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Abstract

Starting from a no-dynamic-arbitrage principle that imposes that
trading costs should be non-negative on average and a simple model
for the evolution of market prices, we demonstrate a relationship be-
tween the shape of the market impact function describing the average
response of the market price to traded quantity and the function that
describes the decay of market impact. In particular, we show that
the widely-assumed exponential decay of market impact is compatible
only with linear market impact. We derive various inequalities relat-
ing the typical shape of the observed market impact function to the
decay of market impact, noting that empirically, these inequalities are
typically close to being equalities.

1 Introduction

Market impact modeling and estimation has long been central to the market
microstructure literature and also of course of great interest to traders. In-
deed today, any pre-trade analytic software worthy of the name generates a
pre-trade estimate of the expected cost of a proposed trade as a function of
the trade size and other parameters such as liquidity and volatility.

∗I wish to thank Peter Friz and my Merrill Lynch colleagues Joerg Osterrieder, Sergei
Satchkov, Chris Smith and Bruno White for helpful comments and suggestions.



In practice, trading costs are estimated (for example in Barra (1997),
Almgren, Thum, Hauptmann, and Li (2005) and Engle, Ferstenberg, and
Russell (2008)) by aggregating all executions of a certain type, such as all
VWAP1 executions, and bucketing by trade characteristics such as duration.
Expectations such as market impact functions should therefore be thought of
as unconditional averages over different market conditions. In particular, we
do not consider the price impact associated with strategies, such as liquidity-
seeking strategies, that are conditioned on the state of the order book or
other aspects of the market.

Starting from the observations that the autocorrelation of trade signs
decays very slowly with time and that the variance of the price changes is
empirically linear in time, and with a simple model for the evolution of market
prices, Bouchaud, Gefen, Potters, and Wyart (2004) argue convincingly that
market impact is temporary and that it decays as a power-law. The exponent
γ of the decay of market impact and the exponent α of the power-law of
decay of autocorrelation of order signs are related as γ ≈ (1 − α)/2. The
empirically observed linear growth of the variance of price changes with time
can be viewed as a consequence of the principle that price changes should be
unpredictable.

In unrelated work, starting from a principle of no-quasi-arbitrage, Huber-
man and Stanzl (2004) show that permanent market impact must be linear
in the trade quantity and symmetric between buys and sells.

In this article, we impose a no-dynamic-arbitrage principle that merely
states that the expected cost of trading should be non-negative so that price
manipulation is not possible. Starting from this principle, we extend the
above-mentioned results by linking the decay of market impact to the shape
of the market impact function.

In Section 2, we describe the price process, showing with specific exam-
ples that it generalizes price processes previously considered in the literature.
In Section 3, we state the principle of no-dynamic-arbitrage and explore the
special cases of permanent impact and trading in and out of a position at the
same rate, independent of specific assumptions on the shapes of the market
impact and decay functions. In Section 4, we study exponential decay of tem-
porary market impact, eliminating this assumption on empirical grounds. In

1VWAP stands for “volume-weighted average price”. The corresponding strategy at-
tempts to deviate as little as possible from the VWAP benchmark by trading evenly in
volume (or “business”) time. In this article, time should always be thought of as business
time.
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Section 5, we study power-law decay of market impact, deriving inequalities
imposed by no-dynamic-arbitrage and studying compatibility with different
forms of the market impact function. In Section 6, we explore the implica-
tions of various stylized facts: the observation by Bouchaud, Gefen, Potters,
and Wyart (2004) that market impact must be temporary and decay as a
power law, the remarkable success of the well-known square-root market im-
pact formula, and the tail-behavior of the limit order book. In Section 7, we
summarize our findings and in Section ??, offer some concluding remarks.

2 Model Setup

In what follows, we suppose that the stock price St at time t is given by

St = S0 +

∫ t

0

f(ẋs) G(t − s) ds +

∫ t

0

σ dZs (1)

where ẋs is our rate of trading in dollars at time s < t, f(ẋs) represents the
impact of trading at time s and G(t − s) is a decay factor.

St follows an arithmetic random walk with a drift that depends on the
accumulated impacts of previous trades. The cumulative impact of others’
trading (the trading crowd in the terminology of Huberman and Stanzl) is
assumed to be implicitly in S0 and the noise term. Drift is ignored for two
reasons: drift is a lower order effect and when estimating market impact in
practice, we typically average buys and sells.

We refer to f(·) as the instantaneous market impact function and to G(·)
as the decay kernel.

