Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle
Valentin Emiya, Roland Badeau, Bertrand David

To cite this version:

HAL Id: inria-00510392
https://hal.inria.fr/inria-00510392
Submitted on 18 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—A new method for the estimation of multiple concurrent pitches in piano recordings is presented. It addresses the issue of overlapping overtones by modeling the spectral envelope of the overtones of each note with a smooth autoregressive model. For the background noise, a moving-average model is used and the combination of both tends to eliminate harmonic and sub-harmonic erroneous pitch estimations. This leads to a complete generative spectral model for simultaneous piano notes, which also explicitly includes the typical deviation from exact harmonicity in a piano overtone series. The pitch set which maximizes an approximate likelihood is selected from among a restricted number of possible pitch combinations as the one. Tests have been conducted on a large homemade database called MAPS, composed of piano recordings from a real upright piano and from high-quality samples.

Index Terms—Acoustic signal analysis, audio processing, multipitch estimation, piano, transcription, spectral smoothness.

I. INTRODUCTION

The issue of monopitch estimation has been addressed for decades by different approaches such as retrieving a periodic pattern in a waveform [1, 2] or matching a regularly spaced pattern to an observed spectrum [3, 4], or even by combining both spectral and temporal cues [5, 6]. Conversely the multipitch estimation (MPE) problem has become a rather active research area in the last decade [7, 8] and is mostly handled by processing spectral or time-frequency representations. This MPE task has also become a central tool in musical scene analysis [9], particularly when the targeted application is the automatic transcription of music (ATM) [10]. While recent works consider pitch and time dimensions jointly to perform this task, MPE on single frames has been historically used as a prior processing to pitch tracking over time and musical note detection. Indeed, in a signal processing perspective, a period or a harmonic series can be estimated from a short signal snapshot. In terms of perception, only a few cycles are needed to identify a pitched note [11].

In this polyphonic context, two issues have proved difficult and interesting for computational MPE: the overlap between the overtones of different notes and the unknown number of such notes occurring simultaneously. As the superposition of two sounds in octave relationship leads to a spectral ambiguity and thus to an ill-posed problem, some knowledge is often used for the further spectral modeling of the underlying sources. For instance, when iterative spectral subtraction is employed, several authors have adopted a smoothness assumption for the spectral envelope of the notes [8, 10].

Several preceding works [12-16] specifically address the case of the piano. One of the interests in studying a single instrument is to incorporate in the algorithms some results established from physical considerations [18, 19], in the hope that a more specific model will lead to a better performance, with the obvious drawback of narrowing the scope of the application. Indeed, while a large number of musical pieces are composed for piano solo, the performance of ATM systems is relatively poor for this instrument in comparison to others [6].

Two deviations from a simple harmonic spectral model are specific to free vibrating string instruments and are particularly salient for the piano: a small departure from exact harmonicity (the overtone series is slightly stretched) and the beatings between very close frequency components (for a single string two different vibrating polarizations occur and the different strings in a doublet or triplet are slightly detuned on purpose [20]).

In this work, we propose a new spectral model in which the inharmonic distribution is taken into account and adjusted for each possible note. The spectral envelope of the overtones is modeled by a smooth autoregressive (AR) model, the smoothness resulting from a low model order. A smooth spectral model is similarly introduced for the residual noise by using a low-order moving-average (MA) process, which is particular efficient against residual sinusoids. The proposed method follows a preliminary work [21] in which the AR/MA approach was already used and MPE was addressed as an extension of a monopitch estimation approach. In addition to the opportunity to deal with higher polyphony levels, the current paper introduces a new signal model for simultaneous piano notes and a corresponding estimation scheme. The major advance from the previous study is thus to model and estimate the spectral overlap between note spectra. An iterative estimation framework is proposed which leads to a maximum likelihood estimation for each possible set of F0s.

This paper is structured as follows. In section II, the overall MPE approach is described. The sound model is first detailed, followed by the principle of the algorithm: statistical background, adaptive choice of the search space and detection function. The estimation of the model parameters is then explained in section III. After specifying the implementation details, the algorithm is tested in section IV using a database of piano sounds and the results are analyzed and compared with those obtained with some state-of-the-art approaches.
Conclusions are finally drawn in section V.

Note that in the following, \(^*\) denotes the complex conjugate, \(^\top\) the transpose operator, \(^\dagger\) the conjugate transpose, \([\cdot]\) the floor function and \(|\cdot|\) the number of elements in a set, the absolute value of a real number or the modulus of a complex number.

In addition, the term polyphony will be applied to any possible mixture of notes, including silence (polyphony 0) and single notes (polyphony 1).

II. MULTIPITCH ESTIMATION ALGORITHM

A. Generative sound model

At the frame level, a mixture of piano sounds is modeled as a sum of sinusoids and background noise. The amplitude of each sinusoid is considered as a random variable. The spectral envelope for the overtone series of a note is introduced as second order statistical properties of this random variable, making it possible to adjust its smoothness. The noise is considered as a moving-average (MA) process.

More precisely, a mixture of \(P \in \mathbb{N}\) simultaneous piano notes, observed in a discrete-time \(N\)-length frame, is modeled as a sum \(x(t) \triangleq \sum_{p=1}^{P} x_p(t) + x_b(t)\) of the note signals \(x_p\) and of noise \(x_b\). The sinusoidal model for \(x_p\) is

\[
x_p(t) \triangleq \sum_{h=1}^{H_p} \left(\alpha_{hp} e^{2\pi f_{hp}t} + \alpha_{hp}^* e^{-2\pi f_{hp}t} \right)
\]

where \(\alpha_{hp}\) are the complex amplitudes and \(f_{hp}\) the frequencies of the \(H_p\) overtones (here, \(H_p\) is set to the maximum number of overtones below the Nyquist frequency). Note \(p\) is parameterized by \(C_p = (f_{op}, \beta_p, f_{op} \text{ being the fundamental frequency (F0) and } \beta_p \text{ being the so-called inharmonicity coefficient of the piano note})\). We introduce a spectral envelope for note \(p\) as an autoregressive (AR) model of order \(Q_p\), parameterized by \(\theta_p \triangleq (\sigma_p^2, A_p(z))\), where \(\sigma_p^2\) is the power and \(\frac{1}{\beta_p} A_p(z)\) is the transfer function of the related AR filter. Order \(Q_p\) should be low and proportional to \(H_p\) in order to obtain a smooth envelope and to avoid overfitting issues for high pitches. The amplitude \(\alpha_{hp}\) of overtone \(h\) of note \(p\) is the outcome of a zero-mean complex Gaussian random variable1 with variance equal to the spectral envelope power density at the frequency \(f_{hp}\) of the overtone:

\[
\alpha_{hp} \sim \mathcal{N} \left(0, \frac{\sigma_p^2}{|A_p(e^{2\pi f_{hp}})|^2} \right)
\]

