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Abstract

Multifractal Random Walks (MRW) correspond to simple solvable “stochastic volatil-
ity” processes. Moreover, they provide a simple interpretation of multifractal scaling
laws and multiplicative cascade process paradigms in terms of volatility correlations.
We show that they are able to reproduce most of recent empirical findings concerning
financial time series: no correlation between price variations, long-range volatility
correlations and multifractal statistics.
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1 Introduction

Multifractal processes and multiplicative cascades have been widely used in
many contexts to account for the time scale dependence of the statistical
properties of a time-series. Recent empirical findings [3,10,7,16] suggest that
in finance, this framework is likely to be pertinent. The recently introduced
Multifractal Random Walks (MRW) [4] are multifractal processes that can
be seen as simple “stochastic volatility” models (with stationary increments)
whose statistical properties can be precisely controlled across the time scales
using very few parameters. In that respect, they reproduce many features
that characterize market price changes [13] including the decorrelation of the
price increments, the long-range correlation of the volatility and the way the
probability density function (pdf) of the price increments changes across time-
scales, going from quasi Gaussian distributions at rather large time scales
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to fat tail distributions at fine scales. In a recent work [14], Muzy et. al.
have elaborated a “multivariate multifractal” framework that accounts for the
time scale dependence of the mutual statistical properties of several time-
series. Though initially introduced for modelling single asset variations, the
MRW models can be naturally extended in order to fit this new multivariate
framework [5]. In this paper we will focus on single asset modelling.

The goal of this paper is to show, using real data, that eventhough MRW'’s
involve only 3 parameters, they allow one to capture very precisely both the
multifractal statistics and the correlation structure of single assets. The paper
is organized as follows. In section 2, after recalling briefly the main notations
and definitions involved in the “classical” multifractal framework, we introduce
the MRW model defined in [4], recall its main properties and give explicit
analytical expressions of the g-order moments of its increments and of the
volatility correlation structure. In section 3, we show that MRW models are
able to reproduce very precisely many statistical quantities of financial time-
series. They are shown to reproduce (i) the multifractal statistics (i.e., the
scaling exponents), (ii) the values of the g-order moments of the increments
for a wide range of ¢’s and (ii) the correlation structure of the volatility both
at a given time-scale and in between two different time-scales. Conclusions
and prospects are reported in section 4.

2 The Multifractal Random Walk (MRW) model
2.1 Multifractal processes

A multifractal process is a process wich has some scale invariance properties.
These properties are generally characterized by the exponents (, which govern
the power law scaling of the absolute moments of its fluctuations, i.e.,

Mg, 1) = K,I%, (1)

where

Mg, 1) = E(|o:X(@)]") = E(X(t+1) = X(0)]"), (2)

where X (t) is supposed to be a stochastisc process with stationary increments.
Some very popular stochastic processes are the so-called self-similar processes
[18]. They are defined as processes X (t) which have stationary increments and
which verify (in law)

§X(t) = (I/L)"5,X (t), VI, L > 0.



For these processes, one easily gets ¢, = ¢H, i.e., the (, spectrum is a linear
function of ¢. Widely used examples of such processes are (fractional) Brow-
nian motions (fBm) or Levy walks.

However, many empirical studies have shown that the (, spectrum of return
fluctuations is a non linear convex function. Let us note that, using a simple
argument, it is easy to show that if (, is a non-linear convex function the
scaling behavior (1) cannot hold for all scales [ but only for scales smaller
than an arbitrary large scale L that is generally referred to as the integral
scale. A very common approach originally proposed by several authors in the
field of fully developed turbulence [15,17,11,9,8], has been to describe such
processes in the scale domain, describing the cascading process that rules how
the fluctuations evolves when going from coarse to fine scales. Basically, it
amounts in stating that the fluctuations at the integral scale L are linked to
the ones at a smaller scale | < L using the cascading rule

§X () =" Wy r6p X (t), for fixed t, (3)

where W/, is a log infinitely divisible stochastic variable which depends only
on the ratio [/L. A straightforward computation [8] then shows that the pdf
P,(6X) of §,X changes when varying the time-scale [ according to the rule

}%(6)()::t/f?UL(u)e‘“fﬁ(e‘“é}()du, (4)

where the self-similarity kernel Gy, is the pdf of In W;,r. Since Wi,y is a log
infinitely divisible variable, the Fourier transform of G/, is of the form

Gy (k) = GUL (k). (5)

From that equation, one easily gets the expression of the (, spectrum

~

(g = InG(~ig). (6)

In this framework, the simplest non-linear case is the so-called log-normal
model that corresponds to a parabolic ¢, and a Gaussian kernel.

