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Abstract

We consider branching processes in discrete time for structured population in
varying environment. Each individual has a trait, which belongs to some general
state space and both the reproduction law and the trait inherited by the offsprings
may depend on the trait of the mother and the environment. We study in this pa-
per the long time behavior of the population and the ancestral lineage of typical
individuals under general assumptions. We focus on the mean growth rate and the
trait distribution among the population. A key role is played by well chosen (pos-
sibly non-homogeneous) Markov chains and the approach relies on many-to-one
formulae and the analysis of the genealogy. The applications use large deviations
principles or the Harris ergodicity for these auxiliary Markov chains.
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1 Introduction

We are interested in a branching Markov chain, which means a multitype branching
process whose number of types may be infinite. The environment may evolve in time
and influence the whole population. Before the general definitions, we give an informal
description of the model and explain our motivations. In population dynamics and
populations genetics or in ecology, individual behaviors can be affected by genetic
or phenotypic traits and the environment. Each individual will be characterized by
a trait x taking values in a trait space X , which will be typically a subspace of R

d

giving the size, the age, the position... of the individual. The environment in the
current generation can consist in abiotic parameters (temperature, humidity, wind...).
Both the trait and the environment influence the reproduction law of the individual
(i.e. the number of offsprings) and the distribution of the traits of the offsprings.
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We provide here general statements on the long time behavior relying on auxiliary
Markov chains. This approach allows to get powerful probabilistic tools and avoid the
spectral approach to consider models where the eigenvector associated to the maximal
eigenvalue of the mean operator is degenerated (see the example of Kimmel’s model in
the last section) and models in varying environment.
The number of offsprings of an individual u is denoted by N (u) and its traits is
noted X(u) ∈ X . In each generation n, the set of individuals is a random set Gn and
each individual u ∈ Gn behaves independently. One individual with trait x living in
environment e ∈ E gives birth to N (x,e) individuals. Conditionally on N (x,e) = k, the
distribution of the k traits of the offspring’s is distributed as P (k)(x,e, .).

In the whole paper, we assume that X and E are measurable spaces endowed with
their σ -algebra BX and BE) respectively. Moreover T : E → E a measurable application
providing the environment dynamics. For each k ≥ 1 and e ∈ E, let P (k)(.,e, .) be a
function from X × (BX )k into [0,1] which satisfies
a) For each x ∈ X , P (k)(x,e, .) is a probability measure on (X k , (BX )k).
b) For each A ∈ (BX )k , P (k)(.,e,A) is a BX measurable function.

We use the classical Ulam-Harris-Neveu notations for discrete trees. Each individual in
the population is an element of

U = {∅} ∪
⋃
n≥1

(N∗)n

and is denoted by u = u1u2 · · ·un with ui ∈N∗ = {1,2, . . . }. Thus ∅ is the root of the tree
and u = u1u2 · · ·un is the un’th child of the un−1’th child of the . . .u1’st child of the root.
We denote by |u| = n the generation of the individual u. If u = u1 · · ·un and v = v1 · · ·vm,
then uv = u1 · · ·unv1 · · ·vm. For two different individuals u,v of a tree, we write u ≤ v if u
is an ancestor of v, i.e. ∃w ∈ U such that v = uw. Finally, we denote by u ∧ v the nearest
common ancestor of u and v. This latter is the element w ∈ U such that w ≤ u and w ≤ v
whose generation |w| is maximal.
For any generation, each individual with trait x ∈ X which lives in environment e ∈ E
gives birth independently to a random number of offsprings, whose law both depend on
x and e. This number of offsprings is distributed as an integer valued random variable
N (x,e) whose mean is denoted by

m(x,e) = E(N (x,e)).

In the whole paper, we assume that m(x,e) ∈ (0,∞) for each x ∈ X ,e ∈ E.

Let us consider a family of independent integer valued random variables
(N (u,x,e) : u ∈ U ,x ∈ X ,e ∈ E) such that for any u ∈ U , x ∈ X and e ∈ E, N (u,x,e)
is distributed as N (x,e). The branching Markov chain (X(u) : u ∈ Gn)n in environment
e starting from one single individual with trait x ∈ X is defined recursively as follows
under the probability Pe,δx :
i) G0 = {∅} and X(∅) = x.
ii) For each n ≥ 0 and u ∈Gn, we write Ne(u) =N (u,X(u),T ne) and we set

Gn+1 = {ui : u ∈Gn,1 ≤ i ≤Ne(u)}
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and for any collection (Av : v ∈ U ) of measurable subsets of X ,

