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László Gillemot
Giulia Iori
Supriya Krishnamurthy
D. Eric Smith
Marcus G. Daniels

Most modern financial markets use a continuous double auction mecha-
nism to store and match orders and facilitate trading. In this chapter we
use a microscopic dynamical statistical model for the continuous double
auction under the assumption of IID random order flow. The analysis is
based on simulation, dimensional analysis, and theoretical tools based
on mean-field approximations. The model makes testable predictions for
all the basic properties of markets, including price volatility, the depth
of stored supply and demand, the bid-ask spread, the price impact func-
tion, and the time and probability of filling orders. These predictions
are based on properties of order flow such as share volume of market
and limit orders, cancellations, typical order size, and tick size. Because
these quantities can all be measured directly in real data sets there are
no free parameters. We show that the order size, which can be cast as
a nondimensional granularity parameter, is in most cases a more sig-
nificant determinant of market behavior than tick size. We also provide
an explanation for the observed highly concave nature of the price im-

The Economy as an Evolving Complex System III,
edited by Lawrence E. Blume and Steven N. Durlauf, Oxford University Press 133



Santa Fe Institute. January 4, 2005 11:49 a.m. Farmer page 134

134 A Random Order Placement Model of. . .

pact function. On a broader level, this work demonstrates how stochastic
models based on zero-intelligence agents may be useful in probing the
structure of market institutions. Like the model of perfect rationality, a
stochastic zero-intelligence model can be used to make strong predictions
based on a compact set of assumptions. Preliminary evidence suggests
that this model explains many aspects of real markets.

1 INTRODUCTION

1.1 MOTIVATION

In this chapter we analyze the continuous double auction trading mechanism
under the assumption of random order flow, giving an overview of the work de-
scribed in Daniels et al. [12] and Smith et al. [26]. This analysis produces quanti-
tative predictions about the most basic properties of markets, such as volatility,
depth of stored supply and demand, the bid-ask spread, the price impact, and
probability and time to fill. These predictions are based on the rate at which
orders flow into the market, and other parameters of the market, such as order
size and tick size. The predictions are falsifiable with no free parameters. This
extends the original random walk model of Bachelier [1] by providing a basis for
the diffusion rate of prices. The model also provides a possible explanation for
the highly concave nature of the price impact function. Even though some of the
assumptions of the model are too simple to be literally true, preliminary results
suggest that it explains several aspects of price formation and transaction costs
in the London Stock Exchange [11] and the New York Stock Exchange [20]. Fur-
thermore, the model provides a framework onto which more realistic assumptions
may easily be added.

The model demonstrates the importance of financial institutions in setting
prices, and how solving a necessary economic function such as providing liquidity
can have unanticipated side effects. In a world of imperfect rationality and im-
perfect information, the task of demand storage necessarily causes persistence.
Under perfect rationality, all traders would instantly update their orders with
the arrival of each piece of new information, but this is clearly not true for real
markets. The limit order book, which is the queue used for storing unexecuted
orders, has long memory when there are persistent orders. It can be regarded
as a device for storing supply and demand, somewhat like a capacitor is a de-
vice for storing charge. We show that even under completely random IID order
flow and cancellations, the price process displays anomalous diffusion and in-
teresting temporal structure. The converse is also interesting: For prices to be
effectively random, incoming order flow must be non-random, in just the right
way to compensate for the persistence. (See the remarks in section 4.3.)

This work is also of interest from a fundamental point of view because it
suggests an alternative approach to doing economics. The assumption of perfect
rationality has been popular in economics because it provides a parsimonious
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model that makes strong predictions. In the spirit of Gode and Sunder [17], we
show that the opposite extreme of zero-intelligence random behavior provides
another reference model that also makes very strong predictions. Like perfect
rationality, zero-intelligence is an extreme simplification that is obviously not
literally true. But as we show here, it provides a useful tool for probing the
behavior of financial institutions. The resulting model may easily be extended by
introducing simple boundedly rational behaviors. We also differ from standard
treatments in that we do not attempt to understand the properties of prices
from fundamental assumptions about utility. Rather, we split the problem in
two. We attempt to understand how prices depend on order flow rates, leaving
the problem of what determines these order flow rates for the future.

One of our main results concerns the average price impact function. The
liquidity for executing a market order can be characterized by a price impact
function ∆p = φ(ω, τ, t). ∆p is the shift in the logarithm of the price at time
t + τ caused by a market order of size ω placed at time t. Understanding price
impact is important for practical reasons such as minimizing transaction costs,
and also because it is closely related to an excess demand function,1 providing
a natural starting point for theories of statistical or dynamical properties of
markets [4, 15]. A naive argument predicts that the price impact φ(ω) should
increase at least linearly. This argument goes as follows: Fractional price changes
should not depend on the scale of price. Suppose buying a single share raises the
price by a factor k > 1. If k is constant, buying ω shares in succession should
raise it by kω. Thus, if buying ω shares all at once affects the price at least as
much as buying them one at a time, the ratio of prices before and after impact
should increase at least exponentially. Taking logarithms implies that the price
impact as we have defined it above should increase at least linearly.2

In contrast, from empirical studies φ(ω) for buy orders appears to be con-
cave [16, 18, 19, 20, 24, 28]. Lillo et al. have shown for that for stocks in the
NYSE the concave behavior of the price impact is quite consistent across dif-
ferent stocks [20]. Our model produces concave price impact functions that are
in qualitative agreement with these results. Furthermore, members of our group
have recently begun to analyze data from the London Stock Exchange, which
provides every action taken by each trader, and allows us to measure order flows
in the way they are defined here. Preliminary results suggest that the model
has a remarkable ability to predict the bid-ask spread, and that when plotted in
the nondimensional coordinates defined here, the price impact collapses onto a
universal function that is consistent through time and across stocks [11].

1In financial models it is common to define an excess demand function as demand minus
supply; when the context is clear the modifier “excess” is dropped, so that demand refers to
both supply and demand.

2This has practical implications. It is common practice to break up orders in order to
reduce losses due to market impact. With a sufficiently concave market impact function, in
contrast, it is cheaper to execute an order all at once.
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Our work also demonstrates the value of physics techniques for economic
problems. Our analysis makes extensive use of dimensional analysis, the solution
of a master equation through a generating functional, and a mean-field approach
that is commonly used to analyze non-equilibrium reaction-diffusion systems and
evaporation-deposition problems.

1.2 BACKGROUND: THE CONTINUOUS DOUBLE AUCTION

Most modern financial markets operate continuously. The mismatch between
buyers and sellers that typically exists at any given instant is solved via an order-
based market with two basic kinds of orders. Impatient traders submit market
orders, which are requests to buy or sell a given number of shares immediately
at the best available price. More patient traders submit limit orders, or quotes
which also state a limit price, corresponding to the worst allowable price for
the transaction. (Note that the word “quote” can be used either to refer to the
limit price or to the limit order itself.) Limit orders often fail to result in an
immediate transaction, and are stored in a queue called the limit order book.
Buy limit orders are called bids, and sell limit orders are called offers or asks.
We use the logarithmic price a(t) to denote the position of the best (lowest) offer
and b(t) for the position of the best (highest) bid. These are also called the inside
quotes. There is typically a non-zero price gap between them, called the spread
s(t) = a(t) − b(t). Prices are not continuous, but rather have discrete quanta
called ticks. Throughout this chapter, all prices will be expressed as logarithms,
and, to avoid endless repetition, the word price will mean the logarithm of the
price. The minimum interval that prices change on is the tick size dp (also defined
on a logarithmic scale; note this is not true for real markets). Note that dp is not
necessarily infinitesimal.

As market orders arrive they are matched against limit orders of the opposite
sign in order of first price and then arrival time, as shown in figure 1.

Because orders are placed for varying numbers of shares, matching is not
necessarily one-to-one. For example, suppose the best offer is for 200 shares at
$60 and the next best is for 300 shares at $60.25; a buy market order for 250
shares buys 200 shares at $60 and 50 shares at $60.25, moving the best offer
a(t) from $60 to $60.25. A high density of limit orders per price results in high
liquidity for market orders, in other words, it decreases the price movement when
a market order is placed. Let n(p, t) be the stored density of limit order volume
at price p, which we will call the depth profile of the limit order book at any
given time t. The total stored limit order volume at price level p is n(p, t)dp. For
unit order size the shift in the best ask a(t) produced by a buy market order is
given by solving the equation

ω =
p′∑

p=a(t)

n(p, t)dp (1)
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FIGURE 1 A schematic illustration of the continuous double auction mechanism and
our model of it. Limit orders are stored in the limit order book. We adopt the arbitrary
convention that buy orders are negative and sell orders are positive. As a market order
arrives, it has transactions with limit orders of the opposite sign, in order of price (first)
and time of arrival (second). The best quotes at prices a(t) or b(t) move whenever an
incoming market order has sufficient size to fully deplete the stored volume at a(t) or
b(t). Our model assumes that market order arrival, limit order arrival, and limit order
cancellation follow a Poisson process. New offers (sell limit orders) can be placed at
any price greater than the best bid, and are shown here as “raining down” on the price
axis. Similarly, new bids (buy limit orders) can be placed at any price less than the
best offer. Bids and offers that fall inside the spread become the new best bids and
offers. All prices in this model are logarithmic.

for p′. The shift in the best ask is p′ − a(t), where eq. (1) is the instantaneous
price impact for buy market orders. A similar statement applies for sell market
orders, where the price impact can be defined in terms of the shift in the best
bid. (Alternatively, it is also possible to define the price impact in terms of the
change in the midpoint price.)

