≥ 1, let tn = n lognt and

sn lognt√
n

=
Z(tπλ/m(f))δ√

n
+

(
Z(Ntn)δ√

n
− Z(tπλ/m(f))δ√

n

)
(11)

According to Proposition 5, the sequence of processes (
Z(tπλn/m(f))√

n
, t≥ 0) converges in (D, J1)

to a Brownian motion with volatility δ

√
πλ

m(f)
. Let ρ : (1,∞) 7→ (1,∞) be a function satisfying:

ρ(t) log(ρ(t)) = t

Since ρ(t)∼t→∞
t

log(t)
,

Ntn ∼
n→∞

ρ(
πλtζ(n)

m(f)
)∼ tπλζ(n)

m(f) log(ζ(n))
, (12)

Ntn ∼
n→∞

tπλ

m(f)
.
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Figure 5
√
λ/m(f), estimated from tick-by-tick order flow (vertical axis) vs standard deviation of 10-minute price

increments (horizontal axis) for stocks in the Dow Jones Index, estimated from high frequency data on
June 26, 2008. Each point represents one stock. Red line indicates the best linear approximation.

Therefore for all t≥ 0, (
Z(Ntn)δ√

n
− Z(tπλ/m(f))δ√

n

)
n→∞⇒ 0 (13)

Therefore all finite dimensional distributions of the sequence of processes(
Z(Ntn)δ√

n
− Z(tπλ/m(f))δ√

n

)
t≥0

converge to a point mass at zero . Since this sequence of processes

is tight on (D, J1), it converges weakly to zero on (D, J1) (see Whitt (2002)). Finally,(
sn lognt√

n
, t≥ 0

)
n→∞⇒ δ

√
πλ

m(f)
W,

4.2. Case when market orders and cancelations dominate

We now consider the case in which the flow of market orders and cancellations dominates that of
limit orders: λ < θ + µ. In this case, price changes are more frequent since the order queues are
depleted at a faster rate than they are replenished by market orders. We also obtain a diffusion
limit though with a different scaling:

Theorem 2 Let λ< θ+µ and f a probability distribution on N2 which satisfies

m(λ, θ+µ,f) =
∞∑
i=1

∞∑
j=1

m(λ, θ+µ, i, j)f(i, j)<∞,

where for all (x, y)∈ (N∗)2,

m(λ, θ+µ,x, y) =

∫ ∞
0

dt

∫ ∞
t

ψx,λ,µ+θ(u)du

∫ ∞
t

ψy,λ,µ+θ(u)du
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where ψx,λ,µ+θ is given by (4). Then(
snt√
n
, t≥ 0

)
n→∞⇒

(√
1

m(λ, θ+µ,f)
δWt, t≥ 0

)
where W is a standard Brownian motion.

Proof. The sequence (τ2, τ3, ...) is a sequence of i.i.d random variables with finite mean equal
to m(λ, θ+µ,f). We apply the law of large numbers:

τ1 + τ2 + ...+ τn
n

n→∞→ m(λ, θ+µ,f).

Therefore,

∀t≥ 0, Nn
t

n→∞∼ [
tn

m(λ, θ+µ,f)
].

The rest of the proof follows the lines of the proof of theorem 1.
Variance of price change at intermediate frequency Theorem 2 leads to an expression of the

variance of the price at a time scale τ >> τ0, where τ0(∼ ms) is the average interval between order
book events:

σ2 =
τ

τ0

πλ

m(f,λ, θ+µ)
δ2 (14)

Note that while the left hand side of this equation is the variance of price changes (over a time
scale τ2), the right hand side only involves the tick size and quantities which relate to the statistical
properties of the order flow.

