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In theory, the sum of squares of log returns sampled at high frequency estimates their
variance. When market microstructure noise is present but unaccounted for, however,
we show that the optimal sampling frequency is finite and derives its closed-form
expression. But even with optimal sampling, using say 5-min returns when transac-
tions are recorded every second, a vast amount of data is discarded, in contradiction
to basic statistical principles. We demonstrate that modeling the noise and using all
the data is a better solution, even if one misspecifies the noise distribution. So the
answer is: sample as often as possible.

Over the past few years, price data sampled at very high frequency have
become increasingly available in the form of the Olsen dataset of currency
exchange rates or the TAQ database of NYSE stocks. If such data were
not affected by market microstructure noise, the realized volatility of the
process (i.e., the average sum of squares of log-returns sampled at high
frequency) would estimate the returns’ variance, as is well known. In fact,
sampling as often as possible would theoretically produce in the limit a
perfect estimate of that variance.

We start by asking whether it remains optimal to sample the price
process at very high frequency in the presence of market microstructure
noise, consistently with the basic statistical principle that, ceteris paribus,
more data are preferred to less. We first show that, if noise is present but
unaccounted for, then the optimal sampling frequency is finite, and we
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derive a closed-form formula for it. The intuition for this result is as
follows. The volatility of the underlying efficient price process and the
market microstructure noise tend to behave differently at different fre-
quencies. Thinking in terms of signal-to-noise ratio, a log-return observed
from transaction prices over a tiny time interval is mostly composed of
market microstructure noise and brings little information regarding the
volatility of the price process since the latter is (at least in the Brownian
case) proportional to the time interval separating successive observations.
As the time interval separating the two prices in the log-return increases,
the amount of market microstructure noise remains constant, since each
price is measured with error, while the informational content of volatility
increases. Hence very high frequency data are mostly composed of market
microstructure noise, while the volatility of the price process is more
apparent in longer horizon returns. Running counter to this effect is the
basic statistical principle mentioned above: in an idealized setting where
the data are observed without error, sampling more frequently can be
useful. What is the right balance to strike? What we show is that these two
effects compensate each other and result in a finite optimal sampling
frequency (in the root mean squared error sense) so that some time
aggregation of the returns data is advisable.

By providing a quantitative answer to the question of how often one
should sample, we hope to reduce the arbitrariness of the choices that have
been made in the empirical literature using high frequency data: for
example, using essentially the same Olsen exchange rate series, these
somewhat ad hoc choices range from 5-min intervals [e.g., Andersen
et al. (2001), Barndorff-Nielsen and Shephard (2002), Gençay et al.
(2002) to as long as 30 min [e.g., Andersen et al. (2003)]. When calibrating
our analysis to the amount of microstructure noise that has been reported
in the literature, we demonstrate how the optimal sampling interval
should be determined: for instance, depending upon the amount of mi-
crostructure noise relative to the variance of the underlying returns, the
optimal sampling frequency varies from 4 min to 3 h, if 1 day’s worth of
data are used at a time. If a longer time period is used in the analysis, then
the optimal sampling frequency can be considerably longer than these
values.

But even if one determines the sampling frequency optimally, the fact
remains that the empirical researcher is not making full use of the data at
his disposal. For instance, suppose that we have available transaction
records on a liquid stock, traded once every second. Over a typical 6.5 h
day, we therefore start with 23,400 observations. If one decides to sample
once every 5 minutes, then—whether or not this is the optimal sampling
frequency— it amounts to retaining only 78 observations. Stated differ-
ently, one is throwing away 299 out of every 300 transactions. From a
statistical perspective, this is unlikely to be the optimal solution, even
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though it is undoubtedly better than computing a volatility estimate using
noisy squared log-returns sampled every second. Somehow, an optimal
solution should make use of all the data, and this is where our analysis is
headed next.

So, if one decides to account for the presence of the noise, how should
one proceed? We show that modeling the noise term explicitly restores
the first order statistical effect that sampling as often as possible is opti-
mal. This will involve an estimator different from the simple sum of
squared log-returns. Since we work within a fully parametric framework,
likelihood is the key word. Hence we construct the likelihood function for
the observed log-returns, which include microstructure noise. To do so, we
must postulate a model for the noise term. We assume that the noise is
Gaussian. In light of what we know from the sophisticated theoretical
microstructure literature, this is likely to be overly simplistic and one may
well be concerned about the effect(s) of this assumption. Could it be more
harmful than useful? Surprisingly, we demonstrate that our likelihood
correction, based on the Gaussianity of the noise, works even if one
misspecifies the assumed distribution of the noise term. Specifically, if
the econometrician assumes that the noise terms are normally distributed
when in fact they are not, not only is it still optimal to sample as often as
possible (unlike the result when no allowance is made for the presence of
noise), but the estimator has the same variance as if the noise distribution
had been correctly specified. This robustness result is, we think, a major
argument in favor of incorporating the presence of the noise when esti-
mating continuous time models with high frequency financial data, even if
one is unsure about the true distribution of the noise term.

In other words, the answer to the question we pose in our title is ‘‘as
often as possible,’’ provided one accounts for the presence of the noise
when designing the estimator (and we suggest maximum likelihood as a
means of doing so). If one is unwilling to account for the noise, then one
has to rely on the finite optimal sampling frequency we start our analysis
with. However, we stress that while it is optimal if one insists upon using
sums of squares of log-returns, this is not the best possible approach to
estimate volatility given the complete high frequency dataset at hand.

In a companion paper [Zhang, Mykland, and Aı̈t-Sahalia (2003)], we
study the corresponding nonparametric problem, where the volatility of
the underlying price is a stochastic process, and nothing else is known
about it, in particular no parametric structure. In that case, the object of
interest is the integrated volatility of the process over a fixed time interval,
such as a day, and we show how to estimate it using again all the data
available (instead of sparse sampling at an arbitrarily lower frequency of,
say, 5 min). Since the model is nonparametric, we no longer use a likeli-
hood approach but instead propose a solution based on subsampling and
averaging, which involves estimators constructed on two different time

Sampling and Market Microstructure Noise

353



scales, and demonstrate that this again dominates sampling at a lower
frequency, whether arbitrarily or optimally determined.

This article is organized as follows. We start by describing in Section 1
our reduced form setup and the underlying structural models that support
it. We then review in Section 2 the base case where no noise is present,
before analyzing in Section 3 the situation where the noise is ignored. In
Section 4, we examine the concrete implications of this result for empirical
work with high frequency data. Next, we show in Section 5 that account-
ing for the presence of the noise through the likelihood restores the
optimality of high frequency sampling. Our robustness results are pre-
sented in Section 6 and interpreted in Section 7. In Section 8, we study the
same questions when the observations are sampled at random time inter-
vals, which are an essential feature of transaction-level data. We then turn
to various extensions and relaxation of our assumptions in Section 9; we
added a drift term, then serially correlated and cross-correlated noise
respectively. In Section 10 concludes. All proofs are in the appendix.

1. Setup

Our basic setup is as follows. We assume that the underlying process of
interest, typically the log-price of a security, is a time-homogeneous
diffusion on the real line

dXt ¼ m Xt; uð Þdtþ sdWt, ð1Þ

where X0¼ 0, Wt is a Brownian motion, m(., .) is the drift function, s2 the
diffusion coefficient, and u the drift parameters, where u 2 Q and s> 0.
The parameter space is an open and bounded set. As usual, the restriction
that s is constant is without loss of generality since in the univariate case a
one-to-one transformation can always reduce a known specification s(Xt)
to that case. Also, as discussed in Aı̈t-Sahalia and Mykland (2003), the
properties of parametric estimators in this model are quite different
depending upon whether we estimate u alone, s2 alone, or both para-
meters together. When the data are noisy, the main effects that we describe
are already present in the simpler of these three cases, where s2 alone is
estimated, and so we focus on that case. Moreover, in the high frequency
context we have in mind, the diffusive component of (1) is of order (dt)1/2

while the drift component is of order dt only, so the drift component is
mathematically negligible at high frequencies. This is validated empirical-
ly: including a drift which actually deteriorates the performance of vari-
ance estimates from high frequency data since the drift is estimated with a
large standard error. Not centering the log returns for the purpose of
variance estimation produces more accurate results [see Merton (1980)].
So we simplify the analysis one step further by setting m¼ 0, which we do
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until Section 9.1, where we then show that adding a drift term does
not alter our results. In Section 9.4, we discuss the situation where the
instantaneous volatility s is stochastic.

But for now,

Xt ¼ sWt: ð2Þ

Until Section 8, we treat the case where our observations occur at equi-
distant time intervals D, in which case the parameter s2 is estimated at
time T on the basis ofNþ 1 discrete observations recorded at times t0¼ 0,
t1¼D, . . . ,tN¼N D¼T. In Section 8, we let the sampling intervals them-
selves be random variables, since this feature is an essential characteristic
of high frequency transaction data.

The notion that the observed transaction price in high frequency finan-
cial data is the unobservable efficient price plus some noise component
due to the imperfections of the trading process is a well established
concept in the market microstructure literature [see, for instance Black
(1986)]. So, we depart from the inference setup previously studied
[Aı̈t-Sahalia and Mykland (2003)] and we now assume that, instead of
observing the process X at dates ti, we observe X with error:

~XXti ¼ Xti þUti , ð3Þ

where the Utis are i.i.d. noise with mean zero and variance a2 and are
independent of the W process. In this context, we view X as the efficient
log-price, while the observed ~XX is the transaction log-price. In an efficient
market, Xt is the log of the expectation of the final value of the security
conditional on all publicly available information at time t. It corresponds
to the log-price that would be, in effect, in a perfect market with no trading
imperfections, frictions, or informational effects. The Brownian motion
W is the process representing the arrival of new information, which in this
idealized setting is immediately impounded in X.

By contrast, Ut summarizes the noise generated by the mechanics of the
trading process. We view the source of noise as a diverse array of market
microstructure effects, either information or non-information related,
such as the presence of a bid-ask spread and the corresponding bounces,
the differences in trade sizes and the corresponding differences in repre-
sentativeness of the prices, the different informational content of price
changes owing to informational asymmetries of traders, the gradual
response of prices to a block trade, the strategic component of the order
flow, inventory control effects, the discreteness of price changes in mar-
kets that are not decimalized, etc., all summarized into the term U. That
these phenomena are real and important and this is an accepted fact in the
market microstructure literature, both theoretical and empirical. One can
in fact argue that these phenomena justify this literature.
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We view Equation (3) as the simplest possible reduced form of struc-
tural market microstructure models. The efficient price process X is typ-
ically modeled as a random walk, that is, the discrete time equivalent of
Equation (2). Our specification coincides with that of Hasbrouck (1993),
who discusses the theoretical market microstructure underpinnings of
such a model and argues that the parameter a is a summary measure of
market quality. Structural market microstructure models do generate
Equation (3). For instance, Roll (1984) proposes a model where U is due
entirely to the bid-ask spread. Harris (1990b) notes that in practice there
are sources of noise other than just the bid-ask spread, and studies their
effect on the Roll model and its estimators.

Indeed, a disturbance U can also be generated by adverse selection
effects as in Glosten (1987) and Glosten and Harris (1988), where the
spread has two components: one that is owing to monopoly power, clear-
ing costs, inventory carrying costs, etc., as previously, and a second one
that arises because of adverse selection whereby the specialist is concerned
that the investor on the other side of the transaction has superior infor-
mation. When asymmetric information is involved, the disturbance U
would typically no longer be uncorrelated with the W process and would
exhibit autocorrelation at the first order, which would complicate our
analysis without fundamentally altering it: see Sections 9.2 and 9.3
where we relax the assumptions that the Us are serially uncorrelated and
independent of the W process.

The situation where the measurement error is primarily due to the fact
that transaction prices are multiples of a tick size (i.e., ~XXti ¼ mikwhere k is
the tick size and mi is the integer closest to Xti /k) can be modeled as a
rounding off problem [see Gottlieb and Kalay (1985), Jacod (1996),
Delattre and Jacod (1997)]. The specification of the model in Harris
(1990a) combines both the rounding and bid-ask effects as the dual
sources of the noise term U. Finally, structural models, such as that of
Madhavan, Richardson, and Roomans (1997), also give rise to reduced
forms where the observed transaction price ~XX takes the form of an unob-
served fundamental value plus error.

With Equation (3) as our basic data generating process, we now turn
to the questions we address in this article: how often should one sample
a continuous-time process when the data are subject to market micro-
structure noise, what are the implications of the noise for the estimation
of the parameters of the X process, and how should one correct for the
presence of the noise, allowing for the possibility that the econometrician
misspecifies the assumed distribution of the noise term, and finally
allowing for the sampling to occur at random points in time? We pro-
ceed from the simplest to the most complex situation by adding one
extra layer of complexity at a time: Figure 1 shows the three sampling
schemes we consider, starting with fixed sampling without market
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microstructure noise, then moving to fixed sampling with noise and
concluding with an analysis of the situation where transaction prices
are not only subject to microstructure noise but are also recorded at
random time intervals.

Figure 1
Various discrete sampling modes — no noise (Section 2), with noise (Sections 3–7) and randomly spaced with
noise (Section 8)
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2. The Baseline Case: No Microstructure Noise

We start by briefly reviewing what would happen in the absence of
market microstructure noise, that is when a¼ 0. With X denoting the
log-price, the first differences of the observations are the log-returns
Yi ¼ ~XXti % ~XXti%1

, i¼ 1, . . . ,N. The observations Yi¼s(Wtiþ1
%Wti) are

then i.i.d. N(0, s2D) so the likelihood function is

l s2
! "

¼ %N ln 2ps2D
! "

=2% 2s2D
! "%1

Y 0Y , ð4Þ

where Y¼ (Y1, . . . ,YN)
0. The maximum-likelihood estimator of s2 coin-

cides with the discrete approximation to the quadratic variation of the
process

ŝs2 ¼ 1

T

XN

i¼1

Y 2
i , ð5Þ

which has the following exact small sample moments:

E ŝs2
# $

¼ 1

T

XN

i¼1

E Y 2
i

# $
¼

N s2D
! "

T
¼ s2,

var ŝs2
# $

¼ 1

T2
var

XN

i¼1

Y 2
i

" #

¼ 1

T2

XN

i¼1

var Y 2
i

# $
 !

¼ N

T2
2s4D2
! "

¼ 2s4D

T

and the following asymptotic distribution

T1=2 ŝs2 %s2
! "

%!
T!1

N 0,vð Þ, ð6Þ

where

v ¼ avar ŝs2
! "

¼ DE %€ll s2
! "h i%1

¼ 2s4D: ð7Þ

Thus selecting D as small as possible is optimal for the purpose of
estimating s2.

3. When the Observations are Noisy but the Noise is Ignored

Suppose now that market microstructure noise is present but the presence
of the Us is ignored when estimating s2. In other words, we use the
log-likelihood function (4) even though the true structure of the observed
log-returns Yis is given by an MA(1) process since

Yi ¼ ~XXti % ~XXti%1

¼ Xti %Xti%1
þUti %Uti%1

¼ s Wti %Wti%1
ð Þ þUti %Uti%1

& «i þ h«i%1, ð8Þ

The Review of Financial Studies / v 18 n 2 2005

358



where the «is are uncorrelated with mean zero and variance g2 (if the Us
are normally distributed, then the «is are i.i.d.). The relationship to the
original parametrization (s2, a2) is given by

g2 1þ h2
! "

¼ var Yi½ ( ¼ s2Dþ 2a2, ð9Þ

g2h ¼ cov Yi,Yi%1ð Þ ¼ %a2: ð10Þ

Equivalently, the inverse change of variable is given by

g2 ¼ 1

2
2a2 þ s2Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2D 4a2 þ s2Dð Þ

q& '
, ð11Þ

h ¼ 1

2a2
%2a2 %s2Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2D 4a2 þ s2Dð Þ

q& '
: ð12Þ

Two important properties of the log-returnsYi s emerge from Equations
(9) and (10). First, it is clear from Equation (9) that microstructure noise
leads to spurious variance in observed log-returns, s2Dþ 2a2 versus s2D.
This is consistent with the predictions of theoretical microstructure
models. For instance, Easley and O’Hara (1992) develop a model linking
the arrival of information, the timing of trades, and the resulting price
process. In their model, the transaction price will be a biased representa-
tion of the efficient price process, with a variance that is both overstated
and heteroskedastic due to the fact that transactions (hence the recording
of an observation on the process ~XX ) occur at intervals that are time-
varying. While our specification is too simple to capture the rich joint
dynamics of price and sampling times predicted by their model, het-
eroskedasticity of the observed variance will also appear in our case
once we allow for time variation of the sampling intervals (see Section 8).

In our model, the proportion of the total return variance that is market
microstructure-induced is

p ¼ 2a2

s2Dþ 2a2
ð13Þ

at observation interval D. As D gets smaller, p gets closer to 1, so that a
larger proportion of the variance in the observed log-return is driven by
market microstructure frictions, and correspondingly a lesser fraction
reflects the volatility of the underlying price process X.

Second, Equation (10) implies that %1<h< 0, so that log-
returns are (negatively) autocorrelated with first order autocorrelation
%a2/(s2Dþ 2a2)¼%p/2. It has been noted that market microstructure
noise has the potential to explain the empirical autocorrelation of returns.
For instance, in the simple Roll model, Ut¼ (s/2)Qt where s is the bid/ask
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spread and Qt, the order flow indicator, is a binomial variable that takes
the valuesþ1 and%1with equal probability. Therefore, var[Ut]¼ a2¼ s2/4.
Since cov(Yi,Yi% 1)¼%a2, the bid/ask spread can be recovered in this
model as s ¼ 2

ffiffiffiffiffiffiffi%r
p

where r¼ g2h is the first-order autocorrelation of
returns. French and Roll (1986) proposed to adjust variance estimates to
control for such autocorrelation and Harris (1990b) studied the resulting
estimators. In Sias and Starks (1997), U arises because of the strategic
trading of institutional investors which is then put forward as an expla-
nation for the observed serial correlation of returns. Lo and MacKinlay
(1990) show that infrequent trading has implications for the variance and
autocorrelations of returns. Other empirical patterns in high frequency
financial data have been documented: leptokurtosis, deterministic
patterns, and volatility clustering.

Our first result shows that the optimal sampling frequency is finite when
noise is present but unaccounted for. The estimator ŝs2 obtained from
maximizing the misspecified log-likelihood function (4) is quadratic in the
Yi s [see Equation (5)]. In order to obtain its exact (i.e., small sample)
variance, we need to calculate the fourth order cumulants of the Yi s since

cov Y 2
i ,Y

2
j

( )
¼ 2 cov Yi,Yj

! "2 þ cum Yi,Yi,Yj,Yj

! "
ð14Þ

(see, e.g., Section 2.3 ofMcCullagh (1987) for definitions and properties of
the cumulants). We have the following lemma.