In order to model a smooth spectral envelope without residual peaks, the noise \(x_b\) is modeled as an MA process with a low order \(Q_b\), parameterized by \(\theta_b \triangleq (\sigma_b^2, B(z))\), \(\sigma_b^2\) being the power and \(B(z)\) the finite impulse response (FIR) filter of the process.

Furthermore, high note powers and low noise powers are favored by choosing an inverse gamma prior for \(\sigma_p^2\):

\[
\sigma_p^2 \sim \mathcal{IG} \left(k_{\sigma_p^2}, E_{\sigma_p^2} \right) \text{ and a gamma prior for } \sigma_b^2; \ \sigma_b^2 \sim \Gamma \left(k_{\sigma_b^2}, E_{\sigma_b^2} \right).
\]

A non-informative prior is assumed for \(A_p(z)\) and \(B(z)\).

With a user-defined weighting window \(w\), we can equivalently consider the Discrete Time Fourier Transforms (DTFT) \(X_p(f)\) of \(x_p(t) w(t)\), \(X_b(f)\) of \(x_b(t) w(t)\) and \(X(f) \triangleq \sum_{p=1}^{P} X_p(f) + X_b(f)\) of \(x(t) w(t)\), \(W\) being the DTFT of \(w\), we thus have

\[
X_p(f) = \sum_{h=1}^{H_p} \left(\alpha_{hp} W(f - f_{hp}) + \alpha_{hp}^* W^*(f + f_{hp}) \right)
\]

In addition, the following synthetic notations will be used: a mixture of notes is denoted by \(C \triangleq (C_1, \ldots, C_P)\); the set of parameters for spectral envelope models by \(\theta \triangleq (\theta_1, \ldots, \theta_P)\); the set of amplitudes of overtones of note \(p\) by \(\alpha_p \triangleq (\alpha_{1p}, \ldots, \alpha_{Hp})\); and the set of amplitudes of overtones of all notes by \(\alpha \triangleq (\alpha_1, \ldots, \alpha_P)\).

B. Principle of the algorithm

The algorithm is illustrated in Fig. 1. The main principles are described in the current section, except for the model parameter estimation, which is detailed in Section III.

1Using these centered Gaussian variables, \(x_p\) is thus a harmonic process, in the statistical sense.

2e.g., an improper, constant prior density, which will not affect the detection function.
1) Statistical background: Let us consider the observed frame x and the set C of all the possible mixtures of piano notes. Ideally, the multipitch detection function can be expressed as the maximum a posteriori (MAP) estimator \hat{C}, which is equivalent to the ML estimator if no a priori information on mixtures is specified:

$$\hat{C} = \arg\max_{C \in C} p(C|x) = \arg\max_{C \in C} \frac{p(x|C)p(C)}{p(x)} = \arg\max_{C \in C} p(x|C)$$ \hspace{1cm} (5)

2) Search space: The number of combinations among Q possible notes being $\binom{Q}{P}$ for polyphony P, the size of the search set C is $\sum_{P=1}^{P_{\text{max}}=6} \binom{Q}{P} = 2^Q$, i.e. around 3×10^26 for a typical piano with $Q = 88$ keys. Even when the polyphony is limited to $P_{\text{max}} = 6$ and the number of possible notes to $Q = 60$ (e.g. ignoring the lowest and highest-pitched keys), the number of combinations reaches $\sum_{P=1}^{P_{\text{max}}=6} \binom{Q}{P} \approx 56 \times 10^9$, which remains a too huge search set for a realistic implementation. In order to reduce the size of this set, we propose to select a given number N_c of note candidates. We use the normalized product spectrum function defined in dB as

$$\Pi_X(f_0, \beta) \triangleq \frac{1}{H(f_0, \beta)} 10 \log \prod_{k=1}^{H(f_0, \beta)} |X(f_k)|^2$$ \hspace{1cm} (6)

where X is the observed spectrum, $H(f_0, \beta)$ is the number of overtones for the note with fundamental frequency f_0 and inharmonicity β, $f_k \triangleq h f_0 \sqrt{1 + \beta^2}$, and ν is a parameter adjusted to balance the values of the function between bass and treble notes. As the true notes generate local peaks in Π_X, selecting an oversized set of N_c greatest peaks is an efficient way for adaptively reducing the number of note candidates. In addition, for candidate $n_c \in \{1 : N_c\}$, accurate values of its fundamental frequency f_{n_c} and inharmonicity β_{n_c} are found by a local two-dimensional maximization of $\Pi_X(f_{n_c}, \beta_{n_c})$. They are used in the subsequent estimation stages to locate the frequencies of the overtones. In the current implementation, the number of note candidates is set to $N_c = 9$. This choice results from the balance between increasing the number of candidates and limiting the computational time. The size of the set \hat{C} of possible mixtures thus equals $\sum_{P=1}^{P_{\text{max}}=6} \binom{Q}{P} = 466$, for $P_{\text{max}} = 6$.

3) Multipitch detection function: The multipitch detection function aims at finding the correct mixture among all the possible candidates. For each candidate $C \in \hat{C}$, the parameters α, θ and θ_b of the related model are estimated as explained in section III. The detection function is then computed, and the multipitch estimation is defined as the mixture with the greatest value.

Since equation (5) is intractable, we define an alternate detection function which involves the following terms:

- $L_b(\theta_b) \triangleq \ln p(x|\alpha, \theta_b, C)$ is the log-likelihood of the amplitudes α_p of overtones of note p, related to the spectral envelope models θ_p;
- $L_p(\theta_p) \triangleq \ln p(\sigma_p^2, A_p, C_p)$ is the log-likelihood of the log-likelihood $\ln p_{xs}$ related to the noise model θ;
- the priors $\ln p(\theta_p)$ on the spectral envelope of the note p and $\ln p(\theta_b)$ on noise parameters.