4.3. Conclusion

We have exhibited a simple model of a limit order market in which order book events are described
in terms of a Markovian queueing system. The analytical tractability of our model allows to compute
various quantities of interest such as
• the distribution of the duration until the next price change,
• the distribution of price changes, and
• the diffusion limit of the price process and its volatility.

in terms of parameters describing the order flow. These results provide some insight into the
relation between price dynamics and order flow in a limit order market. Moreover, the connection
with two-dimensional queueing systems allows to use the rich analytical theory developed for these
systems (see Cohen and Boxma (1983)) to compute many other quantities. We hope to pursue
further some of these analytical ramifications in future work.

A relevant question is to examine which of the above results are robust to departures from the
model assumptions and whether the intuitions conveyed by our model remain valid in a more
general context where one or more of these assumptions are dropped. This issue is further studied
in a companion paper Cont and de Larrard (2010) where we explore a more general dynamic model
relaxing some of the assumptions above.

5. Proofs of technical lemmas

Lemma 3 Let pcont = P[X2 = δ|X1 = δ|qa0 = x, qb0 = y] = P[X2 =−δ|X1 =−δ|qa0 = x, qb0 = y] be the
probability of two successive increase (or decrease) in the price, then
• For all sequence of integers (n1, n2, ..., np) and for all k≥ 1,

E[X2
n1
...X2

np
Xk] = δ2p+1(2p1− 1)(2pcont− 1)k−1,
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• for all p≥ 1,

lim
n→∞

E[
(X1 +X2 + ...+Xn)2p

np
] =

δ2p(2p)!

2pp!
,

• for all p≥ 1,

lim
n→∞

E[
(X1 +X2 + ...+Xn)2p+1

np+1/2
] = 0.

Proof. Since for all i≥ 1, X2
i = 1, E[X2

n1
...X2

np
Xk] =E[Xk]δ

2p, the following relation

E[X2
n1
...X2

np
Xk] = δ2p+1(2p1− 1)(2pcont− 1)k−1

is valid for all sequence (n1, n2, ..., np) and for all k≥ 1. For all p≥ 0,

E[(X1 + ...+Xm)2p] =
∑

k1+...+km=2p

(2p)!

k1!...km!
E[Xk1

1 ...X
km
m ];

for k1 + ....+km = 2p, E[Xk1
k1
...Xkm

km
] is maximal (equal to one) for k1 = k2 = ...= kp = 2. The number

of such p-uplets is equal to Cp
n, therefore as n→∞,

E[(X1 + ...+Xn)2p]∼ n!

p!(n− p)!
(2p)!

p!
.

Moreover, since
n!

(n− p)!np
→ 1 as n goes to infinity,

lim
n→∞

E[(X1 + ...+Xn)2p]

np
=

(2p)!

2pp!
,

We prove that

lim
n→∞

E[(X1 + ...+Xn)2p+1]

np+1/2
= 0.

using the same method.

Lemma 4 There is K > 0 such that for all n≥ 1,

E[(X1 + ...+Xn)4]≤Kn2.

Proof of lemma:
Let (n1, ..., nk) be p-uplet of integers, then the random variable Xn1 ...Xnk/δ

k is a binomial
random variable with parameter

1 + (2p1− 1)k(2pcont− 1)n1+...+nk−k

2
;

so

E[Xn1 ...Xnk ] = δk(2p1− 1)k(2pcont− 1)n1+...+nk−k

. We will use this relation in the following computations. For all n≥ 1, the multinomial formula
yields

E[(X1 + ...+Xn)4]≤ I1 + I2 + I3 + I4,



Rama Cont & Adrien de Larrard: Price dynamics in a Markovian limit order market
17

where

I1 =X4
1 + ...+X4

n = nδ, I2 = 6
n∑
i=1

n∑
j=i

E[X2
iX

2
j ]≤ 6n2δ2,

I3 = 12
n∑
i=1

n∑
j=i

n∑
l=j

E[X2
iXjXk]≤ 12δ4(2p1− 1)2n

∞∑
j=1

(2pc− 1)i−1
∞∑
k=1

(2pc− 1)j−1 ≤ 3δ4n(2p1− 1)2

(1− pcont)2
,

I4 = 24
n∑
i=1

n∑
j=i

n∑
l=j

n∑
r=l

E[XiXjXkXr]≤ 24δ4(2p1− 1)4

(
∞∑
i=1

(2pc− 1)i

)4

≤ 3δ4(2p1− 1)4

2(pc− 1)2
.