Lemma 1. The fourth cumulants of the log-returns are given by

cum Yi,Yj,Yk,Yl

! "

¼
2cum4 U½ (, if i¼ j¼ k¼ l,

%1ð Þs i;j;k;lð Þcum4 U½ (, if max i, j,k, lð Þ¼min i, j, k, lð Þþ1,

0, otherwise,

8
><

>:
ð15Þ

where s(i, j, k, l) denotes the number of indices among (i, j, k, l) that are
equal to min(i, j, k, l) and U denotes a generic random variable with the
common distribution of the Utis. Its fourth cumulant is denoted cum4 [U].

Now U has mean zero, so in terms of its moments

cum4 U½ ( ¼ E U4
# $

% 3 E U2
# $! "2

: ð16Þ

In the special case where U is normally distributed, cum4 [U]¼ 0 and as a
result of Equation (14) the fourth cumulants of the log-returns are all 0
(since W is normal, the log-returns are also normal in that case). If the
distribution of U is binomial as in the simple bid/ask model described
above, then cum4 [U ]¼%s4/8; since in general s will be a tiny percentage
of the asset price, say s¼ 0.05%, the resulting cum4 [U ] will be very small.
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We can now characterize the root mean squared error

RMSE ŝs2
# $

¼ E ŝs2
# $

%s2
! "2 þ var ŝs2

# $( )1=2

of the estimator by the following theorem.

Theorem 1. In small samples (finite T), the bias and variance of the
estimator ŝs2 are given by

E ŝs2
# $

%s2 ¼ 2a2

D
, ð17Þ

var ŝs2
# $

¼
2 s4D2 þ 4s2Da2 þ 6a4 þ 2 cum4 U½ (
! "

TD
%

2 2a4 þ cum4 U½ (
! "

T2
:

ð18Þ

Its RMSE has a unique minimum in D which is reached at the optimal
sampling interval

D) ¼ 2a4T

s4

* +1=3

1%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
2 3a4 þ cum4 U½ (
! "3

27s4a8T2

s0

@

1

A
1=30

B@

þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
2 3a4 þ cum4 U½ (
! "3

27s4a8T2

s0

@

1

A
1=31

CA: ð19Þ

As T grows, we have

D) ¼ 22=3a4=3

s4=3
T1=3 þO

1

T1=3

* +
: ð20Þ

The trade-off between bias and variance made explicit in Equations (17)
and (18) is not unlike the situation in nonparametric estimation with D%1

playing the role of the bandwidth h. A lower h reduces the bias but
increases the variance, and the optimal choice of h balances the two
effects.

Note that these are exact small sample expressions, valid for all T.
Asymptotically in T, var½ŝs2( ! 0, and hence the RMSE of the estimator
is dominated by the bias term which is independent of T. And given the
form of the bias (17), one would in fact want to select the largest D possible
to minimize the bias (as opposed to the smallest one as in the no-noise case
of Section 2). The rate at which D) should increase with T is given by
Equation (20). Also, in the limit where the noise disappears (a ! 0 and
cum4 [U ] ! 0), the optimal sampling interval D) tends to 0.
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How does a small departure from a normal distribution of the micro-
structure noise affect the optimal sampling frequency? The answer is that a
small positive (resp. negative) departure of cum4[U] starting from the
normal value of 0 leads to an increase (resp. decrease) in D), since

D) ¼ D)
normalþ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% 2a4

T2s4

r !2=3

% 1%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% 2a4

T2s4

r !2=3
0

@

1

A

3 21=3a4=3T1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% 2a4

T2s4

r
s8=3

cum4 U½ (

þO
(
cum4 U½ (2

)
, ð21Þ

where D)
normal is the value of D) corresponding to Cum4 [U]¼ 0. And, of

course, the full formula (19) can be used to get the exact answer for any
departure from normality instead of the comparative static one.

Another interesting asymptotic situation occurs if one attempts to use
higher and higher frequency data (D! 0, say sampled every minute) over
a fixed time period (T fixed, say a day). Since the expressions in Theorem 1
are exact small sample ones, they can in particular be specialized to
analyze this situation. With n¼T/D, it follows from Equations (17) and
(18) that

E ŝs2
# $

¼ 2na2

T
þ o nð Þ ¼

2nE U2
# $

T
þ o nð Þ, ð22Þ

var ŝs2
# $

¼
2n 6a4 þ 2 cum4 U½ (
! "

T2
þ o nð Þ ¼

4nE U4
# $

T2
þ o nð Þ ð23Þ

so ðT=2nÞŝs2 becomes an estimator of E [U2]¼ a2 whose asymptotic vari-
ance is E [U 4]. Note in particular that ŝs2 estimates the variance of the
noise, which is essentially unrelated to the object of interest s2. This type
of asymptotics is relevant in the stochastic volatility case we analyze in our
companion paper [Zhang, Mykland, and Aı̈t-Sahalia (2003)].

Our results also have implications for the two parallel tracks that have
developed in the recent financial econometrics literature dealing with
discretely observed continuous-time processes. One strand of the litera-
ture has argued that estimation methods should be robust to the potential
issues arising in the presence of high frequency data and, consequently, be
asymptotically valid without requiring that the sampling interval D
separating successive observations tend to zero [see, e.g., Hansen and
Scheinkman (1995), Aı̈t-Sahalia (1996), Aı̈t-Sahalia (2002)]. Another
strand of the literature has dispensed with that constraint, and the asymp-
totic validity of these methods requires that D tend to zero instead of or in
addition to, an increasing length of time T over which these observations
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are recorded [see, e.g., Andersen et al. (2003), Bandi and Phillips (2003),
Barndorff-Nielsen and Shephard (2002)].

The first strand of literature has been informally warning about the
potential dangers of using high frequency financial data without account-
ing for their inherent noise [see, e.g., Aı̈t-Sahalia (1996, p. 529)], and we
propose a formal modelization of that phenomenon. The implications of
our analysis are most important for the second strand of the literature,
which is predicated on the use of high frequency data but does not account
for the presence of market microstructure noise. Our results show that the
properties of estimators based on the local sample path properties of the
process (such as the quadratic variation to estimate s2) change dramati-
cally in the presence of noise. Complementary to this are the results of
Gloter and Jacod (2000) which show that the presence of even increasingly
negligible noise is sufficient to adversely affect the identification of s2.

4. Concrete Implications for Empirical Work with High Frequency Data

The clear message of Theorem 1 for empirical researchers working with
high frequency financial data is that it may be optimal to sample less
frequently. As discussed in the Introduction, authors have reduced their
sampling frequency below that of the actual record of observations in a
somewhat ad hoc fashion, with typical choices 5 min and up. Our analysis
provides not only a theoretical rationale for sampling less frequently, but
also gives a precise answer to the question of ‘‘how often one should
sample?’’ For that purpose, we need to calibrate the parameters appearing
in Theorem 1, namely s, a, cum4[U], D and T. We assume in this calibra-
tion exercise that the noise is Gaussian, in which case cum4[U ]¼ 0.

4.1 Stocks
We use existing studies in empirical market microstructure to calibrate the
parameters. One such study is Madhavan, Richardson, and Roomans
(1997), who estimated on the basis of a sample of 274 NYSE stocks that
approximately 60% of the total variance of price changes is attributable to
market microstructure effects (they report a range of values for p from
54% in the first half hour of trading to 65% in the last half hour, see their
Table 4; they also decompose this total variance into components due to
discreteness, asymmetric information, transaction costs and the interac-
tion between these effects). Given that their sample contains an average of
15 transactions per hour (their Table 1), we have in our framework

p ¼ 60%, D ¼ 1= 15* 7* 252ð Þ: ð24Þ

These values imply from Equation (13) that a¼ 0.16% if we assume a
realistic value of s ¼ 30% per year. (We do not use their reported
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volatility number since they apparently averaged the variance of price
changes over the 274 stocks instead of the variance of the returns. Since
different stocks have different price levels, the price variances across
stocks are not directly comparable. This does not affect the estimated
fraction p, however, since the price level scaling factor cancels out
between the numerator and the denominator.)

The magnitude of the effect is bound to vary by type of security, market
and time period. Hasbrouck (1993) estimates the value of a to be 0.33%.
Some authors have reported even larger effects. Using a sample of NAS-
DAQ stocks, Kaul and Nimalendran (1990) estimate that about 50% of
the daily variance of returns is due to the bid-ask effect. With s¼ 40%
(NASDAQ stocks have higher volatility), the values

p ¼ 50%, D ¼ 1=252

Table 1
Optimal sampling frequency

T

Value of a 1 day 1 year 5 years

(a) s¼ 30% Stocks
0.01% 1 min 4 min 6 min
0.05% 5 min 31 min 53 min
0.1% 12 min 1.3 h 2.2 h
0.15% 22 min 2.2 h 3.8 h
0.2% 32 min 3.3 h 5.6 h
0.3% 57 min 5.6 h 1.5 day
0.4% 1.4 h 1.3 day 2.2 days
0.5% 2 h 1.7 day 2.9 days
0.6% 2.6 h 2.2 days 3.7 days
0.7% 3.3 h 2.7 days 4.6 days
0.8% 4.1 h 3.2 days 1.1 week
0.9% 4.9 h 3.8 days 1.3 week
1.0% 5.9 h 4.3 days 1.5 week

(b) s¼ 10% Currencies

0.005% 4 min 23 min 39 min
0.01% 9 min 58 min 1.6 h
0.02% 23 min 2.4 h 4.1 h
0.05% 1.3 h 8.2 h 14.0 h
0.10% 3.5 h 20.7 h 1.5 day

This table reports the optimal sampling frequency D) given in Equation 19 for different values of the
standard deviation of the noise term a and the length of the sample T. Throughout the table, the noise
is assumed to be normally distributed (hence cum4[U]¼ 0 in formula 19). In panel (a), the standard
deviation of the efficient price process is s¼ 30% per year, and at s¼ 10% per year in panel (b). In both
panels, 1 year¼ 252 days, but in panel (a), 1 day¼ 6.5 hours (both the NYSE and NASDAQ are open for
6.5 h from 9:30 to 16:00 EST), while in panel (b), 1 day¼ 24 hours as is the case for major currencies. A
value of a¼ 0.05% means that each transaction is subject to Gaussian noise with mean 0 and standard
deviation equal to 0.05% of the efficient price. If the sole source of the noise were a bid/ask spread of size s,
then a should be set to s/2. For example, a bid/ask spread of 10 cents on a $10 stock would correspond to
a¼ 0.05%. For the dollar/euro exchange rate, a bid/ask spread of s¼ 0.04% translates into a¼ 0.02%. For
the bid/ask model, which is based on binomial instead of Gaussian noise, cum4[U]¼%s4/8, but this
quantity is negligible given the tiny size of s.

The Review of Financial Studies / v 18 n 2 2005

364



yield the value a¼ 1.8%. Also on NASDAQ, Conrad, Kaul and
Nimalendran (1991) estimate that 11% of the variance of weekly returns
(see their Table 4, middle portfolio) is due to bid-ask effects. The values

p ¼ 11%, D ¼ 1=52

imply that a¼ 1.4%.
In Table 1, we compute the value of the optimal sampling interval D)

implied by different combinations of sample length (T ) and noise magni-
tude (a). The volatility of the efficient price process is held fixed at
s¼ 30% in Panel (A), which is a realistic value for stocks. The numbers
in the table show that the optimal sampling frequency can be substantially
affected by even relatively small quantities of microstructure noise.
For instance, using the value a¼ 0.15% calibrated from Madhavan,
Richardson, and Roomans (1997), we find an optimal sampling interval
of 22 minutes if the sampling length is 1 day; longer sample lengths lead to
higher optimal sampling intervals. With the higher value of a¼ 0.3%,
approximating the estimate from Hasbrouck (1993), the optimal sampling
interval is 57 min. A lower value of the magnitude of the noise translates
into a higher frequency: for instance, D)¼ 5 min if a¼ 0.05% and
T¼ 1 day. Figure 2 displays the RMSE of the estimator as a function of
D and T, using parameter values s¼ 30% and a¼ 0.15%. The figure
illustrates the fact that deviations from the optimal choice of D lead to a
substantial increase in the RMSE: for example, with T¼ 1 month, the
RMSE more than doubles if, instead of the optimal D)¼ 1 h, one uses
D¼ 15 min.

Figure 2
RMSE of the estimator ŝ2 when the presence of the noise is ignored
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4.2 Currencies
Looking now at foreign exchange markets, empirical market microstruc-
ture studies have quantified the magnitude of the bid-ask spread. For
example, Bessembinder (1994) computes the average bid/ask spread s in
the wholesale market for different currencies and reports values of
s ¼ 0.05% for the German mark, and 0.06% for the Japanese yen (see
Panel B of his Table 2). We calculated the corresponding numbers for the
1996–2002 period to be 0.04% for the mark (followed by the euro) and
0.06% for the yen. Emerging market currencies have higher spreads: for
instance, s¼ 0.12% for Korea and 0.10% for Brazil. During the same
period, the volatility of the exchange rate was s¼ 10% for the German
mark, 12% for the Japanese yen, 17% for Brazil and 18% for Korea. In
Panel B of Table 1, we compute D) with s ¼ 10%, a realistic value for the
euro and yen. As we noted above, if the sole source of the noise were a bid/
ask spread of size s, then a should be set to s/2. Therefore, Panel B reports
the values of D) for values of a ranging from 0.02% to 0.1%. For example,
the dollar/euro or dollar/yen exchange rates (calibrated to s ¼ 10%,
a ¼ 0.02%) should be sampled every D) ¼ 23 min if the overall sample
length is T¼ 1 day, and every 1.1 h if T¼ 1 year.

Furthermore, using the bid/ask spread alone as a proxy for all micro-
structure frictions will lead, except in unusual circumstances, to an under-
statement of the parameter a, since variances are additive. Thus, since D) is
increasing in a, one should interpret the value of D) read off 1 on the row
corresponding to a ¼ s/2 as a lower bound for the optimal sampling
interval.

4.3 Monte Carlo Evidence
To validate empirically these results, we perform Monte Carlo simula-
tions. We simulateM¼ 10,000 samples of length T¼ 1 year of the process
X, add microstructure noise U to generate the observations ~XX , and then

Table 2
Monte Carlo simulations: bias and variance when market microstructure noise is ignored

Sampling interval Theoretical mean Sample mean Theoretical stand. dev. Sample stand. dev.

5 min 0.185256 0.185254 0.00192 0.00191
15 min 0.121752 0.121749 0.00208 0.00209
30 min 0.10588 0.10589 0.00253 0.00254
1 h 0.097938 0.097943 0.00330 0.00331
2 h 0.09397 0.09401 0.00448 0.00440
1 day 0.09113 0.09115 0.00812 0.00811
1 week 0.0902 0.0907 0.0177 0.0176

This table reports the results of M¼ 10,000 Monte Carlo simulations of the estimator ŝs2, with market
microstructure noise present but ignored. The column ‘‘theoretical mean’’ reports the expected value of the
estimator, as given in Equation (17) and similarly for the column ‘‘theoretical standard deviation’’ (the
variance is given in Equation (18)). The ‘‘sample’’ columns report the corresponding moments computed
over theM simulated paths. The parameter values used to generate the simulated data are s2¼ 0.32¼ 0.09
and a2¼ (0.15%)2 and the length of each sample is T¼ 1 year.
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the log returnsY. We sample the log-returns at various intervals D ranging
from 5 min to 1 week, and calculate the bias and variance of the estimator
ŝs2 over the M simulated paths. We then compare the results to the
theoretical values given in Equations (17) and (18) of Theorem 1. The
noise distribution is Gaussian, s ¼ 30% and a ¼ 0.15%—the values
we calibrated to stock returns data above. Table 2 shows that the theo-
retical values are in close agreement with the results of the Monte Carlo
simulations.

Table 2 also illustrates the magnitude of the bias inherent in sampling
at too high a frequency. While the value of s2 used to generate the data is
0.09, the expected value of the estimator when sampling every 5 min is
0.18, so on average the estimated quadratic variation is twice as big as it
should be in this case.

5. Incorporating Market Microstructure Noise Explicitly

So far we have stuck to the sum of squares of log-returns as our estimator
of volatility. We then showed that, for this estimator, the optimal sam-
pling frequency is finite. However, this implies that one is discarding a
large proportion of the high frequency sample (299 out of every 300
observations in the example described in the introduction), in order to
mitigate the bias induced by market microstructure noise. Next, we show
that if we explicitly incorporate the Us into the likelihood function, then
we are back in a situation where the optimal sampling scheme consists in
sampling as often as possible — that is, using all the data available.

Specifying the likelihood function of the log-returns, while recognizing
that they incorporate noise, requires that we take a stand on the distribu-
tion of the noise term. Suppose for now that the microstructure noise is
normally distributed, an assumption whose effect we will investigate
below in Section 6. Under this assumption, the likelihood function for
the Ys is given by

l h, g2
! "

¼ %ln det Vð Þ=2%N ln 2pg2
! "

=2% 2g2
! "%1

Y 0V%1Y , ð25Þ

where the covariance matrix for the vector Y¼ (Y1, . . . ,YN)
0 is given by

g2V, where

V ¼ vij
# $

i; j¼1; ... ;N
¼

1þh2 h 0 + + + 0

h 1þh2 h » ..
.

0 h 1þh2 » 0

..

.
» » » h

0 + + + 0 h 1þh2

0

BBBBBBBB@

1

CCCCCCCCA

ð26Þ
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Further,

det Vð Þ ¼ 1%h2Nþ2

1%h2
ð27Þ

and, neglecting the end effects, an approximate inverse of V is the matrix
V¼ [vij]i, j¼1, . . . ,N where

vij ¼ 1%h2
! "%1 %hð Þji%jj

[see Durbin (1959)]. The product VV differs from the identity matrix only
on the first and last rows. The exact inverse is V%1¼ [vij]i, j¼ 1, . . . ,N where

vij ¼ 1%h2
! "%1

1%h2Nþ2
! "%1 %hð Þji%jj % %hð Þiþj % %hð Þ2N%i%jþ2

n

% %hð Þ2Nþji%jjþ2 þ %hð Þ2Nþi%jþ2 þ %hð Þ2N%iþjþ2
o

ð28Þ

[see Shaman (1969), Haddad (1995)].
From the perspective of practical implementation, this estimator is

nothing else than the MLE estimator of an MA(1) process with Gaussian
errors: any existing computer routines for the MA(1) situation can, there-
fore, be applied [see e.g., Hamilton (1995, Section 5.4)]. In particular, the
likelihood function can be expressed in a computationally efficient form
by triangularizing the matrix V, yielding the equivalent expression:

l h, g2
! "

¼ % 1

2

XN

i¼1

ln 2pdið Þ% 1

2

XN

i¼1

~YY 2
i

di
, ð29Þ

where

di ¼ g2 1þh2 þ + + + þh2i

1þh2 þ + + + þh2 i% 1ð Þ

and the ~YYis are obtained recursively as ~YY1 ¼ Y1 and for i¼ 2, . . . ,N:

~YYi ¼ Yi %
h 1þh2 þ + + + þh2 i% 2ð Þ! "

1þh2 þ + + + þh2 i% 1ð Þ
~YYi%1:

This latter form of the log-likelihood function involves only single sums as
opposed to double sums if one were to compute Y 0V%1Y by brute force
using the expression of V%1 given above.

