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of ENGLE and RUSSELL [1998]. The logarithmic version allows to introduce in
the model additional variables without sign restrictions on their coefficients.
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quote process of three securities listed on the New York Stock Exchange,
and we investigate the influence of some characteristics of the trade pro-
cess (trading intensity, average volume per trade and average spread) on
the bid-ask quote process.

Le modèle logarithmique auto-régressif de durée condi-
tionnelle (Log-ACD) : une application aux processus des
prix offerts et demandés de trois titres de la Bourse de
New-York

RÉSUMÉ. – Ce papier introduit le modèle logarithmique auto-régressif de
durée conditionnelle (Log ACD) d’ENGLE et RUSSELL [1998]. La version loga-
rithmique permet d’introduire dans le modèle des variables supplémen-
taires sans restreindre le signe de leurs coefficients. Nous appliquons le
modèle Log-ACD à des durées de prix construites à partir du processus
d’annonces de prix offerts et demandés de trois titres cotés à la Bourse de
New-York, et nous étudions l’influence de certaines caractéristiques du
processus des échanges, comme l’intensité des échanges, le volume
moyen par échange et le spread, sur le processus des annonces de prix.
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1 Introduction

Over the past years, there has been a lot of research in financial market
microstructure. This research has focused both on theoretical models and on
empirical work. With the advent of high frequency databases and the wealth
of information made available by these,1 new fields of research are open. To
deal with this kind of data, new econometric models had to be developed. 

The so-called high frequency data econometric models originally appeared
as “fixed interval” models: these belonged to the stochastic volatility and
GARCH types of models, with data regularly sampled at a very high
frequency. See, for example, HAFNER [1996], EDDELBUTEL and MCCURDY

[1996] or the empirical work conducted by OLSEN and Associates, such as
GUILLAUME, PICTET and DACOROGNA [1995], and GUILLAUME, DACOROGNA,
DAVÉ, MULLER, OLSEN and PICTET [1997]. However, one main drawback of
these models is that they do not take into account the irregular spacing of the
data.2

Recently, ENGLE and RUSSELL [1997, 1998] proposed an econometric model
for the durations between two successive market events, such as a buy or a
sell of a security. ENGLE and RUSSELL find a clustering effect in the durations:
short (respectively, long) durations tend to be followed by short (respectively,
long) durations. This effect resembles the one found in the volatility of many
financial series. ENGLE and RUSSELL call their model the ACD model, where
ACD stands for “Autoregressive Conditional Duration”, and apply it to the
foreign exchange market and to the IBM stock. In the same spirit, ENGLE

[2000] combines such a duration model with a GARCH model for the returns,
which provides a new way to model irregularly spaced data.

The ACD model raises several questions and calls for several extensions,
such as:

(i) Are there alternative econometric models which can account for the
structure exhibited by the durations? BAUWENS and VEREDAS [1999] put
forward the stochastic conditional duration (SCD) model, which is the
counterpart of the stochastic volatility model (in the same way as the
ACD model is the counterpart of the GARCH model). As an alternative
to the Weibull distribution, GRAMMIG and MAURER [1999] introduce an
ACD model based on the Burr distribution. JASIAK [1998] considers the
fractionally integrated ACD model which allows for  long range depen-
dence in the durations. GHYSELS, GOURIÉROUX, and JASIAK [1997]
propose the stochastic volatility duration (SVD) model. This model
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1. Nowadays, most exchanges (NYSE, NASDAQ, Paris Bourse, Chicago Mercantile Exchange, ...)
make available complete databases of tick-by-tick data, which, depending on the exchange, give
information on the trade process (time of the trade, price, volume) and the bid-ask quote process
(time of the quotes, bid and ask quotes, depths) or the state of the order book.

2. As an alternative to regular sampling, OLSEN and Associates use time transformation techniques to
transform the irregularly spaced data into fixed interval data.



introduces dependence in the durations through their conditional volati-
lity, in addition to the dependence through their conditional expectation
that is also present in the ACD and SCD models.

(ii) How can this model be used to model the way in which market variables
(price, volume …) or features (price volatility) behave along a trading
day? ENGLE'S paper [2000] is a first step to modelling irregularly spaced
data. Other contributions are by GHYSELS and JASIAK [1998], BAUWENS

and GIOT [1998], and RUSSELL and ENGLE [1998].

(iii) How can this model be used to test market microstructure hypotheses?
This will typically require to include in the model other variables than
lagged durations, such as volume, spread, volatility of the returns, in
order to link the econometric model with testable hypotheses from the
market microstructure literature. 

In this paper, we focus on the first and third questions. We introduce a loga-
rithmic version of the ACD model, called the Log-ACD model. In this
version, the autoregressive equation is specified on the logarithm of the
conditional expectation of the durations. This way of modelling the condi-
tional behavior of the durations is more flexible than with the ACD model.
Indeed we no longer have to impose non-negativity constraints on the coeffi-
cients of the autoregressive equation, as is needed in the ACD model to
ensure positive expected durations. Although analytical results are not avai-
lable for the moments and autocorrelations of the Log-ACD model, numerical
Monte Carlo simulations and estimations of the model indicate that the Log-
ACD model provides a very good alternative to the ACD model.

We use the logarithmic ACD model on the bid-ask quote process of three
securities actively traded on the NYSE (BOEING, DISNEY, and IBM), in
order to investigate the way specialists revise their beliefs on the bid and ask
prices they fix. As expected, the bid-ask quote durations exhibit a highly auto-
regressive structure. Then, we link this quote revision process to three
characteristics of the trade process: the trading intensity, the average volume
per trade, and the average spread.3 The empirical evidence is clearly in favor
of the information models, such as the model of EASLEY and O'HARA [1992].

The rest of the paper is organized in the following way. In Section 2, we
review some recent issues in market microstructure, both on the theoretical
and empirical sides, focusing on the bid-ask quote revision process. In
Section 3, we briefly review the ACD model of ENGLE and RUSSELL [1998]
and we introduce the Log-ACD model. In Section 4, we apply the Log-ACD
model to the bid-ask quote process for three NYSE stocks and examine the
way specialists revise their bid-ask quote. We also link the specification of the
Log-ACD model to characteristics of the trade process. Section 5 concludes.
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3. Strictly speaking, the spread is a characteristic of the bid-ask quote process. HOwever, it is also
related to the trade process, as we use the existing spread when the past trades were made (see
Section 4).



2 Market Microstructure Issues:
Bid-Ask Prices and Market-Maker's
Behavior

Over the past twenty years, there has been a considerable amount of
research in market microstructure which has focused both on theoretical and
on empirical models. In this section, we give a very brief summary of the
models related to the behavior of market-makers and how they determine
their bid and ask prices. O'HARA [1995], BIAIS, FOUCAULT and HILLION [1997]
and GOODHART and O’HARA [1997] are excellent surveys of the existing theo-
retical and empirical models developed in this field.

2.1 Theoretical Models

The first theoretical model explaining the market-maker's behavior was
proposed by GARMAN [1976]. He considers a single monopolistic market-
maker who is confronted with a succession of buy and sell orders, which are
assumed to be independent stochastic processes. To avoid failure (bankruptcy
and failure to provide for liquidity), this market-maker sets different buy (bid
price) and sell prices (ask price). GARMAN's model was improved by AMIHUD

and MENDELSON [1980]. These early models are characterized by the fact that
the market-maker is assumed to be a monopolist, whose bid and ask prices
reflect his market power.

