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to fat tail distributions at �ne sales. In a reent work [14℄, Muzy et. al.have elaborated a \multivariate multifratal" framework that aounts for thetime sale dependene of the mutual statistial properties of several time-series. Though initially introdued for modelling single asset variations, theMRW models an be naturally extended in order to �t this new multivariateframework [5℄. In this paper we will fous on single asset modelling.The goal of this paper is to show, using real data, that eventhough MRW'sinvolve only 3 parameters, they allow one to apture very preisely both themultifratal statistis and the orrelation struture of single assets. The paperis organized as follows. In setion 2, after realling briey the main notationsand de�nitions involved in the \lassial" multifratal framework, we introduethe MRW model de�ned in [4℄, reall its main properties and give expliitanalytial expressions of the q-order moments of its inrements and of thevolatility orrelation struture. In setion 3, we show that MRW models areable to reprodue very preisely many statistial quantities of �nanial time-series. They are shown to reprodue (i) the multifratal statistis (i.e., thesaling exponents), (ii) the values of the q-order moments of the inrementsfor a wide range of q's and (ii) the orrelation struture of the volatility bothat a given time-sale and in between two di�erent time-sales. Conlusionsand prospets are reported in setion 4.2 The Multifratal Random Walk (MRW) model2.1 Multifratal proessesA multifratal proess is a proess wih has some sale invariane properties.These properties are generally haraterized by the exponents �q whih governthe power law saling of the absolute moments of its utuations, i.e.,M(q; l) = Kql�q ; (1)where M(q; l) = E (jÆlX(t)jq) = E (jX(t+ l)�X(t)jq) ; (2)where X(t) is supposed to be a stohastis proess with stationary inrements.Some very popular stohasti proesses are the so-alled self-similar proesses[18℄. They are de�ned as proesses X(t) whih have stationary inrements andwhih verify (in law) ÆlX(t) =law (l=L)HÆLX(t); 8l; L > 0:2



For these proesses, one easily gets �q = qH, i.e., the �q spetrum is a linearfuntion of q. Widely used examples of suh proesses are (frational) Brow-nian motions (fBm) or Levy walks.However, many empirial studies have shown that the �q spetrum of returnutuations is a non linear onvex funtion. Let us note that, using a simpleargument, it is easy to show that if �q is a non-linear onvex funtion thesaling behavior (1) annot hold for all sales l but only for sales smallerthan an arbitrary large sale L that is generally referred to as the integralsale. A very ommon approah originally proposed by several authors in the�eld of fully developed turbulene [15,17,11,9,8℄, has been to desribe suhproesses in the sale domain, desribing the asading proess that rules howthe utuations evolves when going from oarse to �ne sales. Basially, itamounts in stating that the utuations at the integral sale L are linked tothe ones at a smaller sale l < L using the asading ruleÆlX(t) =law Wl=LÆLX(t); for �xed t; (3)where Wl=L is a log in�nitely divisible stohasti variable whih depends onlyon the ratio l=L. A straightforward omputation [8℄ then shows that the pdfPl(ÆX) of ÆlX hanges when varying the time-sale l aording to the rulePl(ÆX) = Z Gl=L(u)e�uPL(e�uÆX)du; (4)where the self-similarity kernel Gl=L is the pdf of lnWl=L. Sine Wl=L is a login�nitely divisible variable, the Fourier transform of Gl=L is of the formĜl=L(k) = Ĝln l=L(k): (5)From that equation, one easily gets the expression of the �q spetrum�q = ln Ĝ(�iq): (6)In this framework, the simplest non-linear ase is the so-alled log-normalmodel that orresponds to a paraboli �q and a Gaussian kernel.2.2 Casade models and magnitude orrelationsMultipliative asading proesses are examples of proesses satisfying theasading rule (3) for disrete sales ln = 2�nL. The asade paradigm is that3