We now compute the distribution of the MLE estimators of s2 and a2,
which follows by the delta method from the classical result for the MA(1)
estimators of g and h by the following proposition.

The Review of Financial Studies / v 18 n 2 2005

368



Proposition 1. When U is normally distributed, the MLE ðŝs2, âa2Þ is
consistent and its asymptotic variance is given by

avarnormal ŝs
2, âa2

! "

¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s6D 4a2 þs2Dð Þ

p
þ 2s4D %s2Dh D,s2, a2

! "

, D

2
2a2 þs2D
! "

h D,s2, a2
! "

0

@

1

A,

with

h D,s2, a2
! "

& 2a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2D 4a2 þs2Dð Þ

q
þs2D: ð30Þ

Since avarnormalðŝs2Þ is increasing in D, it is optimal to sample as often as
possible. Further, since

avarnormal ŝs
2

! "
¼ 8s3aD1=2 þ 2s4Dþ o Dð Þ, ð31Þ

the loss of efficiency relative to the case where no market microstructure
noise is present (and, if a2¼0 is not estimated, avarðŝs2Þ ¼ 2s4D as given
in Equation (7), or if a2¼0 is estimated, avar(s)¼6ŝs4d) is at order D1/2.
Figure 3 plots the asymptotic variances of ŝs2 as functions of D with and
without noise (the parameter values are again s¼ 30% and a¼ 0.15%).
Figure 4 reports histograms of the distributions of ŝs2 and âa2 from 10,000
Monte Carlo simulations with the solid curve plotting the asymptotic
distribution of the estimator from Proposition 1. The sample path is of
length T¼ 1 year, the parameter values are the same as above, and the

Figure 3
Comparison of the asymptotic variances of the MLE ŝ2 without and with noise taken into account
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process is sampled every 5 min— since we are now accounting explicitly
for the presence of noise, there is no longer a reason to sample at lower
frequencies. Indeed, the figure documents the absence of bias and the
good agreement of the asymptotic distribution with the small sample one.

6. The Effect of Misspecifying the Distribution of the
Microstructure Noise

We now study a situation where one attempts to incorporate the presence
of the Us into the analysis, as in Section 5, but mistakenly assumes a

Figure 4
Asymptotic and Monte Carlo distributions of the MLE (ŝ2, â2) with Gaussian microstructure noise
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misspecified model for them. Specifically, we consider the case where the
Us are assumed to be normally distributed when in reality they have a
different distribution.We still suppose that theUs are i.i.d. with mean zero
and variance a2.

Since the econometrician assumes the Us to have a normal distribution,
inference is still done with the log-likelihood l(s2, a2), or equivalently
l(h, g2) given in Equation (25), using Equations (9) and (10). This means
that the scores _lls2 and _lla2 , or equivalently Equations (C.1) and (C.2) are
used as moment functions (or ‘‘estimating equations’’). Since the first
order moments of the moment functions only depend on the second
order moment structure of the log-returns (Y1, . . . ,YN), which is
unchanged by the absence of normality, the moment functions are unbi-
ased under the true distribution of the Us:

Etrue
_llh
h i

¼ Etrue
_llg2

h i
¼ 0 ð32Þ

and similarly for _lls2 and _lla2 . Hence the estimator ðŝs2, âa2Þ based on these
moment functions is consistent and asymptotically unbiased (even though
the likelihood function is misspecified).

The effect of misspecification, therefore, lies in the asymptotic variance
matrix. By using the cumulants of the distribution of U, we express the
asymptotic variance of these estimators in terms of deviations from nor-
mality. But as far as computing the actual estimator, nothing has changed
relative to Section 5: we are still calculating the MLE for an MA(1)
process with Gaussian errors and can apply exactly the same computa-
tional routine.

However, since the error distribution is potentially misspecified, one
could expect the asymptotic distribution of the estimator to be altered.
This does not happen, as far as ŝs2 is concerned: see the following theorem.

Theorem 2. The estimators ðŝs2, âa2Þ obtained by maximizing the possibly
misspecified log-likelihood function (25) are consistent and their asymptotic
variance is given by

avartrue ŝs2, âa2
! "

¼ avarnormal ŝs
2, âa2

! "
þ cum4 U½ (

0 0

0 D

* +
, ð33Þ

where avarnormalðŝs2, âa2Þ is the asymptotic variance in the case where the
distribution of U is normal, that is, the expression given in Proposition 1.

In other words, the asymptotic variance of ŝs2 is identical to its expression
if the Us had been normal. Therefore, the correction we proposed for
the presence of market microstructure noise relying on the assumption
that the noise is Gaussian is robust to misspecification of the error
distribution.
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Documenting the presence of the correction term through simulations
presents a challenge. At the parameter values calibrated to be realistic, the
order of magnitude of a is a few basis points, say a¼ 0.10% ¼ 10%3. But if
U if of order 10%3, cum4[U] which is of the same order as U 4, is of order
10%12. In other words, with a typical noise distribution, the correction
term in Equation (33) will not be visible.

Nevertheless, to make it discernible, we use a distribution forU with the
same calibrated standard deviation a as before, but a disproportionately
large fourth cumulant. Such a distribution can be constructed by letting
U¼vTn where v> 0 is constant and Tn is a Student t distribution with v
degrees of freedom. Tn has mean zero, finite variance as long as v> 2 and
finite fourth moment (hence finite fourth cumulant) as long as v> 4. But
as v approaches 4 from above, E½T4

n ( tends to infinity. This allows us to
produce an arbitrarily high value of cum4[U] while controlling for the
magnitude of the variance. The specific expressions of a2 and cum4[U] for
this choice of U are given by

a2 ¼ var U½ ( ¼ v2n

n% 2
, ð34Þ

cum4 U½ ( ¼ 6v4n2

n% 4ð Þ n% 2ð Þ2
: ð35Þ

Thus, we can select the two parameters (v, n) to produce desired values of
(a2, cum4[U ]). As before, we set a¼ 0.15%. Then, given the form of the
asymptotic variance matrix Equation (33), we set cum4[U ] so that
cum4½U (D ¼ avarnormalðâa2Þ=2. This makes avartrueðâa2Þ by construction
50% larger than avarnormalðâa2Þ. The resulting values of (v, n) from solving
Equations (34) and (35) are v¼ 0.00115 and v¼ 4.854. As above, we set
the other parameters to s¼ 30%, T¼ 1 year, and D¼ 5 minutes. Figure 5
reports histograms of the distributions of ŝs2 and âa2 from 10,000 Monte
Carlo simulations. The solid curve plots the asymptotic distribution of the
estimator, given now by Equation (33). There is again good adequacy
between the asymptotic and small sample distributions. In particular, we
note that as predicted by Theorem 2, the asymptotic variance of ŝs2 is
unchanged relative to Figure 4 while that of âa2 is 50% larger. The small
sample distribution of ŝs2 appears unaffected by the non-Gaussianity of
the noise; with a skewness of 0.07 and a kurtosis of 2.95, it is closely
approximated by its asymptotic Gaussian limit. The small sample distri-
bution of âa2 does exhibit some kurtosis (4.83), although not large relative
to that of the underlying noise distribution (the values of v and n imply a
kurtosis for U of 3þ 6/(n% 4)¼ 10). Similar simulations but with a longer
time span of T¼ 5 years are even closer to the Gaussian asymptotic limit:
the kurtosis of the small sample distribution of âa2 goes down to 2.99.
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7. Robustness to Misspecification of the Noise Distribution

Going back to the theoretical aspects, the above Theorem 2 has implica-
tions for the use of the Gaussian likelihood l that go beyond consistency,
namely that this likelihood can also be used to estimate the distribution of
ŝs2 under misspecification. With l denoting the log-likelihood assuming
that the Us are Gaussian, given in Equation (25), %€llðŝs2, âa2Þ denote the
observed information matrix in the original parameters s2 and a2. Then

V̂V ¼ davaravarnormal ¼ % 1

T
€ll ŝs2, âa2
! "* +%1

Figure 5
Asymptotic and Monte Carlo distributions of the QMLE (ŝ2, â2) with misspecified microstructure noise
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is the usual estimate of asymptotic variance when the distribution is
correctly specified as Gaussian. Also note, however, that otherwise, so
long as ðŝs2, âa2Þ is consistent, V̂V is also a consistent estimate of the matrix
avarnormalðŝs2, âa2Þ. Since this matrix coincides with avartrueðŝs2, âa2Þ for all
but the (a2, a2) term (see Equation (33)), the asymptotic variance of
T1=2ðŝs2 %s2Þ is consistently estimated by V̂Vs2s2 . The similar statement is
true for the covariances, but not, obviously, for the asymptotic variance of
T1=2ðâa2 % a2Þ.

In the likelihood context, the possibility of estimating the asymptotic
variance by the observed information is due to the second Bartlett iden-
tity. For a general log likelihood l, if S & Etrue½_ll_ll0(=N andD & %Etrue½€ll(=N
(differentiation refers to the original parameters (s2, a2), not the trans-
formed parameters (g2, h)) this identity says that

S%D ¼ 0: ð36Þ

It implies that the asymptotic variance takes the form

avar ¼ D DS%1D
! "%1¼ DD%1: ð37Þ

It is clear that Equation (37) remains valid if the second Bartlett identity
holds only to first order, that is,

S%D ¼ o 1ð Þ ð38Þ

asN!1, for a general criterion function lwhich satisfies Etrue½_ll( ¼ oðNÞ.
However, in view of Theorem 2, Equation (38) cannot be satisfied. In

fact, we show in Appendix E that

S%D ¼ cum4 U½ (gg0 þ o 1ð Þ, ð39Þ

where

g ¼
gs2

ga2

* +
¼

D1=2

s 4a2 þs2Dð Þ3=2

1

2a4
1% D1=2s 6a2 þs2Dð Þ

4a2 þs2Dð Þ3=2

* +

0

BB@

1

CCA: ð40Þ

From Equation (40), we see that g 6¼ 0 whenever s2> 0. This is consistent
with the result in Theorem 2 that the true asymptotic variance matrix,
avartrueðŝs2, âa2Þ; does not coincide with the one for Gaussian noise,
avarnormalðŝs2, âa2Þ. On the other hand, the 2 * 2 matrix gg0 is of rank 1,
signaling that there exist linear combinations that will cancel out the first
column of S%D. From what we already know of the form of the correc-
tion matrix, D%1 gives such a combination that the asymptotic variance of
the original parameters (s2, a2) will have the property that its first column
is not subject to correction in the absence of normality.

The Review of Financial Studies / v 18 n 2 2005

374



A curious consequence of Equation (39) is that while the observed
information can be used to estimate the asymptotic variance of ŝs2 when
a2 is not known, this is not the case when a2 is known. This is because the
second Bartlett identity also fails to first order when considering a2 to
be known, that is, when differentiating with respect to s2 only. Indeed,
in that case we have from the upper left component in the matrix
Equation (39):

Ss2s2 %Ds2s2 ¼ N%1Etrue is2s2 s2, a2
! "2h i

þN%1Etrue
€lls2s2 s2, a2

! "h i

¼ cum4 U½ Þ gs2ð Þ2 þ o 1ð Þ,

which is not o(1) unless cum4 [U ]¼ 0.
To make the connection between Theorem 2 and the second Bartlett

identity, one needs to go to the log profile likelihood

l s2
! "

& sup
a2

l s2, a2
! "

: ð41Þ

Obviously, maximizing the likelihood l(s2, a2) is the same as maximizing
l(s2). Thus one can think of s2 as being estimated (when a2 is unknown)
by maximizing the criterion function l(s2), or by solving _llðŝs2Þ ¼ 0. Also,
the observed profile information is related to the original observed
information by

€ll ŝs2
! "%1¼ €ll ŝs2, âa2

! "%1
h i

s2s2
, ð42Þ

that is, the first (upper left hand corner) component of the inverse
observed information in the original problem. We explain this in
Appendix E, where we also show that Etrue½ _ll( ¼ oðNÞ. In view of Theorem
2, €llðŝs2Þ can be used to estimate the asymptotic variance of ŝs2 under the
true (possibly non-Gaussian) distribution of theUs, and so it must be that
the criterion function l satisfies Equation (38), that is

N%1Etrue
_ll s2
! "2h i

þN%1Etrue
€ll s2
! "# $

¼ o 1ð Þ: ð43Þ

This is indeed the case, as shown in Appendix E.
This phenomenon is related, although not identical, to what occurs in

the context of quasi-likelihood [for comprehensive treatments of quasi-
likelihood theory, see the books by McCullagh and Nelder (1989) and
Heyde (1997), and the references therein, and for early econometrics
examples, see Macurdy (1982) and White (1982)]. In quasi-likelihood
situations, one uses a possibly incorrectly specified score vector which is
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nevertheless required to satisfy the second Bartlett identity. What makes
our situation unusual relative to quasi-likelihood is that the interest
parameter s2 and the nuisance parameter a2 are entangled in the same
estimating equations (_lls2 and _lla2 from the Gaussian likelihood) in such a
way that the estimate of s2 depends, to first order, on whether a2 is known
or not. This is unlike the typical development of quasi-likelihood, where
the nuisance parameter separates out [see, e.g., McCullagh and Nelder
(1989, Table 9.1, p. 326)]. Thus only by going to the profile likelihood l
can one make the usual comparison to quasi-likelihood.

8. Randomly Spaced Sampling Intervals

One essential feature of transaction data in finance is that the time that
separates successive observations is random, or at least time-varying. So,
as in Aı̈t-Sahalia and Mykland (2003), we are led to consider the case
where Di¼ ti% ti%1 are either deterministic and time-varying, or random
in which case we assume for simplicity that they are i.i.d., independent of
the W process. This assumption, while not completely realistic [see Engle
and Russell (1998) for a discrete time analysis of the autoregressive
dependence of the times between trades] allows us to make explicit calcu-
lations at the interface between the continuous and discrete time scales.
We denote by NT the number of observations recorded by time T. NT is
random if the Ds are. We also suppose thatUti can be writtenUi, where the
Ui are i.i.d. and independent of the W process and the Dis. Thus, the
observation noise is the same at all observation times, whether random or
nonrandom. If we define the Yis as before, in the first two lines of
Equation (8), though the MA(1) representation is not valid in the same
form.

We can do inference conditionally on the observed sampling times, in
light of the fact that the likelihood function using all the available infor-
mation is

L YN ,DN , . . . ,Y1,D1;b,cð Þ ¼ L YN , . . . ,Y1jDN , . . . ,D1;bð Þ
*L DN , . . . ,D1;cð Þ,

where b are the parameters of the state process, that is (s2, a2), and c are
the parameters of the sampling process, if any (the density of the sampling
intervals density L(DNT

, . . . ,D1; c) may have its own nuisance parameters
c, such as an unknown arrival rate, but we assume that it does not depend
on the parameters b of the state process). The corresponding log-
likelihood function is

XN

n¼1

lnL YN , . . . ,Y1jDN , . . . ,D1;bð Þþ
XN%1

n¼1

lnL DN , . . . ,D1;cð Þ ð44Þ
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and since we only care about b, we only need to maximize the first term in
that sum.

We operate on the covariance matrix " of the log-returns Ys, now
given by

" ¼

s2D1 þ 2a2 %a2 0 + + + 0

%a2 s2D2 þ 2a2 %a2 » ..
.

0 %a2 s2D3 þ 2a2 » 0

..

.
» » » %a2

0 + + + 0 %a2 s2Dn þ 2a2

0

BBBBBBBBB@

1

CCCCCCCCCA

: ð45Þ

Note that in the equally spaced case, "¼ g2V. But now Y no longer
follows an MA(1) process in general. Furthermore, the time variation in
Dis gives rise to heteroskedasticity as is clear from the diagonal elements of
". This is consistent with the predictions of the model of Easley and
O’Hara (1992) where the variance of the transaction price process ~XX is
heteroskedastic as a result of the influence of the sampling times. In their
model, the sampling times are autocorrelated and correlated with the
evolution of the price process, factors we have assumed away here.
However, Aı̈t-Sahalia and Mykland (2003) show how to conduct likeli-
hood inference in such a situation.

The log-likelihood function is given by

lnL YN , . . . ,Y1jDN , . . . ,D1;bð Þ
& l s2, a2
! "

¼ %ln det "ð Þ=2%Nln 2pð Þ=2%Y 0"%1Y=2: ð46Þ

In order to calculate this log-likelihood function in a computationally
efficient manner, it is desirable to avoid the ‘‘brute force’’ inversion of
the N * N matrix ". We extend the method used in the MA(1) case (see
Equation (29)) as follows. By Theorem 5.3.1 in Dahlquist and Bj€oorck
(1974), and the development in the proof of their Theorem 5.4.3, we can
decompose " in the form "¼LDLT, where L is a lower triangular matrix
whose diagonals are all 1 and D is diagonal. To compute the rele-
vant quantities, their Example 5.4.3 shows that if one writes D ¼
diag(g1, . . . , gn) and

L ¼

1 0 0 + + + 0

k2 1 0 » ..
.

0 k3 1 » 0

..