STOLL [1978] introduces the notion of a market-maker supplier of interme-
diary services. In his model, the market-maker is a market participant who
buys and sells shares to other market participants. In doing so, he no longer
has the optimal amount of wanted securities and thus faces an inventory risk.
To safeguard himself against this risk, the market-marker buys and sells
shares at different prices. STOLL'S model was improved by HO and STOLL

[1981] who extend STOLL's model to a multi-period framework.
A major breakthrough was made in 1985 by GLOSTEN and MILGROM with the

introduction of information based models. In these models, traders and market-
makers do not have the same information regarding the value of the security
they are trading. Typically two kinds of traders are trading with the market-
maker: informed and uninformed traders. Uninformed traders do not have
superior information regarding the financial asset they are trading. They mainly
trade for liquidity reasons. Informed traders, however, have superior informa-
tion on the asset they are trading: they sell if they know bad news and they buy
if they know good news. The market-maker, who is confronted with both types
of traders, does not know if he deals with an informed or an uninformed trader.
To protect himself from a possible incurring loss, the market-maker fixes diffe-
rent buy and sell prices: his buy price (the bid) is smaller than his sell price (the
ask). Thus, the market-maker fixes his prices conditionally on the type of trade.
In a multi-period framework, this gives rise to a Bayesian updating behavior.
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Recently, EASLEY and O’HARA [1992] extended the GLOSTEN and
MILGROM's model by focusing on the role of time in price adjustment. Indeed,
in the GLOSTEN and MILGROM's model, time does not matter: it is exogenous
to the price process. EASLEY and O’HARA argue that the duration between two
trades conveys information. In their model, a no-trade outcome (a long dura-
tion) means that no new information has been released. Thus, the probability
of dealing with an informed trader is small (relative to the case where the
duration would be small). Consequently, with a low probability of dealing
with an informed trader, the market-maker decreases his bid-ask spread. Their
model has several important consequences:

– time is no longer exogenous to the price process: “empirical investiga-
tions using transaction data will be biased because examining only
transaction prices ignores the information content contained in the nontra-
ding intervals” (O’HARA [1995]);

– the sequence of prices matters and is informative;

– volume brings valuable information to the market-maker.4

Another consequence of their model is that the release of news (information
event) should lead to an increase in the trading intensity and this should imply
more frequent revisions of the bid-ask prices posted by the market-makers:
“... quotes converge to their strong form efficient values at exponential rate.
Rates of convergence are increasing in the fraction of trades from the
informed.” (EASLEY and O’HARA [1992]). 

2.2 Empirical Research

The amount of research in empirical market microstructure is very large
(although relatively few empirical studies are available using high frequency
data). We do not attempt to give a detailed description of this field of
research; an excellent introduction to this field can be found in CAMPBELL, LO

and MACKINLAY [1997] and a recent survey is available in GOODHART and
O’HARA [1997]. With the advent of high frequency database and the availabi-
lity of all trades and quotes for a given security over a period of time, it is
now possible to study more closely the price formation process and the way
market variables such as the volume, the bid-ask prices and the spread behave
along the trading day.

Recently, there has been a growing increase in empirical investigations of
market microstructure models using high frequency econometric models.
HAUSMAN, Lo and MACKINLAY [1992] use an ordered probit model to
examine such issues as the effect of a sequence of prices changes, the effect
of trade size and the effect of price discreteness. BROCK and KLEIDON [1992]
introduce a model of intraday bids and asks and examine the effect of stock
market open and closure on these prices and on the resulting spread. Their

THE LOGARITHMIC ACD MODEL… 121

4. Thanks to the information models, volume (and especially unexpected volume) and the much
critized technical analysis are found to have important implications on the behavior of the market-
makers. See, for example, EASLEY and O’HARA [1992] or BLUME, EASLEY and O’HARA [1994].



analysis focuses on the NYSE and on the behaviour of the specialist. As
pointed out by CHAN, CHRISTIE and SCHULTZ [1995] who conduct the same
analysis for stocks listed on the NASDAQ market, there are key differences
between a market with a monopolistic specialist (such as NYSE) and a
market with competing market-makers (such as NASDAQ). This is also high-
lighted by GWILYM, BUCKLE and THOMAS [1997] who investigate the same
problem for the FTSE-100 Stock Index Options (which are traded at LIFFE, a
market with competing market-makers). 

In a careful study on stocks traded on the NYSE, and using databases
keeping track of the  inventory holdings of the specialists, MADHAVAN and
SOFIANOS [1998] examine the importance and relative share of dealer trading
by NYSE specialists. They conclude that the proportion of the trades involving
the specialist is relatively weak and depends very much on the stock.
HASBROUCK [1988, 1991] investigates the interaction between security trades
and bid-ask quote revisions for stocks listed on the NYSE and highlights the
information content of trades. Information models are also dealt with in
EASLEY, KIEFER and O’HARA [1997], as they extend the EASLEY and O’HARA

[1992] paper and estimate the model with intraday data for NYSE stocks.
As pointed out in the introduction, ENGLE and RUSSELL [1998] introduced

the ACD model to take into account the irregular spacing of the data; they
also tested for the significance of additional market activity variables in their
model. ENGLE and LANGE [1997] propose a new measure of liquidity, which is
related to the depth of the market; in their paper, they combine an ACD model
with a regression equation involving market microstructure variables in order
to better explain the variation in liquidity over a trading day. 

Regarding the microstructure of currency trading, BOLLERSLEV and
DOMOWITZ [1993] examine the trading patterns and prices in the Interbank
Foreign Exchange Market; they introduce GARCH models for price volatility
and spread, that feature market activity variables as additional explicative
variables. A survey of the recent developments in this field is given in
GUILLAUME, DACOROGNA, DAVÉ, MULLER, OLSEN and PICTET [1997].While
most studies focus on stocks traded on the NYSE and on currency trading,
some recent publications also take a close look at the Paris Bourse; examples
are BIAIS, HILLION and SPATT [1995] and BISIÈRE and KAMIONKA [2000].

3 The ACD and Logarithmic ACD
Models

In this section, we start by a brief review of the ACD model introduced by
ENGLE and RUSSELL [1998]. This model shares some features of the GARCH
model. Instead of modelling an autoregressive process on the variance of the
returns (as in the GARCH model), the ACD model bears on the autoregres-
sive structure exhibited by the durations. This model is particularly well
suited to the analysis of irregularly spaced data, such as stock market data,
where the time elapsed between two trades conveys information.
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In the second part of this section, we introduce a logarithmic version of the
ACD model. This model is close to the original ACD model, but is more
flexible as there are no sign constraints on the parameters of the autoregres-
sive equation. In the third part, we compare the ACD and Log-ACD models
through Monte Carlo simulations

In this paper, as we focus on the bid-ask quote process, a duration (xi) is the
time elapsed between two consecutive bid-ask quotes, which are released at
times ti−1 and ti, i.e. xi = ti − ti−1.