We empirically define the detection function as a weighted sum of these log-densities, computed with the estimated parameters (see Appendix A for a discussion):

$$\hat{L}_x(C) \triangleq w_1 \sum_{p=1}^{P} \hat{L}_p(\hat{\theta}_p) / P + w_2 L_b(\hat{\theta}_b) + w_3 \sum_{p=1}^{P} \ln p(\sigma_p^2) / P + w_4 \ln p(\sigma_b^2) - \mu_{\text{pol}} P$$ \hspace{1cm} (7)

where

$$\hat{L}_p(\hat{\theta}_p) \triangleq \frac{1}{H_p} \hat{L}_p(\hat{\sigma}_p^2, \hat{A}_p) - \mu_{\text{env}} H_p$$

$$L_b(\hat{\theta}_b) \triangleq \frac{1}{H_b} L_b(\hat{\sigma}_b^2, \hat{B}) - \mu_b |F_b|$$

$w_1, \ldots, w_4, \mu_{\text{pol}}, \mu_{\text{env}}, \mu_b$ are user-defined coefficients

| $|F_b|$ | is the number of noisy bins (see eq. [14]).

III. MODEL PARAMETER ESTIMATION

A. Iterative estimation of spectral envelope parameters and amplitudes of notes

We consider a possible mixture $C = (C_1, \ldots, C_P)$. The estimation of the unknown spectral envelope parameters θ and of the unknown amplitudes of the overtones α is performed by iteratively estimating the former and the latter, as described in this section.

1) Spectral envelope parameter estimation: let us assume the amplitudes α are known in order to estimate the spectral envelope parameters θ in the maximum likelihood (ML) sense. Given that note models are independent, the likelihood of α is

$$p(\alpha|\theta, C) = \prod_{p=1}^{P} p(\alpha_p|\theta_p, C_p).$$

The optimization w.r.t. θ thus consists in maximizing the log-likelihood $L_p(\sigma_p^2, A_p) \triangleq \ln p(\alpha_p^2, A_p, C_p)$ w.r.t. $\theta_p = (\sigma_p^2, A_p)$, independently for each note p. As proved in the Appendix B, the maximization w.r.t. σ_p^2 leads to the expression

$$L_p(\sigma_p^2, A_p) = c + \frac{H_p}{2} \ln \rho(A_p)$$ \hspace{1cm} (8)

with

$$c \triangleq -\frac{H_p}{2} \ln (2\pi e) - \frac{1}{2} \sum_{h=1}^{H_p} \ln |\alpha_h|^2$$ \hspace{1cm} (9)

$$\rho(A_p) \triangleq \left(\frac{\prod_{h=1}^{H_p} |\alpha_h|^2 |A_p(e^{2\pi i f_{h_p}})|^2}{\prod_{h=1}^{H_p} |\alpha_h|^2 |A_p(e^{2\pi i f_{h_p}})|^2} \right)^{\frac{1}{2}}$$ \hspace{1cm} (10)

$$\widehat{\sigma}_p^2 = \frac{1}{H_p} \sum_{h=1}^{H_p} |\alpha_h|^2 |A_p(e^{2\pi i f_{h_p}})|^2$$ \hspace{1cm} (11)

3The `fminsearch` Matlab function was used for this optimization.

*** by the substitution $x \rightarrow x - 2 \Re \left(\sum_{p=1}^{P} \sum_{h=1}^{H_p} \alpha_h e^{2\pi i f_{h_p} t} \right)$, t being the time instants related to the frame, this term is equal to $\ln p_{xs} \left(x - 2 \Re \left(\sum_{p=1}^{P} \sum_{h=1}^{H_p} \alpha_h e^{2\pi i f_{h_p} t} \right) \right)$.
As c is a constant w.r.t. A_p, the optimization consists in maximizing $\rho(A_p)$, which measures the spectral flatness (i.e. the ratio between the geometrical and arithmetical means) of $\{\alpha_{h_p}|^2|A_p(e^{2i\pi f_{h_p}})|^2\}_{1 \leq h \leq H_p}$. This quantity lies in $[0; 1]$ and is maximum when the latter coefficients are constant, i.e. when the filter A_p perfectly whitens the amplitudes α_p. The estimation of A_p from the discrete data α_p thanks to the Digital All-Pole (DAP) method [22] leads to a solution that actually maximizes $\rho(A_p)$, as proved in [23]. It is applied here to the amplitudes α_p, for each note p.

The estimation of the spectral envelope of a note is illustrated in Fig. 2(a). A note is considered as consisting of two possible models: the model related to the true note (Fig. 2(a)) and the model related to its sub-octave (Fig. 2(b)). In the former case, the estimate of the spectral envelope is close to the amplitudes of the overtones, whereas in the latter case, the AR spectral envelope model is not adapted to amplitudes that are alternatively high and low: the low values obtained for the AR spectral envelope model is not adapted to amplitudes α, and the model related to its sub-octave (see Fig. 6(a) for the whole spectral flatness curve).

2) Estimation of the amplitudes of the overtones: let us now assume that spectral envelope parameters θ are known, that the frequencies of the overtones may overlap, and that the amplitudes α are unknown. In all that follows, we assume that at a given overtone frequency f_{h_p}, the power spectrum of the noise is not significant in comparison with the power spectrum of the amplitudes of the overtone.

When the overtone h of note p is not overlapping with any other overtone, the amplitude α_{h_p} is directly given by the spectrum value $X(f_{h_p})$. In the alternative case of overlapping overtones, the observed spectrum results from the contribution of overtones with close frequencies. We propose an estimate of the hidden random variable α, given the observation X and the parameters θ that control the second-order statistics of α.