.
» » » 0

0 + + + 0 kn 1

0

BBBBBBB@

1

CCCCCCCA

, ð47Þ
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then the gks and kks follow the recursion equation g1¼s2D1þ 2a2 and for
i¼ 2, . . . ,N:

ki ¼ %a2=gi%1 and gi ¼ s2Di þ 2a2 þ kia
2: ð48Þ

Then, define ~YY ¼ L%1Y so that Y 0"%1Y ¼ ~YY 0D%1 ~YY . From Y ¼ L ~YY , it
follows that ~YY1 ¼ Y1 and, for i¼ 2, . . . , N:

~YYi ¼ Yi % ki ~YYi%1:

And det(")¼ det(D) since det(L)¼ 1. Thus we have obtained a computa-
tionally simple form for Equation (46) that generalizes the MA(1) form in
Equation (29) to the case of non-identical sampling intervals:

l s2, a2
! "

¼ % 1

2

XN

i¼1

ln 2pgið Þ% 1

2

XN

i¼1

~YY 2
i

gi
: ð49Þ

We can now turn to statistical inference using this likelihood function.
As usual, the asymptotic variance of T1=2ðŝs2 %s2, âa2 % a2Þ is of the form

avar ŝs2, âa2
! "

¼ lim
T !1

1

T
E %€lls2s2

h i
1

T
E %€lls2a2

h i

, 1

T
E %€lla2a2
h i

0

B@

1

CA

%1

: ð50Þ

To compute this quantity, suppose in the following that b1 and b2 can
represent either s2 or a2. We start with:

Lemma 2. Fisher’s Conditional Information is given by

E %€llb2b1

,,D
h i

¼ % 1

2

q2 ln det"
qb2b1

: ð51Þ

To compute the asymptotic distribution of theMLE of (b1, b2), one would
then need to compute the inverse of E½%€llb2b1

( ¼ ED½E½%€llb2b1
jD(( where ED

denotes expectation taken over the law of the sampling intervals. From
Equation (51), and since the order of ED and q2/qb2b1 can be inter-
changed, this requires the computation of

ED ln det "½ ( ¼ ED ln det D½ ( ¼
XN

i¼1

ED ln gið Þ½ (,

where from Equation (48) the gis are given by the continuous fraction

g1 ¼ s2D1 þ 2a2, g2 ¼ s2D2 þ 2a2 % a4

s2D1 þ 2a2
,

g3 ¼ s2D3 þ 2a2 % a4

s2D2 þ 2a2 % a4

s2D1 þ 2a2

The Review of Financial Studies / v 18 n 2 2005

378



and in general

gi ¼ s2Di þ 2a2 % a4

s2Di%1 þ 2a2 % a4

»

It, therefore, appears that computing the expected value of ln(gi) over the
law of (D1, D2, . . . ,Di) will be impractical.

8.1 Expansion around a fixed value of D
To continue further with the calculations, we propose to expand around a
fixed value of D, namely D0¼E [D]. Specifically, suppose now that

Di ¼ D0 1þ ejið Þ, ð52Þ

where e and D0 are nonrandom, the jis are i.i.d. random variables with
mean zero and finite distribution. We will Taylor-expand the expressions
above around e¼ 0, that is, around the non-random sampling case we
have just finished dealing with. Our expansion is one that is valid when the
randomness of the sampling intervals remains small, that is, when var[Di]
is small, or o(1). Then we have D0¼E [D]¼O(1) and var½Di( ¼ D2

0e
2var½ji(.

The natural scaling is to make the distribution of ji finite, that is,
var[ji]¼O(1), so that e2¼O(var[Di])¼ o(1). But any other choice would
have no impact on the result since var[Di]¼ o(1) implies that the product
e2var[ji] is o(1) and whenever we write remainder terms below they can be
expressed as Op(e

3j3) instead of just O(e3). We keep the latter notation for
clarity given that we set ji¼Op(1). Furthermore, for simplicity, we take
the jis to be bounded.

We emphasize that the time increments or durations Di do not tend to
zero length as e ! 0. It is only the variability of the Dis that goes to zero.

Denote by "0 the value of " when D is replaced by D0, and let X denote
the matrix whose diagonal elements are the terms D0ji, and whose
off-diagonal elements are zero. We obtain the following theorem.

Theorem 3. The MLE ðŝs2, âa2Þ is again consistent, this time with asymptotic
variance

avar ŝs2, âa2
! "

¼ A 0ð Þ þ e2A 2ð Þ þO e3
! "

, ð53Þ

where

A 0ð Þ ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s6D0 4a2 þs2D0ð Þ

p
þ 2s4D0 %s2D0h D0,s2, a2

! "

, D0

2
2a2 þs2D0

! "
h D0,s

2, a2
! "

0

@

1

A
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and

A 2ð Þ ¼ var j½ (
4a2 þD0s2ð Þ

A
2ð Þ
s2s2 A

2ð Þ
s2a2

, A
2ð Þ
a2a2

 !

with

A
ð2Þ
s2s2 ¼ %4ðD2

0s
6 þD3=2

0 s5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þD0s2

p
Þ,

A
ð2Þ
s2a2

¼ D3=2
0 s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þD0s2

p
ð2a2 þ 3D0s

2ÞþD2
0s

4ð8a2 þ 3D0s
2Þ,

A
ð2Þ
a2a2

¼ %D2
0s

2ð2a2 þs
ffiffiffiffiffiffi
D0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þD0s2

p
þD0s

2Þ2:

In connection with the preceding result, we underline that the quantity
avarðŝs2, âa2Þ is a limit as T ! 1, as in Equation (50). Equation (53),
therefore, is an expansion in e after T ! 1.

Note that A(0) is the asymptotic variance matrix already present in
Proposition 1, except that it is evaluated at D0 = E[D]. Note also that the
second order correction term is proportional to var[j], and is therefore
zero in the absence of sampling randomness. When that happens, D¼D0

with probability one and the asymptotic variance of the estimator reduces
to the leading term A(0), that is, to the result in the fixed sampling case
given in Proposition 1.

8.2 Randomly spaced sampling intervals and misspecified
microstructure noise

Suppose now, as in Section 6, that the Us are i.i.d., have mean zero and
variance a2, but are otherwise not necessarily Gaussian. We adopt the
same approach as in Section 6, namely to express the estimator’s proper-
ties in terms of deviations from the deterministic and Gaussian case. The
additional correction terms in the asymptotic variance are given in the
following result.

Theorem 4. The asymptotic variance is given by

avartrue ŝs, âa2
! "

¼ A 0ð Þ þ cum4 U½ (B 0ð Þ
( )

þ e2 A 2ð Þ þ cum4 U½ (B 2ð Þ
( )

þO e3
! "

ð54Þ

where A(0) and A(2) are given in the statement of Theorem 3 and

B 0ð Þ ¼
0 0

0 D0

* +
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while

B 2ð Þ ¼ var j½ (
B

2ð Þ
s2s2 B

2ð Þ
s2a2

, B
2ð Þ
a2a2

 !

B
2ð Þ
s2s2 ¼

10D3=2
0 s5

4a2 þ D0s2ð Þ5=2
þ
4D2

0s
6 16a4 þ 11a2D0s2 þ 2D2

0s
4

! "

2a2 þ D0s2ð Þ3 4a2 þ D0s2ð Þ2

B
2ð Þ
s2a2

¼ %D2
0s

4

2a2 þD0s2ð Þ3 4a2 þD0s2ð Þ5=2

*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þD0s2

p
32a6 þ 64a4D0s

2 þ 35a2D2
0s

4 þ 6D3
0s

6
! "(

þD1=2
0 s 116a6 þ 126a4D0s

2 þ 47a2D2
0s

4 þ 6D3
0s

6
! ")

B
2ð Þ
a2a2

¼
16a8D5=2

0 s3 13a4 þ 10a2D0s2 þ 2D2
0s

4
! "

2a2 þ D0s2ð Þ3 4a2 þ D0s2ð Þ5=2 2a2 þ s2D%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2D 4a2 þ s2Dð Þ

p( )2 :

The term A(0) is the base asymptotic variance of the estimator, already
present with fixed sampling and Gaussian noise. The term cum4[U ]B(0) is
the correction due to the misspecification of the error distribution. These
two terms are identical to those present in Theorem 2. The terms propor-
tional to e2 are the further correction terms introduced by the randomness
of the sampling. A(2) is the base correction term present even with
Gaussian noise in Theorem 3, and cum4 [U ]B(2) is the further correction
due to the sampling randomness. Both A(2) and B(2) are proportionalto
var[j] and hence vanish in the absence of sampling randomness.

9. Extensions

In this section, we briefly sketch four extensions of our basic model. First,
we show that the introduction of a drift term does not alter our conclu-
sions. Then we examine the situation where market microstructure noise is
serially correlated; there, we show that the insight of Theorem 1 remains
valid, namely that the optimal sampling frequency is finite. Third, we turn
to the case where the noise is correlated with the efficient price signal.
Fourth, we discuss what happens if volatility is stochastic.

In a nutshell, each one of these assumptions can be relaxed without
affecting our main conclusion, namely that the presence of the noise gives
rise to a finite optimal sampling frequency. The second part of our anal-
ysis, dealing with likelihood corrections for microstructure noise, will not
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necessarily carry through unchanged if the assumptions are relaxed (for
instance, there is not even a known likelihood function if volatility is
stochastic, and the likelihood must be modified if the assumed variance-
covariance structure of the noise is modified).

9.1 Presence of a drift coefficient
What happens to our conclusions when the underlying X process has a
drift? We shall see in this case that the presence of the drift does not alter
our earlier conclusions. As a simple example, consider linear drift, that is,
replace Equation (2) with

Xt ¼ mtþsWt: ð55Þ

The contamination by market microstructure noise is as before: the
observed process is given by Equation (3).

As before, we first-difference to get the log-returns Yi ¼ ~XXti % ~XXti%1
þ

Uti %Uti%1
. The likelihood function is now

lnL Y1, . . . ,YN jDN , . . . ,D1; bð Þ
& l s2,a2,m
! "

¼%lndet "ð Þ=2%N ln 2pð Þ=2% Y%mDð Þ0"%1 Y%mDð Þ=2,

where the covariance matrix is given in Equation (45), and where
D¼ (D1, . . . ,DN)

0. If b denotes either s2 or a2, one obtains

€llmb ¼ D0 q"
%1

qb
Y %mDð Þ,

so that E½€llmbjD( ¼ 0 no matter whether the Us are normally distributed or
have another distribution with mean 0 and variance a2. In particular,

E €llmb
h i

¼ 0: ð56Þ

Now let E½€ll( be the 3* 3 matrix of expected second likelihood derivatives.
Let E½€ll( ¼ %TE½D(Dþ oðTÞ. Similarly define covð_ll, _llÞ ¼ TE½D(S þ oðTÞ.
As before, when the Us have a normal distribution, S¼D, and otherwise
that is not the case. The asymptotic variance matrix of the estimators is of
the form avar¼E [D]D%1SD%1.

Let Ds2;a2 be the corresponding 2 * 2 matrix when estimation is carried
out on s2 and a2 for known m, and Dm is the asymptotic information on m
for known s2 and a2. Similarly define Ss2;a2 and avars2;a2. Since D is block
diagonal by Equation (56),

D ¼
Ds2; a2 0

00 Dm

* +
,
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it follows that

D%1 ¼
D%1

s2;a2 0

00 D%1
m

 !

:

Hence

avar ŝs2, âa2
! "

¼ E D½ (D%1
s2;a2Ss2;a2D

%1
s2;a2 : ð57Þ

The asymptotic variance ofðŝs2, âa2Þ is thus the same as if m were known, in
other words, as if m¼ 0, which is the case that we focused on in all the
previous sections.

9.2 Serially correlated noise
We now examine what happens if we relax the assumption that the market
microstructure noise is serially independent. Suppose that, instead of being
i.i.d. with mean 0 and variance a2, the market microstructure noise follows

dUt ¼ %bUtdtþ cdZt, ð58Þ

where b> 0, c> 0 and Z is a Brownian motion independent of W. UDjU0

has a Gaussian distribution with mean e%bDU0 and variance c2/2b(1%
e%2bD). The unconditional mean and variance of U are 0 and a2 = c2/2b.
The main consequence of this model is that the variance contributed by
the noise to a log-return observed over an interval of time D is now of
order O(D), that is of the same order as the variance of the efficient price
process s2D, instead of being of order O(1) as previously. In other words,
log-prices observed close together have very highly correlated noise terms.
Because of this feature, this model for the microstructure noise would be
less appropriate if the primary source of the noise consists of bid-ask
bounces. In such a situation, the fact that a transaction is on the bid or
ask side has little predictive power for the next transaction, or at least not
enough to predict that two successive transactions are on the same side
with very high probability [although Choi, Salandro, and Shastri (1988)
have argued that serial correlation in the transaction type can be a com-
ponent of the bid-ask spread, and extended the model of Roll (1984) to
allow for it]. On the other hand, the model (58) can better capture effects
such as the gradual adjustment of prices in response to a shock such as a
large trade. In practice, the noise term probably encompasses both of
these examples, resulting in a situation where the variance contributed
by the noise has both types of components, some of order O(1), some of
lower orders in D.

The observed log-returns take the form

Yi ¼ ~XXti % ~XXti%1
þUti %Uti%1

¼ s Wti %Wti%1
ð ÞþUti %Uti%1

&wi þ ui,
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where the wis are i.i.d. N(0, s2D), the uis are independent of the wis, so we
have var½Yi( ¼ s2Dþ E½u2i (, and they are Gaussian with mean zero and
variance

E u2i
# $

¼ E Uti %Uti%1
ð Þ2
h i

¼
c2 1% e%bD
! "

b
¼ c2Dþ o Dð Þ ð59Þ

instead of 2a2.
In addition, the uis are now serially correlated at all lags since

E UtiUtk½ ( ¼
c2 1% e%bD i%kð Þ! "

2b

for i- k. The first-order correlation of the log-returns is now

cov Yi,Yi%1ð Þ ¼ %
c2 1% e%bD
! "2

2b
¼ % c2b

2
D2 þ o D2

! "

instead of h.
The result analogous to Theorem 1 is as follows. If one ignores the

presence of this type of serially correlated noise when estimating s2, then
follows the theorem.

Theorem 5. In small samples (finite T), the RMSE of the estimator ŝs2 is
given by

RMSE ŝs2
# $

¼

 
c4 1% e%bD
! "2

b2D2
þ

c4 1% e%bD
! "2 T

D
e%2bD % 1þ e%2Tb

* +

T2b2 1þ e%bDð Þ2
:

þ 2

TD
s2Dþ

c2 1% e%bD
! "

b

* +2
!1=2

¼ c2 % bc2

2
Dþ

s2 þ c2
! "2

D

c2T
þO D2
! "

þO
1

T2

* +
ð60Þ

so that for large T, starting from a value of c2 in the limit where D ! 0,
increasing D first reduces RMSE [ŝs2]. Hence the optimal sampling
frequency is finite.

One would expect this type of noise to be not nearly as bad as i.i.d. noise
for the purpose of inferring s2 from high frequency data. Indeed, the
variance of the noise is of the same order O(D) as the variance of the
efficient price process. Thus log returns computed from transaction prices
sampled close together are not subject to as much noise as previously
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(O(D) versus O(1)) and the squared bias b2 of the estimator ŝs2 no longer
diverges to infinity as D! 0: it has the finite limit c4. Nevertheless, b2 first
decreases as D increases from 0, since

b2 ¼ E ŝs2
# $

%s2
! "2¼

c4 1% ebD
! "2

b2D2e2bD

and qb2/qD ! %bc4< 0 as D ! 0. For large enough T, this is sufficient to
generate a finite optimal sampling frequency.

To calibrate the parameter values b and c, we refer to the same empirical
microstructure studies we mentioned in Section 4. We now have
p ¼ E½u2i (=ðs2Dþ E½u2i (Þ as the proportion of total variance that is
microstructure-induced; we match it to the numbers in Equation (24)
from Madhavan, Richardson, and Roomans (1997). In their Table 5,
they report the first-order correlation of price changes (hence returns) to
be approximately r¼%0.2 at their frequency of observation. Here
r¼ cov(Yi, Yi%1)/var[Yi]. If we match p¼ 0.6 and r¼%0.2, with
s¼ 30% as before, we obtain (after rounding) c¼ 0.5 and b¼ 3 * 104.
Figure 6 displays the resulting RMSE of the estimator as a function of D
and T. The overall picture is comparable to Figure 2.

As for the rest of the analysis of the article, dealing with likelihood
corrections for microstructure noise, the covariance matrix of the log-
returns, g2V in Equation (26) should be replaced by the matrix whose
diagonal elements are

var Y 2
i

# $
¼ E w2

i

# $
þE u2i
# $

¼ s2Dþ
c2 1% e%bD
! "

b

Figure 6
RMSE of the estimator ŝs2 when the presence of serially correlated noise is ignored
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and off-diagonal elements i> j are:

covðYi,YjÞ ¼ E YiYj

# $
¼ E wi þ uið Þðwj þ ujÞ
# $

¼ E uiuj
# $

¼ E Uti %Uti%1
ð ÞðUtj %Utj%1

Þ
# $

¼ E UtiUtj

# $
%E UtiUtj%1

# $
%E Uti%1

Utj

# $
þE Uti%1

Utj%1

# $

¼ %
c2 1% e%bD
! "2

e%bD i% j% 1ð Þ

2b
:

Having modified the matrix g2V, the artificial ‘‘normal’’ distribution that
assumes i.i.d. Us that are N(0,a2) would no longer use the correct second
moment structure of the data. Thus we cannot relate a priori the
asymptotic variance of the estimator of the estimator ŝs2 to that of the
i.i.d. normal case, as we did in Theorem 2.

9.3 Noise correlated with the price process
We have assumed so far that the U process was uncorrelated with the W
process. Microstructure noise attributable to informational effects is likely
to be correlated with the efficient price process, since it is generated by the
response of market participants to information signals (i.e., to the efficient
price process). This would be the case for instance in the bid-ask model
with adverse selection of Glosten (1987). When the U process is no longer
uncorrelated from the W process, the form of the variance matrix of the
observed log-returns Y must be altered, replacing g2vij in Equation (26)
with

cov Yi,Yj

! "
¼ cov s Wti%Wti%1

ð ÞþUti %Uti%1
,s Wtj%Wtj%1

! "
þUtj%Utj%1

! "

¼ s2Ddij þ cov s Wti %Wti%1
ð Þ,Utj%Utj%1

! "

þ cov s Wtj %Wtj%1

! "
,Uti %Uti%1

! "

þ cov Uti %Uti%1
,Utj%Utj%1

! "
,

where dij is the Kronecker symbol.
The small sample properties of the misspecified MLE for s2 analogous

to those computed in the independent case, including its RMSE, can be
obtained from

E ŝs2
# $

¼ 1

T

XN

i¼1

E Y 2
i

# $

var ŝs2
# $

¼ 1

T2

XN

i¼1

var Y 2
i

# $
þ 2

T2

XN

i¼1

Xi%1

j¼1

cov Y 2
i ,Y

2
j

( )
:

Specific expressions for all these quantities depend upon the assumptions
of the particular structural model under consideration: for instance, in the
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Glosten (1987) model (see his Proposition 6), theUs remain stationary, the
transaction noise Uti is uncorrelated with the return noise during the
previous observation period, that is, Uti%1

%Uti%2
, and the efficient return

s(Wti%Wti%1
) is also uncorrelated with the transaction noises Uti+1 and

Uti%2
. With these in hand, the analysis of the RMSE and its minimum can

then proceed as above. As for the likelihood corrections for microstruc-
ture noise, the same caveat as in serially correlated U case applies: having
modified the matrix g2V, the artificial ‘‘normal’’ distribution would no
longer use the correct second moment structure of the data and the
likelihood must be modified accordingly.