3.1 The ACD Model and its Properties

3.1.1 Structure of the Model

Let xi be the duration between two quotes (a quote being a collection of
data relative to a buy or a sell of a security on a stock exchange). The assump-
tion introduced by ENGLE and RUSSELL [1998] is that the time dependence in
the durations can be subsumed in their conditional expectations �i =
E(xi |Ii−1), in such a way that xi/�i is  independent and identically distri-
buted. Ii−1 denotes the information set available at time ti−1 (i.e. at the

beginning of duration xi), supposed to contain at least x̃i−1 and ψ̃i−1, where

x̃i−1 denotes xi−1 and its past values, and likewise for ψ̃i−1.
The ACD model specifies the observed duration as a mixing process:

(1) xi = �iεi ,

where the εi are IID and follow a Weibull (1, γ) probability distribution, while
the �i are proportional to the conditional expectation of xi as explained
below.

A second equation specifies an autoregressive model for the (expected)
conditional durations:5

(2) �i = ω + αxi−1 + β�i−1

with the following constraints on the coefficients: ω > 0, β � 0, α � 0 and
α + β < 1. The last constraint ensures the existence of the unconditional mean
of the durations, the others ensure the positivity of the conditional durations. 

The condition �i = E(xi |Ii−1) provides us with a third equation, linking
equations (1) and (2):

(3) �i = �(1 + 1

γ
)�i ,

where �(.) is the gamma function. If γ = 1, the Weibull distribution becomes
an exponential one. In this case, �i = �i.
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5. This model is the ACD (1,1). More lags of xi and �i can be added. As in this paper we use only
one lag, we use the short notation ACD.



The autoregressive structure on the conditional expectation of the durations
implies that small durations are more likely to be followed by small durations
(and likewise for long durations). Thus, the model accounts for a clustering
effect on the durations. The Weibull distribution is of course more flexible
than the exponential one. If γ < 1, the model exhibits a decreasing hazard
function: long durations will be less likely. If γ > 1, long durations will be
more likely. 
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FIGURE 1
Autocorrelation Functions of the ACD Model

TABLE 1
Overdispersion implied by the ACD Model

Coefficients Overdispersion Ratio

β = 0.75, α = 0.05 1.01

β = 0.75, α = 0.10 1.04

β = 0.75, α = 0.20 1.55

β = 0.90, α = 0.05 1.03

β = 0.90, α = 0.08 1.18

β = 0.93, α = 0.05 1.07

The overdispersion ratio is the ratio standard deviation/mean, computed using (4) and (5). In all
cases, ω = 1 − α − β and γ = 1.



3.1.2 Statistical Properties of the ACD Model

By definition, the conditional expectation of xi is equal to �i. Thus equa-
tion (2) gives us a way to forecast expected durations, based on the
information set at the previous period; see ENGLE and RUSSELL [1997] for a
detailed discussion. The unconditional expectation (µ) and variance (σ 2) of
xi are given by

(4) µ = E(xi ) = ω

1 − α − β

and

(5) σ 2 = µ2κ
1 − 2αβ − β2

1 − (α + β)2 − α2κ

(provided that the denominators are positive), where

(6) κ = �(1 + 2/γ )

�(1 + 1/γ )2
− 1.

From equation (5), we can see that σ is greater than µ, whenever α is
greater than 0: the model can account for overdispersion.6 For a proof of these
results, see ENGLE and RUSSELL [1998]. In the appendix, we show how to
compute the autocorrelation function (ACF) of the durations by a recursive
formula. 

3.1.3 Numerical Illustrations

In the case of the ACD model, the first and second unconditional moments,
and the autocovariances can be computed analytically as shown above. It is
nevertheless useful to give numerical results about these moments and auto-
covariances for several sets of parameters.

For several sets of parameters and using (4), (5) and the results given in the
appendix, Table 1 gives the degree of overdispersion (measured by the ratio
standard deviation/mean) while Figure 1 plots the autocorrelation function for
six sets of parameters.7

As it is the case for the ARCH and GARCH class of models, a slowly
decaying autocorrelation function requires β to be close to one. A large
degree of overdispersion requires a “large” value of α.

3.2 The Logarithmic ACD Model

Although the ACD model has been applied to high frequency tick-by-tick
data (IBM stock trades on NYSE by ENGLE and RUSSELL [1998], and foreign
exchange prices by ENGLE and RUSSELL [1997]), the positivity constraints on
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6 By definition, a series of observations is overdispersed when its standard deviation is greater than
its mean. 

7. We use an ACD (1,1) model with the unconditional mean set equal to one, i.e. ω = 1 − α − β. 



the coefficients of the model may be quite restrictive. In particular, if we want
to include additional explanatory variables in the autoregressive equation (2),
we must ensure that the right-hand side of (2) remains strictly positive. As
explained in Section 4, this can be a problem when additional variables
suggested by market microstructure theories are included linearly in equation
(2).8 Our motivation for the Log-ACD model is thus to put forward a dura-
tion model, capitalizing on the ACD model, but with more flexibility.

3.2.1 Structure of the Model

As in the ACD model, let xi be the duration between two quotes. The loga-
rithmic version of the ACD model changes the mixing process (1) of the ACD
model into the following equation:

(7) xi = eφi εi ,

where the εi are IID and follow a Weibull(1,γ) distribution, while φi is
proportional to the logarithm of the conditional expectation of xi as explained
below.

Let ψi be the logarithm of the conditional expectation of xi, so that
ψi = lnE(xi |Ii−1). A second equation specifies an autoregressive model for
the logarithm of the conditional durations:

(8) ψi = ω + αg(xi−1,εi−1) + βψi−1.

For positivity of eψi and thus of xi, there are no restrictions on the sign of
the parameters ω, α and β.

The condition ψi = lnE(xi |Ii−1) or eψi = E(xi |Ii−1) provides us with a
third equation, linking equations (7) and (8):

(9) eφi �(1 + 1/γ ) = eψi .

We can propose several choices of g(xi−1,εi−1), in particular:

(i) g(xi−1,εi−1) = lnxi−1. This gives rise to a Log-ACD model, where
the logarithm of the conditional expectation depends on its past lagged
value and on  the lagged logarithm of the durations:

(10) ψi = ω + α lnxi−1 + βψi−1.

This model is analogous to the Log-GARCH model (GEWEKE [1986]).
For covariance stationarity of lnxi, |α + β| must be smaller than one.
Using (7) and (9), equation (10) can also be written as

(11) ψi = ω′ + α ln εi−1 + (α + β)ψi−1

where ω′ = ω − α ln[�(1 + 1/γ )]. We call this model the Log-ACD1 model.
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8. The additional variables could be added in a non-linear way, such that the expected duration is
surely positive. However, this raises the issue of which functional form to use. The logarithmic
ACD model allows to enter the variables linearly even they have negative coefficients. 



(ii) g(xi−1,εi−1) = εi−1. With this choice, equation (8) can be written as

(12) ψi = ω + αεi−1 + βψi−1 = ω + α
xi−1�(1 + 1/γ )

eψi−1
+ βψi−1.

In this specification, the logarithm of the conditional expectation
depends on its past lagged value and on the lagged “excess duration”.
This model is close to the exponential GARCH model9 of NELSON

[1991]. For covariance stationarity of  ψi, |β| must be smaller than one.
Hereafter, this version of the model is called the Log-ACD2 model.

By definition of the Weibull density, the density function of xi can be
written as 

(13) f (xi ) = γ

xi

(
xi�(1 + 1/γ )

eψi

)γ

e
−
(

xi �(1+1/γ )

eψi

)γ

.