2.2 Cascade models and magnitude correlations

Multiplicative cascading processes are examples of processes satisfying the
cascading rule (3) for discrete scales [, = 27" L. The cascade paradigm is that



the local variation of the process d;, X at scale [, is obtained from the variation
at scale L as

0, X (t) = (ﬁ Wi> 31X (¢) (7)

=1

where W; are i.i.d. random positive factors. Realizations of such processes can
be constructed using orthonormal wavelet bases as discussed in Ref. [2]. If one
defines the magnitude w(t,l) at time ¢ and scale [ as the logarithm of “local
volatility” [3]:

oft,1) = 5 W(AX(OP), ®)

then the previous cascade equation becomes a simple random walk equation,
at fixed time ¢, versus the logarithm of scales:

Wty lny1) = w(t, ;) + In(Wy) .

The correlation structure implied by multifractal cascades has already been ad-
dressed in previous works [3,2,1]. It has been shown that §,X (¢)? is long-range
correlated. More precisely, one can show that it generally leads to magnitude
correlation functions that behave like

Co(7,11,1y) = Cov(w(t, l),w(t +7,1y)) ~ —=\*In(r/L), L >7 >> max(l1,l).(9)

Let us note that this behavior has been shown to provide good fits of the
empirical estimates of the correlation functions from financial time-series [3].

As explained in Ref. [4], the problem with cascade processes is that they
involve representations (e.g., orthonormal wavelet bases) that are constructed
on a discrete set of scales (e.g. dyadic scales [,, = 27™) and in turn cannot
be invariant under continuous scale dilations. To our knowledge, the MRW'’s
are the only known multifractal processes with continuous dilation invariance,
i.e., processes that satisfy Eq. (4) for a continuous values of [.

2.3 Introducing the MRW model

An MRW process X (t) is the limit process (when the time discretization step
At goes to 0) of a standard random walk Xa[k] with a stochastic variance
(volatility), i.e.,

X(t) = lim Xa.(t),

At—0



with
t/At

XAt(t) = Z GAt[k]ewAt[k],
k=1

where evatlfl ig the stochastic volatility and ea; a gaussian white noise of
variance o?At and which is independant of wa;. The choice for the process
way 1s simply dictated by the fact that we want the scaling (1) to be exact
for all time scales [ < L. Some long but straightforward computations [4]
show that this is achieved if wa; is a stationary Gaussian process such that
E (watk]) = —Var (wa¢[k]) and whose covariance is

Cov(waelk],wadl]) = A In pag[|k — 1]

where

L
—=—— for |k| < L/At -1
pAt[k] _ (Jk|+1)At

1 otherwise
Let us note that it corresponds to a log-normal volatility which is correlated

up to a time lag L and that it is mimicing Eq (9).

One can then prove [4] the multifractal scaling property

M(q,l) = K%, VI<L, (10)
where K, (for ¢ even) is
1 1
Kq = Lq/ZO'q(q - 1)”/du1 /duq/g H |U'z — Uy _4)‘2, (1].)
0 0 i<J
and
o= (g —alg—2))\°)/2. (12)

Since (, is a parabolic function, it indicates that the self-similarity kernel
Gr, which links the pdf’s at different time scales (Eq. (4)) is Gaussian. The
parameter A? which governs the non-linearity of ¢, is called the intermittency
factor since it controls how far from a self-similar behavior (i.e., ¢, linear)
the process is. In the limit A\* = 0, (, becomes linear, the process X (t) is a
Brownian motion and W1, corresponds to a deterministic value.

Let us note that, one can prove [6] that, in the case of MRW processes, the
equality in law in Eq. (3) is not only true for fixed time ¢ but basically also
for the processes themselves (i.e., when ¢ is varying). In that case W/, is a
random variabble which does not depend on time.
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Fig. 1. Modelling intraday Japenese Yen futures using MRW. The MRW is
used to model the de-seasonalized logarithm of the time-series displayed in (a). The
parameters have been estimated to 02 ~ 4 107 year !, A2 ~ 0.02 and L ~ 1 year.
(a) Plot of the original index time-series : Japenese Yen futures from March 77 to
February 99 (intraday tick by tick data). (b) Plot of a sample time series of length
2!7 of the MRW model.