9.4 Stochastic volatility
One important departure from our basic model is the case where volatility
is stochastic. The observed log-returns are still generated by Equation (3).
Now, however, the constant volatility assumption (2) is replaced by

dXt ¼ stdWt: ð61Þ

The object of interest in much of the literature on high frequency volatility
estimation [see, e.g., Barndorff-Nielsen and Shephard (2002), Andersen
et al. (2003)] is then the integral

Z T

0

s2
t dt ð62Þ

over a fixed time period [0,T ], or possibly several such time periods. The
estimation is based on observations 0 = t0< t1< + + + < tn ¼ T, and asymp-
totic results are obtained when maxDti ! 0. The usual estimator for
Equation (62) is the ‘‘realized variance’’

Xn

i¼1

~XXtiþ1
% ~XXti

! "2
: ð63Þ

In the context of stochastic volatility, ignoring market microstructure
noise leads to an even more dangerous situation than when s is constant
and T ! 1. We show in the companion paper Zhang, Mykland, and
Aı̈t-Sahalia (2003) that, after suitable scaling, the realized variance is a
consistent and asymptotically normal estimator—but of the quantity 2a2.
This quantity has, in general, nothing to do with the object of interest
Equation (62). Stated differently, market microstructure noise totally
swamps the variance of the price signal at the level of the realized variance.
To obtain a finite optimal sampling interval, one needs that a2 ! 0 as
n ! 1, that is, the amount of noise must disappear asymptotically. For
further developments on this topic, we refer to Zhang, Mykland, and
Aı̈t-Sahalia (2003).
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10. Conclusions

We showed that the presence of market microstructure noise makes it
optimal to sample less often than would otherwise be the case in the
absence of noise, and we determined accordingly the optimal sampling
frequency in closed-form.

We then addressed the issue of what to do about it, and showed that
modeling the noise term explicitly restores the first order statistical effect
that sampling as often as possible is optimal. We also demonstrated that
this remains the case if one misspecifies the assumed distribution of the
noise term. If the econometrician assumes that the noise terms are nor-
mally distributed when in fact they are not, not only is it still optimal to
sample as often as possible, but the estimator has the same asymptotic
variance as if the noise distribution had been correctly specified. This
robustness result is, we think, a major argument in favor of incorporating
the presence of the noise when estimating continuous time models with
high frequency financial data, even if one is unsure about what is the true
distribution of the noise term. Hence, the answer to the question we pose
in our title is ‘‘as often as possible,’’ provided one accounts for the pres-
ence of the noise when designing the estimator.

Appendix A. Proof of Lemma 1

To calculate the fourth cumulant cum(Yi,Yj,Yk,Yl), recall from Equation (8) that the
observed log-returns are

Yi ¼ s Wti %Wti%1
ð ÞþUti %Uti%1

:

First, note that the ti are nonrandom, and W is independent of the Us, and has Gaussian
increments. Second, the cumulants are multilinear, so

cum Yi,Yj ,Yk,Yl

! "
¼ cum s Wti %Wti%1

ð ÞþUti %Uti%1
,s Wtj %Wtj%1

! "
þUtj %Utj%1

,
!

s Wtk%Wtk%1
ð ÞþUtk %Utk%1

,s Wtl %Wtl%1
ð ÞþUtl %Utl%1

Þ
¼ s4cum Wti %Wti%1

,Wtj %Wtj%1
,Wtk %Wtk%1

,Wtl %Wtl%1

! "

þs3cum Wti %Wti%1
,Wtj %Wtj%1

,Wtk %Wtk%1
,Utl %Utl%1

! "
4½ (

þs2cum Wti %Wti%1
,Wtj %Wtj%1

,Utk %Utk%1
,Utl %Utl%1

! "
6½ (

þscum Wti %Wti%1
,Utj %Utj%1

,Utk %Utk%1
,Utl %Utl%1

! "
4½ (

þ cum Uti %Uti%1
,Utj %Utj%1

,Utk %Utk%1
,Utl %Utl%1

! "
:

Out of these terms, only the last is nonzero because W has Gaussian increments (so all
cumulants of its increments of order greater than two are zero), and is independent of the Us
(so all cumulants involving increments of both W and U are also zero). Therefore,

cum Yi,Yj ,Yk,Yl

! "
¼ cum Uti %Uti%1

,Utj %Utj%1
,Utk %Utk%1

,Utl %Utl%1

! "
:

If i¼ j¼ k¼ l, we have:

cum Uti %Uti%1
,Uti %Uti%1

,Uti %Uti%1
,Uti %Uti%1

ð Þ ¼ cum4 Uti %Uti%1
ð Þ

¼ cum4 Utið Þþ cum4 %Uti%1
ð Þ

¼ 2 cum4 U½ (

The Review of Financial Studies / v 18 n 2 2005

388



with the second equality following from the independence ofUti andUti%1
, and the third from

the fact that the cumulant is of even order.
If max(i, j, k, l )¼min(i, j, k, l )þ 1, two situations arise. Set m¼min(i, j, k, l ) and M¼

max(i, j, k, l ). Also set s¼ s(i, j, k, l )¼#{i, j, k, l¼m}. If s is odd, say s¼ 1 with i¼m, and
j, k, l¼M¼mþ 1, we get a term of the form

cum Utm %Utm%1
,Utmþ1

%Utm ,Utmþ1
%Utm ,Utmþ1

%Utm

! "
¼ %cum4 Utmð Þ:

By permutation, the same situation arises if s¼ 3. If instead s is even, that is, s¼ 2, then we
have terms of the form

cum Utm %Utm%1
,Utm %Utm%1

,Utmþ1
%Utm ,Utmþ1

%Utm

! "
¼ cum4 Utmð Þ:

Finally, if at least one pair of indices in the quadruple (i, j, k, l ) is more than one integer apart,
then

cum Uti %Uti%1
,Utj %Utj%1

,Utk %Utk%1
,Utl %Utl%1

! "
¼ 0

by independence of the Us.

Appendix B. Proof of Theorem 1

Given the estimator (5) has the following expected value

E ŝs2
# $

¼ 1

T

XN

i¼1

E Y 2
i

# $
¼

N s2Dþ 2a2
! "

T
¼ s2 þ 2a2

D
:

The estimator’s variance is

var ŝs2
# $

¼ 1

T2
var

XN

i¼1

Y 2
i

" #
¼ 1

T2

XN

i;j¼1

cov Y 2
i ,Y

2
j

( )
:

Applying Lemma 1 in the special case where the first two indices and the last two respectively
are identical yields

cum Yi ,Yi,Yj ,Yj

! "
¼

2 cum4 U½ (, if j ¼ i,

cum4 U½ (, if j ¼ iþ 1 or j ¼ i% 1,

0, otherwise:

8
><

>:
ðB:1Þ

In the middle case, that is, whenever j¼ iþ 1 or j¼ i% 1, the number s of indices that are
equal to the minimum index is always 2. Combining Equation (B.1) with Equation (14), we
have

var ŝs2
# $

¼ 1

T2

XN

i¼1

cov Y 2
i ,Y

2
i

! "
þ 1

T2

XN%1

i¼1

cov Y 2
i ,Y

2
iþ1

! "
þ 1

T2

XN

i¼2

cov Y 2
i ,Y

2
i%1

! "

¼ 1

T2

XN

i¼1

2 cov Yi,Yið Þ2 þ 2 cum4 U½ (
n o

þ 1

T2

XN%1

i¼1

2 cov Yi ,Yiþ1ð Þ2 þ cum4 U½ (
n o

þ 1

T2

XN

i¼2

2 cov Yi ,Yi%1ð Þ2 þ cum4 U½ (
n o

¼ 2N

T2
var Yi½ (2 þ cum4 U½ (
n o

þ 2 N % 1ð Þ
T2

2 cov Yi ,Yi%1ð Þ2 þ cum4 U½ (
n o
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with var[Yi] and cov(Yi, Yi%1) = cov(Yi, Yiþ1) given in Equations (9) and (10), so that

var ŝs2
# $

¼ 2N

T2
s2Dþ 2a2
! "2 þ cum4 U½ (
n o

þ 2 N % 1ð Þ
T2

2a4 þ cum4 U½ (
- .

¼
2 s4D2 þ 4s2Da2 þ 6a4 þ 2 cum4 U½ (
! "

TD
%

2 2a4 þ cum4 U½ (
! "

T2
,

since N¼T/D. The expression for the RMSE follows from those for the expected value and
variance given in Equations (17) and (18):

RMSE ŝs2
# $

¼ 4a4

D2
þ

2 s4D2þ4s2Da2þ6a4þ2 cum4 U½ (
! "

TD
%

2 2a4þ cum4 U½ (
! "

T2

 !1=2

: ðB:2Þ

The optimal value D) of the sampling interval given in Equation (19) is obtained by mini-
mizing RMSE½ŝs2( over D. The first order condition that arises from setting qRMSE½ŝs2(=qD
to 0 is the cubic equation in D:

D3 %
2 3a4 þ cum4 U½ (
! "

s4
D% 4a4T

s4
¼ 0: ðB:3Þ

We now show that Equation (B.3) has a unique positive root, and that it corresponds to a
minimum of RMSE½ŝs2(. We are, therefore, looking for a real positive root in D¼ z to the
cubic equation

z3 þ pz% q ¼ 0, ðB:4Þ

where q> 0 and p< 0 since from Equation (16):

3a4 þ cum4 U½ ( ¼ 3a4 þE U4
# $

% 3E U2
# $2¼ E U4

# $
> 0:

Using Vièta’s change of variable from z to w given by z¼w% p/(3w) reduces, after
multiplication by w3, the cubic to the quadratic equation

y2 % qy% p3

27
¼ 0 ðB:5Þ

in the variable y&w3.
Define the discriminant

D ¼ p

3

( )3
þ q

2

( )2
:

The two roots of Equation (B.5) are

y1 ¼
q

2
þD1=2, y2 ¼

q

2
%D1=2

are real if D- 0 (and distinct if D> 0) and complex conjugates if D< 0. Then the three roots
of Equation (B.4) are

z1 ¼ y
1=3
1 þ y

1=3
2 ,

z2 ¼ % 1

2
y
1=3
1 þ y

1=3
2

( )
þ i

31=2

2
y
1=3
1 % y

1=3
2

( )
, ðB:6Þ

z3 ¼ % 1

2
y
1=3
1 þ y

1=3
2

( )
% i

31=2

2
y
1=3
1 % y

1=3
2

( )

[see, e.g., Abramowitz and Stegun (1972, Section 3.8.2)]. If D> 0, the two roots in y are both
real and positive because p< 0 and q> 0 imply

y1 > y2 > 0

and hence of the three roots given in Equation (B.6), z1 is real and positive and z2 and z3 are
complex conjugates. IfD¼ 0, then y1¼ y2¼ q/2> 0 and the three roots are real (two of which
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are identical) and given by

z1 ¼ y
1=3
1 þ y

1=3
2 ¼ 22=3q1=3,

z2 ¼ z3 ¼ % 1

2
y
1=3
1 þ y

1=3
2

( )
¼ % 1

2
z1:

Of these, z1> 0 and z2¼ z3< 0. If D< 0, the three roots are distinct and real because

y1 ¼
q

2
þ i %Dð Þ1=2 & reiu, y2 ¼

q

2
% i %Dð Þ1=2 & re%iu

so

y
1=3
1 ¼ r1=3eiu=3, y

1=3
2 ¼ r1=3e%iu=3

and therefore

y
1=3
1 þ y

1=3
2 ¼ 2r1=3cos u=3ð Þ, y

1=3
1 % y

1=3
2 ¼ 2ir1=3sin u=3ð Þ

so that

z1 ¼ 2r1=3cos u=3ð Þ
z2 ¼ %r1=3cos u=3ð Þþ 31=2r1=3sin u=3ð Þ
z3 ¼ %r1=3cos u=3ð Þ% 31=2r1=3sin u=3ð Þ:

Only z1 is positive because q> 0 and (%D)1/2> 0 imply that 0< u<p/2. Therefore
cos(u/3)> 0, so z1> 0; sin(u/3)> 0, so z3< 0; and

cos u=3ð Þ> cos p=6ð Þ ¼ 31=2

2
¼ 31=2 sin p=6ð Þ> 31=2 sin u=3ð Þ,

so z2< 0.
Thus Equation (B.4) has exactly one root that is positive, and it is given by z1 in

Equation (B.6). Since RMSE½ŝs2( is of the form

RMSE ŝs2
# $

¼
2TD3s4%2D2 2a4%4a2Ts2þcum4 U½ (

! "
þ2D 6a4Tþ2Tcum4 U½ (

! "
þ4a4T2

T2D2

 !1=2

¼ a3D
3þa2D

2þa1Dþa0

T2D2

 !1=2

with a3> 0, it tends to þ1 when D tends to þ1. Therefore, that single positive root
corresponds to a minimum of RMSE½ŝs2( which is reached at

D) ¼ y
1=3
1 þ y

1=3
2

¼ q

2
þD1=2

( )1=3
þ q

2
%D1=2

( )1=3
:

Replacing q and p by their values in the expression above yields Equation (19). As shown
above, if the expression inside the square root in formula (19) is negative, the resulting D) is
still a positive real number.

Appendix C. Proof of Proposition 1

The result follows from an application of the delta method to the known properties of the
MLE estimator of an MA(1) process [Hamilton (1995, Section 5.4)], as follows. Because we
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re-use these calculations below in the proof of Theorem 2 (whose result cannot be
inferred from knownMA(1) properties), we recall some of the expressions of the score vector
of the MA(1) likelihood. The partial derivatives of the log-likelihood function (25) have
the form

ih ¼ % 1

2

q ln det Vð Þ
qh

% 1

2g2
Y 0 qV

%1

qh
Y ðC:1Þ

and

ig2 ¼ % N

2g2
þ 1

2g4
Y 0V%1Y , ðC:2Þ

so that the MLE for g2 is

ĝg2 ¼ 1

N
Y 0V%1Y : ðC:3Þ

At the true parameters, the expected value of the score vector is zero: E [ih]¼E [ig2]¼ 0.
Hence it follows from Equation (C.1) that

E Y 0 qV
%1

qh
Y

/ 0
¼ %g2 q ln det Vð Þ

qh
¼ %g2 2h 1% 1þNð Þh2N þNh2 1þNð Þ! "

1%h2ð Þ 1%h2 1þNð Þð Þ
,

thus as N ! 1

E Y 0 qV
%1

qh
Y

/ 0
¼ % 2hg2

1%h2ð Þ
þ o 1ð Þ:

Similarly, it follows from Equation (C.2) that

E Y 0V%1Y
# $

¼ Ng2:

Turning now to Fisher’s information, we have

E %ig2g2

# $
¼ % N

2g4
þ 1

g6
E Y 0V%1Y
# $

¼ N

2g4
, ðC:4Þ

whence the asymptotic variance of T1=2ðĝg2 %g2Þ is 2g4D. We also have that

E %€llg2h

h i
¼ 1

2g4
E Y 0 qV

%1

qh
Y

/ 0
¼ % h

g2 1%h2ð Þ þ o 1ð Þ, ðC:5Þ

whence the asymptotic covariance of T1=2ðĝg2 % g2Þ and T1=2ðĥh%hÞ is zero.
To evaluate E½%€llhh(, we compute

E %€llhh
h i

¼ 1

2

q2ln det Vð Þ
qh2

þ 1

2g2
E Y 0 q

2V%1

qh2
Y

" #
ðC:6Þ

and evaluate both terms. For the first term in Equation (C.6), we have from Equation (27):

q2ln det Vð Þ
qh2

¼ 1

1%h2þ2Nð Þ2

(
2 1þh2 þh2þ2N 1% 3h2

! "! "
1%h2N
! "

1%h2ð Þ2

%2Nh2N 3þh2þ2N
! "

% 4N2h2N

)

¼
2 1þh2
! "

1%h2ð Þ2
þ o 1ð Þ: ðC:7Þ
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For the second term, we have for any non-random N * N matrix Q:

E Y 0QY½ ( ¼ E Tr Y 0QY½ (½ ( ¼ E Tr QYY 0½ (½ ( ¼ Tr E QYY 0½ (½ (
¼ Tr QE YY 0½ (½ ( ¼ Tr Qg2V

# $
¼ g2Tr QV½ (,

where Tr denotes the matrix trace, which satisfies Tr[AB]¼Tr[BA]. Therefore

E Y 0 q
2V%1

qh2
Y

" #

¼ g2Tr
q2V%1

qh2
V

" #

¼ g2
XN

i¼1

XN

j¼1

q2vij

qh2
vij

 !

¼ g2
XN

i¼1

q2vii

qh2
1þh2
! "

þ
XN%1

i¼1

q2vi;iþ1

qh2
hþ

XN

i¼2

q2vi;i%1

qh2
h

 !

¼ g2

1%h2þ2Nð Þ2

(
%
4 1þ 2h2 þh2þ2N 1% 4h2

! "! "
1%h2N
! "

1%h2ð Þ2

þ
2N 1þh2N 6% 6h2 þ 2h2þ2N % 3h4þ2N

! "! "

1%h2ð Þ þ 8N2h2N

)

¼ 2g2N

1%h2ð Þ
þ o Nð Þ: ðC:8Þ

Combining Equations (C.7) and (C.8) with Equation (C.6), it follows that

E %€llhh
h i

¼ 1

2

q2ln det VNð Þ
qh2

þ 1

2g2
E Y 0 q

2V%1
N

qh2
Y

" #
.

N!1

N

1%h2ð Þ þ o Nð Þ: ðC:9Þ

In light of that and Equation (C.5), the asymptotic variance of T1=2ðĥh%hÞ is the same as in
the g2 known case, that is, (1%h2)D (which of course confirms the result of Durbin (1959) for
this parameter).

We can now retrieve the asymptotic covariance matrix for the original parameters (s2, a2)
from that of the parameters (g2, h). This follows from the delta method applied to the change
of variable [Equations (9) and (10)]:

s2

a2

 !
¼ f g2,h
! "

¼ D%1g2 1þhð Þ2

%g2h

 !
: ðC:10Þ

Hence

T1=2 ŝs2

âa2

 !
%

s2

a2

 ! !
!
T!1

N 0, avar ŝs2, âa2
! "! "

,

where

avar ŝs2, âa2
! "

¼ rf g2,h
! "

+ avar ĝg2, ĥh
! "

+rf g2,h
! "0

¼
1þhð Þ2

D

2g2 1þhð Þ
D

%h %g2

0

@

1

A 2g4D 0

0 1%h2
! "

D

 ! 1þhð Þ2

D
%h

2g2 1þhð Þ
D

%g2

0

BB@

1

CCA

¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s6D 4a2 þs2Dð Þ

p
þ 2s4D %s2Dh D,s2, a2

! "

, D

2
2a2 þs2D
! "

h D,s2, a2
! "

0

@

1

A:
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Appendix D. Proof of Theorem 2

We have that

Etrue ihig2

# $
¼ covtrue ih, ig2

! "

¼ covtrue % 1

2g2

XN

i;j¼1

YiYj
qvij

qh
,

1

2g4

XN

k;l¼1

YkYlv
kl

 !