The continuous time process (1) can be viewed as a limit of the discrete
time process:

St =
∑

i<t

f(δxi) G(t − i) + noise

where δxi = ẋi δt is the quantity traded in some small time interval δt char-
acteristic of the stock, and by abuse of notation, f(·) is the market impact
function. δxi > 0 represents a purchase and δxi < 0 represents a sale. δt
could be thought of as 1/ν where ν is the trade frequency. Increasing the
rate of trading ẋi is equivalent to increasing the quantity traded each δt.

As we will show in Section 2.3, expression (1) may be viewed as a gener-
alization of processes previously considered by Almgren, Thum, Hauptmann,
and Li (2005), Bouchaud, Gefen, Potters, and Wyart (2004) and Obizhaeva
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and Wang (2005). Consistent with our earlier comments related to not con-
ditioning on the state of the market, our assumed price process (1) corre-
sponds to the “bare propagator” formulation of Bouchaud, Gefen, Potters,
and Wyart (2004) rather than the state-dependent formulation of ?).

2.1 Price impact and slippage

The cost of trading can be decomposed into two components. First, the
impact of our trading on the market price (the mid-price for example): We
refer to this effect as price impact. Our price impact is described by the
price update function in the terminology of Huberman and Stanzl. However,
whereas in the Huberman and Stanzl setup, price impact must be permanent,
in our setup, price impact may decay over time. In particular, price impact
may decay as a power-law as argued by Bouchaud, Gefen, Potters, and Wyart
(2004).

The second component of the cost of trading corresponds to market fric-
tions such as effective bid-ask spread that affect only our execution price;
We refer to this component of trading cost as slippage (temporary impact in
the terminology of Huberman and Stanzl). For small volume fractions, we
could think of slippage as being proxied by VWAP slippage, the average dif-
ference in price between an actual VWAP execution and the market VWAP.
In what follows, we will neglect slippage; the inequalities we derive will all
be weakened in practice to the extent that slippage is significant.

2.2 Cost of trading

Denote the number of shares outstanding at time t by xt. Then from (1),
neglecting slippage, the expected cost C[Π] associated with a given trading
strategy Π = {xt} is given by

C[Π] = E

[
∫ T

0

ẋt (St − S0) dt

]

=

∫ T

0

ẋt dt

∫ t

0

f (ẋs) G(t − s) ds (2)

The dxt = ẋt dt shares traded at time t are traded at an expected price

St = S0 +

∫ t

0

f (ẋs) G(t − s) ds

4



which reflects the residual cumulative impact of all our prior trading. Obvi-
ously, cost by this definition is equivalent to expected implementation short-
fall.

2.3 Special cases

Almgren et al.

In our notation, the temporary component of the model of Almgren, Thum,
Hauptmann, and Li (2005) corresponds to setting G(t − s) = δ(t − s) and
f(v) = η σ vβ with β = 0.6. Here, σ is volatility and vt = ẋt/V is a dimen-
sionless measure of the rate of trading, where V is the market volume per
unit time (average daily volume say).

In this model, temporary market impact decays instantaneously. Our
trading affects only the price of our own executions; other executions are not
affected. The cost of trading becomes:

C[Π] =

∫ T

0

ẋt dt

∫ t

0

f (ẋs) G(t − s) ds = η σ

∫ T

0

ẋ1+β
t dt

Obizhaeva and Wang

In the setup of Obizhaeva and Wang (2005), we have G(τ) = e−ρ τ and f(v) ∝
v. In this model, market impact decays exponentially and instantaneous
market impact is linear in the rate of trading. The cost of trading becomes:

C[Π] =

∫ T

0

ẋt dt

∫ t

0

f (ẋs) G(t − s) ds

∝
∫ T

0

ẋt dt

∫ t

0

ẋs exp {−ρ (t − s)} ds

Alfonsi, Schied, and Schulz (2007) also assume exponential decay of market
impact but they assume a nonlinear market impact function.

Bouchaud et al.

In the setup of Bouchaud, Gefen, Potters, and Wyart (2004), we have f(v) ∝
log(v) and

G(t − s) ∝ l0
(l0 + t − s)β
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with β ≈ (1−γ)/2 where γ is the exponent of the power law of autocorrelation
of trade signs. In this model, market impact decays as a power law and
instantaneous market impact is concave in the rate of trading. The cost of
trading becomes:

C[Π] =

∫ T

0

ẋt dt

∫ t

0

f (ẋs) G(t − s) ds

∝
∫ T

0

ẋt dt

∫ t

0

log(ẋs)

(l0 + t − s)β
ds

3 The principle of no-dynamic-arbitrage

Huberman and Stanzl define a round trip trade as a sequence of trades whose
sum is zero. In our notation, a trading strategy Π = {xt} is a round-trip trade

if
∫ T

0

ẋt dt = 0

By analogy with another of Huberman and Stanzl’s definitions, we define a
price manipulation to be a round-trip trade Π whose expected cost C[Π] is
negative.