We will refer to a buy limit order whose limit price is greater than the best
ask, or a sell limit order whose limit price is less than the best bid, as a cross-
ing limit order or marketable limit order. Such limit orders result in immediate
transactions, with at least part of the order immediately executed.

1.3 THE MODEL

This model, introduced in Daniels et al. [12], is designed to be as analytically
tractable as possible while capturing key features of the continuous double auc-
tion. All the order flows are modeled as Poisson processes. We assume that
market orders arrive in chunks of σ shares, at a rate of µ shares per unit time.
The market order may be a “buy” order or a “sell” order with equal probability.
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(Thus the rate at which buy orders or sell orders arrive individually is µ/2.)
Limit orders arrive in chunks of σ shares as well, at a rate of α shares per unit
price and per unit time for buy orders and also for sell orders. Offers are placed
with uniform probability at integer multiples of a tick size dp in the range of
price b(t) < p < ∞, and similarly for bids on −∞ < p < a(t). When a market
order arrives it causes a transaction; under the assumption of constant order
size, a buy market order removes an offer at price a(t), and if it was the last offer
at that price, moves the best ask up to the next occupied price tick. Similarly,
a sell market order removes a bid at price b(t), and if it is the last bid at that
price, moves the best bid down to the next occupied price tick. In addition, limit
orders may also be removed spontaneously by being canceled or by expiring,
even without a transaction having taken place. We model this by letting them
be removed randomly with constant probability δ per unit time.

While the assumption of limit order placement over an infinite interval is
clearly unrealistic, it provides a tractable boundary condition for modeling the
behavior of the limit order book near the midpoint price m(t) = (a(t) + b(t))/2,
which is the region of interest since it is where transactions occur. Limit orders
far from the midpoint are usually canceled before they are executed (we demon-
strate this later in figure 5), and so far from the midpoint, limit order arrival
and cancellation have a steady state behavior characterized by a simple Poisson
distribution. Although under the limit order placement process the total num-
ber of orders placed per unit time is infinite, the order placement per unit price
interval is bounded and thus the assumption of an infinite interval creates no
problems. Indeed, it guarantees that there is always an infinite number of limit
orders of both signs stored in the book, so that the bid and ask are always well-
defined and the book never empties. (Under other assumptions about limit order
placement this is not necessarily true, as demonstrated in Smith et al.) We are
also considering versions of the model involving more realistic order placement
functions (see the discussion in section 4.2).

In this model, to keep things simple, we are using the conceptual simpli-
fication of effective market orders and effective limit orders. When a crossing
limit order is placed, part of it may be executed immediately. The effect of this
part on the price is indistinguishable from that of a market order of the same
size. Similarly, given that this market order has been placed, the remaining part
is equivalent to a non-crossing limit order of the same size. Thus a crossing
limit order can be modeled as an effective market order followed by an effec-
tive (non-crossing) limit order.3 Working in terms of effective market and limit
orders affects data analysis: The effective market order arrival rate µ combines
both pure market orders and the immediately executed components of crossing
limit orders, and similarly the limit order arrival rate α corresponds only to the
components of limit orders that are not executed immediately. This is consistent

3In assigning independently random distributions for the two events, our model neglects
the correlation between market and limit order arrival induced by crossing limit orders.
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with the boundary conditions for the order placement process, since an offer with
p ≤ b(t) or a bid with p ≥ a(t) would result in an immediate transaction, and
thus would be effectively the same as a market order. Defining the order place-
ment process with these boundary conditions realistically allows limit orders to
be placed anywhere inside the spread.

Another simplification of this model is the use of logarithmic prices, both
for the order placement process and for the tick size dp. This has the important
advantage that it ensures that prices are always positive. In real markets price
ticks are linear, and the use of logarithmic price ticks is an approximation that
makes both the calculations and the simulation more convenient. We find that
the limit dp→ 0, where tick size is irrelevant, is a good approximation for many
purposes. We find that tick size is less important than other parameters of the
problem, which provides some justification for the approximation of logarithmic
price ticks.

Assuming a constant probability for cancellation is clearly ad hoc, but in
simulations we find that other assumptions with well-defined timescales, such
as constant duration time, give similar results. For our analytic model we use a
constant order size σ. In simulations we also use variable order size, for example,
half-normal distributions with standard deviation

√
π/2σ, which ensures that

the mean value remains σ. As long as these distributions have thin tails, the
differences do not qualitatively affect most of the results reported here, except
in a trivial way. As discussed in section 4.2, decay processes without well-defined
characteristic times and size distributions with power-law tails give qualitatively
different results and will be treated elsewhere.

Even though this model is simply defined, the time evolution is not trivial.
One can think of the dynamics as being composed of three parts: (1) the buy
market order/sell limit order interaction, which determines the best ask; (2) the
sell market order/buy limit order interaction, which determines the best bid;
and (3) the random cancellation process. Processes (1) and (2) determine each
other’s boundary conditions. That is, process (1) determines the best ask, which
sets the boundary condition for limit order placement in process (2), and process
(2) determines the best bid, which determines the boundary conditions for limit
order placement in process (1). Thus processes (1) and (2) are strongly coupled.
It is this coupling that causes the bid and ask to remain close to each other, and
guarantees that the spread s(t) = a(t) − b(t) is a stationary random variable,
even though the bid and ask are not. It is the coupling of these processes through
their boundary conditions that provides the nonlinear feedback that makes the
price process complex.

1.4 SUMMARY OF PRIOR WORK

There are two independent lines of prior work, one in the financial economics
literature, and the other in the physics literature. The models in the economics
literature are directed toward empirical analysis, and treat the order process as
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static. In contrast, the prior models in the physics literature are conceptual toy
models, but they allow the order process to react to changes in prices, and are
thus fully dynamic. Our model bridges this gap. This is explained in more detail
below.

The first model of this type that we are aware of was due to Mendelson [23],
who modeled random order placement with periodic clearing. This was developed
along different directions by Cohen et al. [10], who used techniques from queuing
theory, but assumed only one price level and addressed the issue of time priority
with that price level (motivated by the hypothesized existence of a specialist who
pins prices to make them stationary). Domowitz and Wang [13] and Bollerslev
et al. [3] further developed this to allow more general order placement processes
that depend on prices, but without solving the full dynamical problem. This
allows them to get a stationary solution for prices. In contrast, in the physics
models reviewed below, the prices that emerge make a random walk, and so are
much more realistic. In our case, to get a solution for the depth of the order book
we have to go into price coordinates that comove with the random walk. Dealing
with the feedback between order placement and prices makes the problem much
more difficult, but it is key for getting reasonable results.

The models in the physics literature incorporate price dynamics, but have
tended to be conceptual toy models designed to understand the anomalous dif-
fusion properties of prices. This line of work begins with a paper by Bak et al.
[2] which was developed by Eliezer and Kogan [14] and by Tang [27]. They as-
sume that limit orders are placed at a fixed distance from the midpoint, and that
the limit prices of these orders are then randomly shuffled until they result in
transactions. It is the random shuffling that causes price diffusion. This assump-
tion, which we feel is unrealistic, was made to take advantage of the analogy to
a standard reaction-diffusion model in the physics literature. Maslov [22] intro-
duced an alternative model that was solved analytically in the mean-field limit by
Slanina [25]. Each order is randomly chosen to be either a buy or a sell, and ei-
ther a limit order or a market order. If a limit order, it is randomly placed within
a fixed distance of the current price. This again gives rise to anomalous price
diffusion. A model adding Poisson order cancellation was proposed by Challet
and Stinchcombe [7]. Iori and Chiarella [9] have numerically studied a model
including fundamentalists and technical traders.

The model studied in this chapter was introduced by Daniels et al. [12]. This
adds to the literature by introducing a model that (like the other physics models
above) treats the feedback between order placement and price movement, but
unlike them is defined so that the parameters of the model can be measured and
its predictions tested against real data. The prior models in the physics litera-
ture have tended to focus primarily on the anomalous diffusion of prices. While
interesting and important for refining risk calculations, this is a second order ef-
fect. In contrast, we focus on the first order effects of primary interest to market
participants, such as the bid-ask spread, volatility, depth profile, price impact,
and the probability and time to fill an order. We demonstrate how dimensional
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analysis becomes a useful tool in an economic setting, and develop mean-field
theories in a context that is more challenging than that of the toy models of
previous work.

Subsequent to Daniels et al. [12], Bouchaud et al. [5] demonstrated that,
under the assumption that prices execute a random walk, by introducing an
additional free parameter they can derive a simple equation for the depth profile.
In this chapter we show how to do this from first principles without introducing
a free parameter.

2 OVERVIEW OF PREDICTIONS OF THE MODEL

In this section we give an overview of the phenomenology of the model. Because
this model has five parameters, understanding all their effects would generally be
a complicated problem in and of itself. This task is greatly simplified by the use
of dimensional analysis, which reduces the number of independent parameters
from five to two. Thus, before we can even review the results, we need to first
explain how dimensional analysis applies in this setting. One of the surprising
aspects of this model is that one can derive several powerful results using the
simple technique of dimensional analysis alone.

