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tMultifra
tal RandomWalks (MRW) 
orrespond to simple solvable \sto
hasti
 volatil-ity" pro
esses. Moreover, they provide a simple interpretation of multifra
tal s
alinglaws and multipli
ative 
as
ade pro
ess paradigms in terms of volatility 
orrelations.We show that they are able to reprodu
e most of re
ent empiri
al �ndings 
on
erning�nan
ial time series: no 
orrelation between pri
e variations, long-range volatility
orrelations and multifra
tal statisti
s.Key words: Multifra
tals, long-range 
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hasti
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ative 
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adesPACS: 02.50.Ey, 05.45.Df, 05.40.-a, 89.80.+n1 Introdu
tionMultifra
tal pro
esses and multipli
ative 
as
ades have been widely used inmany 
ontexts to a

ount for the time s
ale dependen
e of the statisti
alproperties of a time-series. Re
ent empiri
al �ndings [3,10,7,16℄ suggest thatin �nan
e, this framework is likely to be pertinent. The re
ently introdu
edMultifra
tal Random Walks (MRW) [4℄ are multifra
tal pro
esses that 
anbe seen as simple \sto
hasti
 volatility" models (with stationary in
rements)whose statisti
al properties 
an be pre
isely 
ontrolled a
ross the time s
alesusing very few parameters. In that respe
t, they reprodu
e many featuresthat 
hara
terize market pri
e 
hanges [13℄ in
luding the de
orrelation of thepri
e in
rements, the long-range 
orrelation of the volatility and the way theprobability density fun
tion (pdf) of the pri
e in
rements 
hanges a
ross time-s
ales, going from quasi Gaussian distributions at rather large time s
alesPreprint submitted to Elsevier Preprint 7 May 2001



to fat tail distributions at �ne s
ales. In a re
ent work [14℄, Muzy et. al.have elaborated a \multivariate multifra
tal" framework that a

ounts for thetime s
ale dependen
e of the mutual statisti
al properties of several time-series. Though initially introdu
ed for modelling single asset variations, theMRW models 
an be naturally extended in order to �t this new multivariateframework [5℄. In this paper we will fo
us on single asset modelling.The goal of this paper is to show, using real data, that eventhough MRW'sinvolve only 3 parameters, they allow one to 
apture very pre
isely both themultifra
tal statisti
s and the 
orrelation stru
ture of single assets. The paperis organized as follows. In se
tion 2, after re
alling brie
y the main notationsand de�nitions involved in the \
lassi
al" multifra
tal framework, we introdu
ethe MRW model de�ned in [4℄, re
all its main properties and give expli
itanalyti
al expressions of the q-order moments of its in
rements and of thevolatility 
orrelation stru
ture. In se
tion 3, we show that MRW models areable to reprodu
e very pre
isely many statisti
al quantities of �nan
ial time-series. They are shown to reprodu
e (i) the multifra
tal statisti
s (i.e., thes
aling exponents), (ii) the values of the q-order moments of the in
rementsfor a wide range of q's and (ii) the 
orrelation stru
ture of the volatility bothat a given time-s
ale and in between two di�erent time-s
ales. Con
lusionsand prospe
ts are reported in se
tion 4.2 The Multifra
tal Random Walk (MRW) model2.1 Multifra
tal pro
essesA multifra
tal pro
ess is a pro
ess wi
h has some s
ale invarian
e properties.These properties are generally 
hara
terized by the exponents �q whi
h governthe power law s
aling of the absolute moments of its 
u
tuations, i.e.,M(q; l) = Kql�q ; (1)where M(q; l) = E (jÆlX(t)jq) = E (jX(t+ l)�X(t)jq) ; (2)where X(t) is supposed to be a sto
hastis
 pro
ess with stationary in
rements.Some very popular sto
hasti
 pro
esses are the so-
alled self-similar pro
esses[18℄. They are de�ned as pro
esses X(t) whi
h have stationary in
rements andwhi
h verify (in law) ÆlX(t) =law (l=L)HÆLX(t); 8l; L > 0:2