As defined by eq. (5), the amplitude α_{h_p} is a random variable such that $\alpha_{h_p} \sim \mathcal{N}(0, v_{h_p})$ with $v_{h_p} \triangleq \frac{\sigma^2}{|A_p(e^{2i\pi f_{h_p}})|^2}$. One can rewrite the sound model x as a sum of K sinusoids and noise $x(t) = \sum_{k=1}^K \alpha_k e^{2i\pi f_k t} + x_b(t)$ with $\alpha_k \sim \mathcal{N}(0, v_k)$ and $K = 2 \sum_{p=1}^P H_p$. In this formula, the couples of indexes (h, p) related to overtones and notes have been replaced by a single index k. In the spectral domain, the DFT X of the N-length frame x using a weighting window w of DFT W is $X(f) = \sum_{k=1}^K \alpha_k W(f - f_k)$, the noise spectrum being removed since we are only interested in the values of X at frequencies f_{h_p}, where the noise term is insignificant.

In these conditions, for $1 \leq k_0 \leq K$, the optimal linear estimator $\hat{\alpha}_{k_0}$ of α_{k_0} as a function of $X(f_{k_0})$, obtained by minimizing the mean squared error $\epsilon_{k_0} = \mathbb{E}|\alpha_{k_0} - \hat{\alpha}_{k_0}|^2$ is

$$\hat{\alpha}_{k_0} = \frac{W^*(0)v_{k_0}}{\sum_{k=1}^K W(f_{k_0} - f_k)^2 v_k} X(f_{k_0}) \quad (12)$$

The proof of eq. (12) is given in the Appendix B. By ignoring non-overlapping overtones, the expression of the estimator of α_{h_p} can be simplified as

$$\hat{\alpha}_{h_p} \triangleq \frac{W^* v_{h_p}^2}{\sum_{|f_{k'} - f_{h_p}| < \Delta_w} W(f_{k'} - f_{h_p})^2 v_{k'}^2} X(f_{h_p}) \quad (13)$$

where Δ_w is the width of the main lobe of W.

The amplitude estimation is illustrated in Fig. 3 on a synthetic signal, composed of two octave-related notes, i.e. with overlapping spectra. As expected, the amplitudes are perfectly estimated when there is no overlap (see odd-order peaks of note 1). When the overtones overlap, predominant amplitudes are well estimated (see note 1 for $f = 0.04$ or note 2 for $f = 0.4$), as well as amplitudes with the same order of magnitude (see amplitudes at $f = 0.2$). The estimation may be less accurate when an amplitude is much weaker than the other (see note 1 at $f = 0.36$).

3) Iterative algorithm for the estimation of note parameters: in the last two parts, we have successively seen how to estimate the spectral envelope models from known amplitudes and the amplitudes from known spectral envelope models. None of these quantities are actually known, and both must be estimated. We propose to use the two methods above in the Algorithm 1 to iteratively estimate both the spectral envelope and the amplitudes of the overtones. It alternates the estimation of the former and of the latter, with an additional thresholding of the weak amplitudes in order to avoid the amplitude estimates becoming much lower than the observed.
spectral coefficients. For \(p \in [1; P] \) and \(h \in [1; H_p] \), the estimate \(\hat{\alpha}_{hp} \) of \(\alpha_{hp} \) and \(\hat{\theta}_p \) of \(\theta_p \) are respectively the values of \((\alpha_{hp}^{(i)}) \) and \((\theta_p^{(i)}) \) after a number of iterations. Note that the ML estimates of the envelopes are directly related to the MAP estimation of the multipitch contents while amplitudes are estimated in the least mean square sense, which is a different objective function. Consequently, the convergence of the iterative algorithm is not proved or guaranteed but it is observed after about \(N_b \approx 20 \) iterations.

The estimation is illustrated in Fig. 4 with two typical cases. While the energy is split between the overlapping overtones, non-overlapping overtones help estimating the spectral envelopes, resulting in a good estimation in the case of a fifth (Fig. 4(a)), the octave being a more difficult – but successful – case (Fig. 4(b)).

Algorithm 1 Iterative estimation of note parameters

Require: spectrum \(X \), notes \(C_1, \ldots, C_P \).

Initialize the amplitudes \(\alpha_{hp}^{(0)} \) of overtones to spectral values \(X(f_{hp}) \) for \(p \in [1; P] \) and \(h \in [1; H_p] \).

for each iteration \(i \) **do**

for each note \(p \) **do**

Estimate \(\theta_p^{(i)} \) from \(\alpha_p^{(i-1)} \). {AR estimation}

end for

Jointly estimate all \(\alpha_{hp}^{(i)} \) from \(X(f_{hp}) \) and \(\theta_p^{(i)} \). {eq. (13)}

Threshold all \(\alpha_{hp}^{(i)} \) at a minimum value.

end for

Ensure: estimation of \(\alpha_{hp} \) and \(\theta_p \) for \(p \in [1; P] \) and \(h \in [1; H_p] \).

B. Estimation of noise parameters

We assume that the noise signal results from the circular filtering of a white centered Gaussian noise with variance \(\sigma_n^2 \).

3In our implementation, this threshold was set to the minimum observed amplitude \(\min \{ |X(f)| \} \).

4The circularity assumption, which is commonly used and asymptotically valid, leads to a simplified ML solution.

by a \(Q_b \)-order FIR filter parameterized by its transfer function \(B(z) = \sum_{k=0}^{Q_b} b_k z^{-k} \), with \(b_0 = 1 \).

As we assumed that in a bin close to the frequency of an overtone, the spectral coefficients of noise are negligible w.r.t. the spectral coefficients of notes, the information related to noise is mainly observable in the remaining bins, i.e. on the
frequency support defined by

$$\mathcal{F}_b \triangleq \left\{ \frac{k}{N_{fr}} \mid \forall p \in [1; P], \forall h \in [1; H_p], \left| \frac{k}{N_{fr}} - f_{hp} \right| > \frac{\Delta_w}{2} \right\}$$

where Δ_w denotes the width of the main lobe of w ($\Delta_w = \frac{1}{N}$ for a Hann window) and N_{fr} is the size of the DFT. The noise parameter estimation is then performed using this subset of bins, which gives satisfying results asymptotically (i.e., when $N \to +\infty$, the number of removed bins being much smaller than the total number of bins). As proved in the Appendix B, it results in the maximization, w.r.t. B, of the expression

$$L_b (\hat{\sigma}_b^2, B) = c_b + \frac{1}{2} |\mathcal{F}_b| \ln \rho_b (B)$$

where

$$c_b \triangleq -\frac{1}{2} |\mathcal{F}_b| \ln 2\pi e - \frac{1}{2} \sum_{f \in \mathcal{F}_b} \ln \left| X_b (f) \right|^2$$

$$\rho_b (B) \triangleq \frac{\left(\prod_{f \in \mathcal{F}_b} \left| \frac{X_b (f)}{B e^{i2\pi B} f} \right|^2 \right)^{1/|\mathcal{F}_b|}}{\prod_{f \in \mathcal{F}_b} \sum_{f \in \mathcal{F}_b} \left| \frac{X_b (f)}{B e^{i2\pi f}} \right|^2}$$

$$\hat{\sigma}_b^2 = \frac{1}{|\mathcal{F}_b|} \sum_{f \in \mathcal{F}_b} \frac{1}{N} \left| \frac{X_b (f)}{B e^{i2\pi f}} \right|^2$$