Pe,δx

 ⋂
u∈Gn,i≤Ne(u)

{X(ui) ∈ Aui}
∣∣∣ (X(u) : u ∈Gm,m ≤ n)


=

∏
u∈Gn

P (Ne(u))
(
X(u),T ne,Au1 × . . .×AuNe(u)

)
Under Pe, the branching Markov chain X = (X(u) : u ∈Gn)n is a multitype branching

process in the varying environment e where the type takes values in X and between
generation n and n + 1 for n ∈ N, the individuals live in environment T ne. Let us
describe an example which cover our motivations and applications for modeling in
varying environment. Multitype branching process in varying environment have
been largely studied in fixed environment for finite number of types and we refer
e.g. to [M71] for an overview. Much less is known or understood in the infinite type
case and we here simply mention [M67] for a first work in this vein. The case of
branching random walk has attracted lots of attention from the pioneering works of
Biggins (see e.g. [B77, B90]) and inspired the induced (or auxiliary) Markov chains
developed here. Then X = R

d and the transitions P (k) are invariant by translation,
i.e. P (k)(x,e, (x +A1) · · · (x +Ak)) does not depend on x ∈ X . Recently, fine results have
been obtained about the extremal individuals and their genealogy for such models,
see e.g. [HS09, AS10] and branching random walk in random environment have been
investigated. In particular recurrence properties [CP07a], the survival and the growth
rate [BCGH93, GMPV10, CP07b, CY11] and central limit theorems [Y08, N11] have
been obtained.

Spine technics for homogeneous branching processes have been well developed from
the works on size biased trees of Kallenberg [K77], Chauvin and Rouault and Wakol-
binger [CR88, CRW91] and Lyons, Peres and Pemantle [LPP95, L97]. In the multitype
case [KLPP97, A00, GB03], they rely on spectral tools and on the martingale associated
to the maximal eigenvector of the mean operator (see Appendix). In varying environ-
ment, we mention[G99] for a spine description of the tree, while in the multitype case,
spectral tools are no longer as powerful. We mention [C89] for the asymptotic behavior
of the distribution of traits in branching processes in varying environment but the
assumptions seem difficult to check when coming to applications. We use here auxiliary
Markov chains, for which large deviations or geometric ergodicity can be obtained in
varying or random environment (see Section 4.1 and 4.2), or for degenerated limiting
distributions (see Section 4.3), using Doeblin and Lyapounov type conditions. We
are motivated by applications to models for biology and ecology such as cell division
models for cellular aging [G07] or parasite infection [B08] and reproduction-dispersion
models in non-homogeneous environment [BL12] on which we will come back along
the paper.

Notation. The space χ×E is endowed with the product topology, which make it polish.
For convenience we write BX k×Ei = (BX )k × (BE)i the product σ -algebra for k, i ≥ 0. More-
over we denote B(S) the set of measurable functions on S endowed with its σ -algebra.
We denoteM(S), resp.Mf (S) andM1(S) the set of (non-negative) measures, resp. finite
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measure and probability distribution of a measurable space S. When S is a topological
space, we endowM1(S) with the weak topology. We recall that it is the smallest topol-
ogy such that µ ∈ M1(S) →

∫
S
f (z)µ(dz) is continuous as soon as f is real, continuous

and bounded on S.
Finally, we write , ν(f ) =

∫
X f (y)ν(dy) when ν is a measure and f a measurable function

on X . We are interested in the evolution of the random measure Zn ∈Mf (X ) associated
to the traits of the individuals:

Zn :=
∑
u∈Gn

δX(u), Zn(f ) =
∑
u∈Gn

f (X(u))

and more specifically by Zn(An) = #{u ∈ Gn : X(u) ∈ An}. We note that #Gn = Zn(X ) is
the total size of the population in generation n and we also define the measure of the
scaled traits of the individuals in generation n :

fn.Zn =
∑
u∈Gn

δfn(X(u)).

Organization of the paper. First, we provide in Section 2.1 an expression of the mean
growth rate of the population :

lim
n→∞

1
n

logEe,δx(Zn(X ))

in terms of large deviations of an auxiliary Markov chain. This gives an expression of the
well known Perron Frobenius root (or Lyapounov exponent in random environment),
with a probabilistic trajectorial interpretation in terms of reproduction of individuals
and dispersion of the traits. It relies on a first usual many-to-one formula (Lemma 1)
weighted with total mean number of offspring along the ancestral lineage. It is made
more explicit for some ergodic stationary random environment using a variational prin-
ciple due to [S94] (Section 4.1).
Then, we study in Section 2.2 the repartition of the traits among the population and
focus on the asymptotic behavior of the proportions of individuals whose trait belong
to A, i.e. Zn(A)/Zn(X ). For that purpose, we use another non-homogeneous auxiliary
Markov chain arising from the many-to-one formula (Section 3.1) and adapt computa-
tions in the works of [AK98a, G07, BH13]. This extends classical law of large numbers
to both varying environment and trait dependent reproduction. Let us add that we take
into account some possible renormalization of the traits via a function fn to cover non
recurrent positive cases.
Section 3 is dedicated to the proofs of these results and Section 4 to examples and ap-
plications.