Using (13) we can write the log-likelihood function of the observations xi,
i = 1 . . . N as

(14)
N∑
1

ln(γ )−ln(xi )+γ ln[xi�(1 + 1/γ )]−γψi −
(

xi�(1 + 1/γ )

eψi

)γ

,

with ψi defined by (10) or (12). The estimation by the maximum likelihood

method is then straightforward (as an initial condition, x0 and eψ0 can be set
equal to the unconditional mean of the xi). The choice of the function g only
affects the log-likelihood function through ψi. 

3.2.2 Statistical Properties of the Log-ACD Model

By definition, the conditional expectation of xi is equal to eψi. Thus equa-
tion (10) or (12) gives us a way to forecast expected durations, based on the
information set at the previous period.

Unfortunately (as for the exponential GARCH model), no analytical expres-
sions seem to be available for the unconditional moments. Indeed, if we try to
compute the expectation of xi using equation (10) for  ψi, we arrive at

(15) µ = E(xi ) = E[(E(xi |Ii−1)] = E(eψi ) = E(eω+αlnxi−1+βψi−1),

which cannot be analytically computed. It seems also impossible to derive an
analytical expression for the autocorrelation function. The same difficulties
arise if we take equation (12) for ψi.
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9. We refrain from calling our model the exponential ACD model since this term is used by ENGLE

and RUSSELL [1998] for the ACD model of Section 3.1, when εi has an exponential distribution.



3.2.3 Numerical Simulations

In the case of the two versions of the Log-ACD model, the unconditional
moments and the autocovariances cannot be computed analytically. To gain
insight about the two models, it is thus interesting to conduct numerical simula-
tions with several sets of parameters. In these numerical simulations, we focus
on the overdispersion ratio and the general shape of the autocorrelation function
associated with the models.

For several sets of parameters, Table 2 gives the numerical values taken by the
overdispersion ratio (the unconditional mean is approximately set equal to one)
for the Log-ACD1 model, while Table 3 gives these results for the Log-ACD2
model. The given results are average results for the overdispersion ratio based
on Monte Carlo simulations for the given sets of parameters (200 samples of
size 10,000). In both Log-ACD models, the parameter α has an important
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TABLE 2
Overdispersion of the Log-ACD1

Coefficients Overdispersion Ratio

β = 0.75, α = 0.05 1.01

β = 0.75, α = 0.10 1.05

β = 0.75, α = 0.20 1.58

β = 0.90, α = 0.05 1.04

β = 0.90, α = 0.08 1.25

β = 0.93, α = 0.05 1.10

Average overdispersion ratio of the Log-ACD1 based on Monte-Carlo simulations (200 samples of
size 10,000) for the given sets of parameters. Log-ACD1 corresponds to (7) and (10). In all cases, γ
is equal to 1 while ω is chosen so that the empirical mean is close to 1.

TABLE 3
Overdispersion of the Log-ACD2

Coefficients Overdispersion Ratio

β = 0.90, α = 0.05 1.02

β = 0.90, α = 0.10 1.06

β = 0.90, α = 0.20 1.15

β = 0.98, α = 0.05 1.07

β = 0.98, α = 0.08 1.29

β = 0.98, α = 0.15 1.71

Average overdispersion ratio of the Log-ACD2 based on Monte-Carlo simulations (200 samples of
size 10 000) for the given sets of parameters. Log-ACD2 corresponds to (7) and (12). In all cases, γ
is equal to 1 while ω is chosen so that the empirical mean is close to 1.



impact on the overdispersion: a “large” value of α is needed for the model to
imply a large degree of overdispersion. 

Figure 2 (for the Log-ACD1) and Figure 3 (for the Log-ACD2) give the
empirical autocorrelation functions computed using Monte Carlo simulations
(the given autocorrelation functions are averages, over 200 samples, of the
autocorrelation functions associated with samples of size 10,000); in each
case, four plots are given, one for each set of parameters. In the case of the
second version of the Log-ACD model, it can be seen that a slowly decaying
autocorrelation function is achieved with a value of β very close to one. 

3.3 A Comparison of the Models

In order to compare the two models, we conduct Monte Carlo simulations.
For the original ACD model and for the two specifications of the Log-ACD
model, we generated 200 sets of 6,728 durations and we compare the empi-
rical moments, autocorrelation functions, overdispersion ratios, and ranges of
these durations. Using a numerical simulation, we also compare the fore-
casted durations (as given by the ACD and Log-ACD models) following an
unexpected shock in a duration.  

Examples of the autocorrelation functions of the ACD and the two specifi-
cations of the Log-ACD model are given in Figure 4. For comparison and
anticipating Section 4, we also show the autocorrelation function of the IBM
durations (Figure 4d), one of the stocks on which the empirical part of this
paper focuses on. As the coefficients ω, α, β and γ do not have the same
meaning in the three specifications, we chose values for these coefficients
equal to their estimated values for the IBM stock.10 The average results for
the mean, standard deviation, minimum value, maximum value, overdisper-
sion ratio, and first-order autocorrelation coefficient are given in Table 4. The
last column of this table gives the results for the IBM stock durations. 

The main conclusions of the comparisons are that:

– the ACD model and the two specifications of the Log-ACD model can
account equally well for a slowly (but geometrically) decaying ACF,
starting at a relatively low first autocorrelation (notice that the three
ACF start too high in Figure 4a and 4b (compared to the ACF of the
IBM data in Figure 4d);

– the ACF of the Log-ACD2 model is closest to the ACF of the IBM
data; of all three specifications, this one has the best fit as far as the
ACF is concerned;11

– all three specifications exhibit overdispersion;

– for the selected parameters, the ACD model has the largest degree of
overdispersion and the largest first autocorrelation coefficient, but it
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10. See Table 10 for the estimates of the ACD and Log-ACD 2 models. For the Log-ACD 1, the esti-
mates are ω̂ = 0.040, α̂ = 0.076, β̂ = 0.917 and γ̂ = 0.994.

11. Although the ACF for the three specifications are given for one sample of each model, this is a
recurrent feature with different samples.
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FIGURE 3
Autocorrelation Functions of the Log-ACD2 Model

FIGURE 2
Autocorrelation Functions of the Log-ACD1 Model



has a mean much higher than the required mean (1.43 instead of 1.02),
and it overestimates the overdispersion ratio (1.68 instead of 1.43). The
Log-ACD2 model has a mean that is very close to one, but has an over-
dispersion ratio below that of the empirical data (1.28 instead of 1.43).
For both specifications of the Log-ACD model, the standard deviation
is much closer to the empirical standard deviation of the IBM data than
for the ACD model. It seems that the ACD model produces too many
high durations.

Regarding the numerical simulations and the plots of the autocorrelation
functions of the three models, the second version of the Log-ACD model
appears to fit the data best. Indeed, its ACF is closest to the ACF of the data,
its mean very closely matches the mean of the data, and its standard deviation
and overdispersion ratio are not too far from their empirical counterparts.
Regarding the general shape exhibited by the ACF of the data and while all
three models feature a slowly decreasing ACF, it could be argued that the
IBM data feature “long-memory”, which is not captured in the estimated
models.12 This issue is discussed more fully in Section 4.

Finally, we perform a numerical simulation to assess the impact of an unex-
pected shock in an observed duration on the subsequent forecasted durations.
Using the estimated ACD and second version of the Log-ACD model, we
compute the forecasted durations using as input the durations set to one
except at the shocking time where the duration is set to one-tenth. Because
both models are at the equilibrium at the start of the simulation, this is equiva-
lent to shocking the models with a duration equal to one-tenth of the
forecasted value.13 The experiment is then repeated with the duration  shock
set to ten times its expected value. Figures 5a and 5b give the forecasted dura-
tions (as ratios of the long-run solutions) by the two models, with the shock
occuring at the 100th observation. 