For these pro
esses, one easily gets �q = qH, i.e., the �q spe
trum is a linearfun
tion of q. Widely used examples of su
h pro
esses are (fra
tional) Brow-nian motions (fBm) or Levy walks.However, many empiri
al studies have shown that the �q spe
trum of return
u
tuations is a non linear 
onvex fun
tion. Let us note that, using a simpleargument, it is easy to show that if �q is a non-linear 
onvex fun
tion thes
aling behavior (1) 
annot hold for all s
ales l but only for s
ales smallerthan an arbitrary large s
ale L that is generally referred to as the integrals
ale. A very 
ommon approa
h originally proposed by several authors in the�eld of fully developed turbulen
e [15,17,11,9,8℄, has been to des
ribe su
hpro
esses in the s
ale domain, des
ribing the 
as
ading pro
ess that rules howthe 
u
tuations evolves when going from 
oarse to �ne s
ales. Basi
ally, itamounts in stating that the 
u
tuations at the integral s
ale L are linked tothe ones at a smaller s
ale l < L using the 
as
ading ruleÆlX(t) =law Wl=LÆLX(t); for �xed t; (3)where Wl=L is a log in�nitely divisible sto
hasti
 variable whi
h depends onlyon the ratio l=L. A straightforward 
omputation [8℄ then shows that the pdfPl(ÆX) of ÆlX 
hanges when varying the time-s
ale l a

ording to the rulePl(ÆX) = Z Gl=L(u)e�uPL(e�uÆX)du; (4)where the self-similarity kernel Gl=L is the pdf of lnWl=L. Sin
e Wl=L is a login�nitely divisible variable, the Fourier transform of Gl=L is of the formĜl=L(k) = Ĝln l=L(k): (5)From that equation, one easily gets the expression of the �q spe
trum�q = ln Ĝ(�iq): (6)In this framework, the simplest non-linear 
ase is the so-
alled log-normalmodel that 
orresponds to a paraboli
 �q and a Gaussian kernel.2.2 Cas
ade models and magnitude 
orrelationsMultipli
ative 
as
ading pro
esses are examples of pro
esses satisfying the
as
ading rule (3) for dis
rete s
ales ln = 2�nL. The 
as
ade paradigm is that3



the lo
al variation of the pro
ess ÆlnX at s
ale ln is obtained from the variationat s
ale L as ÆlnX(t) =  nYi=1Wi! ÆLX(t) (7)where Wi are i.i.d. random positive fa
tors. Realizations of su
h pro
esses 
anbe 
onstru
ted using orthonormal wavelet bases as dis
ussed in Ref. [2℄. If onede�nes the magnitude !(t; l) at time t and s
ale l as the logarithm of \lo
alvolatility" [3℄: !(t; l) = 12 ln(jÆlX(t)j2); (8)then the previous 
as
ade equation be
omes a simple random walk equation,at �xed time t, versus the logarithm of s
ales:!(t; ln+1) = !(t; ln) + ln(Wn+1) :The 
orrelation stru
ture implied by multifra
tal 
as
ades has already been ad-dressed in previous works [3,2,1℄. It has been shown that ÆlX(t)2 is long-range
orrelated. More pre
isely, one 
an show that it generally leads to magnitude
orrelation fun
tions that behave likeC!(�; l1; l2) = Cov(!(t; l1); !(t+ �; l2)) ' ��2 ln(�=L); L > � >> max(l1; l2):(9)Let us note that this behavior has been shown to provide good �ts of theempiri
al estimates of the 
orrelation fun
tions from �nan
ial time-series [3℄.As explained in Ref. [4℄, the problem with 
as
ade pro
esses is that theyinvolve representations (e.g., orthonormal wavelet bases) that are 
onstru
tedon a dis
rete set of s
ales (e.g. dyadi
 s
ales ln = 2�n) and in turn 
annotbe invariant under 
ontinuous s
ale dilations. To our knowledge, the MRW'sare the only known multifra
tal pro
esses with 
ontinuous dilation invarian
e,i.e., pro
esses that satisfy Eq. (4) for a 
ontinuous values of l.2.3 Introdu
ing the MRW modelAn MRW pro
ess X(t) is the limit pro
ess (when the time dis
retization step�t goes to 0) of a standard random walk X�t[k℄ with a sto
hasti
 varian
e(volatility), i.e., X(t) = lim�t!0X�t(t);4