2 Main results

2.1 Growth rate of the population

We give an expression of the growth rate in terms of a time non-homogeneous
Markov chain X associated with a random lineage. We follow a lineage by choosing
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uniformly at random one of the offsprings at each generation, biased by the number of
children, and the transition kernel P of X is defined for x ∈ X, e and A ∈ BX by

P (x,e,A) :=
1

m(x,e)

∑
k≥1

P(N (x,e) = k)
k∑
i=1

P (k)(x,e,X i−1AX k−i)

More precisely, the law of X under is given for n ≥ 0 by

Pe(Xn+1 ∈ A |Xn = x) = P (x,T ne,A).

In this section, we assume that X is a locally compact polish space endowed with a com-
plete metric and BX is the associated Borel σ -algebra. Moreover E is a Polish space and
BE is the associated Borel σ -algebra. We consider now e ∈ E and introduce the follow-
ing assumption, which ensures that the empirical measure asscoiated with (Xk ,T ke)k≥0
satisfies a Large Deviation Principle (LDP) with good rate function Ie.

Assumption 1. The function Ie : X ×E→R∪{∞} is lower semi-continuous for the weak
topology and with compact level subsets 1 and

Le
n =

1
n+ 1

n∑
k=0

δXk ,T ke

satisfies for every x ∈ X ,

limsup
n→∞

1
n

logPe,x(Ln ∈ F) ≤ − inf
z∈F
Ie(z)

for every closed set F ofM1(X ×E) and

liminf
n→∞

1
n

logPe,x(Ln ∈O) ≥ − inf
z∈O

Ie(z)

for every open set O ofM1(X ×E).

The existence of such a principle is classical for fixed environment (i.e. E = {e}, T e = e),
finite trait space X , under irreducibility assumption. We refer to Theorem 3.1.6 in
[DZ98]. We note that the principle can be extended to periodic environments, taking
care of the irreducibility. This is a challenging question in random environment and
we use a LDP principle in Proposition 1 in Section 4.1 due to [S94] for some stationary
ergodic environments.

In fixed environment and finite state space, the mean growth rate % of the population
is given by the maximal eigenvalue of the operator corresponding to the mean number
of offsprings, due to Perron-Frobenius theorem. Collatz-Wielandt formula provides a
min-max representation of %, while Krein-Rutman theorem gives an extension to infi-
nite dimension space requiring compactness of the operator m and strict positivity, see
also Appendix for complements in the homogenous framework.
In the random environment case, it corresponds to the Lyapounov exponent and
quenched asymptotic results can be obtained in the case when X is finite [FK60]. Then,

1 It means that {µ ∈M1(X ×E) : I(µ) ≤ l} is compact for the weak topology for any l ∈R
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the process is a branching process in random environment and we refer to [AK71, K74]
for extinction criteria and [C89, T88] for its growth rate.
To go beyond these assumptions and get an interpretation of the growth rate in terms
of reproduction-dispersion dynamics, we provide here an other characterization. This
is a functional large deviation principle relying on Varadhan’s lemma. It follows the
approach of [BCGH93] in fixed environment and is reminiscent of multiplicative ergod-
icity in [MT09]. It allows to decouple the reproduction and dispersion in the dynamic
and we refer to [BL12] for motivations in ecology, more specifically for metapopula-
tions, see in particular Theorem 5.3. The next corollary then puts in light the dispersion
strategy followed by typical individuals of the population for large times.

Theorem 1. Assume that Assumption 1 hold and logm : X ×E→ (−∞,∞) is continuous and
bounded. Then, for every x0 ∈ X ,

lim
n→∞

1
n

logEe,δx0
(Zn(X )) = sup

µ∈M1(X×E)

{∫
X×E

log(m(x,e))µ(dxde)− Ie(µ)
}

:= %e

and %e ∈ (−∞,∞). Moreover

Me :=
{
µ ∈M1(X ×E) :

∫
log(m(x,e))µ(dxde)− Ie(µ) = %e

}
is compact and non empty.