Unless otherwise mentioned, the results presented in this section are based on
simulations. A brief overview of the theoretical methods used and their agreement
to the simulations is given in section 3.

2.1 DIMENSIONAL ANALYSIS

Because dimensional analysis is not commonly used in economics, we first present
a brief review. For more details see Bridgman [6].

Dimensional analysis is a technique that is commonly used in physics and
engineering to reduce the number of independent degrees of freedom by taking
advantage of the constraints imposed by dimensionality. For sufficiently con-
strained problems it can be used to guess the answer to a problem without doing
a full analysis. The idea is to write down all the factors that a given phenomenon
can depend on, and then find the combination that has the correct dimensions.
For example, consider the problem of deriving the correct formula for the period
of a pendulum: The period T has dimensions of time. Obvious candidates that
it might depend on are the mass of the bob m (which has units of mass), the
length l (which has units of distance), and the acceleration of gravity g (which
has units of distance/time2). There is only one way to combine these to produce
something with dimensions of time, i.e., T ∼

√
l/g. This determines the correct

formula for the period of a pendulum up to a constant. Note that it makes it
clear that the period does not depend on the mass, a result that is not obvious
a priori. We were fortunate because in this problem there were three parameters
and three dimensions, with a unique combination of the parameters having the
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TABLE 1 The five parameters that characterize this model. α, µ, and δ are order flow
rates, and dp and σ are discreteness parameters.

Parameter Description Dimensions
α limit order rate shares/(price time)
µ market order rate shares/time
δ order cancellation rate 1/time
dp tick size price
σ characteristic order size shares

right dimensions. In general, dimensional analysis can only be used to reduce the
number of free parameters through the constraints imposed by their dimensions.

For this problem the three fundamental dimensions in the model are shares,
price, and time. Note that by price, we mean the logarithm of price; as long as
we are consistent, this does not create problems with the dimensional analysis.
There are five parameters: three rate constants and two discreteness parameters.
The order flow rates are µ, the market order arrival rate, with dimensions of
shares per time; α, the limit order arrival rate per unit price, with dimensions of
shares per price per time; and δ, the rate of limit order decays, with dimensions
of 1/time. These play a role similar to rate constants in physical problems. The
two discreteness parameters are the price tick size dp, with dimensions of price,
and the order size σ, with dimensions of shares. This is summarized in table 1.

Dimensional analysis can be used to reduce the number of relevant parame-
ters. Because there are five parameters and three dimensions (price, shares, time),
and because in this case the dimensionality of the parameters is sufficiently rich,
the dimensional relationships reduce the degrees of freedom, so that all the prop-
erties of the limit order book can be described by functions of two parameters.
It is useful to construct these two parameters so that they are nondimensional.

We perform the dimensional reduction of the model by guessing that the ef-
fect of the order flow rates is primary to that of the discreteness parameters. This
leads us to construct nondimensional units based on the order flow parameters
alone, and take nondimensionalized versions of the discreteness parameters as
the independent parameters whose effects remain to be understood. As we will
see, this is justified by the fact that many of the properties of the model depend
only weakly on the discreteness parameters. We can thus understand much of
the richness of the phenomenology of the model through dimensional analysis
alone.

There are three order flow rates and three fundamental dimensions. If we
temporarily ignore the discreteness parameters, there are unique combinations
of the order flow rates with units of shares, price, and time. These define a
characteristic number of shares Nc = µ/2δ, a characteristic price interval pc =
µ/2α, and a characteristic timescale tc = 1/δ. This is summarized in table 2. The
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TABLE 2 Important characteristic scales and nondimensional quantities. We summa-
rize the characteristic share size, price, and times defined by the order flow rates, as
well as the two nondimensional scale parameters dp/pc and ε that characterize the ef-
fect of finite tick size and order size. Dimensional analysis makes it clear that all the
properties of the limit order book can be characterized in terms of functions of these
two parameters.

Parameter Description Expression
Nc characteristic number of shares µ/2δ
pc characteristic price interval µ/2α
tc characteristic time 1/δ
dp/pc nondimensional tick size 2αdp/µ
ε nondimensional order size 2δσ/µ

factors of two occur because we have defined the market order rate for either a
buy or a sell order to be µ/2. We can thus express everything in the model in
nondimensional terms by dividing by Nc, pc, or tc as appropriate, for example,
to measure shares in nondimensional units N̂ = N/Nc, or to measure price in
nondimensional units p̂ = p/pc.

The value of using nondimensional units is illustrated in figure 2.
Figure 2(a) shows the average depth profile for three different values of µ and

δ with the other parameters held fixed. When we plot these results in dimensional
units the results look quite different. However, when we plot them in terms of
nondimensional units, as shown in figure 2(b), the results are indistinguishable.
As explained below, because we have kept the nondimensional order size fixed,
the collapse is perfect. Thus, the problem of understanding the behavior of this
model is reduced to studying the effects of tick size and order size.

To understand the effects of tick size and order size it is useful to do so in
nondimensional terms. The nondimensional scale parameter based on tick size is
constructed by dividing by the characteristic price, that is, dp/pc = 2αdp/µ. The
theoretical analysis and the simulations show that there is a sensible continuum
limit as the tick size dp → 0, in the sense that there is non-zero price diffusion
and a finite spread. Furthermore, the dependence on tick size is weak, and for
many purposes the limit dp → 0 approximates the case of finite tick size fairly
well. As we will see, working in this limit is essential for getting tractable analytic
results.

A nondimensional scale parameter based on order size is constructed by di-
viding the typical order size (which is measured in shares) by the characteristic
number of shares Nc, i.e., ε ≡ σ/Nc = 2δσ/µ. ε characterizes the “chunkiness” of
the orders stored in the limit order book. As we will see, ε is an important deter-
minant of liquidity, and it is a particularly important determinant of volatility.
In the continuum limit ε → 0 there is no price diffusion. This is because price
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FIGURE 2 The usefulness of nondimensional units. (a) We show the average depth
profile for three different parameter sets. The parameters α = 0.5, σ = 1, and dp = 0
are held constant, while δ and µ are varied. The line types are: (dotted) δ = 0.001,
µ = 0.2; (dashed) δ = 0.002, µ = 0.4 and (solid) δ = 0.004, µ = 0.8. (b) is the same,
but plotted in nondimensional units. The horizontal axis has units of price, and so has
nondimensional units p̂ = p/pc = 2αp/µ. The vertical axis has units of n shares/price,
and so has nondimensional units n̂ = npc/Nc = nδ/α. Because we have chosen the
parameters to keep the nondimensional order size ε constant, the collapse is perfect.
Varying the tick size has little effect on the results other than making them discrete.

diffusion can occur only if there is a finite probability for price levels outside the
spread to be empty, thus allowing the best bid or ask to make a persistent shift.
If we let ε → 0 while the average depth is held fixed, the number of individual
orders becomes infinite, and the probability that spontaneous decays or market
orders can create gaps outside the spread becomes zero. This is verified in simu-
lations. Thus the limit ε→ 0 is always a poor approximation of a real market. ε is
a more important parameter than the tick size dp/pc. In the mean-field analysis
in section 3, we let dp/pc → 0, reducing the number of independent parameters
from two to one, and in many cases find that this is a good approximation.

The order size σ can be thought of as the order granularity. Just as the
properties of a beach with fine sand are quite different from those of one pop-
ulated by fist-sized boulders, a market with many small orders behaves quite
differently from one with a few large orders. Nc provides the scale against which
the order size is measured, and ε characterizes the granularity in relative terms.
Alternatively, 1/ε can be thought of as the annihilation rate from market orders
expressed in units of the size of spontaneous decays. Note that in nondimensional
units the number of shares can also be written N̂ = N/Nc = Nε/σ.

The construction of the nondimensional granularity parameter illustrates
the importance of including a spontaneous decay process in this model. If δ = 0
(which implies ε = 0) there is no spontaneous decay of orders, and depending
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TABLE 3 Estimates from dimensional analysis for the scaling of a few market proper-
ties based on order flow rates alone. α is the limit order density rate, µ is the market
order rate, and δ is the spontaneous limit order removal rate. These estimates are con-
structed by taking the combinations of these three rates that have the proper units.
They neglect the dependence on the order granularity ε and the nondimensional tick
size dp/pc. More accurate relations from simulation and theory are given in table 4.

Quantity Dimensions Scaling relation
Asymptotic depth shares/price d ∼ α/δ
Spread price s ∼ µ/α
Slope of depth profile shares/price2 λ ∼ α2/µδ = d/s
Price diffusion rate price2/time D0 ∼ µ2δ/α2

on the relative values of µ and α, generically either the depth of orders will
accumulate without bound or the spread will become infinite. As long as δ > 0,
in contrast, this is not a problem.

For some purposes the effects of varying tick size and order size are fairly
small, and we can derive approximate formulas using dimensional analysis based
only on the order flow rates. For example, in table 3 we give dimensional scaling
formulas for the average spread, the market order liquidity (as measured by the
average slope of the depth profile near the midpoint), the volatility, and the
asymptotic depth (defined below). Because these estimates neglect the effects of
discreteness, they are only approximations of the true behavior of the model,
which do a better job of explaining some properties than others. Our numerical
and analytical results show that some quantities also depend on the granularity
parameter ε and to a weaker extent on the tick size dp/pc. Nonetheless, the
dimensional estimates based on order flow alone provide a good starting point
for understanding market behavior.