¼ % 1

4g6

XN

i;j;k;l¼1

qvij

qh
vklcovtrue YiYj ,YkYl

! "

¼ % 1

4g6

XN

i;j;k;l¼1

qvij

qh
vkl cumtrue Yi,Yj ,Yk,Yl

! "
þ 2 covtrue Yi,Yj

! "
covtrue Yk,Ylð Þ

# $
,

ðD:1Þ

where ‘‘true’’ denotes the true distribution of the Ys, not the incorrectly specified normal
distribution, and Cum denotes the cumulants given in Lemma 1. The last transition is because

covtrue YiYj ,YkYl

! "
¼ Etrue YiYjYkYl

# $
%Etrue YiYj

# $
Etrue YkYl½ (

¼ kijkl %kijkkl

¼ ki;j;k;l þki;jkk;l 3½ ( % ki;jkk;l

¼ ki;j;k;l þki;kkj;l þ ki;lkj;k

¼ cumtrue Yi ,Yj ,Yk,Yl

! "
þ covtrue Yi,Ykð Þcovtrue Yj ,Yk

! "

þ covtrue Yi,Ylð Þcovtrue Yj ,Yk

! "
,

since Y has mean zero [see, e.g., McCullagh (1987, Section 2.3)]. The need for permutation
goes away due to the summing over all indices (i, j, k, l ), and since V%1¼ [vij] is symmetric.
When looking at Equation (D.1), note that cumnormal(Yi,Yj,Yk,Yl)¼ 0, where ‘‘normal’’

denotes a Normal distribution with the same first and second order moments as the true
distribution. That is, if the Ys were normal we would have

Enormal
_llh _llg2

h i
¼ % 1

4g6

XN

i;j;k;l¼1

qvij

qh
vkl 2 covnormal Yi,Yj

! "
covnormal Yk,Ylð Þ

# $
:

Also, since the covariance structure does not depend on Gaussianity, covtrue(Yi,Yj)¼
covnormal(Yi, Yj). Next, we have

Enormal
_llh _llg2

h i
¼ %Enormal

€llhg2

h i
¼ %Etrue

€llhg2

h i
ðD:2Þ

with the last equality following from the fact that€llhg2 depends only on the secondmoments of
the Ys. (Note that in general Etrue½_llh _llg2 ( 6¼ %Etrue½€llhg2 ( because the likelihood may be mis-
specified.) Thus, it follows from Equation (D.1) that

Etrue
_llh _llg2

h i
¼ Enormal

_llh _llg2

h i
% 1

4g6

XN

i;j;k;l¼1

qvij

qh
vklcumtrue Yi,Yj ,Yk,Yl

! "

¼ %Etrue
€llhg2

h i
% 1

4g6

XN

i;j;k;l¼1

qvij

qh
vklcumtrue Yi,Yj ,Yk,Yl

! "
: ðD:3Þ

It follows similarly that

Etrue
_llh
( )2/ 0

¼ vartrue _llh
( )

¼ %Etrue
€llhh
h i

þ 1

4g4

XN

i;j;k;l¼1

qvij

qh
qvkl

qh
cumtrue Yi,Yj ,Yk,Yl

! "
ðD:4Þ
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and

Etrue
_llg2

( )2/ 0
¼ vartrue _llg2

( )

¼ %Etrue
€llg2g2

h i
þ 1

4g8

XN

i;j;k;l¼1

vijvklcumtrue Yi ,Yj ,Yk,Yl

! "
: ðD:5Þ

We now need to evaluate the sums that appear on the right-hand sides of Equations (D.3)–
(D.5). Consider two generic symmetric N * N matrices [ni, j] and [vi, j]. We are interested in
expressions of the form

X

i;j;k;l:M¼mþ1

%1ð Þsni;jvk;l ¼
XN%1

h¼1

X

i;j;k;l:m¼h;M¼hþ1

%1ð Þsni;jvk;l

¼
XN%1

h¼1

X3

r¼1

X

i;j;k;l:m¼h;M¼hþ1;s¼r

%1ð Þrni;jvk;l

¼
XN%1

h¼1

n
%2nh;hþ1vhþ1;hþ1 % 2nhþ1;hþ1vh;hþ1

þ nh;hvhþ1;hþ1 þ nhþ1;hþ1vh;h þ 4nh;hþ1vh;hþ1

%2nhþ1;hvh;h % 2nh;hvhþ1;h
o
: ðD:6Þ

It follows that if we set

Y n, vð Þ ¼
XN

i;j;k;l¼1

ni;jvk;lcumtrue Yi ,Yj ,Yk,Yl

! "
, ðD:7Þ

then Y(n,v)¼ cum4[U] C (n,v) where

c n,vð Þ ¼ 2
XN

h¼1

nh;hvh;h þ
XN%1

h¼1

n
%2nh;hþ1vhþ1;hþ1%2nhþ1;hþ1vh;hþ1

þ nh;hvhþ1;hþ1 þ nhþ1;hþ1vh;h þ 4nh;hþ1vh;hþ1

%2nhþ1;hvh;h % 2nh;hvhþ1;h
o
: ðD:8Þ

If the two matrices [ni,j] and [vi,j ] satisfy the following reversibility property:
nNþ1%i,Nþ1%j¼ ni,j and vNþ1%i,Nþ1%j¼vi,j (so long as one is within the index set), then
Equation (D.8) simplifies to:

c n,vð Þ ¼ 2
XN

h¼1

nh;hvh;h þ
XN%1

h¼1

n
%4nh;hþ1vhþ1;hþ1 % 4nhþ1;hþ1vh;hþ1

þ 2nh;hvhþ1;hþ1 þ 4nh;hþ1vh;hþ1
o
:

This is the case for V%1 and its derivative qV%1/qh, as can be seen from the expression for vi,j

given in Equation (28), and consequently for qvi,j/qh.
Therefore, if we wish to compute the sums in Equations (D.3)–(D.5) we need to find the

three quantities c(qv/qh,v),c(qv/qh,qv/qh), and c(v,v), respectively. All are of orderO(N), and
only the first term is needed. Replacing the terms vi,j and qvi,j/qh by their expressions from
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Equation (28), we obtain:

c v, vð Þ ¼ 2

1þh2ð Þ 1%hð Þ3 1%h2 1þNð Þð Þ2
n
% 1þhð Þ 1%h2N

! "
1þ 2h2 þ 2h2 1þNð Þ þh2 2þNð Þ
( )

þN 1%hð Þ 1þh2
! "

2þh2N þh2 1þNð Þ þ 6h1þ2N þ 2h2þ4N
( )o

¼ 4N

1%hð Þ2
þ o Nð Þ, ðD:9Þ

c
qv
qh

,v

* +
¼

2 O 1ð Þ þ 2N 1%hð Þ 1þ h2
! "

h 1þ h2 þO h2N
! "! "

þN2O h2N
! "! "

h 1%hð Þ4 1þ h2ð Þ2 1%h2 1þNð Þð Þ3

¼ 4N

1%hð Þ3
þ o Nð Þ, ðD:10Þ

c
qv
qh

,
qv
qh

* +
¼

4 O 1ð Þþ 3N 1%h4
! "

h2 1þh2
! "2 þO h2N

! "( )
þN2O h2N

! "
þN3O h2N

! "( )

3h2 1þhð Þ 1þh2ð Þ3 1%hð Þ5 1%h2 1þNð Þð Þ4

¼ 4N

1%hð Þ4
þ o Nð Þ: ðD:11Þ

The asymptotic variance of the estimator ðĝg2, ĥhÞ obtained by maximizing the (incorrectly-
specified) log-likelihood function (25) that assumes Gaussianity of the Us is given by

avartrue ĝg2, ĥh
! "

¼ D D0S%1D
! "%1

where, from Equations (C.4), (C.5), and (C.9) we have

D ¼ D0 ¼ % 1

N
Etrue

€ll
h i

¼ % 1

N
Enormal

€ll
h i

¼ 1

N
Enormal

_ll_ll0
h i

¼

1

2g4
% h

Ng2 1%h2ð Þ
þ o

1

N

* +

, 1

1%h2ð Þ þ o 1ð Þ

0

BB@

1

CCA ðD:12Þ

and, in light of Equations (D.3)–(D.5),

S ¼ 1

N
Etrue

_ll_ll0
h i

¼ % 1

N
Etrue

€ll
h i

þ cum4 U½ ( C ¼ Dþ cum4 U½ (C, ðD:13Þ

where

C ¼ 1

4N

1

g8
c v, vð Þ % 1

g6
c

qv
qh

, v

* +

, 1

g4
c

qv
qh

,
qv
qh

* +

0

BB@

1

CCA

¼

1

g8 1%hð Þ2
þ o 1ð Þ %1

g6 1%hð Þ3
þ o 1ð Þ

, 1

g4 1%hð Þ4
þ o 1ð Þ

0

BBB@

1

CCCA ðD:14Þ
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from the expressions just computed. It follows that

avartrue ĝg2, ĥh
! "

¼ D D Dþ cum4 U½ (Cð Þ%1D
( )%1

¼ D D Id þ cum4 U½ (D%1C
! "%1

( )%1

¼ D Id þ cum4 U½ (D%1C
! "

D%1

¼ D Id þ cum4 U½ (D%1C
! "

D%1

¼ avarnormal ĝg
2, ĥh

! "
þDcum4 U½ (D%1CD%1,

where Id denotes the identity matrix and

avarnormal ĝg
2, ĥh

! "
¼

2g4D 0

0 1%h2
! "

D

 !

, D%1CD%1 ¼

4

1%hð Þ2
%2 1þhð Þ
g2 1%hð Þ2

, 1þhð Þ2

g4 1%hð Þ2

0

BBB@

1

CCCA

so that

avartrue ĝg2, ĥh
! "

¼ D
2g4 0

0 1%h2
! "

 !
þDcum4 U½ (

4

1%hð Þ2
%2 1þhð Þ
g2 1%hð Þ2

, 1þhð Þ2

g4 1%hð Þ2

0

BBB@

1

CCCA:

By applying the delta method to change the parametrization, we now recover the asymptotic
variance of the estimates of the original parameters:

avartrue ŝs2, âa2
! "

¼ rf g2,h
! "

+ avartrue ĝg2, ĥh
! "

+rf g2,h
! "0

¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s6D 4a2 þs2Dð Þ

p
þ 2s4D %s2Dh D,s2, a2

! "

, D

2
2a2 þs2D
! "

h D,s2, a2
! "

þDcum4 U½ (

0

BB@

1

CCA:

Appendix E. Derivations for Section 7

To see Equation (39), let ‘‘orig’’ (E.7) denote parametrization in (and differentiation with
respect to) the original parameters s2 and a2, while ‘‘transf’’ denotes parametrization and
differentiation in g2 and h, and finv denotes the inverse of the change of variable function
defined in (C.10), namely

g2

h

 !
¼ finv s2,a2

! "
¼

1

2
2a2 þs2Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2D 4a2 þs2Dð Þ

q& '

1

2a2
%2a2 %s2Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2D 4a2 þs2Dð Þ

q& '

0

BBB@

1

CCCA ðE:1Þ

and rfinv its Jacobian matrix. Then, from _llorig ¼ rfinvðs2;a2Þ0 + _lltransf , we have

€llorig ¼ rfinv s2,a2
! "0

+€lltransf +rfinv s2,a2
! "

þH _lltransf
h i

,

where H½_lltransf ( is a 2 * 2 matrix whose terms are linear in _lltransf and the second partial
derivatives of finv. Now Etrue½_llorig( ¼ Etrue½_lltransf ( ¼ 0, and so Etrue½H½_lltransf (( ¼ 0 from which it
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follows that

Dorig ¼ N%1Etrue %€llorig
h i

¼ rfinv s2,a2
! "0 +Dtransf +rfinv s2,a2

! "

¼

D1=2 2a2 þs2D
! "

2s3 4a2 þs2Dð Þ3=2
D1=2

s 4a2 þs2Dð Þ3=2

, 1

2a4
1%

D1=2s 6a2 þs2D
! "

4a2 þs2Dð Þ3=2

 !

0

BBBB@

1

CCCCA
þ o 1ð Þ ðE:2Þ

with Dtransf ¼ N%1Etrue½%€lltransf ( given in Equation (D.12). Similarly, _llorig _ll0orig ¼
rfinvðs2,a2Þ0 + _lltransf _ll0transf +rfinvðs2,a2Þ and so

Sorig ¼ rfinv s2,a2
! "0 +Stransf +rfinv s2,a2

! "

¼ rfinv s2,a2
! "0 + Dtransf þ cum4 U½ (Cð Þ +rfinv s2,a2

! "

¼ Dorig þ cum4 U½ (rfinv s2,a2
! "0 +C +rfinv s2,a2

! "
ðE:3Þ

with the second equality following from the expression for Stransf given in Equation (D.13).
To complete the calculation, note from Equation (D.14) that

C ¼ gtransf + g0transf þ o 1ð Þ,

where

gtransf ¼
g%4 1%hð Þ%1

%g%2 1%hð Þ%2

 !
:

Thus

rfinv s2,a2
! "0 +C +rfinv s2,a2

! "
¼ gorig + g0orig þ o 1ð Þ, ðE:4Þ

where

g ¼ gorig ¼ rfinv s2,a2
! "0 + gtransf ¼

D1=2

s 4a2 þs2Dð Þ3=2

1

2a4
1%

D1=2s 6a2 þs2D
! "

4a2 þs2Dð Þ3=2

 !

0

BBBB@

1

CCCCA
ðE:5Þ

which is the result (40). Inserting Equation (E.4) into Equation (E.3) yields the result (39).
For the profile likelihood l, let âa2s2 denote the maximizer of l(s2, a2) for given s2. Thus by

definition lðs2Þ ¼ lðs2, âa2s2 Þ. From now on, all differentiation takes place with respect to
the original parameters, and we will omit the subscript ‘‘orig’’ in what follows. Since
0 ¼ _lla2 ðs2, âa2s2 Þ, it follows that

0 ¼ q
qs2

_lla2 s2, âa2s2

! "

¼ €lls2a2 s2, âa2s2

! "
þ€lla2a2 s2, âa2s2

! " qâa2s2

qs2
,

so that

qâa2s2

qs2
¼ %

€lls2a2 s2, âa2s2

! "

€lla2a2 s2, âa2s2

! " : ðE:6Þ
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The profile score then follows

_ll s2
! "

¼ _lls2 s2, âa2s2

! "
þ _lla2 s2, âa2s2

! " qâa2s2

qs2
ðE:7Þ

so that at the true value of (s2, a2),

_ll s2
! "

¼ _lls2 s2, a2
! "

%
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i _lla2 s2, a2

! "
þOp 1ð Þ, ðE:8Þ

since âa2 ¼ a2 þOpðN%1=2Þ and

D€lls2a2 & N%1€lls2a2 s2, âa2s2

! "
%N%1Etrue

€lls2a2

h i
¼ Op N%1=2

( )

D€lla2a2 & N%1€lla2a2 s2, âa2s2

! "
%N%1Etrue

€lla2a2
h i

¼ Op N%1=2
( )

as sums of random variables with expected value zero, so that

%
qâa2s2

qs2
¼

N%1€lls2a2 s2, âa2s2

! "

N%1€lla2a2 s2, âa2s2

! "

¼
N%1Etrue

€lls2a2

h i
þD€lls2a2

N%1Etrue
€lla2a2
h i

þD€lla2a2

¼
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i þ D€lls2a2 %D€lla2a2

( )
þ op N%1=2

( )

¼
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i þOp N%1=2

( )
,

while

_lla2 s2, a2
! "

¼ Op N1=2
( )

also as a sum of random variables with expected value zero.
Therefore

Etrue
_ll s2
! "# $

¼ Etrue
_lls2 s2, a2
! "h i

%
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i Etrue

_lla2 s2, a2
! "h i

þO 1ð Þ

¼ O 1ð Þ,

since Etrue½_lls2 ðs2, a2Þ( ¼ Etrue½_lla2 ðs2, a2Þ( ¼ 0. In particular, Etrue½ _llðs2Þ( ¼ oðNÞ as claimed.
Further differentiating Equation (E.7), one obtains

€ll s2
! "

¼ €lls2s2 s2, âa2s2

! "
þ€lla2a2 s2, âa2s2

! " qâa2s2

qs2

* +2

þ 2€lls2a2 s2, âa2s2

! " qâa2s2

qs2
þ _lla2 s2, âa2s2

! " q2âa2s2

q2s2

¼ €lls2s2 s2, âa2s2

! "
%

€lls2a2 s2, âa2s2

! "2

€lla2a2 s2, âa2s2

! " þ _lla2 s2, âa2s2

! " q2âa2s2

q2s2
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from Equation (E.6). Evaluated at s2 ¼ ŝs2, one gets âa2s2 ¼ âa2 and _lla2 ðŝs2, âa2Þ ¼ 0, and so

€ll ŝs2
! "

¼ €lls2s2 ŝs2, âa2
! "

%
€lls2a2 ŝs2, âa2

! "2

€lla2a2 ŝs2, âa2ð Þ

¼ 1

€ll ŝs2, âa2ð Þ%1
h i

s2s2

, ðE:9Þ

where ½€llðŝs2, âa2Þ%1(s2s2 is the upper left element of the matrix €llðŝs2, âa2Þ%1. Thus Equation (42)
is valid.
Alternatively, we can see that the profile likelihood l satisfies the Bartlett identity to first

order, that is, Equation (43). Note that by Equation (E.8),

N%1Etrue
_ll s2
! "2h i

¼ N%1Etrue
_lls2 s2, a2
! "

%
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i _lla2 s2, a2

! "
þOp 1ð Þ

0

@

1

A
2

2

64

3

75

¼ N%1Etrue
_lls2 s2, a2
! "

%
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i _lla2 s2, a2

! "
0

@

1

A
2

2

64

3

75þ o 1ð Þ

¼ N%1Etrue
_lls2 s2, a2
! "2 þ

Etrue
€lls2a2

h i

Etrue
€lla2a2
h i _lla2 s2, a2

! "
0

@

1

A
2

2

64

%2
Etrue

€lls2a2

h i

Etrue
€lla2a2
h i _lla2 s2, a2

! "
_lls2 s2, a2
! "

3

5þ o 1ð Þ

so that

N%1Etrue
_ll s2
! "2h i

¼ Ss2s2 þ Ds2a2

Da2a2

* +2

Sa2a2 % 2
Ds2a2

Da2a2
Sa2s2 þ op 1ð Þ

¼ Ds2s2 þ Ds2a2

Da2a2

* +2

Da2a2 % 2
Ds2a2

Da2a2
Da2s2

 !