As for the spectral envelope AR parameters (eq. 11 and 8), the ML estimation of noise parameters consists in the maximization of a spectral flatness $\rho_b (B)$. It can be achieved thanks to the MA estimation approach proposed in 23. However, in order to speed up the computations, we use the Algorithm 3 described in the Appendix C which is simpler and gives satisfying results for the current application.

The noise parameter estimation is illustrated in Fig. 5. When the true model is selected (Fig. 5(a)), most of primary lobes of the sinusoidal components are removed from \mathcal{F}_b and the resulting spectral coefficients are well-fitted by an MA envelope. In the case a wrong model is selected and a lot of \mathcal{F}_b bins are related to sinusoids (Fig. 5(b)), the MA model is not adapted to the observations which are not well-fitted. The resulting ρ_b value and likelihood will be low so that the wrong model will be rejected. As shown in Fig. 6, the spectral flatness criterion for the spectral envelope and noise estimations are complementary cues for rejecting wrong models and selecting the right one. The criterion on spectral envelopes (Fig. 6(a)) shows many high values but also large minima for sub-harmonic errors (e.g., notes D_3, A_3, and D_3 in this example). Conversely, the criterion for the noise model (Fig. 6(b)) has a few high peaks located at the sub-harmonics f_0 of the true note — i.e., for every model all the sinusoids have been removed from the noise observation $-$, but is efficient for discriminating the other errors. Thus, if taken separately, these criteria are not good pitch estimators, but they efficiently combine into the detection function.
IV. Experimental results

A. Implementation and tuning

The whole method is summarized by Algorithm 2. The MPE algorithm is implemented in Matlab and C. It is designed to analyze a 93 ms frame and to estimate its polyphonic content. A preprocessing stage aims at reducing the spectral dynamics and consists in flattening the global spectral decrease by means of a median filtering of the spectrum. The values of the parameters of the MPE algorithm are given in Table I. The order Q_p of the spectral envelope filter $A_p(z)$ of a note p is set to $Q_p = H_p/2$ in order to be large enough to fit the data and small enough to obtain a smooth spectral envelope. Parameters $(k_{\sigma_p^2}, E_{\sigma_p^2})$, $(k_{\sigma_b^2}, E_{\sigma_b^2})$, μ_{env}, μ_b, μ_{pol} and (w_1, \ldots, w_4) have been estimated on a development database composed of about 380 mixtures from two different pianos, with polyphony levels from 1 to 6. They were jointly adjusted by optimizing the F-measure using a grid search, the bounds of the grid being set by hand.

Algorithm 2 Multipitch estimation.

Preprocessing

Computation of periodogram $\hat{X} = |X|^2$
Selection of N_c note candidates

for each possible note combination C do

Iterative estimation of the amplitudes of overtones and of spectral envelope of notes (algorithm 1)

For each note p, derivation of L_p (eq. (3)) and of prior $p(\sigma_p^2)$

Noise parameter estimation (algorithm 6)

Computation of L_b (eq. (15)) and of prior $p(\sigma_b^2)$

Derivation of the detection function related to the note combination (eq. (4))

end for

Maximization of the detection function

either recorded by using an upright Disklavier piano or generated by several virtual piano software products based on sampled sounds. The development set and the test set are disjointed. Two pianos are used in the former while the latter comprises sounds from other five pianos. In total, two upright pianos and five grand pianos were used. Recording conditions and tunings vary from one instrument to the other. Polyphony levels lie between 1 and 6 and notes are uniformly distributed between C_2 (65 Hz) and B_6 (1976 Hz). One part of the polyphonic mixtures is composed of randomly related pitches whereas the other part comprises usual chords from western music (major, minor, etc.). For each sound, a single 93 ms-frame located 10 ms after the onset time is extracted and analyzed. Two additional algorithms have been tested on the same database for comparison purposes. The first one is Tolenen’s multipitch estimator, for which the implementation from the MIR Toolbox was used. As the performance of the algorithm decreases when F_0s are greater than 500 Hz (C_5), the system was additionally tested in restricted conditions – denoted Tolenen-500 – by selecting from the database the subset of sounds composed of notes between C_2 and B_4 only. The second one is Klapuri’s system. The code of the latter was provided by its author.

Our algorithm was implemented in Matlab and C. The computational cost on a recent PC is about 150 × real time. It thus requires more computations than other algorithms like [26], but the proposed algorithm is computationally tractable, particularly when comparing it to the greedy and intractable joint-estimation approach where no note candidate selection is performed, as discussed in section II-B.

General results are presented in Fig. 7. Relevant items are defined as correct notes after rounding each F_0 to the nearest half-tone. Typical metrics are used: the recall is the ratio between the number of relevant items and of original items; the precision is the ratio between the number of relevant items and of detected items; and the F-measure is the harmonic mean between the precision and the recall. In this context, our system performs the best results for polyphony 1 and 2: 93% F-measure vs 85% (polyphony 1) and 91% (polyphony 2) for Klapuri’s system. The trend then reverses between Klapuri’s system and the proposed one, the F-measure being respectively 91% and 88% for polyphony 3, and 72% and 63% for polyphony 6. Moreover, the precision is high for all polyphony levels whereas the recall is decreasing when polyphony increases. Results from Tolenen’s system are weaker for the overall tests, even with the restricted F_0-range configuration.