A comparison to more precise formulas derived from theory and simulations
is given in table 4.

An approximate formula for the mean spread can be derived by noting that
it has dimensions of price, and the unique combination of order flow rates with
these dimensions is µ/α. While the dimensions indicate the scaling of the spread,
they cannot determine multiplicative factors of order unity. A more intuitive ar-
gument can be made by noting that inside the spread, removal due to cancella-
tion is dominated by removal due to market orders. Thus, the total limit order
placement rate inside the spread, for either buy or sell limit orders αs, must
equal the order removal rate µ/2, which implies that spread is s = µ/2α. As we
will see later, this argument can be generalized and made more precise within
our mean-field analysis, which then also predicts the observed dependence on
the granularity parameter ε. However, this dependence is rather weak and only
causes a variation of roughly a factor of two for ε < 1 (see fig. 10), and the factor
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TABLE 4 The dependence of market properties on model parameters based on simu-
lation and theory, with the relevant figure numbers. These formulas include corrections
for order granularity ε and finite tick size dp/pc. The formula for asymptotic depth
from dimensional analysis in table 3 is exact with zero tick size. The expression for the
mean spread is modified by a function of ε and dp/pc, though the dependence on them
is fairly weak. For the liquidity λ, corresponding to the slope of the depth profile near
the origin, the dimensional estimate must be modified because the depth profile is no
longer linear (mainly depending on ε) and so the slope depends on price. The formulas
for the volatility are empirical estimates from simulations. The dimensional estimate
for the volatility from Table 3 is modified by a factor of ε−0.5 for the early time price
diffusion rate and a factor of ε0.5 for the late time price diffusion rate.

Quantity Scaling relation Figure
Asymptotic depth d = α/δ 3
Spread s = (µ/α)f(ε, dp/pc) 10
Slope of depth profile λ = (α2/µδ)g(ε, dp/pc) 3
Price diffusion (τ → 0) D0 = (µ2δ/α2)ε−0.5 11, 14(c)
Price diffusion (τ →∞) D∞ = (µ2δ/α2)ε0.5 11, 14(c)

of 1/2 derived above is a good first approximation. Note that this prediction of
the mean spread is just the characteristic price pc.

It is also easy to derive the mean asymptotic depth, which is the density
of shares far away from the midpoint. The asymptotic depth is an artificial
construct of our assumption of order placement over an infinite interval; it should
be regarded as providing a simple boundary condition so that we can study the
behavior near the midpoint price. The mean-asymptotic depth has dimensions
of shares/price, and is, therefore, given by α/δ. Furthermore, because removal
by market orders is insignificant in this regime, it is determined by the balance
between order placement and decay, and far from the midpoint the depth at any
given price is Poisson distributed. This result is exact.

The average slope of the depth profile near the midpoint is an important
determinant of liquidity, since it affects the expected price response when a
market order arrives. The slope has dimensions of shares/price2, which implies
that in terms of the order flow rates it scales roughly as α2/µδ. This is also the
ratio of the asymptotic depth to the spread. As we will see later, this is a good
approximation when ε ∼ 0.01, but for smaller values of ε the depth profile is not
linear near the midpoint, and this approximation fails.

The last two entries in table 4 are empirical estimates for the price diffusion
rate D, which is proportional to the square of the volatility. That is, for normal
diffusion, starting from a point at t = 0, the variance v after time t is v = Dt. The
volatility at any given timescale t is the square root of the variance at timescale
t. The estimate for the diffusion rate based on dimensional analysis in terms of
the order flow rates alone is µ2δ/α2. However, simulations show that short time
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diffusion is much faster than long time diffusion, due to negative autocorrela-
tions in the price process, as shown in figure 11. The initial and the asymptotic
diffusion rates appear to obey the scaling relationships given in table 4. Though
our mean-field theory is not able to predict this functional form, the fact that
early and late time diffusion rates are different can be understood within the
framework of our analysis, as discussed in section 3. Anomalous diffusion of this
type implies negative autocorrelations in midpoint prices. Note that we use the
term “anomalous diffusion” to imply that the diffusion rate is different on short
and long timescales. We do not use this term in the sense that it is normally
used in the physics literature, in other words, that the long-time diffusion is
proportional to tγ with γ 	= 1 (for long times γ = 1 in our case).

2.2 VARYING THE GRANULARITY PARAMETER ε

We first investigate the effect of varying the order granularity ε in the limit
dp → 0. As we will see, the granularity has an important effect on most of
the properties of the model, and particularly on depth, price impact, and price
diffusion. The behavior can be divided into three regimes, roughly as follows:

• Large ε, i.e., ε � 0.1. This corresponds to a large accumulation of orders at
the best bid and ask, nearly linear market impact, and roughly equal short
and long time price diffusion rates. This is the regime in which the mean-field
approximation used in the theoretical analysis works best.
• Medium ε, i.e., ε ∼ 0.01. In this range the accumulation of orders at the best

bid and ask is small, and near the midpoint price the depth profile increases
nearly linearly with price. As a result, as a crude approximation the price
impact increases as roughly the square root of order size.
• Small ε, i.e., ε � 0.001. The accumulation of orders at the best bid and ask

is very small, and near the midpoint the depth profile is a convex function of
price. The price impact is very concave. The short time price diffusion rate is
much greater than the long time price diffusion rate.

Since the results for bids are symmetric with those for offers about p = 0, for
convenience we only show the results for offers, that is, buy market orders and
sell limit orders. In this subsection prices are measured relative to the midpoint,
and simulations are in the continuum limit where the tick size dp → 0. The
results in this section are from numerical simulations. Also, bear in mind that
far from the midpoint the predictions of this model are not valid due to the
unrealistic assumption of an order placement process with an infinite domain.
Thus the results are potentially relevant to real markets only when the price p
is at most a few times as large as the characteristic price pc.

2.2.1 Depth Profile. The mean-depth profile, in other words, the average number
of shares per price interval, and the mean-cumulative depth profile are shown in
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FIGURE 3 The mean-depth profile and cumulative depth versus p̂ = p/pc = 2αp/µ.
The origin p/pc = 0 corresponds to the midpoint. (a) is the average depth profile n
in nondimensional coordinates n̂ = npc/Nc = nδ/α. (b) is nondimensional cumula-
tive depth N(p)/Nc. We show three different values of the nondimensional granularity
parameter: ε = 0.2 (solid), ε = 0.02 (dash), ε = 0.002 (dot), all with tick size dp = 0.

figure 3, and the standard deviation of the cumulative profile is shown in figure 4.
Since the depth profile has units of shares/price, nondimensional units of depth
profile are n̂ = npc/Nc = nδ/α.

The cumulative depth profile at any given time t is defined as

N(p, t) =
p∑
p̃=0

n(p̃, t)dp . (2)
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FIGURE 4 Standard deviation of the nondimensionalized cumulative depth versus
nondimensional price, corresponding to figure 3.

This has units of shares and so in nondimensional terms is N̂(p) = N(p)/Nc =
2δN(p)/µ = N(p)ε/σ.

In the high ε regime the annihilation rate due to market orders is low (relative
to δσ), and there is a significant accumulation of orders at the best ask, so that
the average depth is much greater than zero at the midpoint. The mean-depth
profile is a concave function of price. In the medium ε regime the market order
removal rate increases, depleting the average depth near the best ask, and the
profile is nearly linear over the range p/pc ≤ 1. In the small ε regime the market
order removal rate increases even further, making the average depth near the ask
very close to zero, and the profile is a convex function over the range p/pc ≤ 1.

The standard deviation of the depth profile is shown in figure 4. We see
that the standard deviation of the cumulative depth is comparable to the mean
depth, and that as ε increases, near the midpoint there is a similar transition
from convex to concave behavior.

The uniform order placement process seems at first glance one of the most
unrealistic assumptions of our model, leading to depth profiles with a finite
asymptotic depth (which also implies that there is an infinite number of orders
in the book). However, orders far away from the spread in the asymptotic re-
gion almost never get executed and thus do not affect the market dynamics.
To demonstrate this in figure 5 we show the comparison between the limit or-
der depth profile and the depth ne of only those orders which eventually get
executed.4

4Note that the ratio ne/n is not the same as the probability of filling orders (fig. 12)
because in that case the price p/pc refers to the distance of the order from the midpoint at the
time when it was placed.
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FIGURE 5 A comparison between the depth profiles and the effective depth profiles
as defined in the text, for different values of ε. Heavy lines refer to the effective depth
profiles ne and the light lines correspond to the depth profiles.

The density ne of executed orders decreases rapidly as a function of the
distance from the mid-price. Therefore, we expect that near the midpoint our
results should be similar to alternative order placement processes, as long as
they also lead to an exponentially decaying profile of executed orders (which is
what we observe above). However, to understand the behavior further away from
the midpoint we are also working on enhancements that include more realistic
order placement processes grounded on empirical measurements of market data,
as summarized in section 4.2.

2.2.2 Liquidity for Market Orders: The Price Impact Function. In this subsection we
study the instantaneous price impact function φ(t, ω, τ → 0). This is defined as
the (logarithm of the) midpoint price shift immediately after the arrival of a
market order in the absence of any other events. This should be distinguished
from the asymptotic price impact φ(t, ω, τ →∞), which describes the permanent
price shift. While the permanent price shift is clearly very important, we do not
study it here. The reader should bear in mind that all prices—p, a(t), etc.—are
logarithmic.