þ cum4 U½ ( g2s2 þ
Ds2a2

Da2a2

* +2

g2a2 % 2
Ds2a2

Da2a2
gs2ga2

 !
þ op 1ð Þ

by invoking Equation (39).
Continuing the calculation,

N%1Etrue
_ll s2
! "2h i

¼ Ds2s2 %
D2

s2a2

Da2a2

* +
þ cum4 U½ ( gs2 % Ds2a2

Da2a2
ga2

* +2

þ o 1ð Þ

¼ 1= D%1
# $

s2s2 þ o 1ð Þ, ðE:10Þ

since from the expressions for Dorig and gorig in Equations (E.2) and (E.5) we have

gs2 % Ds2a2

Da2a2
ga2 ¼ 0: ðE:11Þ

Then by Equation (E.9) and the law of large numbers, we have

N%1Etrue
€ll s2
! "# $

¼ %1= D%1
# $

s2s2 þ o 1ð Þ, ðE:12Þ

and Equation (43) follows from combining Equation (E.10) with Equation (E.12).
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Appendix F. Proof of Lemma 2

""%1& Id implies that

q"%1

qb1

¼ %"%1 q"
qb1

"%1 ðF:1Þ

and, since " is linear in the parameters s2 and a2 (see Equation (45)) we have

q2"
qb2qb1

¼ 0 ðF:2Þ

so that

q2"%1

qb2qb1

¼ q
qb2

q"%1

qb1

* +

¼ "%1 q"
qb2

"%1 q"
qb1

"%1 þ"%1 q"
qb1

"%1 q"
qb2

"%1 %"%1 q2"
qb1qb2

"%1

¼ "%1 q"
qb2

"%1 q"
qb1

"%1 þ"%1 q"
qb1

"%1 q"
qb2

"%1: ðF:3Þ

In the rest of this lemma, let expectations be conditional on the Ds. We use the notation
E [ + jD] as a shortcut for E [ + jDN, . . . ,D1]. At the true value of the parameter vector, we have,

0 ¼ E _llb1
jD

h i

¼ % 1

2

q ln det"
qb1

% 1

2
E Y 0 q"

%1

qb1

Y jD
/ 0

: ðF:4Þ

with the second equality following from Equation (46). Then, for any nonrandomQ, we have

E Y 0QY½ ( ¼ Tr QE YY 0½ (½ ( ¼ Tr Q"½ (: ðF:5Þ

This can be applied to Q that depends on the Ds, even when they are random, because the
expected value is conditional on the Ds. Therefore, it follows from Equation (F.4) that

q ln det"
qb1

¼ %E Y
0 q"%1

qb1

Y jD
/ 0

¼ %Tr
q"%1

qb1

"

/ 0
¼ Tr "%1 q"

qb1

/ 0
, ðF:6Þ

with the last equality following from Equation (F.1) and so

q2ln det"
qb2qb1

¼ q
qb2

Tr "%1 q"
qb1

/ 0

¼ Tr
q

qb2

"%1 q"
qb1

* +/ 0

¼ %Tr "%1 q"
qb2

"%1 q"
qb1

þ"%1 q2"
qb2qb1

" #

¼ %Tr "%1 q"
qb2

"%1 q"
qb1

/ 0
, ðF:7Þ

again because of Equation (F.2).
In light of Equation (46), the expected information (conditional on the Ds) is given by

E %€llb2b1
jD

h i
¼ 1

2

q2 ln det"
qb2b1

þ 1

2
E Y 0 q

2"%1

qb2b1

Y jD
" #

:
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Then,

E Y 0 q
2"%1

qb2b1

Y jD
" #

¼ Tr
q2"%1

qb2b1

"

" #

¼ Tr "%1 q"
qb2

"%1 q"
qb1

þ"%1 q"
qb1

"%1 q"
qb2

/ 0

¼ 2Tr "%1 q"
qb2

"%1 q"
qb1

/ 0

with the first equality following from Equation (F.5) applied to Q¼ q2"%1/qb2b1, the second
from Equation (F.3), and the third from the fact that Tr[AB]¼Tr[BA]. It follows that

E %€llb2b1
jD

h i
¼ % 1

2
Tr "%1 q"

qb2

"%1 q"
qb1

/ 0
þTr "%1 q"

qb2

"%1 q"
qb1

/ 0

¼ 1

2
Tr "%1 q"

qb2

"%1 q"
qb1

/ 0

¼ % 1

2

q2ln det"
qb2b1

:

Appendix G. Proof of Theorem 3

In light of Equations (45) and (52),

" ¼ "0 þ es2X ðG:1Þ

from which it follows that

"%1 ¼ "0 Id þ es2"%1
0 X

! "! "%1

¼ Id þ es2"%1
0 X

! "%1
"%1

0

¼ "%1
0 % es2"%1

0 X"%1
0 þ e2s4 "%1

0 X
! "2

"%1
0 þO e3

! "
, ðG:2Þ

since

Id þ eAð Þ%1¼ Id % eAþ e2A2 þO e3
! "

:

Also,

q"
qb1

¼ q"0

qb1

þ e
qs2

qb1

X:

Therefore, recalling Equation (F.6), we have

q ln det"
qb1

¼ Tr "%1 q"
qb1

/ 0

¼ Tr "%1
0 % es2"%1

0 X"%1
0 þ e2s4 "%1

0 X
! "2

"%1
0 þO e3

! "( ) q"0

qb1

þ e
qs2

qb1

X
* +/ 0

¼ Tr "%1
0

q"0

qb1

/ 0
þ eTr %s2"%1

0 X"%1
0

q"0

qb1

þ qs2

qb1

"%1
0 X

/ 0

þ e2Tr s4 "%1
0 X

! "2
"%1

0

q"0

qb1

%s2 qs
2

qb1

"%1
0 X"%1

0 X
/ 0

þOp e3
! "

: ðG:3Þ
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We now consider the behavior as N ! 1 of the terms up to order e2. The remainder term is
handled similarly. Two things can be determined from the above expansion. Since the jis are
i.i.d. with mean 0, E [X]¼ 0, and so, taking unconditional expectations with respect to the law
of the Dis, we obtain that the coefficient of order e is

E Tr %s2"%1
0 X"%1

0

q"0

qb1

þ qs2

qb1

"%1
0 X

/ 0/ 0

¼ Tr E %s2"%1
0 X"%1

0

q"0

qb1

þ qs2

qb1

"%1
0 X

/ 0/ 0

¼ Tr %s2"%1
0 E X½ ("%1

0

q"0

qb1

þ qs2

qb1

"%1
0 E X½ (

/ 0

¼ 0:

Similarly, the coefficient of order e2 is

E Tr s4 "%1
0 X

! "2
"%1

0

q"0

qb1

%s2 qs
2

qb1

"%1
0 X

! "2
/ 0/ 0

¼ Tr s4E "%1
0 X

! "2h i
"%1

0

q"0

qb1

%s2 qs
2

qb1

E "%1
0 X

! "2h i/ 0

¼ Tr s2E "%1
0 X

! "2h i
s2"%1

0

q"0

qb1

% qs2

qb1

Id

* +/ 0

¼ Tr s2"%1
0 E X"%1

0 X
# $

s2"%1
0

q"0

qb1

% qs2

qb1

Id

* +/ 0
:

The matrix E½X"%1
0 X( has the following terms

X"%1
0 X

# $
i;j

¼
XN

k¼1

XN

l¼1

Xik "%1
0

# $
kl
Xlj ¼ D2

0jijj "
%1
0

# $
ij

and since E [jijj]¼ dij var[j] (where dij denotes the Kronecker symbol), it follows that

E X"%1
0 X

# $
¼ D2

0 var j½ (diag "%1
0

# $
, ðG:4Þ

where diag½"%1
0 ( is the diagonal matrix formed with the diagonal elements of "%1

0 . From this,
we obtain that

E
q ln det"

qb1

/ 0
¼ Tr "%1

0

q"0

qb1

/ 0
þ e2Tr s2"%1

0 E X"%1
0 X

# $
s2"%1

0

q"0

qb1

% qs2

qb1

Id

* +/ 0
þO e3
! "

¼ Tr "%1
0

q"0

qb1

/ 0

þ e2D2
0 var j½ (Tr s2"%1

0 diag "%1
0

# $
s2"%1

0

q"0

qb1

% qs2

qb1

Id

* +/ 0
þO e3
! "

: ðG:5Þ

To calculate E½€llb2b1
(, in light of Equation (51), we need to differentiate E [q ln det"/qb1]

with respect to b2. Indeed

E %€llb2b1

h i
¼ E E %€llb2b1

jD
h ih i

¼ % 1

2
E

q2 ln det"
qb2qb1

" #
¼ % 1

2

q
qb2

E
q ln det"

qb1

/ 0* +
,

where we can interchange the unconditional expectation and the differentiation with respect
to b2 because the unconditional expectation is taken with respect to the law of the Dis, which
is independent of the b parameters (i.e., s2 and a2). Therefore, differentiating Equation (G.5)
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with respect to b2 will produce the result we need. (The reader may wonder why we take the
expected value before differentiating, rather than the other way around. As just discussed, the
results are identical. However, it turns out that taking expectations first reduces the compu-
tational burden quite substantially.)
Combining with Equation (G.5), we therefore have

E %€llb2b1

h i
¼ % 1

2

q
qb2

E
q ln det"

qb1

/ 0* +

¼ % 1

2

q
qb2

Tr "%1
0

q"0

qb1

/ 0

% 1

2
e2D2

0 var j½ (
q

qb2

Tr s2"%1
0 diag "%1

0

# $
s2"%1

0

q"0

qb1

% qs2

qb1

Id

* +/ 0* +
þO e3
! "

&f 0ð Þ þ e2f 2ð Þ þO e3
! "

: ðG:6Þ

It is useful now to introduce the same transformed parameters (g2, h) as in previous sections
and write "0¼ g2V with the parameters and V defined as in Equations (9), (10), and (26),
except that D is replaced by D0 in these expressions. To compute f(0), we start with

Tr "%1
0

q"0

qb1

/ 0
¼ Tr g%2V%1 q g2V

! "

qb1

/ 0

¼ Tr V%1 qV
qb1

/ 0
þTr g%2V%1V

qg2

qb1

/ 0

¼ Tr V%1 qV
qh

/ 0
qh
qb1

þNg%2 qg
2

qb1

ðG:7Þ

with qg2/qb1 and qh/qb1 to be computed from Equations (11) and (12). If Id denotes the
identity matrix and J the matrix with 1 on the infra and supra-diagonal lines and 0
everywhere else, we have V¼h2IdþhJ, so that qV/qh¼ 2hIdþJ. Therefore

Tr V%1 qV
qh

/ 0
¼ 2hTr V%1

# $
þTr V%1J

# $

¼ 2h
XN

i¼1

vi;i þ
XN%1

i¼2

vi;i%1 þ vi;iþ1
- .

þ v1;2 þ vN;N%1

¼
2h 1%h2N N 1%h2

! "
þ 1

! "! "

1%h2ð Þ 1%h2 1þNð Þð Þ

¼ 2h

1%h2ð Þ þ o 1ð Þ: ðG:8Þ

Therefore, the first term in Equation (G.7) isO(1) while the second term isO(N) and hence

Tr "%1
0

q"0

qb1

/ 0
¼ Ng%2 qg

2

qb1

þO 1ð Þ:

This holds also for the partial derivative of Equation (G.7) with respect to b2. Indeed, given
the form of Equation (G.8), we have that

q
qb2

Tr V%1 qV
qh

/ 0* +
¼ q

qb2

2h

1%h2ð Þ

* +
þ o 1ð Þ ¼ O 1ð Þ,

since the remainder term in Equation (G.8) is of the form p(N)hq(N), where p and q are
polynomials inN or order greater than or equal to 0 and 1, respectively, whose differentiation
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with respect to h will produce terms that are of order o(N). Thus it follows that

q
qb2

Tr "%1
0

q"0

qb1

/ 0* +
¼ N

q
qb2

g%2 qg
2

qb1

* +
þ o Nð Þ

¼ N
qg%2

qb2

qg2

qb1

þg%2 q2g2

qb2qb1

( )
þ o Nð Þ: ðG:9Þ

Writing the result in matrix form, where the (1, 1) element corresponds to (b1, b2) = (s2, s2),
the (1, 2) and (2, 1) elements to (b1, b2)¼ (s2, a2) and the (2, 2) element to (b1, b2)¼ (a2, a2),
and computing the partial derivatives in Equation (G.9), we have

f 0ð Þ ¼ % 1

2

q
qb2

Tr "%1
0

q"0

qb1

/ 0* +

¼ N

D1=2
0 2a2 þs2D0

! "

2s3 4a2 þs2D0ð Þ3=2
D1=2
0

s 4a2 þs2D0ð Þ3=2

, 1

2a4
1%

D1=2
0 s 6a2 þs2D0

! "

4a2 þs2D0ð Þ3=2

 !

0

BBBB@

1

CCCCA
þ o Nð Þ: ðG:10Þ

As for the coefficient of order e2, that is f(2) in Equation (G.6), define

a & Tr s2"%1
0 diag "%1

0

# $
s2"%1

0

q"0

qb1

% qs2

qb1

Id

* +/ 0
ðG:11Þ

so that

f 2ð Þ ¼ % 1

2
D2
0 var j½ (

qa
qb2

:

We have

a ¼ s4Tr "%1
0 diag "%1

0

# $
"%1

0

q"0

qb1

/ 0
%s2 qs

2

qb1

Tr "%1
0 diag "%1

0

# $# $

¼ s4g%6Tr V%1diag V%1
# $

V%1 q g2V
! "

qb1

/ 0
%s2 qs

2

qb1

g%4Tr V%1diag V%1
# $# $

¼ s4g%4Tr V%1diag V%1
# $

V%1 qV
qh

qh
qb1

/ 0
þs4g%6 qg

2

qb1

Tr V%1diag V%1
# $# $

%s2 qs
2

qb1

g%4Tr V%1diag V%1
# $# $

¼ s4g%4 qh
qb1

Tr V%1diag V%1
# $

V%1 qV
qh

/ 0
þ s4g%6 qg

2

qb1

%s2 qs
2

qb1

g%4

* +
Tr V%1diag V%1

# $# $
:

Next, we compute separately

Tr V%1diag V%1
# $

V%1 qV
qh

/ 0
¼ Tr diag V%1

# $
V%1 qV

qh
V%1

/ 0

¼ %Tr diag V%1
# $ qV%1

qh

/ 0

¼ %
XN

i¼1

vi;i
qvi;i

qh

¼
O 1ð Þ% 2Nh 1þh2 %h4 %h6 þO h2N

! "! "
þN2O h2N

! "

1þh2ð Þ2 1%h2ð Þ4 1%h2 1þNð Þð Þ3

¼ %2Nh

1%h2ð Þ3
þ o Nð Þ
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and

Tr V%1diag V%1
# $# $

¼
XN

i¼1

vi;i
! "2

¼
O 1ð ÞþN 1%h4 þO h2N

! "! "

1þh2ð Þ 1%h2ð Þ3 1%h2 1þNð Þð Þ2

¼ N

1%h2ð Þ2
þ o Nð Þ:

Therefore

a ¼ s4g%4 qh
qb1

%2Nh

1%h2ð Þ3

 !

þ s4g%6 qg
2

qb1

%s2 qs
2

qb1

g%4

* +
N

1%h2ð Þ2

 !

þ o Nð Þ,

which can be differentiated with respect to b2 to produce qa/qb2. As above, differentiation of
the remainder term o(N) still produces a o(N) term because of the structure of the terms there
(they are again of the form p(N)hq(N)).
Note that an alternative expression for a can be obtained as follows. Going back to the

definition (G.11),

a ¼ s4Tr "%1
0 diag "%1

0

# $
"%1

0

q"0

qb1

/ 0
%s2 qs

2

qb1

Tr "%1
0 diag "%1

0

# $# $
ðG:12Þ

the first trace becomes

Tr "%1
0 diag "%1

0

# $
"%1

0

q"0

qb1

/ 0
¼ Tr diag "%1

0

# $
"%1

0

q"0

qb1

"%1
0

/ 0

¼ %Tr diag "%1
0

# $ q"%1
0

qb1

/ 0

¼ %
XN

i¼1

"%1
0

! "
ii

q"%1
0

qb1

* +

ii

¼ % 1

2

q
qb1

XN

i¼1

"%1
0

! "2
ii

¼ % 1

2

q
qb1

Tr "%1
0 diag "%1

0

# $# $
,

so that we have

a ¼ %s4 1

2

q
qb1

Tr "%1
0 diag "%1

0

# $# $
%s2 qs

2

qb1

Tr "%1
0 diag "%1

0

# $# $

¼ %s4 1

2

q
qb1

Tr "%1
0 diag "%1

0

# $# $
% 1

2

qs4

qb1

* +
Tr "%1

0 diag "%1
0

# $# $

¼ % 1

2

q
qb1

s4Tr "%1
0 diag "%1

0

# $# $! "

¼ % 1

2

q
qb1

s4g%4Tr V%1diag V%1
# $# $! "

¼ % 1

2

q
qb1

s4g%4 N

1%h2ð Þ2
þ o Nð Þ

 ! !

¼ %N

2

q
qb1

s4g%4

1%h2ð Þ2

 !

þ o Nð Þ,
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where the calculation of Tr[V%1diag[V%1]] is as before, and where the o(N) term is a sum of
terms of the form p(N)hq(N) as discussed above. From this one can interchange differentiation
and the o(N) term, yielding the final equality above.

Therefore

qa
qb2

¼ % 1

2

q2

qb1qb2

s4g%4 N

1%h2ð Þ2
þ o Nð Þ

 ! !

¼ %N

2

q2

qb1qb2

s4g%4

1%h2ð Þ2

 !

þ o Nð Þ: ðG:13Þ

Writing the result in matrix form and calculating the partial derivatives, we obtain

f 2ð Þ ¼ % 1

2
D2
0 var j½ (

qa
qb2

¼ ND2
0 var j½ (

4a2 þs2D0ð Þ3
%2a2 %

8a2 % 2s2D0

! "

2D0

, % 8s2

D0

0

BBB@

1

CCCAþ o Nð Þ: ðG:14Þ

Putting it all together, we have obtained

1

N
E %€llb2b1

h i
¼ 1

N
f 0ð Þ þ e2f 2ð Þ þO e3

! "( )

&F 0ð Þ þ e2F 2ð Þ þO e3
! "

þ o 1ð Þ, ðG:15Þ

where

F 0ð Þ ¼

D1=2
0 2a2 þs2D0

! "

2s3 4a2 þs2D0ð Þ3=2
D1=2
0

s 4a2 þs2D0ð Þ3=2

, 1

2a4
1%

D1=2
0 s 6a2 þs2D0

! "

4a2 þs2D0ð Þ3=2

 !