the loal variation of the proess ÆlnX at sale ln is obtained from the variationat sale L as ÆlnX(t) =  nYi=1Wi! ÆLX(t) (7)where Wi are i.i.d. random positive fators. Realizations of suh proesses anbe onstruted using orthonormal wavelet bases as disussed in Ref. [2℄. If onede�nes the magnitude !(t; l) at time t and sale l as the logarithm of \loalvolatility" [3℄: !(t; l) = 12 ln(jÆlX(t)j2); (8)then the previous asade equation beomes a simple random walk equation,at �xed time t, versus the logarithm of sales:!(t; ln+1) = !(t; ln) + ln(Wn+1) :The orrelation struture implied by multifratal asades has already been ad-dressed in previous works [3,2,1℄. It has been shown that ÆlX(t)2 is long-rangeorrelated. More preisely, one an show that it generally leads to magnitudeorrelation funtions that behave likeC!(�; l1; l2) = Cov(!(t; l1); !(t+ �; l2)) ' ��2 ln(�=L); L > � >> max(l1; l2):(9)Let us note that this behavior has been shown to provide good �ts of theempirial estimates of the orrelation funtions from �nanial time-series [3℄.As explained in Ref. [4℄, the problem with asade proesses is that theyinvolve representations (e.g., orthonormal wavelet bases) that are onstrutedon a disrete set of sales (e.g. dyadi sales ln = 2�n) and in turn annotbe invariant under ontinuous sale dilations. To our knowledge, the MRW'sare the only known multifratal proesses with ontinuous dilation invariane,i.e., proesses that satisfy Eq. (4) for a ontinuous values of l.2.3 Introduing the MRW modelAn MRW proess X(t) is the limit proess (when the time disretization step�t goes to 0) of a standard random walk X�t[k℄ with a stohasti variane(volatility), i.e., X(t) = lim�t!0X�t(t);4



with X�t(t) = t=�tXk=1 ��t[k℄e!�t[k℄;where e!�t[k℄ is the stohasti volatility and ��t a gaussian white noise ofvariane �2�t and whih is independant of !�t. The hoie for the proess!�t is simply ditated by the fat that we want the saling (1) to be exatfor all time sales l � L. Some long but straightforward omputations [4℄show that this is ahieved if !�t is a stationary Gaussian proess suh thatE (!�t[k℄) = �Var (!�t[k℄) and whose ovariane isCov(!�t[k℄; !�t[l℄) = �2 ln ��t[jk � lj℄where ��t[k℄ = 8><>: L(jkj+1)�t for jkj � L=�t� 11 otherwiseLet us note that it orresponds to a log-normal volatility whih is orrelatedup to a time lag L and that it is mimiing Eq (9).One an then prove [4℄ the multifratal saling propertyM(q; l) = Kql�q ; 8l � L; (10)where Kq (for q even) isKq = Lq=2�q(q � 1)!! 1Z0 du1::: 1Z0 duq=2Yi<j jui � ujj�4�2 ; (11)and �q = (q � q(q � 2)�2)=2: (12)Sine �q is a paraboli funtion, it indiates that the self-similarity kernelGl=L whih links the pdf's at di�erent time sales (Eq. (4)) is Gaussian. Theparameter �2 whih governs the non-linearity of �q is alled the intermittenyfator sine it ontrols how far from a self-similar behavior (i.e., �q linear)the proess is. In the limit �2 = 0, �q beomes linear, the proess X(t) is aBrownian motion and Wl=L orresponds to a deterministi value.Let us note that, one an prove [6℄ that, in the ase of MRW proesses, theequality in law in Eq. (3) is not only true for �xed time t but basially alsofor the proesses themselves (i.e., when t is varying). In that ase Wl=L is arandom variabble whih does not depend on time.5



Fig. 1. Modelling intraday Japenese Yen futures using MRW. The MRW isused to model the de-seasonalized logarithm of the time-series displayed in (a). Theparameters have been estimated to �2 ' 4 10�5 year�1, �2 ' 0:02 and L ' 1 year.(a) Plot of the original index time-series : Japenese Yen futures from Marh 77 toFebruary 99 (intraday tik by tik data). (b) Plot of a sample time series of length217 of the MRW model.An expliit analytial formula for Kq an be obtained for even q values sinethe multiple integral in Eq. (11) an be evaluated using the elebrated Selbergintegral formula [19℄. One then obtains:Kq = Lq=2�q(q � 1)!! q=2�1Yk=0 �(1� 2�2k)2�(1� 2�2(k + 1))�(2� 2�2(q=2 + k � 1))�(1� 2�2) : (13)Let us note that this last equation seems to indiate that the ritial value q�above whih the moments of the MRW are in�nite statis�esM(q; l) = +1() q � q� = 2 + 12�2 : (14)Moreover, one an show [4℄ that the magnitude orrelation C!(�; l1; l2) behaveslike in Equation (9), i.e.,C!(�; l1; l2) ' ��2 ln� �L� ; L > � >> max(l1; l2) : (15)
3 Modelling return utuations using MRWMRW proesses an be used to model the return utuations of a �nanialtime-series [13℄. In this ase, the prie S(t) of the asset will be modelled by eX(t)where X(t) is an MRW. For this purpose 3 parameters need to be estimated: the variane �2, the integral sale L and the intermitteny parameter �2 ofthe MRW X(t). The variane �2 an be estimated using the simple relation6