The price impact function provides a measure of the liquidity for execut-
ing market orders. (The liquidity for limit orders, in contrast, is given by the
probability of execution, studied in section 2.2.5.) At any given time t, the in-
stantaneous (τ = 0) price impact function is the inverse of the cumulative depth
profile. This follows immediately from eqs. (1) and (2), which in the limit dp→ 0
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FIGURE 6 The average price impact corresponding to the results in figure 3. The
average instantaneous movement of the nondimensional mid-price, 〈dm〉/pc caused by
an order of size N/Nc = Nε/σ. ε = 0.2 (solid), ε = 0.02 (dash), ε = 0.002 (dot).

can be replaced by the continuum transaction equation:

ω = N(p, t) =
∫ p

0

n(p̃, t)dp̃ . (3)

This equation makes it clear that at any fixed t the price impact can be regarded
as the inverse of the cumulative depth profile N(p, t). When the fluctuations are
sufficiently small we can replace n(p, t) by its mean value n(p) = 〈n(p, t)〉. In
general, however, the fluctuations can be large, and the average of the inverse is
not equal to the inverse of the average. There are corrections based on higher
order moments of the depth profile, as given in the moment expansion derived in
Smith et al. [26]. Nonetheless, the inverse of the mean-cumulative depth provides
a qualitative approximation that gives insight into the behavior of the price
impact function. Mean price impact functions are shown in figure 6 and the
standard deviation of the price impact is shown in figure 7. The price impact
exhibits very large fluctuations for all values of ε: The standard deviation has
the same order of magnitude as the mean, or larger for small Nε/σ values. Note
that these are actually virtual price impact functions. That is, to explore the
behavior of the instantaneous price impact for a wide range of order sizes, we
periodically compute the price impact that an order of a given size would have
caused at that instant, if it had been submitted. We have checked that real price
impact curves are the same, but they require a much longer time to accumulate
reasonable statistics.

One of the interesting results in figure 6 is the scale of the price impact. The
price impact is measured relative to the characteristic price scale pc, which as we
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FIGURE 7 The standard deviation of the instantaneous price impact dm/pc corre-
sponding to the means in figure 6, as a function of normalized order size εN/σ. ε = 0.2
(solid), ε = 0.02 (dash), ε = 0.002 (dot).

have mentioned earlier is roughly equal to the mean spread. As we will argue in
relation to figure 8, the range of nondimensional shares shown on the horizontal
axis spans the range of reasonable order sizes. This figure demonstrates that
throughout this range the price is the order of magnitude (and typically less
than) the mean-spread size.

Due to the accumulation of orders at the ask in the large ε regime, for small
p the mean-price impact is roughly linear. This follows from eq. (3) under the
assumption that n(p) is constant. In the medium ε regime, under the assumption
that the variance in depth can be neglected, the mean-price impact should in-
crease as roughly ω1/2. This follows from eq. (3) under the assumption that n(p)
is linearly increasing and n(0) ≈ 0. (Note that we see this as a crude approxi-
mation, but there can be substantial corrections caused by the variance of the
depth profile.) Finally, in the small ε regime the price impact is highly concave,
increasing much slower than ω1/2. This follows because n(0) ≈ 0 and the depth
profile n(p) is convex.

To get a better feel for the functional form of the price impact function, in
figure 8 we numerically differentiate it versus log order size, and plot the result
as a function of the appropriately scaled order size. (Note that because our
prices are logarithmic, the vertical axis already incorporates the logarithm.) If
we were to fit a local power law approximation to the function at each price, this
corresponds to the exponent of that power law near that price. Notice that the
exponent is almost always less than one, so that the price impact is almost always
concave. Making the assumption that the effect of the variance of the depth is
not too large, so that eq. (3) is a good assumption, the behavior of this figure can
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FIGURE 8 Derivative of the nondimensional mean-mid-price movement, with respect
to logarithm of the nondimensional order size N/Nc = Nε/σ, obtained from the price
impact curves in figure 6.

be understood as follows: For N/Nc ≈ 0 the price impact is dominated by n(0)
(the constant term in the average depth profile) and so the logarithmic slope of
the price impact is always near to one. As N/Nc increases, the logarithmic slope
is driven by the shape of the average depth profile, which is linear or convex for
smaller ε, resulting in concave price impact. For large values of N/Nc, we reach
the asymptotic region where the depth profile is flat (and where our model is
invalid by design). Of course, there can be deviations to this behavior caused by
the fact that the mean of the inverse depth profile is not in general the inverse
of the mean, that is, 〈N−1(p)〉 	= 〈N(p)〉−1. This is discussed in more detail in
Smith et al. [26].v

To compare to real data, note that N/Nc = Nε/σ. N/σ is just the order size
in shares in relation to the average order size, so by definition it has a typical value
of one. For the London Stock Exchange, we have found that typical values of ε
are in the range 0.001−0.1. For a typical range of order sizes from 100−100, 000
shares, with an average size of 10, 000 shares, the meaningful range for N/Nc is
therefore roughly 10−5 to 1. In this range, for small values of ε the exponent can
reach values as low as 0.2. This offers a possible explanation for the previously
mysterious concave nature of the price impact function, and contradicts the
linear increase in price impact based on the naive argument presented in the
introduction.

2.2.3 Spread. The probability density of the spread is shown in figure 9. This
shows that the probability density is substantial at s/pc = 0. (Remember that
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FIGURE 9 The probability density function (a), and cumulative distribution function
(b) of the nondimensionalized bid-ask spread s/pc, corresponding to the results in
figure 3. ε = 0.2 (solid), ε = 0.02 (dash), ε = 0.002 (dot).

this is in the limit dp → 0.) The probability density reaches a maximum at a
value of the spread approximately 0.2pc, and then decays. It might seem sur-
prising at first that it decays more slowly for large ε, where there is a large
accumulation of orders at the ask. However, it should be borne in mind that
the characteristic price pc = µ/α depends on ε. Since ε = 2δσ/µ, by eliminating
µ this can be written pc = 2σδ/(αε). Thus, holding the other parameters fixed,
large ε corresponds to small pc, and vice versa. So in fact, the spread is very small
for large ε, and large for small ε, as expected. The figure just shows the small
corrections to the large effects predicted by the dimensional scaling relations.
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FIGURE 10 The mean value of the spread in nondimensional units ŝ = s/pc as a func-
tion of ε. This demonstrates that the spread only depends weakly on ε, indicating that
the prediction from dimensional analysis given in table 3 is a reasonable approximation.

For large ε the probability density of the spread decays roughly exponentially
moving away from the midpoint. This is because for large ε the fluctuations
around the mean depth are roughly independent. Thus, the probability for a
market order to penetrate to a given price level is roughly the probability that
all the ticks smaller than this price level contain no orders, which gives rise to
an exponential decay. This is no longer true for small ε. Note that for small
ε the probability distribution of the spread becomes insensitive to ε, that is,
the nondimensionalized distribution for ε = 0.02 is nearly the same as that for
ε = 0.002.

It is apparent from figure 9 that in nondimensional units the mean spread
increases with ε. This is confirmed in figure 10, which displays the mean value of
the spread as a function of ε. The mean spread increases monotonically with ε. It
depends on ε as roughly a constant (equal to approximately 0.45 in nondimen-
sional coordinates) plus a linear term whose slope is rather small. We believe
that for most financial instruments ε < 0.3. Thus the variation in the spread
caused by varying ε in the range 0 < ε < 0.3 is not large, and the dimensional
analysis based only on rate parameters given in table 4 is a good approximation.
We get an accurate prediction of the ε dependence across the full range of ε from
the Independent Interval Approximation technique discussed in section 3.

2.2.4 Volatility and Price Diffusion. The price diffusion rate, which is proportional
to the square of the volatility, is important for determining risk and is a property
of central interest. From dimensional analysis in terms of the order flow rates the
price diffusion rate has units of price2/time, and so must scale as µ2δ/α2. We
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FIGURE 11 The variance of the change in the nondimensionalized midpoint price
versus the nondimensional time delay interval τδ. For a pure random walk this would
be a straight line whose slope is the diffusion rate, which is proportional to the square of
the volatility. The fact that the slope is steeper for short times comes from the nontrivial
temporal persistence of the order book. The three cases correspond to figure 3: ε = 0.2
(solid), ε = 0.02 (dash), ε = 0.002 (dot).

can also make a crude argument for this as follows: The dimensional estimate
of the spread (see table 4) is µ/2α. Let this be the characteristic step size of a
random walk, and let the step frequency be the characteristic time 1/δ (which
is the average lifetime for a share to be canceled). This argument also gives the
above estimate for the diffusion rate. However, this is not correct in the presence
of negative autocorrelations in the step sizes. The numerical results make it clear
that there are important ε-dependent corrections to this result, as demonstrated
below.