Therefore there exists K > 0 such that for all n≥ 1,

E[(X1 + ...+Xn)4]≤Kn2.

Proposition 4. For any 0< p1 < 1, 0< pcont < 1 and for any sequence (t1, ..., tk),

(
S[nt1]√
n
, ...,

S[ntk]√
n

)
n→∞⇒ (δN (0, t1), ..., δN (0, tk)).

Proof. First we will prove that

X1 + ...+Xn√
n

n→∞⇒ δN (0,1).

Since the sequence (X1,X2, ...) is neither stationary nor composed of independent random variables,
the central limit theorem cannot be directly applied. Let, for n≥ 1,

Zn =
X1 + ...+Xn√

n
,

and let Ψn(k)E[exp(ikZn)]. Since the moments of Zn are finite, we have:

Ψn(k) = 1 +
∞∑
m=1

(−ik)m

m!
µmn , where µmn =E[

(X1 +X2 + ...+Xn)m

nm/2
],

is the m-th moment of Zn. To prove the convergence of Zn toward a Gaussian distribution, it is
sufficient to prove that for all k ∈R,

lim
n→∞

Ψn(k) = e
−
δ2k2

2 =
∞∑
m=0

(−1)mk2mδ2m

2mm!
,

therefore it is enough to prove that for all p≥ 0,

lim
n→∞

µ2p
n =

δ2p(2p)!

2pp!
, and lim

n→∞
µ2p+1
n = 0,

which was proven in lemma 3. Now, let (t1, ..., tk) an sequence of real numbers. We assume without
loss of generality that this sequence is non-decreasing. We will prove that

(
S[nt1]√
n
, ...,

S[ntk]√
n

)
n→∞⇒ (δN (0, t1), ..., δN (0, tk)).
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Using the Cramer-Wold device, it is enough to prove that for all sequence of real numbers (a1, ..., ak),

a1S[nt1] + a2S[nt2] + ...+ akS[ntk]√
n

n→∞⇒ δN (0, a21t1 + ...+ a2ktk).

Let (a1, ..., ak) be a sequence of real numbers and let for all n≥ 1,

Un =
a1S[nt1] + a2S[nt2] + ...+ akS[ntk]√

n
.

We will prove that is the Fourier transform of Un converges to the Laplace transform of
δN (0, a21t1 + ...+ a2ktk). Let Ψn be the Laplace transform of Un:

∀k≥ 1,Ψn(k) = 1 +
∞∑
m=1

(−ik)m

m!
νmn ,

where

νmn =E[Um
n ].

Let for all i≥ 1,

Yi := ajXi, for [ntj−1]< i≤ [ntj].

We use the same method as the one described in lemma 3:

ν2pn =
1

np

∑
k1+...+km=2p

δ2p(2p)!

k1!...km!
E[Y k1

k1
...Y km

km
];

The only term that do not vanish when n goes to infinity, are the terms corresponding to k1 = k2 =
...= kp = 2, and when we group all the terms we obtain from the multinomial formula:

ν2pn →n→∞
(a21t1 + ...+ a2ktk)

p(2p)!

2pp!
.

Using the same method we have

ν2p+1
n

n→∞→ 0.

Therefore
a1S[nt1] + a2S[nt2] + ...+ akS[ntk]√

n

n→∞⇒ δN (0, a21t1 + ...+ a2ktk).

Since this holds true for any sequence (a1, ..., ak),

(
S[nt1]√
n
, ...,

S[ntk]√
n

)
n→∞⇒ (δN (0, t1), ..., δN (0, tk)).