The ability of Klapuri’s system and ours to detect polyphony levels (independently of the pitches) is presented in Tab. II. For polyphony levels from 1 to 5, both systems succeed in detecting the correct polyphony level more often than any other level. It should also be noted that the proposed system was tested in more difficult conditions since polyphony 0 (i.e., silence) may be detected, which is the case for a few sounds.

The proposed system tends to underestimate the polyphony

Parameters of the Algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>value</th>
<th>Parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max}</td>
<td>6</td>
<td>$(k_{\sigma_p^2}, E_{\sigma_p^2})$</td>
<td>$(1, 10^{-4})$</td>
</tr>
<tr>
<td>N_c</td>
<td>9</td>
<td>$(k_{\sigma_b^2}, E_{\sigma_b^2})$</td>
<td>$(2, 10^{-3})$</td>
</tr>
<tr>
<td>ν</td>
<td>0.38</td>
<td>μ_{env}</td>
<td>-8.9×10^{-3}</td>
</tr>
<tr>
<td>f_s</td>
<td>22050 Hz</td>
<td>μ_b</td>
<td>-2.2×10^{-4}</td>
</tr>
<tr>
<td>N</td>
<td>2048</td>
<td>μ_{pol}</td>
<td>25</td>
</tr>
<tr>
<td>w</td>
<td>Hann</td>
<td>w_1</td>
<td>8.1×10^{-1}</td>
</tr>
<tr>
<td>Q_p</td>
<td>$H_p/2$</td>
<td>w_2</td>
<td>1.4×10^4</td>
</tr>
<tr>
<td>Q_b</td>
<td>20</td>
<td>w_3</td>
<td>6.2×10^2</td>
</tr>
<tr>
<td>N_{fit}</td>
<td>20</td>
<td>w_4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

B. Evaluation

The proposed MPE algorithm has been tested on a database called MAPS and composed of around 10000 piano sounds.

Note that the number of degrees of freedom for the AR models is $H_p/4 = Q_p$. For polyphony 1 and 2, the poles are affected by the positive frequencies, the remaining poles being their complex conjugates.

MAPS stands for MIDI Aligned Piano Sounds and is available on request.

Note that silence detection could be improved by using an activity detector as a preprocessing stage, since silence is a very specific case of signal that can be detected using more specific methods than the proposed one.
level since the parameter tuning consists in optimizing the F-measure on the development set. This objective function could have been changed to take the polyphony level balance into account. This would result in reducing the polyphony underestimation trend. However, the overall F-measure would decrease. From a perceptual point of view, it has been shown that a missing note is generally less annoying than an added note when listening to a resynthesized transcription [27]. Therefore, it seems that simultaneous notes with low spectral overlap –, it seems that simultaneous notes with widely-spread F0s in random chords are a bigger difficulty. Third, the results obtained on the development set and the test set are comparable, with only a few % deviation. This shows that the parameter learning is not overfitting and that the system has good generalization abilities for other models of piano and different recording conditions. Fourth, the whole database includes sounds from seven different pianos. The results are comparable from one piano to the other, with about 3%-standard deviation. Results do not significantly depend on the upright/grand piano differences, on recording conditions or on whether a real piano or a software-based one is used, which suggests robustness for varying production conditions.

Finally, we report additional results which are not depicted. First, if polyphony is known, the performance of our system reaches the second rank after Klapuri’s system, with correct detection rates from 95% (polyphony 1) down to 55% (polyphony 6). Second, F-measure values are between 5% and 10% better for usual chords than for random-pitch chords. This has been observed with all the tested methods for polyphony levels higher than two. While the algorithms face more harmonically-related notes in usual chords – i.e. more spectral overlap –, it seems that simultaneous notes with widely-spread F0s in random chords are a bigger difficulty. Third, the results obtained on the development set and the test set are comparable, with only a few % deviation. This shows that the parameter learning is not overfitting and that the system has good generalization abilities for other models of piano and different recording conditions. Fourth, the whole database includes sounds from seven different pianos. The results are comparable from one piano to the other, with about 3%-standard deviation. Results do not significantly depend on the upright/grand piano differences, on recording conditions or on whether a real piano or a software-based one is used, which suggests robustness for varying production conditions.

C. Integration in an automatic transcription system

The proposed MPE method has been introduced for a single-frame analysis. Beyond the multipitch issue, the automatic transcription task is addressed by integrating this method in
a system that performs pitch tracking over time and outputs not only pitches but note events. In the current case, the MPE method can be used in the transcription framework proposed in [19]. The automatic transcription of piano music is thus obtained by:

1) using an onset detector to localize new events;
2) detecting a set of pitch candidates after each onset;
3) between two consecutive onsets, decoding the multipitch contents thanks to a frame-based Hidden Markov Model (HMM), the states being the possible combinations of simultaneous pitches, the likelihood being given by the proposed MPE method (eq. (7));
4) postprocessing the decoded pitches to detect repetitions or continuations of pitches when an onset occurs.

This transcription system was presented at the Multiple Fundamental Frequency Estimation & Tracking task of the MIREX contest in 2008 (system called EBD2). For the piano-only test set, the evaluation is performed in two different ways, depending on how a correct note is defined. In the first, more constraining evaluation, where a correct note implies a correct onset (up to a 50-ms deviation), a correct offset (up to a 20%-duration or 50-ms deviation) and a correct pitch (up to a quartertone deviation), the proposed system reaches the 3rd rank with a 33.1% F-measure, out of 13 systems scoring from 6.1% to 36.8%. For that evaluation, the duration estimation is evaluated by the average overlap between correct estimations and reference notes: the proposed method reaches the 7th position with 80%, the values being in a narrow interval ([77.4%; 84%]). In the second evaluation, where correctness only requires the onset and pitch criteria above, the proposed system reaches the 7th rank with a 56.9% F-measure, out of 13 systems scoring from 24.5% to 75.7%. The best rank is obtained for average overlap with a 61% value, the lowest value being 40.1%.

Thus, when the proposed MPE method is integrated in a full transcription system for piano music, state-of-the-art results are reached in terms of global performance. In addition, good average overlap scores show that the proposed method is suitable for pitch tracking over time and note extraction.