Fig. 2. Multifratal exponents �q spetrum estimations for the Yen futures u-tuations (Æ) and for the MRW model predition (�) (Eq. (12)).V ar(X(t)) = �2t. Both, the deorrelation sale L and the parameter � an beobtained from the expression (15) of the magnitude orrelation. Let us notethat �2 an be also estimated independantly from the �q spetrum (Eq. (12)).The onsisteny between these two ompletly di�erent estimators of � is avery good test for the validity of the model.We have estimated the parameters �2, �2 and L for the time-series of thejapenese Yen futures from Marh 1977 to February 1999 (tik by tik intra-day data). The plots of this �nanial time-series and of a realization of theorresponding MRW model are shown in �gure 1.3.1 Fitting the multifratal exponents �qAs shown in �gure 2, the MRW model reprodues very preisely the paraboli�q spetrum. Let us reall that the �q exponents desribe, through the self-similarity kernel Gl=L and Eqs (6), (4), how the return utuation pdf evolveswhen going from one time sale to another. Thus this �gure shows that theself-similarity kernel Gl=L (resp. the random variable Wl=L) is very lose to aGaussian funtion (resp. log-normal random variable).3.2 Fitting the moments M(q; l)In the previous setion we have shown that the saling behavior of the momentsM(q; l) of the Yen time-series are well �tted using the MRW model. However,it does not say anything about whether the values themselves of M(q; l) arewell �tted or not. Figure 3 displays lnM(q; l) as a funtion of q for threedi�erent values of l (l = 1 day, 5 days and 10 days). It appears learly that thenumerial results obtained on the Yen time-series math losely the theoretialpredition (Eq. (13)) obtained for the MRW model.7



Fig. 3. q-order moments M(q; l) of ÆlX. lnM(q; l) (Eq. (2)) is displayed versus qfor (from bottom to top) l = 1; 5 and 10 days. lnM(q; l) has been omputed for theYen futures utuations (�) whih daily utuation variane has been arbitrarilynormalized to 1. The theoretial predition (Eq. (13)) obtained for the MRW modelorresponds to the solid line.

Fig. 4. Correlation funtion C! of the magnitude: The orrelation funtionC!(�; l1; l2) versus ln(�). From Eq. (15), we expet these plots to be straight linesas long as L > � >> max(l1; l2). C!(�; l1; l2) for the Yen futures utuations isdisplayed for l1 = l2 =1 day (Æ) and for l1 =1 day and l2 = 5 days (�). The solidline orresponds to the predition �2 ln(L=�).3.3 Fitting the orrelation struture of the magnitude C!(�; l1; l2)In this setion we have omputed the magnitude orelation funtionC!(�; l1; l2)on the Yen time-series. The omputation has been made both at the same sale(l1 = l2 = 1 day) and at two di�erent sales (l1 = 1 day and l2 = 5 days). Asexplained in setion 2.3, we expet that, as long as L > � >> max(l1; l2) weexpet C! to be proportional to ln(L=�) (Eq. (15)). Moreover the slope shouldbe the intermitteny fator �2 ' 0:02. As illustrated in �gure 4, the numerial8



experiments are in very good agreement with the theoretial predition.4 ConlusionIn this paper, we have shown that Multifratal Random Walks (MRW) anbe used for modelling the time-utuations of a single-asset. It is able toreprodue the main observed harateristis of �nanial time-series: no orre-lation between prie variations, long-range volatility orrelations, linear andnon-linear orrelation between assets. Moreover, it reprodues preisely theq-order moments of the series (for a wide range of q's) and the volatility or-relation struture in between di�erent time-sales. All of these features an beontrolled using only 3 parameters : the intermitteny fator �2 whih bothontrols the sale invariane properties and the volatility orrelation, the inte-gral sale L whih ontrols the volatility deorrelation sale and the variane�2 of the utuations.Some preliminary works have been done on extending this framework to amultivariate framework [14,5℄. The so-obtained Multivariate MRW (MMRW)is likely to apture the whole return joint law of a basket of assets at alltime horizons. We are urrently performing some extensive numerial experi-ments on multivariate �nanial data and started to use MMRW for (historial)volatility and value at risk predition as well as for portfolio management.5 AknowledgementWe aknowledge Matt Lee and Didier Sornette for the permission to use their�nanial data. We are also very grateful to Alain Arneodo and Didier Sornettefor interesting disussions. All the omputations in this paper have been madeusing the free GNU liensed sofware LastWave [12℄.Referenes[1℄ A. Arneodo, E. Bary, S. Manneville and J.F. Muzy, Phys. Rev. Lett 80, 708(1998).[2℄ A. Arneodo, E. Bary and J.F. Muzy, J. Math. Phys. 39, 4163 (1998).[3℄ A. Arneodo, J.F. Muzy and D. Sornette, Eur. Phys. J. B, 2 1998, 277[4℄ E. Bary, J. Delour and J.F. Muzy, A multifratal random walk, Submitted toPhys. Rev. E (Marh 2001). 9
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