In particular, limsupn→∞
1
n logZn(X ) ≤ %e a.s. The limit can hold only on the survival

event. It is the case under classical N logN moment assumption for finite state space
X , see e.g. [LPP95] for one type of individual and fixed environment and [AK71] in
random environment. But it is a delicate problem when the number of types is infinite,
see [A00] for fixed environment using spectral tools.

Under the assumptions of Theorem 1 and %e > 0, we introduce the event

S :=
{

liminf
n→∞

1
n

logZn(X ) ≥ %e

}
=

{
lim
n→∞

1
n

logZn(X ) = %e

}
.

Conditionally on S , #Gn <∞ and we letUn be an individual uniformly chosen at random
in generation n. Let us then focus on its trait frequency up to time n and the associated
environment :

νn(A) :=
1

n+ 1
#{0 ≤ i ≤ n : (Xi(Un),T ie) ∈ A} (A ∈ BX×E).

where Xi(u) is the trait of the ancestor of u in generation i when i ≤ |u|, i.e.

Xi(u1 · · ·un) := Xi(u1 · · ·ui).

We check now that the support of νn converges in probability to Me on the event S .

Corollary 1. Under the assumptions of Theorem 1, we further suppose that %e > 0 and that
the probability of S is positive. Then, for every x0 ∈ X ,

Pe,δx0
(νn ∈ C|S)

n→∞−→ 0,

for every closed set C ofM1(X ×E) which is disjoint of Me.
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This result deals with the pedigree [NJ84, JN96, GB03] or ancestral lineage of a typical
individual. It ensures that the trait frequency along the lineage of an individual chosen
uniformly is close to one of the argmax of %e for large times.

We aim now at checking when process indeed grows like its mean and how is the
population spread for large times.

2.2 Law of large numbers and distribution of traits

We consider the mean measure under the environment e and introduce notation :

mn(x,e,A) := Ee,δx (Zn(A)) = Ee,δx (#{u ∈Gn : X(u) ∈ A}) (A ∈ BX ).

It yields the mean number of descendant in generation n, whose trait belongs to A, of an
initial individual with trait x. By now, we assume that for all x ∈ X ,e ∈ E and n ≥ 0,

mn(x,e,X ) <∞.

We define a new family of Markov kernels (Qn : n ≥ 1) by

Qn(x,e,A) :=
∫
A
m1(x,e,dy)

mn−1(y,T e,X )
mn(x,e,X )

(1)

for A ∈ B(X ). The fact that Qn(x,e,X ) = 1 for all n ∈ N,x ∈ X ,e ∈ E comes directly
from the branching property. We introduce the associated semigroup, more precisely
the successive composition of (Qj )j between the generations i and n defined as follows :

Qi,n(x,e,A) =Qn−i(x,T
ie, .) ∗Qn−i−1(.,T i+1e, .) ∗ · · · ∗Q1(.,T n−1e, .)(A),

for A ∈ BX , where we use notation Q(x, .) ∗Q′(., .)(A) =
∫
X Q(x,dy)Q′(y,A). With a slight

abuse, we also write Q(λ,e, f )(x) =
∫
X 2 λ(dx)Q(x,e,dy)f (y) when λ is a probability

measure and f a measurable (positive or bounded) function.

We consider the empirical distribution of traits and prove that its asymptotic behav-
ior is directly linked to the ergodic behavior of the auxiliary Markov chain associated to
(Qi,n : i = 0, . . . ,n), being inspired and extending results of Athreya [AK98a, AK98b] or
[G07]. First, we assume that the population has a positive growth rate and prove the a.s.
convergence of the proportion of individuals with a given trait, under some uniform
ergodic behavior of the auxiliary Markov chain. Then we relax the assumption on the
growth rate and partially the uniform ergodicity and prove under L2 assumptions a
weak and strong law of large numbers on the empirical measure.

In the two next parts, we use a transformation fn of the value of the traits in gener-
ation n. It is bound to make the process ergodic if it is not originally. We refer to the
two last subsections for examples but one can have in mind the case when the auxiliary
Markov chain Xn satisfies a central limit theorem, fn(x) = (x−an)/bn and f (Xn) converges
to the same distribution whatever the initial value X0 is. Such convergence hold for ex-
ample for branching random walks. In the last part of this section, we compare the
results obtained (Theorem 2 versus Theorems 3 and 4).
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2.2.1 Branching decomposition and asymptotical distribution of traits

In this part, we focus on the event when the process survives and actually assume
that the population has a positive growth rate :

T :=
{
∀n ≥ 0, Zn(X ) > 0; liminf

n→∞
Zn+1(X )
Zn(X )

> 1
}
.