As could be expected, a very small (large) observed duration at t = 100
leads to smaller (larger) forecasted durations in the subsequent periods. The
forecasted durations gradually tend to their equilibrium values, indicating that
the models are stationary for the given parameter values.14 At t = 140, both
systems are back to their long-run equilibrium values. The differences
between the ACD and Log-ACD models are quite small. As indicated by
Figure 5a, the Log-ACD model underreacts with respect to the ACD model
when the duration is smaller than expected, while it overreacts when it is
larger. HOwever, even in the extreme cases considered here (ten times the
expected value), the difference is rather small. Other simulations conducted
with a shock equal to five times the expected value indicate that the difference
is almost non-existent.
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12. As reported in the next section, this seems to be a specific feature of the IBM durations.
13. In the market microstructure setting introduced in Section 2, this is as if the market-maker

observed a duration equal to one-tenth of the expected duration. The subsequent forecasted dura-
tions can then be interpreted as the market response to the surprise in the length of the duration.

14. The ACD is weakly stationary if 1 − (α + β)2 − α2κ > 0. For the Log-ACD, stationarity condi-
tions are not known since the moments are not available. Heuristically, a necessary condition is
that |β| < 1.
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FIGURE 4
Autocorrelation Functions of 3 Simulated Data Sets Corresponding to
ACD, Log-ACD1 and Log-ACD2 Specifications, and for the IBM Data.

TABLE 4
ACD and Log-ACD: A Comparison

ACD Log-ACD1 Log-ACD2 IBM

Mean 1.43 0.75 1.02 1.02

Standard deviation 2.55 1.27 1.30 1.45

Overdispersion 1.68 1.68 1.28 1.43

Minimum value 1.21e-4 5.46e-5 1.16e-4 0.003

Maximum value 47.81 22.75 18.97 29.12

First autocorrelation 0.42 0.34 0.30 0.22

Average results (except in the last column) based on Monte-Carlo simulations (200 samples of size
6,728). Log-ACD1 corresponds to (7) and (10), and Log-ACD2 to (7) and (12). The parameters
(ω,α,β and γ ) are set equal to their estimated value for the IBM data. The last column gives the
statistics for the IBM data.



4 An Application to the Bid-Ask Quote
Process

In this section, we use the ACD and Log-ACD models15 to examine the way
market-makers revise their beliefs about their buy and sell prices. Market
microstructure theory has already dealt extensively with this subject, as was
outlined in Section 2. Keeping in mind these theoretical models, we also extend
the Log-ACD model with additional variables in the autoregressive equation, so
as to test some assumptions about the behavior of the market-makers.

An important feature of our approach is that we link the bid-ask quote
dynamics to characteristics of the trade process. The bid-ask quote revision
process is closely linked to the concept of liquidity16 as the frequency of
quote revisions is an important characteristic of the state of the market. We
consider three variables related to the trade process: the trading intensity, the
average volume per trade, and the average spread when the past trades were
made. Thus, our model links the bid-ask quote revision process to characteris-
tics of the trades that are actually carried out.

After a description of the database and the data transformations, we intro-
duce the three additional explicative variables related to the trade process
which are used in the specification of the Log-ACD model. Next, we report
estimates for the ACD and Log-ACD models for the three stocks (BOEING,
DISNEY and IBM) considered in this paper.

4.1 Data and Transformations

We worked on three securities actively traded on the NYSE: BOEING,
DISNEY and IBM. The data was extracted from the Trade and Quote (TAQ)
database released by the NYSE. Actually, this database consists of two parts:
the first reports all trades, while the second lists the bid and ask prices posted
by the specialists (on the NYSE). All records listed in the TAQ database are
not valid (all trades have a correction and a condition indicator, giving infor-
mation on the validity of the trade). Prior to using the data, we thus selected
the “regular” trade quotes. Trades and bid-ask quotes recorded before 9:30
am and after 16:00 pm were also deleted. Notice that we treat the data conse-
cutively from day to day.17
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15. We use the second specification of the Log-ACD model introduced in Section 3. Although both
specifications yield similar results, the second specification better captures the structure of the
autoregressive process of the bid-ask quote process, as explained in Section 4.3. Therefore in this
section we use the acronym Log-ACD for Log-ACD 2.

16. KYLE [1985] introduced three notions of liquidity: tightness (bid-ask spread), depth (amount of
one sided volume that can be absorbed by the market without causing a revision of the bid-ask
prices) and resiliency (speed of return to the equilibrium).

17. If the last event of day j is at 15:59:40, and the first of the next day is at 9:30:02, the duration
between these two events is not used, so that the first duration for day j + 1 will be the one
between 9:30:02 and the next event.
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FIGURE 5
Impact of a Smaller (figure 5 a) and Larger (figure 5b) than expected
Duration on Subsequent Forecasted Durations by the ACD and Log-ACD2
Models

TABLE 5
Information on a Data

BOING DISNEY IBM

Number of trades 24.143 33.146 61.063

Number of b/a quotes 2.620 2.160 6.728 

Mean of xi and Xi 1 - 533.53 1 - 646.98 1.01 - 215.92

Standard deviation of xi and Xi 1.34 - 867.83 1.21 - 966.34 1.45 - 365.46

Minimum value xi and Xi 0.0048 - 3 0.0054 - 3 0.0033 - 1

Maximum value xi and Xi 18.94 - 13059 14.45 - 9739 29.12 - 7170

Data extracted from the September, October and November 1996 TAQ CD-ROM. The given number
of bid-ask quotes is the number obtained after filtering the data (the original number of bid-ask
quotes is equal to 17,150 for BOEING, 37,325 for DISNEY and 34,321 for IBM). xi is a time-of-day
adjusted duration, see (16), and is measured in seconds. The mean of xi is almost equal to 1, after the
removal of the time-of-day effect. Xi are the non-adjusted durations.

Figure 5a



In the IBM data, the number of bid-ask quotes (34,321) is approximately
half the number of trades (61,063). For BOEING and DISNEY, the number of
bid-ask quotes is 17,150 and 37,325, while the number of trades is equal to
24,143 and 33,146, respectively. Information about the data is given in
Table 5.

For all three stocks, we computed and used price durations (see ENGLE and
RUSSELL [1998], or GIOT [1999]). Price durations are defined by filtering the
bid-ask quote durations and retaining those leading to a significant cumulated
change in the mid-price of the specialist's quote. A significant change in the
mid price of the specialist is defined as a change leading to at least a $0.125
cumulated change in the mid price. Thus, we did not take into account the
numerous $0.0625 changes in the mid price, which are due to a $0.125 price
change of the bid or the ask. Of course, two successive $0.0625 changes in
the same direction yield a cumulative $0.125 change (and thus lead to a
retained duration). The filtering can be justified by the presumption that the
$0.0625 changes are transitory, i.e. are mainly due to the short term compo-
nent of the bid-ask quote updating process. Indeed, BIAIS, HILLION and SPATT

[1995] provide evidence that information effects in the order process lead to
similar (successive) changes in quotes on both sides of the market (i.e. infor-
mation events quickly lead to movements of the bid and ask quotes in the
same direction).