The principle of no-dynamic-arbitrage states that price manipulation is not
possible.

Equivalently, the cost of trading is non-negative on average.
More formally, for any strategy {xt} such that

∫ T

0
ẋt dt = 0,

C[Π] =

∫ T

0

ẋt dt

∫ t

0

f (ẋs) G(t − s) ds ≥ 0

We see that the no-dynamic-arbitrage condition imposes a relationship be-
tween the shape of the market impact function f(·) and the decay kernel
G(·). We say that a market impact function f(·) and a decay kernel G(·) are
consistent if the combination precludes price manipulation.
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3.1 Permanent impact

Suppose we trade into a position at the rate +v and out at the same rate
−v. If market impact is permanent, without loss of generality, G(·) = 1 and
the cost of trading becomes

C[Π] = v f(v)

{

∫ T/2

0

dt

∫ t

0

ds −
∫ T

T/2

dt

∫ T/2

0

ds

}

+v f(−v)

∫ T

T/2

dt

∫ t

T/2

ds

= v
T 2

8
{−f(−v) − f(v)}

If f(v) > −f(−v), we could manipulate the market price by buying then sell-
ing at the same rate and conversely if f(v) < −f(−v), we could manipulate
the market price by selling then buying at the same rate. Thus, as originally
shown by Huberman and Stanzl (2004), no-dynamic-arbitrage imposes that
if market impact is permanent, f(v) = −f(−v).

Motivated by this observation and the empirical observation that there
appears to be no substantial difference between f(v) and −f(−v), we hence-
forth assume that f(v) = −f(−v).

3.2 A specific strategy

Consider a strategy where shares are accumulated at the (positive) constant
rate v1 and then liquidated again at the (positive) constant rate v2. According
to equation (2), and assuming f(v) = −f(−v), the cost of this strategy is
given by C11 + C22 − C12 with

C11 = v1 f (v1)

∫ θ T

0

dt

∫ t

0

G(t − s) ds

C22 = v2 f (v2)

∫ T

θ T

dt

∫ t

θ T

G(t − s) ds

C12 = v2 f (v1)

∫ T

θ T

dt

∫ θ T

0

G(t − s) ds (3)

where θ is such that v1 θ T − v2 (T − θ T ) = 0 so

θ =
v2

v1 + v2
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The principle of no-dynamic-arbitrage imposes that

C11 + C22 − C12 ≥ 0

Intuitively, the cross-term C12 represents the component of the cost of stock
sales (purchases) associated with the price impact of prior stock purchases
(sales). If the cross-term C12 = 0, there is no dynamic arbitrage and price
manipulation is not possible. In particular, in the model of Almgren, Thum,
Hauptmann, and Li (2005) where market impact decays instantaneously and
the market price has no history of prior trading, there is no dynamic arbi-
trage.

3.3 Trading in and out at the same rate

Now, suppose only that G(·) is strictly decreasing (again with f(v) = −f(−v)).
Then the cost of acquiring a position at the constant rate v then liquidating
it again at the same rate is given by

C[Π] = v f(v)

{

∫ T/2

0

dt

∫ t

0

G(t − s) ds +

∫ T

T/2

dt

∫ t

T/2

G(t − s) ds

−
∫ T

T/2

dt

∫ T/2

0

G(t − s) ds

}

= v f(v)

{

∫ T/2

0

dt

∫ t

0

[G(t − s) − G(t + T/2 − s)] ds

+

∫ T

T/2

dt

∫ t

T/2

[G(t − s) − G(T − s)] ds

}

> 0

and there is no price manipulation.
We conclude that if price manipulation is possible with this specific strat-

egy, it must involve trading in and out of a position at different rates.

4 Exponential decay of market impact

Suppose now that the decay kernel has the form

G(t − s) = e−ρ (t−s)
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and that we acquire a position at rate v1, liquidating it again at the rate v2.
Then, explicit computation of all the integrals in (3) gives

C11 = v1 f (v1)
1

ρ2

{

e−ρ θ T − 1 + ρ θ T
}

C12 = v2 f (v1)
1

ρ2

{

1 + e−ρ T − e−ρ θ T − e−ρ (1−θ) T
}

C22 = v2 f (v2)
1

ρ2

{

e−ρ (1−θ) T − 1 + ρ (1 − θ) T
}

(4)

Again, the no-dynamic-arbitrage principle forces a relationship between
the instantaneous impact function f(·) and the decay kernel G(·, ·):