An explicit analytical formula for K, can be obtained for even ¢ values since
the multiple integral in Eq. (11) can be evaluated using the celebrated Selberg
integral formula [19]. One then obtains:

270 T(1— 202k)2T(1 — 2X2(k + 1))

K, = L?0"(q — 1)!! ,EO [(2—2)2(q/2+k — 1))D(1 — 2)2)°

(13)

Let us note that this last equation seems to indicate that the critical value ¢*
above which the moments of the MRW are infinite statisfies

1
M(q,l):+oo<:>q2q*:2+2—)\2. (14)

Moreover, one can show [4] that the magnitude correlation C, (7,1, l3) behaves
like in Equation (9), i.e.,

Co(r, 1, 1) =~ =X’ 1n (%) , L>7>>max(ly, ) . (15)

3 Modelling return fluctuations using MRW

MRW processes can be used to model the return fluctuations of a financial
time-series [13]. In this case, the price S(t) of the asset will be modelled by eX®
where X (t) is an MRW. For this purpose 3 parameters need to be estimated
: the variance o2, the integral scale L and the intermittency parameter \? of
the MRW X (). The variance o2 can be estimated using the simple relation
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Fig. 2. Multifractal exponents (, spectrum estimations for the Yen futures fluc-
tuations (o) and for the MRW model prediction (x) (Eq. (12)).

Var(X(t)) = o%t. Both, the decorrelation scale L and the parameter A can be
obtained from the expression (15) of the magnitude correlation. Let us note
that A? can be also estimated independantly from the ¢, spectrum (Eq. (12)).
The consistency between these two completly different estimators of \ is a
very good test for the validity of the model.

We have estimated the parameters o2, A\? and L for the time-series of the
japenese Yen futures from March 1977 to February 1999 (tick by tick intra-
day data). The plots of this financial time-series and of a realization of the
corresponding MRW model are shown in figure 1.

3.1 Fitting the multifractal exponents (4

As shown in figure 2, the MRW model reproduces very precisely the parabolic
¢, spectrum. Let us recall that the ¢, exponents describe, through the self-
similarity kernel Gy/;, and Egs (6), (4), how the return fluctuation pdf evolves
when going from one time scale to another. Thus this figure shows that the
self-similarity kernel G/, (resp. the random variable W,.) is very close to a
Gaussian function (resp. log-normal random variable).

3.2 Fitting the moments M(q,1)

In the previous section we have shown that the scaling behavior of the moments
M(q,1) of the Yen time-series are well fitted using the MRW model. However,
it does not say anything about whether the values themselves of M(q,1) are
well fitted or not. Figure 3 displays In M(q,1) as a function of ¢ for three
different values of [ (I =1 day, 5 days and 10 days). It appears clearly that the
numerical results obtained on the Yen time-series match closely the theoretical
prediction (Eq. (13)) obtained for the MRW model.
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Fig. 3. g¢-order moments M(q,!) of §;X. In M(q,l) (Eq. (2)) is displayed versus ¢
for (from bottom to top) [ = 1, 5 and 10 days. In M (q,[) has been computed for the
Yen futures fluctuations (e) which daily fluctuation variance has been arbitrarily
normalized to 1. The theoretical prediction (Eq. (13)) obtained for the MRW model
corresponds to the solid line.
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Fig. 4. Correlation function C, of the magnitude: The correlation function
Cy(7,11,12) versus In(7). From Eq. (15), we expect these plots to be straight lines
as long as L > 7 >> max(ly,ly). C,(7,l1,l3) for the Yen futures fluctuations is
displayed for [y = lo =1 day (o) and for [y =1 day and I, = 5 days (x). The solid
line corresponds to the prediction A2 In(L/7)

3.3 Fitting the correlation structure of the magnitude C, (7,11, 15)

In this section we have computed the magnitude corelation function C, (7,1, l3)
on the Yen time-series. The computation has been made both at the same scale
(I; =l =1 day) and at two different scales ([; = 1 day and Iy = 5 days). As
explained in section 2.3, we expect that, as long as L > 7 >> max(ly, l5) we
expect C,, to be proportional to In(L/7) (Eq. (15)). Moreover the slope should
be the intermittency factor A?> ~ 0.02. As illustrated in figure 4, the numerical



experiments are in very good agreement with the theoretical prediction.

4 Conclusion

In this paper, we have shown that Multifractal Random Walks (MRW) can
be used for modelling the time-fluctuations of a single-asset. It is able to
reproduce the main observed characteristics of financial time-series: no corre-
lation between price variations, long-range volatility correlations, linear and
non-linear correlation between assets. Moreover, it reproduces precisely the
g-order moments of the series (for a wide range of ¢’s) and the volatility cor-
relation structure in between different time-scales. All of these features can be
controlled using only 3 parameters : the intermittency factor A\? which both
controls the scale invariance properties and the volatility correlation, the inte-
gral scale L which controls the volatility decorrelation scale and the variance
o? of the fluctuations.

Some preliminary works have been done on extending this framework to a
multivariate framework [14,5]. The so-obtained Multivariate MRW (MMRW)
is likely to capture the whole return joint law of a basket of assets at all
time horizons. We are currently performing some extensive numerical experi-
ments on multivariate financial data and started to use MMRW for (historical)
volatility and value at risk prediction as well as for portfolio management.
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