As explained by ENGLE and RUSSELL [1998], it is necessary to transform the
raw durations prior to using the ACD model. Indeed these durations can be
thought of as consisting of two parts: a stochastic component (which is
explained by the ACD model) and a deterministic part, which they call a
“time-of-day” effect. This time-of-day effect arises from the systematic varia-
tions of the quote arrivals over the trading day. This deterministic effect
should be extracted from the raw durations. We follow ENGLE and RUSSELL in
defining this deterministic effect as a multiplicative component, i.e.

(16) Xi = xi φ(ti ),

where Xi is the raw duration, φ(ti ) is the time-of-day effect and xi denotes
the time-of-day (tod) adjusted duration. The deterministic tod effect is defined
as the expected duration conditioned on time-of-day and on the day of the
week (so that, for example, the time-of-day effect of Monday can be different
from the time-of-day of Tuesday), where the expectation is computed by
averaging the durations over thirty minutes intervals for each day of the week.
Cubic splines are then used on the thirty minutes intervals to smooth the time-
of-day function.18

The time-of-day functions for the five days of the week are given in Figure
6 (for IBM). The well known inverted U shape documented for the trade
durations (the trading activity is much higher in the morning and in the end of
the afternoon than around lunch time) is also exhibited by the price durations.
The corresponding functions of the other stocks display the same shape as for
IBM.
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18. An alternative approach is to estimate jointly (by maximum likelihood) the parameters of the
ACD model and the parameters of the time-of-day functions. ENGLE and RUSSELL [1998] report
that the two approaches yield almost the same results, which is why we use the simplest one.
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FIGURE 6
Time-of-Day and Day-of-Week Functions for IBM Price Durations

4.2 Additional Explicative Variables Related to the Trade
Process

The specification of the conditional expectation of duration xi given by
equation (12) does not use possible relevant information that may be included
in the information set available to market participants at the start of duration
xi. Indeed, as given by (12), the model is “self-contained”: durations depend
on past durations through an autoregressive process. In order to test market
microstructure hypotheses, we need to add explicative variables in the autore-
gressive equation. We focus on three variables related to characteristics of the
trade process: the trading intensity, the average volume per trade, and the
existing spread when the past trades were made. The choice of these variables
is suggested by the information models developed in the recent market micro-
structure literature as explained hereafter.

4.2.1 Trading Intensity

Over each price duration, the trading intensity is defined as the number of
trades recorded during the price duration divided by the length of the duration
( Xi). Thus, for example, a large number of trades over a short duration leads
to a high trading intensity. As briefly explained in Section 2, the model of
EASLEY and O’HARA [1992] implies that an increase in the trading intensity
(due for example to the release of news) should lead to more frequent revi-



sions of the quotes. By adding this variable, the specification of ψi in the Log-
ACD model is extended to

(17) ψi = ω + αεi−1 + βψi−1 + η1 t inti−1,

where t inti is the trading intensity for duration Xi. 
If an increase in the trading intensity leads to more frequent quotes revi-

sions, η1 should be negative. As the trading intensity t inti depends on the
number of trades and the duration Xi, it also contains a time-of-day effect.
This time-of-day effect is extracted from the trading intensity using the same
method as the one used for Xi.

4.2.2 Average Volume per Trade

The important role of volume is highlighted in several recent papers:
EASLEY and O’HARA [1992], EASLEY, KIEFER and  O’HARA [1997], BLUME,
EASLEY and O’HARA [1994]. Generally speaking, volume is found to exhibit
an informational content that is not contained in the price process. For
example, in EASLEY and O’HARA [1992], the excess volume (with respect to
what is usually observed, or normal volume) is indicative of possible arrival
of informed traders. We introduce volume in our model by defining the
average volume per trade over duration Xi. This variable is given by the
average, over duration Xi, of the volume of the trades made during this dura-
tion. With this variable, the Log-ACD model becomes 

(18) ψi = ω + αεi−1 + βψi−1 + η2 avoli−1,

where avoli is the average volume per trade for duration Xi. 
If an increase in the average volume per trade is indicative of possible

informed trading, it should lead to more frequent quotes revisions, and η2
should be negative. Because this variable is related to Xi and the number of
trades, which both depend on the time-of-day, we use the variable avoli from
which the time-of-day effect has been extracted, so that this variable measures
the average volume relative to its normal value (i.e. excess volume).

4.2.3 Spread

As indicated in Section 2, one of the results of the EASLEY and O’HARA

[1992] model is that a high spread is indicative of possible informed trading,
and should be linked to short durations. To investigate this effect, we define
the average spread over duration Xi as the average spread corresponding to
the trades made during duration Xi. With this variable, our model is

(19) ψi = ω + αεi−1 + βψi−1 + η3 spi−1,

where spi is the average spread for the trades made during duration Xi.
According to the EASLEY and O’HARA [1992] model, a negative coefficient
for η3 is expected.
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TABLE 6
ML Result for the ACD and Log-ACD Model (BOEING)

Coefficient ACD Log-ACD

ω 0.030 (0.009) -0.104 (0.013)

α 0.113 (0.018) 0.095 (0.012)

β 0.859 (0.024) 0.953 (0.012)

γ 0.907 (0.013) 0.905 (0.012)

Q(10) 322.3 322.3 

Q(10)∗ 17.28 13.61

Asymptotic standard errors are given in parentheses (the number of observations is 2,620). Q(10)

denotes the Ljung-Box Q-statistic of order 10 on the xi. Q(10)∗ gives the corresponding Q-statistic on
the residuals ei, defined in (20) or (21).

TABLE 8
ML Result for the ACD and Log-ACD Model (DISNEY)

Coefficient ACD Log-ACD

ω 0.013 (0.005) -0.063 (0.008)

α 0.068 (0.010) 0.061 (0.008)

β 0.920 (0.012) 0.980 (0.006)

γ 0.980 (0.016) 0.982 (0.016)

Q(10) 137.31 137.31 

Q(10)∗ 8.04 7.80

Asymptotic standard errors are given in parentheses (the number of observations is 2,160). Q(10)

denotes the Ljung-Box Q-statistic of order 10 on the xi. Q(10)∗ gives the corresponding Q-statistic on
the residuals ei, defined in (20) or (21).

TABLE 7
ML Result for the Log-ACD Model (BOEING) (with the Additional Expli-
cative Variables)

Coefficient with tinti−1 with avoli−1 with spi−1 with all variables

ω 0.030 (0.016) -0.092 (0.015) -0.063 (0.043) -0.141 (0.047)

α 0.058 (0.012) 0.096 (0.012) 0.096 (0.012) 0.080 (0.012)

β 0.914 (0.017) 0.953 (0.012) 0.918 (0.018) 0.884 (0.020)

γ 0.911 (0.013) 0.905 (0.013) 0.910 (0.013) 0.915 (0.013)

η1 -0.069 (0.013) – – 0.071 (0.013)

η2 – -0.012 (0.009) – -0.003 (0.011)

η3 – – -0.895 (0.233) -0.867 (0.230)

Q(10) 322.3 322.3 322.3 322.3

Q(10)∗ 16.25 13.1 11.1 14.7

See footnote of Table 6.
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4.3 Results with the ACD and Log-ACD Models