C11 + C22 − C12 ≥ 0

After making the substitution θ = v2/(v1 + v2), we obtain

v1 f(v1)

[

e
−

v2 ρ

v1+v2 − 1 +
v2 ρ

v1 + v2

]

+v2 f(v2)

[

e
−

v1 ρ

v1+v2 − 1 +
v1 ρ

v1 + v2

]

−v2 f(v1)
[

1 + e−ρ − e
− y1 ρ

v1+v2 − e
−

v2 ρ

v1+v2

]

≥ 0 (5)

where, without loss of generality, we have set T = 1. We note that the first
two terms are always positive so price manipulation is only possible if the
third term (C12) dominates the others.

Example: f(v) =
√

v

Let v1 = 0.2, v2 = 1, ρ = 1. Then the cost of liquidation is given by

C = C11 + C22 − C12 = −0.001705 < 0

Since ρ really represents the product ρ T , we see that for any choice of ρ, we
can find a combination {v1, v2, T} such that a round trip with no net purchase
or sale of stock is profitable. We conclude that if market impact decays expo-
nentially, no-dynamic-arbitrage excludes a square root instantaneous impact
function.
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More generally, expanding expression (5) in powers of ρ, no-dynamic-
arbitrage imposes that

v1 v2 [v1 f(v2) − v2 f(v1)] ρ2

2(v1 + v2)2
+ O

(

ρ3
)

≥ 0

We see that price manipulation is always possible for small ρ unless f(v) ∝ v
and so we may state2:

Lemma 4.1. If temporary market impact decays exponentially, price manip-

ulation is possible unless the instantaneous market impact function f(v) is

directly proportional to v.

Taking the limit ρ → 0+, we obtain

Corollary 4.2. Non-linear permanent market impact is inconsistent with

the principle of no-dynamic-arbitrage.

again as originally shown by Huberman and Stanzl.

4.1 Linear permanent market impact

If f(v) = η v for some η > 0 and G(t − s) = 1, the cost of trading becomes

C[Π] = η

∫ T

0

ẋt dt

∫ t

0

ẋs ds =
η

2
(xT − x0)

2

The trading cost per share is then given by

C[Π]

|xT − x0|
= η |xT − x0|

which is independent of the details of the trading strategy (depending only
on the initial and final positions) and linear in the trade quantity.

2In a forthcoming paper, Peter Friz proves that f(v) ∝ v is consistent with any convex
non-increasing decay kernel G(·).
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4.2 Excluding exponential decay of market impact

Empirically (see Almgren, Thum, Hauptmann, and Li (2005) for example),
market impact is concave in v for small v. Also, market impact must be
convex for very large v; imagine submitting a sell order whose size is much
greater than the quantity available on the bid side of the order book3. It fol-
lows that no-dynamic-arbitrage together with any reasonable instantaneous
market impact function f(·) excludes exponential decay of market impact as
a realistic assumption.

5 Power-law decay of market impact

Having excluded exponential decay of market impact as a realistic assump-
tion, suppose instead that the decay kernel has the form

G(t − s) =
1

(t − s)γ
, 0 < γ < 1

Then, explicit computation of all the integrals in (3) gives

C11 = v1 f (v1)
T 2−γ

(1 − γ) (2 − γ)
θ2−γ

C22 = v2 f (v2)
T 2−γ

(1 − γ) (2 − γ)
(1 − θ)2−γ

C12 = v2 f (v1)
T 2−γ

(1 − γ) (2 − γ)

{

1 − θ2−γ − (1 − θ)2−γ
}

(6)

According to the principle of no-dynamic-arbitrage, substituting θ =
v2/(v1 + v2), we must have

f (v1)
{

v1 v2
1−γ − (v1 + v2)

2−γ + v1
2−γ + v2

2−γ
}

+ f (v2) v1
2−γ ≥ 0 (7)

If γ = 0, the no-dynamic-arbitrage condition (7) reduces to

f (v2) v1 − f (v1) v2 ≥ 0

so again, we must have f(v) ∝ v.

3As has happened in the past, notably on the Tokyo Stock Exchange
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If γ = 1, equation (7) reduces to

f (v1) + f (v2) ≥ 0

So long as f(·) ≥ 0, there is no constraint on f(·) when γ = 1. We see
that in contrast with the case of exponential decay of market impact, power-
law decay of market impact may be compatible with realistic shapes of the
market impact function f(·).