In figure 11 we plot simulation results for the variance of the change in the
midpoint price at time scale τ , Var (m (t + τ)−m (t)). The slope is the diffusion
rate, which at any fixed time scale is proportional to the square of the volatility.
It appears that there are at least two time scales involved, with a faster diffusion
rate for short time scales and a slower diffusion rate for long time scales. Such
anomalous diffusion is not predicted by mean-field analysis. Simulation results
show that the diffusion rate is correctly described by the product of the estimate
from dimensional analysis based on order flow parameters alone, µ2δ/α2, and
a τ -dependent power of the nondimensional granularity parameter ε = 2δσ/µ,
as summarized in table 4. We cannot currently explain why this power is −1/2
for short term diffusion and 1/2 for long-term diffusion. However, a qualitative
understanding can be gained based on the conservation law we discussed in
section 3.
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Note that the temporal structure in the diffusion process also implies non-
zero autocorrelations of the midpoint price m(t). This corresponds to weak neg-
ative autocorrelations in price differences m(t) −m(t − 1) that persist for time
scales until the variance vs. τ becomes a straight line. The time scale depends
on parameters, but is typically on the order of 50 market order arrival times.
This temporal structure implies that there exists an arbitrage opportunity which,
when exploited, would make prices more random and the structure of the order
flow non-random.

2.2.5 Liquidity for Limit Orders: Probability and Time to Fill. The liquidity for limit
orders depends on the probability that they will be filled, and the time to be filled.
This obviously depends on price: Limit orders close to the current transaction
prices are more likely to be filled quickly, while those far away have a lower
likelihood to be filled. Figure 12 plots the probability Γ of a limit order being
filled versus the nondimensionalized price at which it was placed (as with all the
figures in this section, this is shown in the midpoint-price centered frame). Figure
12 shows that in nondimensional coordinates the probability of filling close to the
bid for sell limit orders (or the ask for buy limit orders) decreases as ε increases.
For large ε, this is less than 1 even for negative prices. This says that even for
sell orders that are placed close to the best bid there is a significant chance that
the offer is deleted before being executed. This is not true for smaller values of
ε, where Γ(0) ≈ 1. Far away from the spread the fill probabilities as a function
of ε are reversed, that is, the probability for filling limit orders increases as ε
increases. The crossover point where the fill probabilities are roughly the same
occurs at p ≈ pc. This is consistent with the depth profile in figure 3 which also
shows that depth profiles for different values of ε cross at about p ∼ pc.

Similarly Figure 13 shows the average time τ taken to fill an order placed
at a distance p from the instantaneous mid-price. Again we see that though the
average time is larger at larger values of ε for small p/pc, this behavior reverses
at p ∼ pc.

2.3 VARYING TICK SIZE DP/PC

The dependence on discrete tick size dp/pc, of the cumulative distribution func-
tion for the spread, instantaneous price impact, and mid-price diffusion, are
shown in figure 14. We chose an unrealistically large value of the tick size, with
dp/pc = 1, to show that, even with very coarse ticks, the qualitative changes in
behavior are typically relatively minor.

Figure 14(a) shows the cumulative density function of the spread, comparing
dp/pc = 0 and dp/pc = 1. It is apparent from this figure that the spread distribu-
tion for coarse ticks “effectively integrates” the distribution in the limit dp→ 0.
That is, at integer tick values the mean-cumulative depth profiles roughly match
and, in between integer tick values, for coarse ticks the probability is smaller.
This happens for the obvious reason that coarse ticks quantize the possible val-
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FIGURE 12 The probability Γ for filling a limit order placed at a price p/pc where
p is calculated from the instantaneous mid-price at the time of placement. The three
cases correspond to figure 3: ε = 0.2 (solid), ε = 0.02 (dash), ε = 0.002 (dot).

ues of the spread, and place a lower limit of one tick on the value the spread
can take. The shift in the mean spread from this effect is not shown, but it is
consistent with this result; there is a constant offset of roughly 1/2 tick.

The alteration in the price impact is shown in figure 14(b). Unlike the spread
distribution, the average price impact varies continuously. Even though the tick
size is quantized, we are averaging over many events and the probability of a
price impact of each tick size is a continuous function of the order size. Large
tick size consistently lowers the price impact. The price impact rises more slowly
for small p, but is then similar except for a downward translation.

The effect of coarse ticks is less trivial for mid-price diffusion, as shown in
figure 14(c). At ε = 0.002, coarse ticks remove most of the rapid short-term
volatility of the midpoint, which in the continuous-price case arises from price
fluctuations smaller than dp/pc = 1. This lessens the negative autocorrelation
of midpoint price returns, and reduces the anomalous diffusion. At ε = 0.2,
where both early volatility and late negative autocorrelation are smaller, coarse
ticks have less effect. The net result is that the mid-price diffusion becomes less
sensitive to the value of ε as tick size increases, and there is less anomalous price
diffusion.

3 SUMMARY OF ANALYTIC RESULTS

This section summarizes our analytic results and discusses their agreement with
simulations. For a more in-depth discussion with derivations see Smith et al. [26].
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FIGURE 13 The average time τ nondimensionalized by the rate δ, to fill a limit order
placed at a distance p/pc from the instantaneous mid-price.

Below we describe three different theoretical approaches to understanding
this model. A useful exact result can be derived from the requirement that all
orders placed are eventually removed, which imposes global constraints on the
mean-depth profile. Providing fluctuations at different prices are not too strongly
correlated, an approximation to the mean-depth profile, the spread, and other
properties can be obtained from an order-depth master equation. Alternatively,
closed-form finite-difference expressions for the mean intervals separating orders
(including the spread) may be obtained if the interval fluctuations have suit-
ably regular distributions. These three levels of analysis are summarized in the
following three subsections.

3.1 GLOBAL CONSERVATION RELATIONS

In this section we derive a useful global conservation relation. Because prices
describe a random walk, in order to get stationary solutions we must use comov-
ing coordinates. The resulting conservation law is slightly different depending on
whether the coordinates are centered on the midpoint or on the best quote. (For
convenience we derive the relation for sell orders, in which case the best quote
is the best bid.)

Let n (p, t) denote the number of shares in a half-closed logarithmic price
interval (p, p + dp) at time t, where dp is the logarithmic tick size, which may
be infinitesimal. Then the share number in the bid-centered comoving frame is
denoted nb, and defined from the instantaneous bid price b (t) as

nb (p, t) ≡ n (p− b (t) , t) . (4)
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FIGURE 14 Dependence of market properties on tick size. Heavy lines are dp/pc → 0;
light lines are dp/pc = 1. Cases correspond to figure 3, with ε = 0.2 (solid), ε = 0.02
(dash), ε = 0.002 (dot). (a) is the cumulative distribution function for the nondimen-
sionalized spread. (b) is instantaneous nondimensionalized price impact, (c) is diffusion
of the nondimensionalized midpoint shift, corresponding to figure 11.
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Similarly, in a midpoint-centered frame,

nm (p, t) ≡ n (p−m (t) , t) . (5)

In bid-centered coordinates, the order-placement rate density is the constant
α, and the mean-decay rate in bin p is δ 〈nb (p)〉, where angle brackets denote
interchangeably either time or ensemble average. In addition, sell limit orders
are removed by the placement of buy market orders, at the rate µ/2. The fact
that the number of orders placed must equal the number removed implies that

µ

2
=

∞∑
p=b+dp

(αdp− δ 〈nb (p)〉) . (6)

This relationship is somewhat more complicated in midpoint-centered coordi-
nates, since orders placed below the midpoint induce a shift in the center of the
coordinate system that place them above the new midpoint. This occurs when-
ever 0 ≤ p ≤ s/2, where s is the spread. Thus the average additional deposition
rate in midpoint-centered coordinates is α〈s/2〉.

µ

2
= α
〈s〉
2

+
∞∑

p=b+dp

(αdp− δ 〈nm (p)〉) . (7)

Equations (6) and (7) are exact constraints on the mean-order depths, which
will be respected as well by the approximate solutions below.

3.2 ORDER-DENSITY MASTER EQUATION

In this section we give an overview of a treatment based on a master equation. In-
stantaneous order-book configurations are one-dimensional profiles, which evolve
stochastically under order placement and removal, as well as shifts in the origin
of the comoving coordinate system when there is a change in the best quotes.
The number of such profiles is too large to index tractably, but if the resulting
fluctuations of the number at each price are uncorrelated, the statistical prop-
erties of the limit order book can be approximately described by the density
π (n, p, t), which gives the probability of finding n orders at price p at time t.
This satisfies the conservation law∑

n

π (n, p, t) = 1, ∀ p, t . (8)

The approximation of uncorrelated fluctuations is never satisfied in the bid-
centered frame, but under appropriate conditions, discussed later, it is sometimes
satisfied in the midpoint-centered frame. Therefore, n will denote nm in the
remainder of this subsection.
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The master equation describing the flow of probability from individual place-
ment, expiration, and execution events, as well as coordinate shifts, is straight-
forward to write down as

∂

∂t
π (n, p) =

α (p) dp
σ

[π (n− σ, p)− π (n, p)]

+
δ

σ
[(n + σ)π (n + σ, p)− nπ (n, p)]

+
µ (p)
2σ

[π (n + σ, p)− π (n, p)]

+
∑
∆p

P+ (∆p) [π (n, p−∆p)− π (n, p)]

+
∑
∆p

P− (∆p) [π (n, p + ∆p)− π (n, p)] .