We have then the following strong law of large numbers on this event.

Theorem 2. Let e ∈ E and f ∈ B(X ) bounded. We assume that there exists a measure ν with
finite first moment such that for all x ∈ X , k, l ≥ 0,

P(N (x,T ke) ≥ l) ≤ ν[l,∞). (2)

Assume also that there exists a sequence (µn)n ofM1(X ) and a sequence (fn)n of B(X ) such
that

sup
λ∈M1(X )
n≥0

∣∣∣Q0,p(λ,T ne, f ◦ fn+p)−µn+p(f )
∣∣∣ −→ 0 (3)

as p→∞. Then, for any x0 ∈ X ,

fn.Zn(f )
Zn(X )

−µn(f )
n→∞−→ 0 Pe,δx0

a.s. on the event T . (4)

This provides a strong law of large numbers relying on the uniform ergodicity (Qi,n : i ≤
n). It extends [AK98a, AK98b] with similar arguments to the non-neutral framework
(the reproduction law may depend on the trait) and to time varying environment. We
refer to Section 4.3 for an application.

2.2.2 L2 convergence and asymptotical empirical measure of traits

In this section, we state weak and strong law of large numbers by combining L2

computations, the ergodicity of the auxiliary Markov chain Y and the position of the
most recent common ancestor of the individuals in generation n.

Assumption 2. Let en ∈ E, F ⊂ B(X ), fn ∈ B(X ) and µn ∈M1(X ) for each n ∈N.
(a) For all λ ∈M1(X ) and i ∈N,

sup
f ∈F

∣∣∣Qi,n(λ,en, f ◦ fn)−µn(f )
∣∣∣ n→∞−→ 0.

(b) For every kn ≤ n such that n− kn→∞,

sup
λ∈M1(X ),f ∈F

∣∣∣Qkn,n(λ,en, f ◦ fn)−µn(f )
∣∣∣ n→∞−→ 0.

We note that in (a) and (b) one can choose λ0 ∈ M1(X ) and take µn(f ) :=
Q0,n(λ0,en, f ◦ fn). Moreover (b) (uniform ergodicity) clearly implies (a). Suffi-
cient conditions will be given in the applications. In particular, they are linked to
Harris ergodic theorem and they can be obtained from Doeblin and Lyapounov type
conditions.

We consider now the genealogy of the population and the time of the most recent
common ancestor of two individuals chosen uniformly.
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Assumption 3. (a) For every ε > 0, there exists K ∈N, such that for n large enough,

Een,δx0
(#{u,v ∈Gn : |u ∧ v| ≥ K})
mn(x0,en,X )2 ≤ ε. (5)

Moreover there exists Ci ∈ B(X 2) such that for any i ∈N, y ∈ X ,

sup
n≥i

mn−i(y,T ien,X )
mn(x0,en,X )

≤ Ci(y) and E

(
max{Ci(X(w))2 : w ∈Gi+1}

)
<∞.

(b) For every K ∈N,

Een,δx0
(#{u,v ∈Gn : |u ∧ v| ≥ n−K})

mn(x0,en,X )2
n→∞−→ 0. (6)

Moreover,
sup
n∈N

Een,δx0
(Zn(X )2)/mn(x0,en,X )2 <∞.

These expressions can be rewritten in terms of normalized variance of Zn(X ) and more
tractable sufficient assumptions can be specified, using Lemma 5, see also the applica-
tions below. We also observe that these assumptions require that each reproduction law
involved in the dynamic has a finite second moment and that mn(x,en,X )→ +∞.
The statement (5) says that the common ancestor is at the beginning of the genealogy.
It is the case for Galton-Watson trees, branching processes in random environment and
many others “regular trees”. The finiteness (6) says that the common ancestor is not at
the end of the genealogy, so it is weaker. For a simple example where (5) is fulfilled but
(6) is not, one can consider the tree Tn which is composed by a single individual until the
generation n−kn and the binary tree between the generations n−kn and n, with kn→∞.

Theorem 3 (Weak LLN). Let en ∈ E, x0 ∈ X , fn : X →X and F be a subset of B(X ) such that
supf ∈F ‖ f ‖∞<∞.

We assume either that Assumptions 2(a) and 3(a) hold or that Assumptions 2(b) and 3(b)
hold. Then, uniformly for f ∈ F ,

fn.Zn(f )−µn(f )Zn(X )
mn(x0,en,X )

n→∞−→ 0 in L2
en,δx0

. (7)

The (uniform) boundedness of f could be relaxed using domination assumptions
following [G07, DM10], but this is not in the scope of this paper. Moreover, Let us
mention that the a.s. convergence may fail in the theorem above, even in the field
of applications we can have in mind. One can think for example of an underlying
genealogical tree growing very slowly and the trait of the individuals are given by i.i.d.
random variables.