5.1 The limit v1 ≪ v2 and 0 < γ < 1

In this limit, we accumulate stock much more slowly than we liquidate it. Let
v1 = ǫ v and v2 = v with ǫ ≪ 1. Then, in the limit ǫ → 0, with 0 < γ < 1,
equation (7) becomes

f(ǫ v)
{

ǫ − (1 + ǫ)2−γ + ǫ2−γ + 1
}

+ f(v) ǫ2−γ

∼ −f(ǫ v) (1 − γ) ǫ + f(v) ǫ2−γ ≥ 0

so for ǫ sufficiently small we have

f (ǫ v)

f (v)
≤ ǫ1−γ

1 − γ
(8)

If the condition (8) is not satisfied, price manipulation is possible by
accumulating stock slowly, maximally splitting the trade, then liquidating it
rapidly.

5.2 Special cases

Power-law impact: f(v) ∝ vδ

If f(v) ∼ vδ as found by for example Almgren, Thum, Hauptmann, and Li
(2005), the no-dynamic-arbitrage condition (8) reduces to ǫ1−γ−δ ≥ 1 − γ so
we must have γ + δ ≥ 1. Stating this result formally:

Lemma 5.1. Small v no-dynamic-arbitrage condition.

If G(τ) = τ−γ and f(v) ∝ vδ, dynamic-no-arbitrage imposes that

γ + δ ≥ 1.

12



Log impact: f(v) ∝ log(v/v0)

Bouchaud, Gefen, Potters, and Wyart (2004) find that their empirical results
are well-described by f(v) ∼ log v. Of course, f(·) must be non-negative, so
the trading rate v must always be greater than some minimum trading rate
v0. For example, one could think of one share every trade as being the
minimum rate. In the case of a stock that trades 10 million shares a day,
10,000 times, and where the average trade size is 1,000, we would obtain
v0 = 0.10%. Noting that

log v = lim
δ→0

vδ − 1

δ
,

we might guess that price manipulation is possible for all γ < 1. In fact, the
precise condition on γ depends on the minimum trading rate v0.

For example, substituting v0 = 0.001, v1 = 0.15, v2 = 1.0 and γ = 1/2
into the arbitrage condition (7) with f(v) = log(v/v0) gives the expected
cost of the round-trip trade as −0.0028 which constitutes price manipulation
(i.e. dynamic arbitrage).

For the general case, suppose that we trade into a position at some rate
v with v/v0 > 1 and v ≪ 1. The substituting into (7) gives

log (v/v0)
{

v − (1 + v)2−γ + v2−γ + 1
}

+ log (1/v0) v2−γ

= log (v/v0)
{

−(1 − γ) v + O(v2−γ)
}

+ log (1/v0) v2−γ

So, for every γ < 1, provided v0 is sufficiently small, we can find a small
enough v > v0 such that price manipulation is possible.

The choice of market impact function f(v) ∼ log(v) is therefore incon-
sistent with power-law decay (with γ < 1) of market impact in the limit
v0 → 0.

5.3 The limit v1 > v2 and 0 < γ < 1

Suppose we accumulate stock at some very high rate v1 and liquidate at some
lower rate v2. This is the well-known pump and dump strategy4. Setting
v = v2/v1 < 1 and substituting into the dynamic-no-arbitrage condition (7)
with power-law decay of market impact, we obtain

f (v1)
{

v1−γ − (1 + v)2−γ + 1 + v2−γ
}

+ f (v2) ≥ 0 (9)

4See http://www.sec.gov/answers/pumpdump.htm for a definition.
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Since f(v2) is always positive, price manipulation is possible only if

h(v, γ) := v1−γ − (1 + v)2−γ + 1 + v2−γ < 0 (10)

Expression (10) is shown in Appendix A to be equivalent to the condition:

γ < γ∗ := 2 − log 3

log 2
≈ 0.415

So if γ > γ∗, price manipulation is not possible.
Is price manipulation possible if γ < γ∗? We first note that h(v, γ)

decreases as v → 1 so price manipulation is maximized near v = 1. From
Section 3.3, we already know that there is no dynamic arbitrage when trading
in and out at the same rate as can be checked again easily in this case by
substituting v2 = v1 into equation (9) to obtain

f (v1)
{

4 − 22−γ
}

≥ 0 for all γ ≥ 0

Observe that in practice, we cannot exceed some maximum rate of trad-
ing vmax corresponding for example to continuously exhausting the available
quantity in the order book. Without loss of generality, set vmax = 1. Then,
as vi → 1, we must have f(vi) → ∞. Specifically, in Section 6.3, we will
argue that

f(vi) ∼
1

(1 − vi)ν
as vi → 1

for some ν > 0.
With ǫ ≪ 1, substituting v1 = 1− ǫ2 and v2 = 1− ǫ into equation (9) and

in the limit ǫ → 0, we see that price manipulation is possible if

3 − 22−γ

ǫ2 ν
+

1

ǫν
< 0

For any γ < γ∗, we can choose ǫ sufficiently small to ensure that the first
term dominates the second resulting in price manipulation.