(9)

We are assuming time increments are sufficiently small that the time difference
is well approximated by a continuous derivative, and have neglected to write the
variable t that appears in every term on the right side. Here P± (∆p) are the
rate densities for upward and downward shifts of the frame by ∆p. They will
be assumed equal for simplicity, and must be found self-consistently with the
solution for mean n. To do this we assume that the shift events are otherwise
uncorrelated with placement and removal events. In comoving coordinates the
order placement rates are now functions of price, µ(p) and α(p). µ(p) represents
the average rate at which market orders remove limit orders at price p. Similarly,
the average rate of limit order deposition α(p) is affected by the fact that the best
bid and ask prices are often changing. Far from the midpoint the deposition rate
is unaffected, so that α(∞) = α. These functions must be solved self-consistently.

For the analytic treatment we assume that all orders are of the same size (σ
shares). In the limit dp → 0 the number of orders within any given price bin of
width dp is either zero or one. A solution for the mean-depth profile 〈n (p)〉 can
be obtained by multiplying eq. (9) by n, summing over n, and setting the time
dependence to zero. Differences of π at adjacent prices are replaced by derivatives
with respect to p, and the finite-∆p shifts are expanded in Taylor’s series. Two
transport parameters are defined: a diffusivity

D ≡
∑
∆p

P (∆p) ∆p2, (10)

and a mean-absolute price shift

〈∆p〉 ≡
∑

∆p P (∆p) ∆p∑
∆p P (∆p)

. (11)
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It is convenient to express the mean-share density nondimensionally, defining

ψ (p̂) ≡ 1
ε

δ 〈n (p)〉
α (∞) dp

, (12)

and similarly to introduce nondimensionalized transport parameters β ≡ D/(p2
Cδ)

and 〈∆p̂〉 ≡ 〈∆p〉 /pC .
Under the mean-field approximation of independent fluctuations, it is con-

venient to think of buy market orders as being deposited at logarithmic price
p = 0, and moving to the right until they are annihilated by a sell limit order.
(Recall that by definition in midpoint coordinates there are never any limit or-
ders stored at p < 0.) Using non-dimensional price coordinates p̂, the fraction
of market orders surviving to price p, which is by definition also the cumula-
tive distribution function for ŝ/2, has a simple expression in terms of the mean
density:

µ (p̂)
µ (0)

= Pr (ŝ/2 ≥ p̂) = exp

(
−

∫ p̂

0

dp̂′ψ (p̂′)

)
≡ ϕ (p̂) . (13)

Equation (13), together with the excess order-deposition relation in the midpoint-
centered frame α (p̂) /α (∞̂) = 1 + Pr (ŝ/2 ≥ p̂) (explained above), may be used
to reduce the static first-moment (mean) solution of eq. (9) to

1 + ϕ = −
[
dϕ

dp̂
+ ε

(
1− β

d2

dp̂2

)
d logϕ
dp̂

]
. (14)

Direct integration over prices recovers the order-flow conservation (7), but now
in nondimensional coordinates.∫ ∞

0

dp̂ (1− εψ) = 1− 〈ŝ〉
2

, (15)

as long as ψ ≡ 0 at p < 0 and ψ → 1/ε for p̂→∞.
The simple fact that stored limit orders can never cross the midpoint can

be used to derive an additional condition that yields a unique solution. While
we cannot enforce this condition microscopically, we can at least enforce it on
average. Consider the bin at p̂ = 0. The flux of orders from above is the gradient
in order density times the rate of positive shifts 〈∆p̂〉. In contrast, there is no
flux of orders from below (since there are no orders below); the rate of removal
is proportional to the order density. This argument can be made more formally
(see Smith et al. [26]), leading to the condition

〈∆p̂〉 dψ
dp̂

∣∣∣∣
0

− ψ (0) ≈ 0 . (16)

The self-consistently determined parameters evaluate to

β =
4
ε

∫ ∞
0

d∆p̂ (∆p̂)2ϕ (∆p̂) , (17)
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FIGURE 15 Fit of self-consistent solution to simulation results for the midpoint-
centered frame, ε = 0.02. Thin solid line is the analytic mean-number density; thick
solid line is simulation. Thin dashed line is analytic Pr (ŝ/2 ≤ p̂); thick dashed line is
simulation.

and

〈∆p̂〉 =

∫∞
0

d∆p̂ (∆p̂)ϕ (∆p̂)∫∞
0

d∆p̂ ϕ (∆p̂) .
(18)

Simultaneous solution of eqs. (14) and (16)–(18) produces the density and cu-
mulative spread distribution shown in figure 3.2.

3.3 INDEPENDENT INTERVAL APPROXIMATION

An alternative to considering the share depth at dp→ 0 is to consider the set of
price intervals xi between orders, which in this limit are ensured to be sparse. x0

is defined to be the spread, negative i index intervals between buy limit orders
(bids), and positive i index intervals between offers. (For simplicity in defining
the model, new orders are excluded from price bins containing existing orders.
The resulting corrections vanish as dp→ 0.)

The instantaneous intervals change stochastically, by splitting when orders
are added, or by joining when they are removed. For the spread, the processes
and their rates are as follows:

1. x0 → x0 +x1, rate (δ + µ/2σ) (ask removed by cancellation or market order).
2. x0 → x0 + x−1, rate (δ + µ/2σ) (symmetric process for bid removal).
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3. x0 → x′ ∈ (1, x0 − 1), when a new offer is placed, rate αdp/σ at each unoc-
cupied position of width dp.

4. x0 → x′ ∈ (1, x0 − 1) when new bid is placed, again rate αdp/σ per bin.
5. Rate for events leaving x0 unchanged is therefore 1−2δ−µ/σ−2αdp (x0 − 1) /σ.

To simplify notation in what follows σ will be set to one without loss of generality.
The expected x0 (t + dt), given definite xi (t), is then

〈x0 (t + dt)〉 = x0 (t) [1− 2δ − µ0 − 2α (x0 − 1)]

+ (x0 + x1)
(
δ +

µ

2

)
+ (x0 + x−1)

(
δ +

µ

2

)
+(α0dp)x0 (x0 − 1) . (19)

The average of eq. (19) would generate a recursion for 〈x0〉 from 〈x±1〉 if we
could evaluate

〈
x2

0

〉
. The mean-field approximation for independent intervals is

to assume some relation
〈
x2

0

〉
by a〈x0〉2, with a to be determined self-consistently.

Making this assumption, and abusing the notation by letting xi denote the mean
value of stationary solutions (and no longer the instances), gives(

δ +
µ

2
s
)

(x1 + x−1) = aαdpx0 (x0 − 1) . (20)

For sparse orders, the relation of mean interval to mean density depends
on the fluctuation spectrum, but it is qualitatively xi ≈ 1/

〈
n

(∑i−1
j=0 xjdp

)〉
,

becoming exact at large i. Thus, corresponding to the density solution, it is
convenient to nondimensionalize the xi as

x̂i ≡ ε
α

δ
xidp =

xidp

pC
≈ 1

ψ
(∑i−1

j=0 x̂j

) , (21)

placing eq. (20) in the form

(1 + ε) (x̂1 + x̂−1) = ax̂0 (x̂0 − dp̂) . (22)

The same sequence of steps may be followed for all xk at k ≥ 1, to yield the
nondimensional recursion relations

(1 + kε) x̂k =
a

2
x̂k−1 (x̂k−1 − dp̂) + x̂k−1

k−2∑
i=0

(x̂i − dp̂) , (23)

which may then be solved numerically, given a convergence condition on k →∞
and the assumption of symmetry xi = x−i.

For asymptotically constant order placement rate density α, x̂k must con-
verge to some value x̂∞ at large k. Taking x̂k+1 → x̂k in eq. (23), it follows that
x̂∞ = ε+dp̂, providing the convergence condition that constrains x̂0 in numerical
evaluation, and agreeing with ψ (∞)→ 1/ε at dp→ 0.
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The partial sum in eq. (23) may also be evaluated in the same limit, by
dividing by x̂∞, to give

(1 + kε) =
a

2
(x̂∞ − dp̂) +

k−2∑
i=0

(x̂i − dp̂) . (24)

Expressing kε as a partial sum over x̂∞ − dp̂, it follows that

1 + (1− a

2
)ε = S∞, (25)

where S∞ ≡
∑∞
i=0 (x̂i − x̂∞).

S∞ may be interpreted in terms of global order flow. The rate of decay
of the k + 1 orders in the price range

∑k
i=0 xi is δ (k + 1), while the rate of

market order executions is µ/2. These must balance the rate of market order
additions, which is (αdp)

∑k
i=0 xi in the bid-centered frame (where the addition

rate is not expressed directly in terms of the fluctuation spectrum of x0). Thus,
re-expressing eq. (6),

µ

2σ
+ δ (k + 1) =

αdp

σ

k∑
i=0

xi , (26)

which nondimensionalized gives

1 = S∞ . (27)

Matching eq. (27) to eq. (25) gives the self-consistency condition a = 2, which
would be exact if the xk were all independent and exponentially distributed. The
actual distribution obtained from simulations is approximately exponential for
large k, though it is more nearly Gaussian for x0, and has some transitional form
for small k. Even so, the correspondence with the bid-centered density profile is
qualitatively good across a broad range of ε, as shown in figure 3.3.