Proposition 5. The sequence of processes (ξn)n≥1 defined as:

ξnt =
1√
n

j∑
k=1

Xk +
nt− j√

n
Xj+1,

j

n
≤ t < j+ 1

n

converges in distribution to a Brownian motion B on C(R+,R):

ξn
n→∞⇒ B on C(R+,R)



Rama Cont & Adrien de Larrard: Price dynamics in a Markovian limit order market
19

Proof. We proved in Proposition 4 the convergence of all finite dimensional distributions of ξn

to those of a standard Brownian motion. In order to prove the theorem, we need to prove that
the sequence of processes (ξn, n≥ 1) is tight on C(R+,R) According to the Lamperti criteria from
Lamperti (1962), if there exists M > 0 such that for all (s, t)∈R2

+,

E[|ξn(t)− ξn(s)|4]≤M |t− s|2,

then the sequence is tight on C(R+,R).

First case: if
j

n
≤ s≤ t≤ j+ 1

n
, then

|ξn(t)− ξn(s)|= 1√
n
n(t− s)Xj+1

|ξn(t)− ξn(s)| ≤
√
n|(t− s)Xj+1|.

Since n(t− s)≤ 1 and E[X4
j+1] = 1,

E[|ξn(t)− ξn(s)|4]≤ |t− s|2

If
j− 1

n
≤ s≤ j

n
≤ j+ k

n
≤ t≤ j+ k+ 1

n
, then

|ξn(t)− ξn(s)| ≤ |ξn(t)− ξn(
j+ k

n
)|+ |ξn(

j+ k

n
− ξn(

j

n
))|+ |ξn(

j

n
)− ξn(s)|.

By Jensen’s inequality,

E[|ξn(t)− ξn(s)|4]≤ 27

(
E[|ξn(t)− ξn(

j+ k

n
)|4] +E[|ξn(

j+ k

n
)− ξn(

j

n
))|4] +E[|ξn(

j

n
)− ξn(s)|4]

)
.

The first term and the last term can be treated as in the previous case. For the term in the middle,

E[|ξn(
j+ k

n
)− ξn

j

n
|4]≤ (

√
n)4E[(Xj+1 + ...+Xj+k)

4]≤ (
1√
n

)4Kk2 ≤K|t− s|2

because |t− s| ≥ j+ k

n
− j

n
=
k

n
and E[(X1 + ...+Xn)4]≤Kn2. Therefore the sequence (ξn)n≥0

is tight. Finally the sequence (ξn, n≥ 1) converges weakly to the Brownian motion.

Lemma 5 If λ= θ+µ, and f is a probability distribution on N2 such that

m(f) =
∞∑
i=1

∞∑
j=i

ijf(i, j)<∞,

then
τ1 + τ2 + ...+ τk

k logk
k→∞⇒ m(f)

πλ
.

Proof. The sequence (τ2, τ3, ...) is a sequence of i.i.d, regularly varying random variables, with
tail index equal to 1. Let L(s) the Laplace transform of τ2 and F (t) = P[τ2 > t]:

L(s) = 1− s
∫ ∞
0

exp(−st)F (t)dt.



Rama Cont & Adrien de Larrard: Price dynamics in a Markovian limit order market
20

From the expression of the conditional distribution of τ , we obtain that F (t)∼m(f)/πλt as t→∞.
Since

1

log(n)

∫ n

0

exp(−st/n log(n))F (t)dt
n→∞→ m(f)

πλ

and, using integration by parts,

1

log(n)

∫ ∞
n

exp(−st/n log(n))F (t)dt
n→∞→ 0.

Therefore
s

n log(n)

∫ ∞
0

exp(− st

n logn
)F (t)dt=

m(f)

πλ

s

n
+ o(

1

n
);

This implies that

(L(
s

n logn
))n = (1 +

m(f)

πλ
+ o(

1

n
))n→ exp (−m(f)

πλ
);

and
τ1 + τ2 + ...+ τn

n logn
n→∞⇒ m(f)

πλ
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