We deduce that, for a market impact function f(·) of the above form with
any exponent ν > 0, the no-arbitrage condition is:

Lemma 5.2. Large size no arbitrage condition

γ ≥ γ∗ = 2 − log 3

log 2
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6 Stylized facts

6.1 Power law decay of market impact

As mentioned earlier, Bouchaud, Gefen, Potters, and Wyart (2004) have
argued convincingly that price impact is temporary and that it decays as a
power-law. We proceed to outline their argument:

Suppose market impact is permanent and proportional to some function
f(n) of the trade-size n. Then the change in price after N trades is given by

∆P =

N
∑

i

η ǫi f(ni)

where ǫi and ni denote the sign and size of the ith trade respectively. If
Cov[ǫi, ǫj ] = 0 for i 6= j, the variance of the price change is given by

Var[∆P ] = η2 N E[f(ni)
2]

which grows linearly with N . Empirically however, we find that autocorre-
lation of trade signs shows power-law decay with a small exponent α (corre-
sponding to very slow decay). In this case, with Cov[ǫi, ǫj] ∝ |j − i|−α, the
cross-term in the computation of daily variance dominates and we obtain

Var[∆P ] ∼
∑

i6=j

Cov[ǫi, ǫj ] E[f(ni)] E[f(nj)]

∼ N2−α as N → ∞

The variance of price changes grows superlinearly with N .
Empirically, we find that, to a very good approximation, Var[∆P ] ∝ N .

If the variance of price changes grew superlinearly as N2−α, returns would be
serially correlated and market efficiency would be glaringly violated: simple
trend-following strategies would be consistently profitable. We conclude that
market impact cannot be permanent.

If on the other hand, market impact were temporary and decayed as 1/T γ,
we would have

Var[∆P ] ∼
N−1
∑

i=1

N−1
∑

j=1

E[f(ni)] E[f(nj)]

(N − i)γ (N − j)γ |j − i|α

∼ N2−α−2 γ as N → ∞
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In this case, the variance of price changes grows linearly with N only if

γ =
1 − α

2

For the French stocks considered by Bouchaud, Gefen, Potters, and Wyart
(2004), the exponent α ≈ 0.2 so γ ≈ 0.4.

6.2 The square-root formula, γ and δ

The square-root formula has the following form:

Cost = Spread term + c σ

√

n

V

where n is the number of shares to be traded, σ is the volatility of the stock
(in daily units), and V is the average daily volume of the stock. With the
terminology of Section 2.1, we could think of the spread term as representing
slippage and the second square-root term as representing price impact.

The square-root formula has been widely used in practice for many years
to generate a pre-trade estimate of transactions cost. As noted in Chapter
16 of Grinold and Kahn (1995), this formula is consistent with the trader
rule-of-thumb that says that it costs roughly one day’s volatility to trade one
days’ volume. Moreover, various studies of market impact costs, notably the
study documented in Chapter 7 of the Barra Market Impact Model Handbook
(Barra 1997), have found the square-root formula to fit transactions cost data
remarkably well.

Interestingly, the square-root formula implies that the cost of liquidating
a stock is independent of the time taken: the formula refers neither to the
duration of the trade nor to the trading strategy adopted. Fixing market
volume and volatility, price impact depends only on trade-size. At first, this
claim seems to contradict our intuition that expected price impact should
increase as the rate of trading v increases. Indeed, this intuition is empirically
verified for very large trading rates that necessitate trading in sizes large
relative to the quantity available in the order book. For reasonable trading
rates however (volume fractions of 1% to 25% say), it does seem to be the
case that price impact is roughly independent of trade duration, as can be
checked for example by referring to Tables 1 and 2 of Engle, Ferstenberg,
and Russell (2008) where conditioning on trade-size, cost seems to be only
weakly dependent on trade duration.
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According to our simple trade superposition model, from equation (6),
the price impact associated with a VWAP execution with duration T is pro-
portional to

v f (v) T 2−γ

Noting that v = n/(V T ) (again with V denoting average daily volume), and
putting f(v) ∝ vδ, the impact cost per share is then proportional to

v1+δ T 1−γ =
( n

V

)δ

T 1−γ−δ

If γ + δ = 1, the cost per share is independent of T and in particular, if
γ = δ = 1/2, the impact cost per share is proportional to

√

n/V , recovering
the square-root formula.