We give now a strong law of large numbers, under stronger assumptions, using the
definition

Vi := {(wa,wb) ∈G2
i : |w| = i − 1, a , b}. (8)
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Theorem 4 (Strong LLN). Let e ∈ E, x0 ∈ X and f ∈ Bb(X ).
Assume that

liminf
n→∞

mn(x,e,X ) > 0;
∑
i≥1

Ee,δx0

 ∑
(u1,u2)∈Vi

Vi(e,u1,u2)

 <∞, (9)

and that there exists a sequence of probability measure µn on X such that

sup
i∈N

∑
n≥i

sup
λ∈M1(X )

∣∣∣Qi,n(λ,T ie, f ◦ fn)−µn(f )
∣∣∣2 <∞. (10)

Then Zn(X )/mn(x0,e,X ) is bounded in L2
e,δx0

and

fn.Zn(f )−µn(f )Zn(X )
mn(x0,e,X )

n→∞−→ 0 Pe,δx a.s.

The first assumption is related to the genealogy of the population and the second one is
linked to the ergodic property of the auxiliary Markov chain Y . Both assumptions are
stronger that their counterpart of the previous theorem. We refer to Section 4.2 for an
application.

2.2.3 Comments on the results on the distribution of traits

The two previous Sections 2.2.1 and 2.2.2 deal with the empirical distribution of
traits fn.Zn(f ) and aim at describing the asymptotic behavior of

fn.Zn(1A) = #{u ∈Gn : Xu ∈ f −1
n (A)}

which provides the number of individuals with a given trait. As briefly explained above
(see also the proofs below), the assumptions and the techniques required are different.
The normalization are related but different and respectively given by the total number
of indivuals Zn(X ) at generation n and the mean number mn(x0,e,X ) = E(Zn(X )) of
individuals in generation n. Finally, the limiting distribution µn is inherited from
the same auxiliary inhomogeneous Markov chain given by (Qj )j . Roughly speaking,
if one could replace Zn(X ) by its mean, the conclusion of Theorems 2 and 4 would
be the same, while relying on different assumptions. But finding tractable general
conditions ensuring that the limiting behavior of Zn(X )/mn(x0,e,X ) is non-degenerated
is delicate, even in the homogeneous framework (see the comments in Appendix) or
under L2 assumptions in finite dimension with varying or random environment (see e.g.
[BCN99, C89]). Let us also mention that for a particular class of branching structured
in varying environment and infinite dimension inherited from an aged structure, we
prove in [BC15] a Kesten Stigum result using the speed of convergence of the auxiliary
Markov chain introduced here. We believe that generalizations in these directions (see
also Section 4.2) could be achieved but it is out of the scope of this paper. We make here
only simple links between the two parts.
First, the conclusion of Theorem 2 ensures the conclusion of Theorem 3 since
Zn(X )/mn(x0,e,X ) is bounded in probability. Conversely, under the assumptions of
Theorem 3, the probability of the event {Zn(X )/mn(x0,e,X ) ≥ ε} is lower bounded
for ε small enough by Paley Zygmund inequality . Then, on this event, we note that
fn.Zn(f )/Zn(X )−µn(f )→ 0 in probability as n→∞.
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3 Proofs

3.1 Weighted many-to-one formula and auxiliary Markov chain

We recall that Xi(u) is the trait of the ancestor of u in generation i and B(X k) is the
set of measurable functions on X k . The first formula we provide below provides an ex-
pressions of the ancestral lineages in the size biased tree at a fixed time. It standard in
many related contexts, see e.g. [G07, BH13] for discrete time branching processes (in
the neutral case) and [GB03, BDMT11, C11, HR12, HR13] for continuous time branch-
ing processes. It is a version of the so called many-to-one formulas (or Feynmac-Kac
formula), weighted with respect to the current generation, whose proof in our frame-
work is provided for safe of completeness.