Note that one can wonder whether the reported performance is significant when comparing MPE and ATM quantitative results (with roughly 20% F-measure deviation, no matter the method is). It actually depends not only on the database, but on the different testing protocols. While isolated frames composed of one chord are used in the proposed MPE evaluation, ATM evaluation implies other difficulties like having asynchronous notes overlapping in time; detecting onsets; estimating the end of damping notes; dealing with reverberation queues and so on. More, polyphony levels in musical recordings are often high and are not uniformly distributed at all, with a 4.5 average polyphony and a 3.1 standard deviation reported for a number of classical music pieces [22], p.114]. Hence, F-measure for MPE and ATM should be evaluated separately.

V. CONCLUSIONS

In this paper, a sound model and a method were proposed for the multipitch estimation problem in the case of piano sounds. The approach was based on an adaptive scheme, including the adaptive matching of the inharmonic distribution of the frequencies of the overtones and an autoregressive spectral envelope. We have shown the advantage of using a moving average model for the residual noise. The estimation of the parameters was performed by taking the possible overlap between the spectra of the notes into account. Finally, a weighted likelihood criterion was introduced to determine the estimated mixture of notes in the analyzed frame among a set of possible mixtures.

The performance of the method was measured on a large database of piano sounds and compared to the state-of-the-art. The proposed method provides satisfying results when polyphony is unknown, and reaches particularly good scores for mixtures of harmonically-related notes.

This approach has been successively integrated in a full transcription system [19] and alternative investigations are ongoing. Future works may deal with the use of different spectral envelopes in a similar modeling and estimation framework. Indeed, while the proposed AR envelope model may be too generic to characterize the spectral envelope smoothness of musical instruments, this information can be easily integrated, as the variance of the amplitude Gaussian models, by any parametric envelope model. The method may also be extended to other instruments or to voice. Keeping the proposed sound model, it could be useful to investigate other estimation strategies in order to reduce the computational cost. This may be achieved by means of a hybrid approach with an iterative selection of the notes and a joint estimation criterion. Furthermore, the log-likelihood function related to the model for spectral envelopes is not very selective. Hence, some investigations on more appropriate functions could improve the performance of decision step. Finally, one could conduct others investigations about how to prune the set of all possible note combinations more efficiently. They may include iterative candidate selection or MCMC methods.

APPENDIX A

DISCUSSION ON THE DETECTION FUNCTION

According to eq. (5), the multipitch estimation is theoretically obtained by maximizing, w.r.t. C, the likelihood \(p(x|C) \), which is expressed as a function of the parameters of the proposed model as:

\[
p(x|C) = \int \int p(x, \alpha, \theta_b|C) \, d\alpha d\theta_b
\]

\[
= \int \int p(x|\alpha, \theta_b, C) \, p(\alpha|C) \, p(\theta_b) \, d\alpha d\theta_b
\]

\[
= \int \int \int p(x|\alpha, \theta_b, C) \, p(\alpha|\theta, C) \, p(\theta) \, p(\theta_b) \, d\theta d\alpha d\theta_b
\]

Since the derivation of eq. (21) is not achievable, a simpler detection function must be built. The proposed function can be interpreted as a weighted log-likelihood and is obtained from the integrand of eq. (21) by:

considering the estimated parameters \(\hat{\theta}_p, \hat{\alpha}_p, \hat{\theta}_b \);
• taking the logarithm, thus turning the product into a sum;
• normalizing the sums over the number of notes by \(P \),
 and log-likelihoods \(L_p \) and \(L_b \) by the size \(H_p \) and \(|\mathcal{F}_b| \)
 of their respective random variable;
• introducing penalization terms using the \(C \)-dependent sizes \(P, H_p, |\mathcal{F}_b| \) with coefficients \(\mu_{\text{pen}}, \mu_{\text{env}}, \mu_{b} \);
• weighting each quantity by the coefficients \(w_1, \ldots, w_4 \).

The normalization operation aims at obtaining data that can be compared from one mixture \(C \) to another, since the dimension of the random variables depends on the mixture. The penalization is inspired by model selection approaches [31], in which an integral like (21) is replaced by a likelihood penalized by a linear function of the model order. The weighting by \(w_1, \ldots, w_4 \) is finally used to find an optimal balance between the various probability density functions. Note that in eq. (7), priors related to filters \(A_p \) and \(B \) have been removed since they are non-informative, and thus can be considered as constant terms.

APPENDIX B

Proofs

Proof of eq. (8): Using eq. (3), the log-likelihood to be maximized is

\[
L_p (\sigma^2_p, A_p) = -\frac{H_p}{2} \ln (2\pi \sigma^2_p) + \frac{1}{2} \sum_{h=1}^{H_p} \ln |A_p (e^{2i\pi f_{hp}})|^2 \\
- \frac{1}{2\sigma^2_p} \sum_{h=1}^{H_p} |A_p (e^{2i\pi f_{hp}})|^2
\]

The maximization w.r.t. \(\sigma^2_p \) leads to the estimate \(\hat{\sigma}^2 \) given by eq. (11), which is used in eq. (22) to obtain eq. (8).

Proof of eq. (12) and (13): The expected linear estimator is expressed as \(\hat{\alpha}_{ko} = \eta X (f_{ko}) \) with \(\eta \in \mathbb{C} \). The mean squared error is then \(\epsilon_{ko} (\hat{\eta}) = \mathbb{E} [\alpha_{ko} - \hat{\eta} X (f_{ko})]^2 \). The optimal value \(\hat{\eta} \) is such that \(\frac{d\epsilon_{ko}}{d\eta} (\hat{\eta}) = 0 \), which is equivalent to the decorrelation between the error \((\alpha_{ko} - \hat{\eta} X (f_{ko})) \) and the data \(X (f_{ko}) \):

\[
0 = \mathbb{E} [(\alpha_{ko} - \hat{\eta} X (f_{ko})) X (f_{ko})] \\
= \mathbb{E} [\alpha_{ko} X (f_{ko})] - \hat{\eta}^* \mathbb{E} [X (f_{ko})^2]
\]

which leads to \(\hat{\eta} = \frac{\mathbb{E} [\alpha_{ko} X (f_{ko})]}{\mathbb{E} [X (f_{ko})^2]} \), where

\[
\mathbb{E} [\alpha_{ko} X (f_{ko})] = \sum_{k=1}^{K} W^* (f_{ko} - f_k) \mathbb{E} [\alpha_{ko} \alpha_k^*] \\
= W^* (0) v_{ko}
\]

and \(\mathbb{E} [X (f_{ko})^2] = \sum_{k=1}^{K} W (f_{ko} - f_k) \times W^* (f_{ko} - f_k) \mathbb{E} [\alpha_k \alpha_k^*] \)

\[
= \sum_{k=1}^{K} |W (f_{ko} - f_k)|^2 v_k
\]