We see that the square-root formula is consistent with both power-law
decay of market impact and a power-law form of the market impact function
f(·). Almgren, Thum, Hauptmann, and Li (2005) estimate δ ≈ 0.6 and from
Section 6.1, we have the Bouchaud et al. estimate of γ ≈ 0.4.

Recall the no-dynamic-arbitrage condition from Section 5.1:

γ + δ ≥ 1

Putting the two empirical estimates together, we have γ + δ ≈ 0.4 + 0.6 = 1!

6.3 Very high trading rates

Bouchaud, Mézard, and Potters (2002) derive the following approximation
to the average density ρ(∆̂) of orders as a function of a rescaled distance ∆̂
from the price level at which the order is placed to the current price:

ρ(∆̂) = e−∆̂

∫ ∆̂

0

du
sinh(u)

u1+µ
+ sinh(∆̂)

∫ ∞

∆̂

du
e−u

u1+µ
(11)

where µ is the exponent in the empirical power-law distribution of new limit
orders. With µ = 0.6 as estimated by Bouchaud, Mézard, and Potters (2002),
we obtain the density plotted in Figure 1. Computing the cumulative order
density (book depth) as a function of the price-level ∆̂ and switching the
axes, we may compute the virtual impact function of Weber and Rosenow
(2005), a function that measures the price impact conditional on trading a
given quantity instantaneously using a single market order. With µ = 0.6,
we obtain the virtual impact function graphed in Figure 2.
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Figure 1: The red line is a plot of the order density ρ(∆̂) with µ = 0.6.
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The virtual impact function is convex for large size. Also, it’s not possible
to trade in a size greater than the quantity currently available in the order
book so price impact increases without limit as n → nmax. Given the ∆̂−1−µ

shape of the tail of the order book, we have

nmax − n(∆̂) ∼
∫ ∞

∆̂

du

u1+µ
=

µ

∆̂µ

where n(∆̂) is the cumulative share quantity available up to level ∆̂ in the
order book. Inverting this relationship, we see that instantaneous market
impact has the tail behavior

∆P ∼ 1

(n − nmax)1/µ

Then, following the discussion of Section 2 where the trading rate v was

18



Figure 2: Switching x− and y−axes in a plot of the cumulative order density
gives the virtual impact function plotted below. The red line corresponds to
µ = 0.6 as before.
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argued to be a proxy for the size n of individual trades, we have

∆P ∼ 1

(v − vmax)1/µ

for sufficiently large v.
We observe that the form of this relationship is consistent with the as-

sumptions of Lemma 5.2 so we must have

γ ≥ 2 − log 3

log 2
≈ 0.415

We further observe that the estimate γ ≈ 0.4 of Bouchaud, Gefen, Potters,
and Wyart (2004) is also roughly consistent with this inequality.
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7 Summary

Bouchaud, Gefen, Potters, and Wyart (2004) have previously noted that
the market self-organizes in a subtle way such that the exponent γ of the
power law of decay of market impact and the exponent α of the decay of
autocorrelation of trade signs balance to ensure diffusion (variance increasing
linearly with time).

γ ≈ (1 − α)/2 (12)

In particular, if the autocorrelation of trade signs has long memory, we must
have γ ≤ 1/2.

By imposing no-dynamic-arbitrage we show that if the market impact
function is of the form f(v) ∝ vδ, we must have

γ + δ ≥ 1

We exclude various other frequently-considered combinations of functional
forms for market impact and decay such as exponential decay with nonlinear
market impact.

We then observe that if the average cost of a (not-too-aggressive) VWAP
execution is roughly independent of duration, the exponent δ of the power
law of market impact should satisfy:

δ + γ ≈ 1

and by considering the tails of the limit-order book, we deduce that

γ ≥ γ∗ := 2 − log 3

log 2
≈ 0.415 (13)

Note in passing that (12) together with (13) imposes the following constraint
on the autocorrelation of trade-signs:

α ≤ 1 − 2 γ∗ ≈ 0.17

Faster decay is ruled out by no-dynamic-arbitrage.
Recall also that empirical estimates are γ ≈ 0.4 (Bouchaud, Gefen, Pot-

ters, and Wyart 2004) and for not-too-aggressive trading strategies, δ ≈ 0.6
(Almgren, Thum, Hauptmann, and Li 2005).