with X�t(t) = t=�tXk=1 ��t[k℄e!�t[k℄;where e!�t[k℄ is the sto
hasti
 volatility and ��t a gaussian white noise ofvarian
e �2�t and whi
h is independant of !�t. The 
hoi
e for the pro
ess!�t is simply di
tated by the fa
t that we want the s
aling (1) to be exa
tfor all time s
ales l � L. Some long but straightforward 
omputations [4℄show that this is a
hieved if !�t is a stationary Gaussian pro
ess su
h thatE (!�t[k℄) = �Var (!�t[k℄) and whose 
ovarian
e isCov(!�t[k℄; !�t[l℄) = �2 ln ��t[jk � lj℄where ��t[k℄ = 8><>: L(jkj+1)�t for jkj � L=�t� 11 otherwiseLet us note that it 
orresponds to a log-normal volatility whi
h is 
orrelatedup to a time lag L and that it is mimi
ing Eq (9).One 
an then prove [4℄ the multifra
tal s
aling propertyM(q; l) = Kql�q ; 8l � L; (10)where Kq (for q even) isKq = Lq=2�q(q � 1)!! 1Z0 du1::: 1Z0 duq=2Yi<j jui � ujj�4�2 ; (11)and �q = (q � q(q � 2)�2)=2: (12)Sin
e �q is a paraboli
 fun
tion, it indi
ates that the self-similarity kernelGl=L whi
h links the pdf's at di�erent time s
ales (Eq. (4)) is Gaussian. Theparameter �2 whi
h governs the non-linearity of �q is 
alled the intermitten
yfa
tor sin
e it 
ontrols how far from a self-similar behavior (i.e., �q linear)the pro
ess is. In the limit �2 = 0, �q be
omes linear, the pro
ess X(t) is aBrownian motion and Wl=L 
orresponds to a deterministi
 value.Let us note that, one 
an prove [6℄ that, in the 
ase of MRW pro
esses, theequality in law in Eq. (3) is not only true for �xed time t but basi
ally alsofor the pro
esses themselves (i.e., when t is varying). In that 
ase Wl=L is arandom variabble whi
h does not depend on time.5



Fig. 1. Modelling intraday Japenese Yen futures using MRW. The MRW isused to model the de-seasonalized logarithm of the time-series displayed in (a). Theparameters have been estimated to �2 ' 4 10�5 year�1, �2 ' 0:02 and L ' 1 year.(a) Plot of the original index time-series : Japenese Yen futures from Mar
h 77 toFebruary 99 (intraday ti
k by ti
k data). (b) Plot of a sample time series of length217 of the MRW model.An expli
it analyti
al formula for Kq 
an be obtained for even q values sin
ethe multiple integral in Eq. (11) 
an be evaluated using the 
elebrated Selbergintegral formula [19℄. One then obtains:Kq = Lq=2�q(q � 1)!! q=2�1Yk=0 �(1� 2�2k)2�(1� 2�2(k + 1))�(2� 2�2(q=2 + k � 1))�(1� 2�2) : (13)Let us note that this last equation seems to indi
ate that the 
riti
al value q�above whi
h the moments of the MRW are in�nite statis�esM(q; l) = +1() q � q� = 2 + 12�2 : (14)Moreover, one 
an show [4℄ that the magnitude 
orrelation C!(�; l1; l2) behaveslike in Equation (9), i.e.,C!(�; l1; l2) ' ��2 ln� �L� ; L > � >> max(l1; l2) : (15)
3 Modelling return 
u
tuations using MRWMRW pro
esses 
an be used to model the return 
u
tuations of a �nan
ialtime-series [13℄. In this 
ase, the pri
e S(t) of the asset will be modelled by eX(t)where X(t) is an MRW. For this purpose 3 parameters need to be estimated: the varian
e �2, the integral s
ale L and the intermitten
y parameter �2 ofthe MRW X(t). The varian
e �2 
an be estimated using the simple relation6