0

BBBBB@

1

CCCCCA
, ðG:16Þ

F 2ð Þ & D2
0 var j½ (

4a2 þ s2D0ð Þ3
%2a2 %

8a2 % 2s2D0

! "

2D0

, % 8s2

D0

0

BBB@

1

CCCA: ðG:17Þ

The asymptotic variance of the maximum-likelihood estimators avarðŝs2, âa2Þ is, therefore,
given by

avar ŝs2, âa2
! "

¼ E D½ ( F 0ð Þ þ e2F 2ð Þ þO e3
! "( )%1

¼ D0 F 0ð Þ Id þ e2 F 0ð Þ
h i%1

F 2ð Þ þO e3
! "* +* +%1

¼ D0 Id þ e2 F 0ð Þ
h i%1

F 2ð Þ þO e3
! "* +%1

F 0ð Þ
h i%1

¼ D0 Id % e2 F 0ð Þ
h i%1

F 2ð Þ þO e3
! "* +

F 0ð Þ
h i%1

¼ D0 F 0ð Þ
h i%1

% e2D0 F 0ð Þ
h i%1

F 2ð Þ F 0ð Þ
h i%1

þO e3
! "

&A 0ð Þ þ e2A 2ð Þ þO e3
! "

,

where the final results for A(0)¼D0[F
(0)]%1 and A(2)¼%D0[F

(0)]%1F (2)[F (0)]%1, obtained by
replacing F (0) and F (2) by their expressions in Equation (G.15), are given in the statement of
the theorem.
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Appendix H. Proof of Theorem 4

It follows as in Equations (D.3)–(D.5) that

Etrue
_llb1

_llb2
jD

h i
¼ covtrue _llb1

, _llb2
jD

( )

¼ covtrue % 1

2

XN

i;j¼1

YiYj
q"%1

qb1

* +

ij

, % 1

2

XN

k;l¼1

YkYl
q"%1

qb2

* +

kl

 !

¼ 1

4

XN

i;j;k;l¼1

q"%1

qb1

* +

ij

q"%1

qb2

* +

kl

covtrue YiYj ,YkYl jD
! "

¼ %Etrue
€llb1b2

jD
h i

þ 1

4

XN

i;j;k;l¼1

q"%1

qb1

* +

ij

q"%1

qb2

* +

kl

cumtrue Yi,Yj ,Yk,Yl jD
! "

¼ %Etrue
€llb1b2

jD
h i

þ 1

4
cum4 U½ (c q"%1

qb1

,
q"%1

qb2

* +
, ðH:1Þ

since cumtrue(Yi, Yj, Yk, YljD)¼ 2, /1, or 0, * cumtrue(U), as in Equation (15), and with c
defined in Equation (D.8). Taking now unconditional expectations, we have

Etrue
_llb1

_llb2

h i
¼ covtrue _llb1

, _llb2

( )

¼ E covtrue _llb1
, _llb2

jD
( )h i

þ covtrue Etrue
_llb1

jD
h i

,Etrue
_llb2

jD
h i( )

¼ E covtrue _llb1
, _llb2

jD
( )h i

¼ %Etrue
€llb1b2

h i
þ 1

4
cum4 U½ (E c

q"%1

qb1

,
q"%1

qb2

* +/ 0
: ðH:2Þ

with the first and third equalities following from the fact that Etrue½_llbi
jD( ¼ 0.

Since

Etrue
€llb1b2

jD
h i

¼ Enormal
€llb1b2

jD
h i

and consequently

Etrue
€llb1b2

h i
¼ Enormal

€llb1b2

h i

have been found in the previous subsection (see Equation (G.15)), what we need to do to
obtain Etrue½_llb1

_llb2
( is to calculate

E c
q"%1

qb1

,
q"%1

qb2

* +/ 0
:

With "%1 given by Equation (G.2), we have for i¼ 1, 2

q"%1

qbi

¼ q"%1
0

qbi

% e
q
qbi

s2"%1
0 X"%1

0

! "
þ e2

q
qbi

s4 "%1
0 X

! "2
"%1

0

( )
þO e3
! "

and, therefore, by bilinearity of c we have

E c
q"%1

qb1

,
q"%1

qb2

* +/ 0
¼ c

q"%1
0

qb1

,
q"%1

0

qb2

* +
% eE c

q"%1
0

qb1

,
q

qb2

s2"%1
0 X"%1

0

! "* +/ 0
2½ (

þ e2E c
q"%1

0

qb1

,
q

qb2

s4 "%1
0 X

! "2
"%1

0

( )* +/ 0
2½ (

þ e2E c
q

qb1

s2"%1
0 X"%1

0

! "
,

q
qb2

s2"%1
0 X"%1

0

! "* +/ 0

þO e3
! "

, ðH:3Þ
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where the ‘‘[2]’’ refers to the sum over the two terms where b1 and b2 are permuted.
The first (and leading) term in Equation (H.3),

c
q"%1

0

qb1

,
q"%1

0

qb2

* +
¼ c

q g%2V%1
! "

qb1

,
q g%2V%1
! "

qb2

* +

¼ c
qg%2

qb1

V%1 þg%2 qV
%1

qb1

,
qg%2

qb2

V%1 þ g%2 qV
%1

qb2

* +

¼ c
qg%2

qb1

V%1 þg%2 qV
%1

qh
qh
qb1

,
qg%2

qb1

V%1 þg%2 qV
%1

qh
qh
qb1

* +

corresponds to the equally spaced, misspecified noise distribution, situation studied in
Section 6.

The second term, linear in e, is zero since

E c
q"%1

0

qb1

,
q

qb2

s2"%1
0 X"%1

0

! "* +/ 0
¼ c

q"%1
0

qb1

,E
q

qb2

s2"%1
0 X"%1

0

! "/ 0* +

¼ c
q"%1

0

qb1

,
q

qb2

s2"%1
0 E X½ ("%1

0

! "* +

¼ 0

with the first equality following from the bilinearity of c, the second from the fact that the
unconditional expectation over the Dis does not depend on the b parameters, so expectation
and differentiation with respect to b2 can be interchanged, and the third equality from the
fact that E [X]¼ 0.

To calculate the third term in Equation (H.3), the first of two that are quadratic in e, note
that

a1 & E c
q"%1

0

qb1

,
q

qb2

s4"%1
0 X"%1

0 X"%1
0

! "* +/ 0

¼ c
q"%1

0

qb1

,
q

qb2

s4"%1
0 E X"%1

0 X
# $

"%1
0

! "* +

¼ D2
0 var j½ (c

q"%1
0

qb1

,
q

qb2

s4"%1
0 diag "%1

0

! "
"%1

0

! "* +

¼ D2
0 var j½ (c

q g%2V%1
! "

qb1

,
q

qb2

s4g%6V%1diag V%1
! "

V%1
! "* +

, ðH:4Þ

with the second equality obtained by replacing E½X"%1
0 X( with its value given in Equation

(G.4), and the third by recalling that "0¼ g2 V. The elements (i, j) of the two arguments of c
in Equation (H.4) are

ni;j ¼
q g%2vi;j
! "

qb1

¼ qg%2

qb1

vi;j þ g%2 qv
i;j

qh
qh
qb1

and

vk;l ¼ q
qb2

s4g%6
XN

m¼1

vk;mvm;mvm;l

 !

¼
q s4g%6
! "

qb2

XN

m¼1

vk;mvm;mvm;l þs4g%6 q
qh

XN

m¼1

vk;mvm;mvm;l

 !
qh
qb2

from which c in Equation (H.4) can be evaluated through the sum given in Equation (D.8).
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Summing these terms, we obtain

c
q g%2V%1
! "

qb1

,
q

qb2

s4g%6V%1diag V%1
! "

V%1
! "* +

¼
4N C1V 1%hð ÞþC2VC3Vð Þ C1W 1%h2

! "
þ 2C2WC3W 1þ 3hð Þ

! "

1%hð Þ7 1þhð Þ3
þ o Nð Þ,

where

C1V ¼ qg%2

qb1

, C2V ¼ g%2, C3V ¼ qh
qb1

C1W ¼
q s4g%6
! "

qb2

, C2W ¼ s4g%6, C3W ¼ qh
qb2

:

The fourth and last term in Equation (H.3), also quadratic in e,

a2 & E c
q

qb1

s2"%1
0 X"%1

0

! "
,

q
qb2

s2"%1
0 X"%1

0

! "* +/ 0

is obtained by first expressing

c
q

qb1

s2"%1
0 X"%1

0

! "
,

q
qb2

s2"%1
0 X"%1

0

! "* +

in its sum form and then taking expectations term by term. Letting now

ni;j ¼ q
qb1

s2"%1
0 X"%1

0

! "* +

ij

, vk;l ¼ q
qb2

s2"%1
0 X"%1

0

! "* +

kl

we recall our definition of c(n,v) given in Equation (D.8) whose unconditional expected
value (over the Dis, i.e., over X) we now need to evaluate in order to obtain a2.
We are thus led to consider four-index tensors lijkl and to define

~cc lð Þ & 2
XN

h¼1

lh;h;h;h þ
XN%1

h¼1

n
%2lh;hþ1;hþ1;hþ1 % 2lhþ1;hþ1;h;hþ1

þlh;h;hþ1;hþ1 þ lhþ1;hþ1;h;h þ 4lh;hþ1;h;hþ1

%2lhþ1;h;h;h % 2lh;h;hþ1;h
o
, ðH:5Þ

where lijkl is symmetric in the first two and the last two indices, respectively, that is, lijkl¼ ljikl

and lijkl¼ lijlk. In terms of our definition of c in Equation (D.8), it should be noted that
cðn,vÞ ¼ ~ccðlÞ when one takes lijkl = ni,jvk,l. The expression we seek is, therefore,

a2 ¼ E c
q

qb1

s2"%1
0 X"%1

0

! "
,

q
qb2

s2"%1
0 X"%1

0

! "* +/ 0
¼ ~cc lð Þ, ðH:6Þ

where lijkl is taken to be the following expected value

lijkl & E ni;jvk;l
# $

¼ E
q

qb1

s2"%1
0 X"%1

0

! "* +

ij

q
qb2

s2"%1
0 X"%1

0

! "* +

kl

" #

¼ E
XN

r;s;t;u¼1

q
qb1

s2 "%1
0

! "
ir
Xrs "%1

0

! "
sj

( ) q
qb2

s2 "%1
0

! "
kt
Xtu "%1

0

! "
ul

( )" #

¼
XN

r;s;t;u¼1

q
qb1

s2 "%1
0

! "
ir
"%1

0

! "
sj

( ) q
qb2

s2 "%1
0

! "
kt

"%1
0

! "
ul

( )
E XrsXtu½ (

¼ D2
0 var j½ (

XN

r¼1

q
qb1

s2 "%1
0

! "
ir
"%1

0

! "
rj

( ) q
qb2

s2 "%1
0

! "
kr

"%1
0

! "
rl

( )
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with the third equality following from the interchangeability of unconditional expectations
and differentiation with respect to b, and the fourth from the fact that E[XrsXtu] 6¼ 0 only
when r¼ s¼ t¼ u, and

E XrrXrr½ ( ¼ D2
0 var j½ (:

Thus we have

lijkl ¼ D2
0 var j½ (

XN

r¼1

q
qb1

s2g%4 V%1
! "

ir
V%1
! "

rj

( ) q
qb2

s2g%4 V%1
! "

kr
V%1
! "

rl

( )

¼ D2
0 var j½ (

XN

r¼1

q
qb1

s2g%4vi;rvr;j
! " q

qb2

s2g%4vk;rvr;l
! "

: ðH:7Þ

and

q
qb1

s2g%4vi;rvr;j
! " q

qb2

s2g%4vk;rvr;l
! "

¼
q s2g%4
! "

qb1

vi;rvr;j þs2g%4 q vi;rvr;jð Þ
qh

qh
qb1

* +

*
q s2g%4
! "

qb2

vk;rvr;l þs2g%4 q vk;rvr;l
! "

qh
qh
qb2

* +
:

Summing these terms, we obtain

~cc lð Þ ¼ D2
0 var½j( 2N

ð1%hÞ7ð1þhÞ3ð1þh2Þ3
ðC1lð1%h4Þð2C5lC6lð1þhþh2 þ 2h3ÞþC4lð1%h4ÞÞ

þ 2C2lC3lð2C5lC6lð1þ 2hþ 4h2 þ 6h3 þ 5h4 þ 4h5 þ 4h6Þ
þC4lð1þhþh2 þ 2h3 %h4 %h5 %h6 % 2h7ÞÞÞ
þ oðNÞ,

where

C1l ¼
q s2g%4
! "

qb1

, C2l ¼ s2g%4, C3l ¼ qh
qb1

,

C4l ¼
q s2g%4
! "

qb2

, C5l ¼ s2g%4, C6l ¼ qh
qb2

:

Putting it all together, we have

E c
q"%1

qb1

,
q"%1

qb2

* +/ 0
¼ c

q"%1
0

qb1

,
q"%1

0

qb2

* +
þ e2 a1 2½ ( þa2ð ÞþO e3

! "
:

Finally, the asymptotic variance of the estimator ðŝs2, âa2Þ is given by

avartrue ŝs2, âa2
! "

¼ E D½ ( D0S%1D
! "%1

, ðH:8Þ

where

D ¼ D0 ¼ % 1

N
Etrue

€ll
h i

¼ % 1

N
Enormal

€ll
h i

¼ 1

N
Enormal

_ll_ll0
h i

&F 0ð Þ þ e2F 2ð Þ þO e3
! "
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is given by the expression in the correctly specified case (G.15), with F (0) and F (2) given in
Equations (G.16) and (G.17), respectively. Also, in light of Equation (H.1), we have

S ¼ 1

N
Etrue

_ll_ll0
h i

¼ % 1

N
Etrue

€ll
h i

þ cum4 U½ ( C ¼ Dþ cum4 U½ (C,

where

C ¼ 1

4N

E c
q"%1

qs2
,
q"%1

qs2

* +/ 0
E c

q"%1

qs2
,
q"%1

qa2

* +/ 0

, E c
q"%1

qa2
,
q"%1

qa2

* +/ 0

0

BBB@

1

CCCA

&C 0ð Þ þ e2C 2ð Þ þO e3
! "

:

Since, from Equation (H.3), we have

E c
q"%1

qb1

,
q"%1

qb2

* +/ 0
¼ c

q"%1
0

qb1

,
q"%1

0

qb2

* +
þ e2a1 2½ ( þ e2a2 þO e3

! "
,

it follows that C(0) is the matrix with entries
1

4N
c

q"%1
0

qb1

;
q"%1

0

qb2

* +
, that is,

C 0ð Þ ¼

D0

s2 4a2 þD0s2ð Þ3
D1=2
0

2a4
1

s 4a2 þD0s2ð Þ3=2
%

D1=2
0 6a2 þD0s2
! "

4a2 þD0s2ð Þ3

 !

, 1

2a8
1%

D1=2
0 s 6a2 þD0s2
! "
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%
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1

CCCCCA
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and

C 2ð Þ ¼ 1

4N
a1 2½ ( þa2ð Þ:
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1

4N
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2D3=2
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0 40a8%12a4D0
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1
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It follows from Equation (H.8) that

avartrue ŝs2, âa2
! "

¼ E D½ ( D Dþ cum4 U½ (Cð Þ%1D
( )%1

¼ D0 D Id þ cum4 U½ (D%1C
! "%1

( )%1

¼ D0 Id þ cum4 U½ (D%1C
! "

D%1

¼ D0 Id þ cum4 U½ (D%1C
! "

D%1

¼ avarnormal ŝs
2, âa2

! "
þD cum4 U½ (D%1CD%1,
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where

avarnormal ŝs
2, âa2

! "
¼ D0D

%1 ¼ A 0ð Þ þ e2A 2ð Þ þO e3
! "

is the result given in Theorem 3, namely Equation (53).
The correction term due to the misspecification of the error distribution is determined by

cum4[U] times

D0D
%1CD%1 ¼D0 F 0ð Þ þe2F 2ð Þ þO e3

! "( )%1
C 0ð Þ þe2C 2ð Þ þO e3

! "( )
F 0ð Þ þe2F 2ð Þ þO e3

! "( )%1

¼D0 Id%e2 F 0ð Þ
h i%1

F 2ð Þ þO e3
! "* +

F 0ð Þ
h i%1

C 0ð Þ þe2C 2ð Þ þO e3
! "( )

* Id%e2 F 0ð Þ
h i%1

F 2ð Þ þO e3
! "* +

F 0ð Þ
h i%1

¼D0 F 0ð Þ
h i%1

C 0ð Þ F 0ð Þ
h i%1

þe2D0

(
F 0ð Þ
h i%1

C 2ð Þ F 0ð Þ
h i%1

% F 0ð Þ
h i%1

F 2ð Þ F 0ð Þ
h i%1

C 0ð Þ F 0ð Þ
h i%1

% F 0ð Þ
h i%1

C 0ð Þ F 0ð Þ
h i%1

F 2ð Þ F 0ð Þ
h i%1)

þO e3
! "

&B 0ð Þ þe2B 2ð Þ þO e3
! "

:

The asymptotic variance is then given by

avartrue ŝs2, âa2
! "

¼ A 0ð Þ þ cum4 U½ (B 0ð Þ
( )

þ e2 A 2ð Þ þ cum4 U½ (B 2ð Þ
( )

þO e3
! "

with the terms A(0), A(2), B(0) and B(2) given in the statement of the theorem.

Appendix I. Proof of Theorem 5

From

E Y 2
i

# $
¼ E w2

i

# $
þE u2i
# $

¼ s2Dþ
c2 1% e%bD
! "

b

it follows that the estimator (5) has the following expected value

E ŝs2
# $

¼ 1

T

XN

i¼1

E Y 2
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# $
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s2Dþ

c2 1% e%bD
! "

b
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c2 1% e%bD
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! "
: ðI:1Þ

The estimator’s variance is

var ŝs2
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T2
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Y 2
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i ,Y

2
j
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:
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Since the Yi s are normal with mean zero,

var Y 2
i

# $
¼ 2 var Yi½ (2¼ 2E Y 2

i

# $2

and for i> j

cov Y 2
i ,Y

2
j

( )
¼ 2 cov Yi,Yj

! "2¼ 2E uiuj
# $2

since

cov Yi ,Yj

! "
¼ E YiYj

# $
¼ E wi þ uið Þ wj þ uj

! "# $
¼ E uiuj
# $

:

Now we have

E uiuj
# $

¼ E Uti %Uti%1
ð Þ Utj %Utj%1

! "# $

¼ E UtiUtj

# $
%E UtiUtj%1

# $
%E Uti%1

Utj
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# $
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 !2
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2b2

and consequently
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# $

¼ 1

T2

c4 1% e%bD
! "2

Ne%2bD % 1þ e%2NbD
! "

b2 1þ e%bDð Þ2
þ 2N s2Dþ

c2 1% e%bD
! "

b

* +2
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withN¼T/D. The RMSE expression follows fromEquations (I.1) and (I.2). As in Theorem 1,
these are exact small sample expressions, valid for all (T, D).
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