Lemma 1. Let F ∈ B(X k) non-negative. Then, for every e ∈ E and x0 ∈ X ,

Ee,δx0

∑
u∈Gn

F(X0(u), . . . ,Xn(u))

 = Ee,x0

F(X0, . . . ,Xn)
n−1∏
i=0

m(Xi ,T
ie)

 .
Proof. For every f0, . . . , fn ∈ B(X ) non-negative, by branching property

Ee,δx0

∑
u∈Gn

f0(X0(u))× · · · × fn(Xn(u))


=

∫
X
me(δx0

)(dx1)ET e,δx1

 ∑
u∈Gn−1

f1(X0(u))× · · · × fn(Xn−1(u))

 ,
where

me(δx0
)(dx1) = Ee,δx0

(#{u ∈G1 : X(u) ∈ dx1}) =m(x0,e)P (x0,e,dx1).

So by induction

Ee,δx0

∑
u∈Gn

f0(X0(u))× · · · × fn(Xn(u))


= f0(x0)

∫
X n

n−1∏
i=0

m(xi ,T
ie)P (xi ,T

ie,dxi+1)fi+1(xi+1).

This completes the proof by a monotone class argument.

We rewrite now the previous formula to get ride of the weights and make appear the
auxiliary Markov chain giving the traits of typcial individuals in the population. It links
the expectation of the number of individuals whose trait belongs to A to the probability
that the Markov chain Y (n) belongs to A, where (Y (n)

i : i = 0, . . . ,n) is associated with the
transition kernels (Qn−i(.,T ie, .) : i = 0, . . . ,n− 1) :

Pe(Y (n)
i+1 ∈ A |Y

(n)
i = x) =Qn−i(x,T

ie,A)

where x ∈ X , e ∈ E and A ∈ BX .

11



Lemma 2. For all n ∈N,e ∈ E,x0 ∈ X and F ∈ B(X n+1) non-negative, we have

Ee,δx0

∑
u∈Gn

F(X0(u), . . . ,Xn(u))

 =mn(x0,e,X )Ee,x0
(F(Y (n)

0 , . . . ,Y
(n)
n )).

In particular for each f ∈ B(X ) non-negative,

mn(x0,e, f ) =mn(x0,e,X )Q0,n(x0,e, f ).

Additional work would be required to provide a more complete description of the tree
seen from a typical individual. In this paper, we simply mention [G99] for related results
for single type branching process in varying environment.

Proof. By a telescopic argument :

n−1∏
i=0

Qn−i(xi ,T
ie,dxi+1) =

m0(xn,e,X )
mn(x0,e,X )

n−1∏
i=0

m1(xi ,T
ie,dxi+1).

Adding that m1(xi ,T ie,dxi+1) = m(xi ,T ie)P (xi ,T ie,dxi+1), the first part of the lemma is
a consequence of Lemma 1. We then deduce the second part by applying the identity
obtained to F(x0, . . . ,xn) = f (xn).

3.2 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. The previous lemma applied to F = 1 ensures that

Ee,δx0
(Zn(X )) = Ee,δx0

n−1∏
i=0

m(Xi ,T
ie)

 .
Thus

Ee,δx0
(Zn(X )) = Ee,δx0

(
exp

(
n

∫
X×E

log(m(x,e))Le
n−1(dx,de)

))
.

As logm is bounded and continuous by assumption, so is

µ ∈M1(X ×E)→ φ(µ) =
∫
X×E

log(m(x,e))µ(dx,de).

Using the LDP principle satisfied by Le
n, we can apply Varadhan’s lemma (see [DZ98]

Theorem 4.3.1) to the previous function to get the first part of the Theorem. The fact
that %e < ∞ is due to the fact that m is bounded. Moreover m(x,e) > 0 for any x ∈ X
ensures that %e > −∞.

Let us now consider a sequence µn such that

φ(µn)− Ie(µn)
n→∞−→ %e.

Then Ie(µn) is upper bounded, which ensures that µn belongs to a sublevel set. By Defi-
nition 1, such a set is compact and we extract a subsequence µnk which converges weakly
inM(X ,E). As Ie is lower semicontinuous, the limit µ of this subsequence satisfies

liminf
k→∞

Ie(µnk ) ≥ Ie(µ).

12



Recalling that φ is continuous, we get

%e = lim
k→∞

{
φ(µnk )− Ie(µnk )

}
≤ φ(µ)− Ie(µ)

and µ is a maximizer. That ensures that Me is compact and non empty.

Proof of Corollary 1. We define for any individual u ∈Gn

νn(u) =
1

n+ 1

∑
0≤i≤n

δXi (u).