Fig. 2. Multifra
tal exponents �q spe
trum estimations for the Yen futures 
u
-tuations (Æ) and for the MRW model predi
tion (�) (Eq. (12)).V ar(X(t)) = �2t. Both, the de
orrelation s
ale L and the parameter � 
an beobtained from the expression (15) of the magnitude 
orrelation. Let us notethat �2 
an be also estimated independantly from the �q spe
trum (Eq. (12)).The 
onsisten
y between these two 
ompletly di�erent estimators of � is avery good test for the validity of the model.We have estimated the parameters �2, �2 and L for the time-series of thejapenese Yen futures from Mar
h 1977 to February 1999 (ti
k by ti
k intra-day data). The plots of this �nan
ial time-series and of a realization of the
orresponding MRW model are shown in �gure 1.3.1 Fitting the multifra
tal exponents �qAs shown in �gure 2, the MRW model reprodu
es very pre
isely the paraboli
�q spe
trum. Let us re
all that the �q exponents des
ribe, through the self-similarity kernel Gl=L and Eqs (6), (4), how the return 
u
tuation pdf evolveswhen going from one time s
ale to another. Thus this �gure shows that theself-similarity kernel Gl=L (resp. the random variable Wl=L) is very 
lose to aGaussian fun
tion (resp. log-normal random variable).3.2 Fitting the moments M(q; l)In the previous se
tion we have shown that the s
aling behavior of the momentsM(q; l) of the Yen time-series are well �tted using the MRW model. However,it does not say anything about whether the values themselves of M(q; l) arewell �tted or not. Figure 3 displays lnM(q; l) as a fun
tion of q for threedi�erent values of l (l = 1 day, 5 days and 10 days). It appears 
learly that thenumeri
al results obtained on the Yen time-series mat
h 
losely the theoreti
alpredi
tion (Eq. (13)) obtained for the MRW model.7



Fig. 3. q-order moments M(q; l) of ÆlX. lnM(q; l) (Eq. (2)) is displayed versus qfor (from bottom to top) l = 1; 5 and 10 days. lnM(q; l) has been 
omputed for theYen futures 
u
tuations (�) whi
h daily 
u
tuation varian
e has been arbitrarilynormalized to 1. The theoreti
al predi
tion (Eq. (13)) obtained for the MRW model
orresponds to the solid line.

Fig. 4. Correlation fun
tion C! of the magnitude: The 
orrelation fun
tionC!(�; l1; l2) versus ln(�). From Eq. (15), we expe
t these plots to be straight linesas long as L > � >> max(l1; l2). C!(�; l1; l2) for the Yen futures 
u
tuations isdisplayed for l1 = l2 =1 day (Æ) and for l1 =1 day and l2 = 5 days (�). The solidline 
orresponds to the predi
tion �2 ln(L=�).3.3 Fitting the 
orrelation stru
ture of the magnitude C!(�; l1; l2)In this se
tion we have 
omputed the magnitude 
orelation fun
tionC!(�; l1; l2)on the Yen time-series. The 
omputation has been made both at the same s
ale(l1 = l2 = 1 day) and at two di�erent s
ales (l1 = 1 day and l2 = 5 days). Asexplained in se
tion 2.3, we expe
t that, as long as L > � >> max(l1; l2) weexpe
t C! to be proportional to ln(L=�) (Eq. (15)). Moreover the slope shouldbe the intermitten
y fa
tor �2 ' 0:02. As illustrated in �gure 4, the numeri
al8



experiments are in very good agreement with the theoreti
al predi
tion.4 Con
lusionIn this paper, we have shown that Multifra
tal Random Walks (MRW) 
anbe used for modelling the time-
u
tuations of a single-asset. It is able toreprodu
e the main observed 
hara
teristi
s of �nan
ial time-series: no 
orre-lation between pri
e variations, long-range volatility 
orrelations, linear andnon-linear 
orrelation between assets. Moreover, it reprodu
es pre
isely theq-order moments of the series (for a wide range of q's) and the volatility 
or-relation stru
ture in between di�erent time-s
ales. All of these features 
an be
ontrolled using only 3 parameters : the intermitten
y fa
tor �2 whi
h both
ontrols the s
ale invarian
e properties and the volatility 
orrelation, the inte-gral s
ale L whi
h 
ontrols the volatility de
orrelation s
ale and the varian
e�2 of the 
u
tuations.Some preliminary works have been done on extending this framework to amultivariate framework [14,5℄. The so-obtained Multivariate MRW (MMRW)is likely to 
apture the whole return joint law of a basket of assets at alltime horizons. We are 
urrently performing some extensive numeri
al experi-ments on multivariate �nan
ial data and started to use MMRW for (histori
al)volatility and value at risk predi
tion as well as for portfolio management.5 A
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