Figure 3 has a schematic representation of our results. In particular, we
note that although values of δ and γ may be close to the boundary of allowable
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Figure 3: Combinations to the right of the red line satisfy γ + δ ≥ 1, to
the right of the blue line γ ≥ γ∗, to the left of the green line γ ≤ 1/2 and
in the shaded intersection, the allowable values of γ and δ consistent with
the stylized facts of market impact. The black dot represents the empirical
estimates γ ≈ 0.4 and δ ≈ 0.6 and the blue diamond, the values γ = 0.5 and
δ = 0.5 consistent with the square-root formula.
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values for typical not-too-aggressive trading strategies, nothing precludes δ
from moving away from this boundary when the trading strategy is aggressive
and the rate of trading is very high. For example, an exponent µ = 0.6 in
the power-law of limit order arrivals would give rise to δ = 1/0.6 ≈ 1.67.
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We emphasize that none of the inequalities we have derived are hard in
practice; as noted earlier in Section 2.1, all the above inequalities are weak-
ened to the extent that market frictions such as slippage become significant.

Also, our results are all in the context of our simple price process (1): It
could be for example that the decay of market impact is dependent on trade-
size. Nor have we investigated every possible combination of price impact
function f(·) and decay kernel G(·); understanding what combinations of
functions are consistent with no-dynamic-arbitrage would be interesting in
its own right. And even under the assumptions f(v) ∝ vδ and G(τ) ∼ τ−γ ,
we have only demonstrated that if the parameter inequalities we derived are
violated, price manipulation is possible; we have not proved the converse.

8 Concluding remarks

On a final philosophical note, the ability of no-dynamic-arbitrage principles
to explain patterns in empirical observations is related to the self-organizing
properties of markets with heterogenous agents, specifically statistical arbi-
trageurs. Agents will act so as to cancel any local trend in the observed price
series, ensuring that the autocorrelation of returns is zero to a good approx-
imation: that is, ensuring that variance varies linearly with time. Agents
continuously monitor the reaction of market prices to volume, trading to
take advantage of under- or over-reaction, ensuring that on average, it costs
money to trade stock and precluding price manipulation.
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Bouchaud, Jean-Philippe, Marc Mézard, and Marc Potters, 2002, Statistical
properties of stock order books: empirical results and models, Quantitative

Finance 2, 251–256.

Engle, Robert F., Robert Ferstenberg, and Jeffrey Russell, 2008, Measur-
ing and modeling execution cost and risk, Discussion paper University of
Chicago Graduate School of Business.

Grinold, Richard C., and Ronald N. Kahn, 1995, Active Portfolio Manage-

ment (New York: The McGraw-Hill Companies, Inc.).

Huberman, Gur, and Werner Stanzl, 2004, Price manipulation and quasi-
arbitrage, Econometrica 72, 1247–1275.

Obizhaeva, Anna, and Jiang Wang, 2005, Optimal trading strategy and sup-
ply/demand dynamics, Discussion paper MIT Sloan School of Manage-
ment.

Weber, P., and B. Rosenow, 2005, Order book approach to price impact,
Quantitative Finance 5, 357 – 364.

23



A Proof of large size no-arbitrage condition

We want to find the minimum value γ∗ of the exponent γ in the power-law of
decay of market impact such that there is no dynamic arbitrage for γ > γ∗.

According to (9), there is arbitrage only if

h(v, γ) := v1−γ − (1 + v)2−γ + 1 + v2−γ < 0 for some v ∈ (0, 1) (A-1)

Setting v = 1 in (A-1), and solving for γ, we find that there is arbitrage only
if

γ < 2 − log 3

log 2
=: γ∗

We note that

∂γh(v, γ) = (1 + v)2−γ log(1 + v) − v1−γ(1 + v) log v

≥ 0 ∀v ∈ (0, 1).

So, if h(v, γ∗) reaches its minimum at v = 1, the result is proved. To show
this, with α := log 3/ log 2, define the function

h̃(v) := h(v, γ∗) − h(1, γ∗) = vα−1 − (v + 1)α + 1 + vα

Then h̃(1) = h̃(0) = 0 and the second derivative of h̃(·) with respect to v is
given by

∂v,vh̃(v) = (α − 1)

{

vα + α − 2

v3−α
− α

(1 + v)2−α

}

≤ (α − 1)

{

vα + α − 2

v3−α
− 3

4
α

}

This latter expression reaches its maximum at

v∗ :=
3

α
− 1 ≈ 0.89

Then

∂v,vh̃(v) ≤ (α − 1)

{

v∗α + α − 2

v∗3−α
− 3

4
α

}

= (α − 1)

{

1

v∗3−α
− 3

4
α

}

< 0

Thus over the range (0, 1), h̃(·) is convex down and h̃(1) = h̃(0) = 0. Then
h̃(v) ≥ 0 for all v ∈ (0, 1), proving the result.
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