The related error is

\[
\epsilon_{ko} (\hat{\eta}) = \mathbb{E} [\alpha_{ko}^2] + |\hat{\eta}|^2 \mathbb{E} [X (f_{ko})^2] \\
- \hat{\eta}^* \mathbb{E} [\alpha_{ko} X (f_{ko})] - \hat{\eta} \mathbb{E} [\alpha_{ko} X^* (f_{ko})] \\
= \mathbb{E} [\alpha_{ko}^2] - |\mathbb{E} [\alpha_{ko} X^* (f_{ko})]|^2 \\
\mathbb{E} [X (f_{ko})^2] \\
= \left(1 - \frac{|W (0)|^2 v_{ko}}{\sum_{k=1}^{K} |W (f_{ko} - f_k)|^2 v_k} \right) v_{ko}
\]

Note that this approach has some connections with the Wiener filtering technique [32] widely used in the field of audio source separation. In both cases, the aim is to estimate a hidden variable thanks to its second-order statistics and to the observations. In the considered short-term analysis context, the proposed approach explicitly models the overlap phenomenon and takes the resulting frequency leakage into account. As expected, the estimation error is all the larger as the estimated overtone is masked by another component, which justifies the approximation of eq. (12) in eq. (13).

Proof of eq. (15): In a matrix form, the filtering process is expressed as \(x_b = B_{\text{circ}} w_b \), where \(x_b \) is an \(N \)-length frame of the noise process \(x_b \), \(w_b \sim \mathcal{N} \left(0, \frac{1}{H_b} \sigma^2_b \right) \) and \(B_{\text{circ}} \) is the \(N \times N \) circulant matrix with first column \((b_0, \ldots, b_{Q_b}, 0, \ldots, 0) \). Thus, we have \(x_b \sim \mathcal{N} \left(0, B_{\text{circ}} (B_{\text{circ}})\dagger \frac{1}{\sigma^2_b} \right) \). \(B_{\text{circ}} \) is circulant, so \(\det \left(B_{\text{circ}} B_{\text{circ}}\dagger \frac{1}{\sigma^2_b} \right) = \prod_{k=0}^{N-1} \frac{1}{\det \left(B \right)} \left(e^{2i\pi \frac{k}{N}} \right)^2 \). The likelihood of \(x_b \) is then

\[
p (x_b) = \frac{e^{-\frac{1}{2} x_b^2 (B_{\text{circ}} B_{\text{circ}}\dagger \frac{1}{\sigma^2_b})^{-1} x_b}}{\sqrt{(2\pi)^N \det \left(B_{\text{circ}} B_{\text{circ}}\dagger \frac{1}{\sigma^2_b} \right)}} \\
= \frac{e^{-\frac{\|x_b\|^2}{2\sigma^2_b}}}{\sqrt{(2\pi)^N \prod_{k=0}^{N-1} \det \left(B \right)}}
\]

In the spectral domain, the log-likelihood of the noise signal
is thus obtained using the Parseval identity:

\[
L_b (\sigma_b^2, B) = \frac{-N}{2} \ln 2\pi \sigma_b^2 - \frac{1}{2} \sum_{k=0}^{N-1} \ln \left| B \left(e^{2\pi i \frac{k}{N}} \right) \right|^2 \\
- \frac{1}{2\sigma_b^2} \sum_{k=0}^{N-1} \frac{1}{N} \left| X_b \left(\frac{k}{N} \right) \right|^2
\]

When only considering the observations on the spectral bins \(F_b \), the log-likelihood (29) becomes

\[
L_b (\sigma_b^2, B) = \frac{|F_b|^2}{2} \ln 2\pi \sigma_b^2 - \frac{1}{2} \sum_{f \in F_b} \ln \left| B \left(e^{2\pi i f} \right) \right|^2 \\
- \frac{1}{2\sigma_b^2} \sum_{f \in F_b} \frac{1}{N} \left| X_b \left(f \right) \right|^2
\]

(30)

The maximization w.r.t. \(\sigma_b^2 \) leads to the estimate given by eq. (19), which is used in eq. (30) to obtain eq. (15).

\[\text{APPENDIX C} \]

\[\text{MA ESTIMATION} \]

The algorithm is based on the decomposition \(r_b = B \bar{b} \) of the first \((Q_b + 1) \) terms \(r_b \) of the autocorrelation function of the process, as a product of the coefficient vector \(\bar{b} \triangleq (b_0, \ldots, b_{Q_b})^T \) by the matrix

\[
B \triangleq \begin{pmatrix}
b_0 & b_1 & \cdots & b_{Q_b} \\
0 & b_0 & \cdots & b_{Q_b-1} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & b_0
\end{pmatrix}
\]

(31)

The estimate \(\hat{\bar{b}} \) of \(\bar{b} \) is obtained using Algorithm 3. As \(\hat{B} \) is upper triangular, the estimation of \(\bar{b} \) in \(\hat{r}_b = \hat{B} \hat{b} \) is fast performed by back substitution, instead of inverting a full matrix. The algorithm convergence was observed after about 20 iterations.

\[\text{Algorithm 3 Iterative estimation of noise parameters} \]

estimate the autocorrelation vector \(r_b \) by the empiric correlation coefficients \(\hat{r}_b \) obtained from the spectral observations \(\{\hat{X}(f)\}_{f \in F_b} \);
initialize \(\hat{b} \leftarrow (1, 0, \ldots, 0)^T \);
for each iteration do
\quad update the estimate \(\hat{B} \) of \(B \) from \(\hat{b} \);
\quad re-estimate \(\hat{b} \) by solving \(\hat{r}_b = \hat{B} \hat{b} \);
\quad normalize \(\hat{b} \) by its first coefficient;
end for

\[\text{REFERENCES} \]