3.4 UTILITY OF ANALYTIC RESULTS AND AGREEMENT WITH
SIMULATION

Both of the foregoing solution methods make simplifying assumptions about fluc-
tuations: the master equation assumes that depth fluctuations are independent,
while the independent interval approximation assumes that higher order interval
moments have a fixed relation to mean values. Comparison to simulations has
shown that both forms of approximation are good for parameter ranges ε � 0.1,
but that they lead to progressively larger quantitative errors for smaller ε, so
that only qualitative features of the density profile or probability distribution
for the spread remain correctly predicted for ε � 0.001.
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FIGURE 16 Bid-centered density profiles from Monte Carlo simulation (markers) and
the Independent Interval Approximation (lines). Pluses and dash line are for ε = 0.2,
while crosses and dotted line are for ε = 0.02.

Nevertheless, the analytic methods correctly capture the progression of the
profile from concave-everywhere, to inflected, as ε decreases (see fig. 3.3). Quali-
tatively, this result allows us to understand the progression of the market impact
from nearly linear, to sublinear-power dependence on order size, and shows that
this relation is recovered in very different mean-field treatments, thus is not
dependent at leading order, on precise properties of fluctuations.

The ε dependence of the mean profile, combined with the global conserva-
tion laws, also gives insight into the nature of autocorrelation of the midprice
movement, and relates it to the impact through the mean order-book profile.
The quantity S∞ represents the area, in the nondimensionalized coordinates of
figure 3.3, between the mean profile and a constant function with value unity.
The conservation law (27) implies that this area is in fact independent of order-
flow parameters. With the qualitative behavior of the book just noted, a larger
market order rate (smaller ε) produces a lower profile near the bid, thus requiring
that the profile more rapidly asymptote to one for p/pC � 1. The sparser profile
near the bid indicates larger or more frequent steps in the random walk, due to
shifts in the ask (and so, by symmetry, also in the bid), leading to a short-time
diffusivity that should increase with decreasing ε. However, the exponent with
which the profile asymptotes to unity at large p/pC is inversely proportional to
the late-time diffusivity, as it functions in simple diffusion models [5] indicating
that this quantity must decrease with decreasing ε. The two are quantitatively
related by the constraint (27), and in fact are shown to scale with inverse powers
of ε1/2 in simulations. The physical interpretation of this relation is that, while
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more market orders lead to a sparser interior profile and more rapid initial price
diffusion, an even greater fraction of the early steps is reversed by negatively au-
tocorrelated later steps, reflecting the relatively greater immobility of the deeper
book at large prices.

Perhaps the most quantitatively successful aspect of the analytic treatment,
though, is that it motivates the nondimensionalization of the problem, by show-
ing relatively invariant defining equations and qualitative solutions, in appropri-
ately chosen coordinates. It shows relatively easily the existence of the continuum
limit for tick size dp/pC → 0, and concurrently the nonexistence of a regular limit
for order granularity σ/NC ≡ ε → 0. It motivates parameter ranges for simula-
tion studies, by showing that the regions of most rapid qualitative change occur
over the range ε ∈ 0.001− 0.1, and gives some qualitative meaning to the order-
flow values in real markets, in terms of the sensitivity to change where they
occur.

4 CONCLUDING REMARKS

4.1 ONGOING WORK ON EMPIRICAL VALIDATION

This model predicts many different aspects of markets. To test these predictions
quantitatively it is necesssary to measure order flow rates, which are not available
in most data sets. It is nonetheless possible to compare some of the qualitative
predictions of the model to those of data. For example, in a recent careful study
Lillo et al. have carefully measured the price impact function for 1000 stocks
traded on the New York Stock Exchange [20]. They find a price impact function
that is quite concave. It does not appear to follow any simple functional form,
such as a power law or logarithm, but increases roughly as the 0.5 power for
small orders and the 0.2 power for larger orders. This is roughly the behavior
our model generates for small values of ε, e.g., ε ≈ 0.001.

Members of our group are also working to test this model using data from the
London Stock Exchange [11]. We have chosen this data set because it contains
every order and every cancellation, which makes it possible to measure all the
parameters of the model directly. It is also possible to reconstruct the order book
and measure all the statistical properties we have studied in this chapter. Our
empirical work so far shows that, despite its crude approximations, many of the
predictions of the model are quite good. In particular, for a preliminary set of
nine stocks the model explains 70% of the variance of the mean daily spread.
Also, when plotted using the nondimensional coordinates defined here, the price
impact function for the nine different stocks collapses rather well onto a single
function. There are also some discrepancies; for example, the collapse seems to
be independent of ε. If we somewhat arbitrarily choose ε ≈ 0.001, we get a good
fit to the data. The shape of the price impact function is strikingly similar to
that observed for the NYSE.
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We believe that the discrepancies between the predictions of our model and
the data can be dealt with by using a more sophisticated model of order flow.
We summarize some of the planned improvements in the following subsection.

4.2 FUTURE ENHANCEMENTS

As we have mentioned above, the zero intelligence, IID order flow model should
be regarded as just a starting point from which to add more complex behaviors.
We are considering several enhancements to the order flow process whose effects
we intend to discuss in future papers. Some of the enhancements include:

• Trending of order flow. We have demonstrated that IID order flow necessar-
ily leads to non-IID prices. The converse is also true: Non-IID order flow is
necessary for IID prices. In particular, the order flow must contain trends,
i.e., if order flow has recently been skewed toward buying, it is more likely to
continue to be skewed toward buying. If we assume perfect market efficiency,
in the sense that prices are a random walk, this implies that there must be
trends in order flow.
• Power law placement of limit prices. For both the London Stock Exchange

and the Paris Bourse, the distribution of the limit price relative to the best
bid or ask appears to decay as a power law [5, 29]. Our investigations of this
show that this can have an important effect. Exponents larger than one result
in order books with finite numbers of orders. In this case, depending on other
parameters, there is a finite probability that a single market order can clear
the entire book [26].
• Power law or log-normal order size distribution. A real order placement process

has an order size distribution that appears to be roughly like a log-normal
distribution with a power law tail [21]. This has important effects on the
fluctuations in liquidity.
• Non-Poisson order cancellation process. When considered in real time, order

placement cancellation does not appear to be Poisson [7]. However, this may
not be a bad approximation in event time rather than real time.
• Conditional order placement. Agents may conditionally place larger market

orders when the book is deeper, causing the market impact function to grow
more slowly. We intend to measure this effect and incorporate it into our
model.
• Feedback between order flow and prices. In reality, there are feedbacks between

order flow and price movementss beyond the feedback in the reference point for
limit order placement built into this model. This can induce bursts of trading,
causing order flow rates to speed up or slow down, and give rise to clustered
volatility.

The last item is just one of many examples of how one can surely improve
the model by making order flow conditional on available information. However,



Santa Fe Institute. January 4, 2005 11:49 a.m. Farmer page 170

170 A Random Order Placement Model of. . .

we believe it is important to first gain an understanding of the properties of
simple unconditional models, and then build on this foundation to get a fuller
understanding of the problem.

4.3 COMPARISON TO STANDARD MODELS BASED ON VALUATION AND
INFORMATION ARRIVAL

In the spirit of Gode and Sunder [17], we assume a simple, zero-intelligence
model of agent behavior and show that the market institution exerts consider-
able power in shaping the properties of prices. While not disputing that agent
behavior might be important, our model suggests that, at least on the short
time scale, many of the properties of the market are dictated by the market
institution, and, in particular, the need to store supply and demand to facilitate
trading. Our model is stochastic and fully dynamic, and makes predictions that
go beyond the realm of experimental economics, giving quantitative predictions
about the fundamental properties of a real market. We have developed what
were previously conceptual toy models in the physics literature into a model
with testable explanatory power.

This raises questions about the comparison to standard models based on
the response of valuations to news. The idea that news might drive changes in
order flow rates is compatible with our model. That is, news can drive changes
in order flow, which in turn cause the best bid or ask price to change. But notice
that in our model there are no assumptions about valuations. Instead, everything
depends on order flow rates. For example, the diffusion rate of prices increases
as the 5/2 power of market order flow rate, and thus volatility, which depends
on the square root of the diffusion rate, increases as the 5/4 power. Of course,
order flow rates can respond to information; an increase in market order rate
indicates added impatience, which might be driven by changes in valuation. But
a change in long-term valuation could equally well cause an increase in limit
order flow rate, which decreases volatility. Valuation per se does not determine
whether volatility will increase or decrease. Our model says that volatility does
not depend directly on valuations, but rather on the urgency with which they
are felt, and the need for immediacy in responding to them.

Understanding the shape of the price impact function was one of the moti-
vations that originally set this project into motion. The price impact function is
closely related to supply and demand functions, which have been central aspects
of economic theory since the 19th century. Our model suggests that the shape
of price impact functions in modern markets is significantly influenced not so
much by strategic thinking as by an economic fundamental: The need to store
supply and demand in order to provide liquidity. A priori it is surprising that
this requirement alone may be sufficient to dictate at least the broad outlines of
the price impact curve.

Our model offers a “divide and conquer” strategy to understanding fun-
damental problems in economics. Rather than trying to ground our approach
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directly on assumptions of utility, we break the problem into two parts. We pro-
vide an understanding of how the statistical properties of prices respond to order
flow rates, and leave the problem open of how order flow rates depend on more
fundamental assumptions about information and utility. Order flow rates have
the significant advantage that, unlike information, utility, or the cognitive powers
of an agent, they are directly measurable. We hope that breaking the problem
into two pieces will greatly simplify the problem of understanding markets.
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