The ACD model, the Log-ACD model and the specifications of the Log-
ACD model with the lagged trading intensity, the lagged average volume per
trade and the lagged average spread were estimated using a maximum likeli-
hood procedure (CML library in GAUSS). The results for BOEING, DISNEY,
and IBM are given in Tables 6-7, Tables 8-9, and Tables 10-11, respectively.
In analogy with the literature on GARCH models and as suggested by
previous work on ACD models (such as ENGLE and RUSSELL [1998], for
example), the performance of the ACD model in capturing the autocorrelation
structure of the data can be evaluated by examining the residuals

(20) ei = xi

�̂i
,

where �̂i is given by (2) evaluated at the MLE. The ACD model successfully
captures the autocorrelation of the durations if the residuals look like white
noise. This can be tested with Ljung-Box Q-statistics and can be visually
confirmed by plotting the ACF of the residuals. Furthermore, according to (1),

the residuals ei�(1 + 1

γ̂
) should follow a Weibull(1, γ̂ )  distribution. This can

be checked by using some characteristics of the residuals as explained below.
Regarding the Log-ACD model, its performance can be assessed by exami-

ning the residuals ei, defined in this case as

(21) ei = xi

eψ̂i

,

where ψ̂i is given by (12), (17), (18) or (19) evaluated at the MLE.
The Q(10)-statistics for the tod-adjusted durations and for the residuals are

given in Tables 6 to 11. For each stock, plots of the ACF of the tod-adjusted
durations and residuals are given in Figures 7a and 7b (BOEING), 8a and 8b
(DISNEY) and 9a and 9b (IBM). Following the procedure outlined in ENGLE

and RUSSELL [1998], we compute a nonparametric estimate of the hazard of

the residuals ei�(1 + 1

γ̂
). These are given in Figures 7c, 8c and 9c. Finally,

we also estimate (using a gamma kernel) the density of these residuals, which
are given in Figures 7d, 8d and 9d.

Several comments can be made from the numerical results in Tables 6-11
and the plots in Figures 7-9.

1) The tod-adjusted durations exhibit a strong autocorrelation structure,
indicating that the time-of-day effect (complemented by a day-of-week
effect) does not  account fully for the dependence of the durations.

2) Both the ACD and Log-ACD models are successful in removing the
autocorrelation in the data: for two stocks, BOEING and DISNEY, the
residuals are not significantly autocorrelated at order 10, while for IBM
the Ljung-Box Q-statistic of order 10 has been reduced from 1932.6 to
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TABLE 10
ML Result for the ACD and Log-ACD Model (IBM)

Coefficient ACD Log-ACD

ω 0.007 (0.002) -0.079 (0.007)

α 0.088 (0.008) 0.077 (0.007)

β 0.907 (0.009) 0.988 (0.003)

γ 1.000 (0.009) 0.999 (0.009)

Q(10) 1932.64 1932.64 

Q(10)∗ 34.06 33.75

Asymptotic standard errors are given in parentheses (the number of observations is 6,728). Q(10)

denotes the Ljung-Box Q-statistic of order 10 on the xi. Q(10)∗ gives the corresponding Q-statistic
on the residuals ei, defined in (20) or (21).

TABLE 9
ML Result for the Log-ACD Model (DISNEY)
(with the Additional Explicative Variables)

Coefficient with tinti−1 with avoli−1 with spi−1 with all variables

ω 0.010 (0.014) -0.033 (0.011) -0.013 (0.024) -0.050 (0.028)

α 0.047 (0.008) 0.056 (0.008) 0.052 (0.008) 0.042 (0.008)

β 0.950 (0.010) 0.972 (0.007) 0.974 (0.006) 0.948 (0.010)

γ 0.987 (0.016) 0.985 (0.016) 0.984 (0.016) 0.989 (0.016)

η1 -0.051 (0.011) – – 0.040 (0.012)

η2 – -0.025 (0.007) – -0.016 (0.008)

η3 – – -0.415 (0.134) -0.255 (0.155)

Q(10) 137.31 137.31 137.31 137.31

Q(10)∗ 6.75 8.07 8.89 7.25

See footnote of Table 8.

TABLE 11
ML Result for the Log-ACD Model (IBM)
(with the Additional Explicative Variables)

Coefficient with tinti−1 with avoli−1 with spi−1 with all variables

ω 0.039 (0.008) -0.058 (0.007) -0.048 (0.013) -0.010 (0.015)

α 0.071 (0.007) 0.072 (0.006) 0.078 (0.007) 0.068 (0.007)

β 0.969 (0.005) 0.987 (0.003) 0.983 (0.004) 0.967 (0.005)

γ 1.003 (0.009) 1.001 (0.009) 1 (0.009) 1.004 (0.009)

η1 -0.036 (0.006) – – 0.034 (0.006)

η2 – -0.016 (0.004) – -0.013 (0.004)

η3 – – -0.169 (0.069) -0.082 (0.071)

Q(10) 1932.64 1932.64 1932.64 1932.64

Q(10)∗ 29.98 37.62 32.58 32.15

See footnote of Table 10.



about 30 (which has a p-value of 0.08 %). The plots given in Figures 
7-9 provide the same message. For all stocks, the ACF of the tod
adjusted durations are slowly decreasing to zero, indicating a strong
autocorrelation structure. HOwever, the ACF of the residuals show that
these are much less autocorrelated. Regarding the IBM stock, an addi-
tional comment has to be made. As hinted in Section 3, the ACF of the
tod adjusted durations for the IBM stock decreases to zero more slowly
than for the other two stocks. This indicates that a long memory
process could be in play. This issue has been recently studied by JASIAK

[1998] with the fractionally integrated ACD model. She works with
trade durations which display very large Q-statistics (much larger than
the Q-statistics of the price durations considered here) and finds a long
memory effect. While acknowledging the fact that FIACD models
could perhaps enhance the specification (for the IBM stock), we do not
use this technique here as only one stock (out of three) is concerned by
this effect. Although the results are not reported here, the ACD and
Log-ACD models were applied to other stocks traded on the NYSE,
and no long memory effect was exhibited by the price durations: when
working with price durations, the IBM stock seems to be the exception
rather than the rule.

3) The nonparametric estimates of the hazards of the residuals indicate
that these hazards are fairly constant around one, with a slightly
decreasing hazard for the BOEING and DISNEY stocks. This is in
agreement with the estimated γ coefficients for the three stocks, which
are close to one. Monte Carlo simulations were also used to simulate
data with  values of γ larger and smaller than one. The nonparametric
method was then applied to the simulated data. In both cases, the esti-
mated hazard function was clearly downward sloping for the data with
γ smaller than one, and upward sloping when γ was higher than one.
This stresses the fact that the estimated hazard functions are in agree-
ment with the estimated values for the γ parameter.

4) If ei�(1 + 1/γ̂ ) follows a Weibull(1, γ̂ ) distribution, 

(
ei�(1 + 1

γ̂
)

)γ̂

follows an exponential distribution, which implies that the no-overdis-
persion hypothesis for this series should be accepted. As indicated in
ENGLE and RUSSELL [1998], this can be tested with the statistic
Z = √

N (σ 2 − 1)/
√

8, where N is the number of observations, σ 2 is
the variance of the series and Z follows a normal distribution when N
is large. For the three stocks, the statistic is equal to 4.09, 3.89 and
8.81, respectively. At the five percent level, the critical value is equal to
1.96, which implies that the null hypothesis of no-overdispersion is
rejected for all stocks. HOwever, the computed statistics are not much
larger than the critical value (except for IBM), especially given the fact
that N is very large. Moreover, if ei�(1 + 1/γ̂ ) follows a Weibull(1, γ̂ )
distribution, then −ln(S), the negative logarithm of the survivor func-

tion of the residuals, should be equal to 

(
ei�(1 + 1

γ̂
)

)γ̂

. As
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FIGURE 7
ACF of the Tod-Adjusted Durations for BOEING (figure 7a), Residuals of
the Log-ACD Model (figure 7b), Nonparametric Hazard (figure 7c), and
Density Function (figure 7d) of the Residuals of the Log-ACD Model

FIGURE 8
ACF of the Tod-Adjusted Durations for DISNEY (figure 8a), Residuals of
the Log-ACD Model (figure 8b), Nonparametric Hazard (figure 8c), and
Density Function (figure 8d) of the Residuals of the Log-ACD Model
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FIGURE 9
ACF of the Tod-Adjusted Durations for IBM (figure 9a), Residuals of the
Log-ACD Model (figure 9b), Nonparametric Hazard (figure 9c), and
Density Function (figure 9d) of the Residuals of the Log-ACD Model

FIGURE 10
Negative Logarithm of the Survivor Function of the Residuals for the
DISNEY Stock Plotted Against (ei�(1 + 1/γ̂ ))̂γ



suggested by ENGLE and RUSSELL [1998], this can be checked visually

by plotting −ln(S) against (ei�(1 + 1/γ̂ ))̂γ . We illustrate this method
in Figure 10 for the DISNEY stock (the other two stocks exhibit a
similar relationship). We obtain similar results as those given in ENGLE

and RUSSELL [1998]: while the negative logarithm of the survivor func-
tion is close to a linear function of the residuals for most of the range,
there is a larger discrepancy for the larger residuals, indicating that
these are overrepresented.

5) The autoregressive coefficient β is close to 1 for all stocks (and for all
the specifications tested), while being significantly smaller than 1 at
the 5 percent level. Regarding the additional market microstructure
variables included in the model, the results given in Tables 7, 9 and 11
indicate that:

–  With the lagged trading intensity ( t inti−1), lagged average volume per
trade ( avoli−1), and lagged average spread (spi−1) included separa-
tely as additional explicative variables, the coefficients η1, η2 and  η3
are negative and strongly significant for all stocks. Thus, a higher
trading intensity, a higher average volume per trade and a higher
average spread all shorten the next expected duration. This is in agree-
ment with the hypotheses put forward by EASLEY and O’HARA [1992].

–  When all three lagged additional variables are included at the same
time, the coefficients η1, η2 and  η3 are still negative, but η2 is not
significant for BOEING, while η3 is not significant for DISNEY and
IBM. For all stocks, the coefficient of the lagged trading intensity (η1)
is negative and strongly significant. From these results, it would seem
that the trading intensity is the variable that has the most important
impact on the bid-ask quote process. It is interesting to note that these
results are quite similar to those of JONES, KAUL and LIPSON [1994].
Indeed, in their detailed study (using daily data) on a large sample of
stocks traded on the NASDAQ, they found that it is the number of
trades, and not the average volume per trade, that has the most impor-
tant impact on the volatility of the bid-ask quote process.

Finally, we estimated the Log-ACD models on several subsample periods.
More precisely, we split our data into three periods featuring the same
number of observations and we estimated the models on each subsample.
For all three periods, the results were very similar to those reported for the
whole dataset. It should however be noted that the Q statistics of the tod
adjusted durations for the IBM stock were much lower than for the three
month period, and that the possible long memory effect was clearly not
present in the smaller datasets.
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Conclusion

The ENGLE and RUSSELL [1998] paper introduced the ACD model, which
presents a new way of modelling random durations arising from high-
frequency data. In this paper, we introduced two  specifications of a
logarithmic version of the ACD model. While retaining the main characteris-
tics of the ACD model, the Log-ACD is more flexible as no restrictions are
required on the sign of its coefficients. The ACD and Log-ACD models were
applied to the durations of the bid-ask quotes posted by specialists on the
NYSE for three actively traded stocks. We highlighted the impact of characte-
ristics of the trade process on the dynamics of the bid-ask quote process.
More precisely, the influence of the trading intensity, the average volume per
trade, and the average spread on the bid-ask quote process is negative and
significant, which is compatible with the EASLEY and O’HARA [1992] model.

Extensions of the model are possible. Firstly, a more general distribution for
the error term of the model could be used, for example the Burr distribution
which has a non-monotonic hazard function (see GRAMMIG and MAURER

[1999]). Secondly, the specification of the models could include non-linear
transformations of the explicative variables. Thirdly, while we focused on the
variables suggested in the EASLEY and O’HARA [1992] model, the litterature
on market microstructure suggests other possibilities, such as the depth at the
bid and ask, and the changes in price or in spread (see ENGLE and LUNDE

[1998]). These variables could also be included in the model. Fourthly, it
would be insightful to compare the ACD and Log-ACD models using some
formal test procedures, information criteria, and from the viewpoint of predic-
tive performance. This is the topic of a paper by BAUWENS, GIOT, GRAMMIG

and VEREDAS [1999], who use in particular density forecasts as suggested by
DIEBOLD, GUNTHER and TAY [1997], to compare ACD, Log-ACD, SCD, and
SVD models. �
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APPENDIX

We consider the ACD model defined by equations (1)-(3). In addition to the
unconditional mean (µ) and variance (σ 2) of xi - see (4) and (5) - ENGLE and
RUSSELL [1995] give the variance of �i:  

(22) Var(�i ) = α2κµ2

1 − (α + β)2 − α2κ
.

These results are useful in order to compute the autocovariance function of
xi. Let us call γj the autocovariance between xi and xi− j. To get γ1 we need
to compute E(xi xi−1), which can be done as follows:

(23)

E(xi xi−1) = E[xi−1 E(xi |Ii−1)] = E(xi�i )

= ωE(xi−1) + αE(x2
i−1) + βE(xi−1�i−1)

= ωE(xi−1) + αE(x2
i−1) + βE(�2

i−1)

since

(24)
E(xi−1�i−1) = E[E(xi−1�i−1|Ii−2)]

= E[�i−1 E(xi−1|Ii−2)] = E(�2
i−1).

Therefore,

(25) γ1 = ωµ + αa + βb − µ2,

where

(26)
a = E(x2

i−1) = σ 2 + µ2

b = E(�2
i−1) = Var(�i ) + µ2.

Starting with p = 2, a recursive law is available for γp. Indeed, for γ2, we
have:

(27)

γ2 = E[(xi−2 E(xi |Ii−1)] − µ2

= E[xi−2(ω + αxi−1 + β�i−1)] − µ2

= E{xi−2[ω + αxi−1 + β(ω + αxi−2 + β�i−2)]} − µ2

= ωµ + α(γ1 + µ2) + βωµ + αβa + β2b − µ2.

In a similar way, γ3 can be expressed as a function of γ2 and γ1:

γ3 = ωµ+α(γ2+µ2)+ωβµ+αβ(γ1+µ2)+ωβ2µ+αβ2a+β3b−µ2.
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Generalizing this expression to γp, it is defined recursively by 

(29) γp = ωµ +
p−1∑
q=1

Ap,q + β p−1αa + β pb − µ2

where

(30) Ap,q = αβq−1(γp−q + µ2) + ωµβq .
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