Using Lemma 1 with F(x0, . . . ,xn) = 1l( 1
n+1

∑
0≤i≤n δxi ∈ C), we have

Ee,δx0
(#{u ∈Gn : νn(u) ∈ C}) = Ee,x0

(
exp

(
n

∫
X×E

log(m(x,e))Le
n(dx,de)

)
1Le

n∈C

)
Let C be a closed subset of M1(X × E) which is disjoint of Me. Recalling that X × E is
polish,M1(X × E) endowed with the weak topology can be metrizable by a distance d,
which can be bounded by 1. Then

µ ∈M1(X ×E)→ d(µ,C) = inf
ν∈C

d(µ,ν)

is continuous and bounded, so the function

φ(µ) = −d(µ,C) +
∫
X×E

log(m(x,e))µ(dx,de)

is continuous and bounded from M1(X × E) to R. Applying again Varadhan’s lemma,
we get

limsup
n→∞

1
n

logEe,ν (#{u ∈Gn : νn(u) ∈ C})

≤ Ee,δx0
(exp(nφ(Le

n))

≤ sup{φ(µ)− Ie(µ) : µ ∈M1(X ×E)}.

We add now that
φ(µ)− Ie(µ) ≥ %e

implies that d(µ,C) = 0 and then µ ∈ C. Thus, using as in the end of the previous an
extraction argument and the fact that C ∩Me = ∅ with C closed, we get

sup{φ(µ)− Ie(µ) : µ ∈M1(X ×E)} < %e

and we can choose ρ′ such that

limsup
n→∞

1
n

logEe,δx0
(#{u ∈Gn : νn(u) ∈ C}) < %′ < %e.

Adding that

Pe,δx0
(νn(Un) ∈ C|S) ≤ Ee,δx0

(#{u ∈Gn,νn(u) ∈ C}/Zn(X )|S)

≤ e−%
′n
Ee,δx0

(#{u ∈Gn,νn(u) ∈ C}) /P(S)

for n large enough by definition of S and that the right hand side goes to 0 ends up the
proof.

13



3.3 Proof of Theorem 2

We first state a law of large numbers, which is being used several time. It is an easy
extension of Lemma 1 in [AK98a], which itself is proved using [K72].

Lemma 3. Let {Fn}∞0 be a filtration. Let {Yn,i : n, i ≥ 1} be real valued random variables such
that for each n, conditionally on Fn, {Yn,i : i ≥ 1} are centered independent r.v. Let {Nn : n ≥ 1}
be non-negative integer valued r.v. such that for each n, Nn is Fn measurable.
We assume that there exists a random measure µ with finite first moment such that

∀t > 0, sup
n,i≥1

P(|Yn,i | > t|Fn) ≤ µ(t,∞) a.s.

Then
1
Nn

Nn∑
i=1

Yn,i
n→∞−→ 0

a.s. on the event {∀n ≥ 0 :Nn > 0, liminfn→∞Nn+1/Nn > 1}.

Proof. The proof can be simply adapted from the proof of Lemma 1 in [AK98a]. For any
δ > 0, n0 ≥ 2 and l > 1, we define

An :=


∣∣∣∣∣∣∣ 1
Nn

Nn∑
i=1

Yn,i

∣∣∣∣∣∣∣ > δ; ∀k = n0, . . . ,n :
Nk
Nk−1

≥ l


and prove similarly that

∑
n≥n0

P(An|Fn) < ∞ using the domination by µ. This yields
the expected a.s. convergence on the event {∀n ≥ n0, Nn+1/Nn ≥ l} by conditional Borel
Cantelli Lemma [Chow and Teicher, 1988, p249] and the result follows by monotone
limit.

We use this lemma to prove the following result.

Lemma 4. Under the assumptions of Theorem 2, we have

1
Zn+p(X )

∑
u∈Gn

mp(X(u),T ne,X )
n→∞−→ 1 Pe,δx a.s on T .

Proof. The branching property gives a natural decomposition of the population in gen-
eration n+ p:

Zn+p(X ) =
∑
u∈Gn

Z
(u)
p (X ),

where
Z

(u)
p =

∑
v∈G(u)

p

δX(u)(v)

and X(u) is the branching Markov chain X rooted in u whose set of individuals in gener-
ation p is G(u)

p = {v ∈ U : |v| = p,uv ∈Gn+p}. Moreover,

Zn+p(X )−
∑
u∈Gn

mp(X(u),T ne,X ) =
∑
u∈Gn

[
Z

(u)
p (X )−mp(X(u),T ne,X )

]
= Zn(X )εn,p,
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where
εn,p :=

1
Zn(X )

∑
u∈Gn

Y
(n)
p,u , Y

(n)
p,u := Z(u)

p (X )−mp(X(u),T ne,X ).

By construction, (Y (n)
p,u : u ∈ Gn) are independent conditionally on Fn = σ (X(v) : v ∈

Gk , k ≤ n) = σ (Zk : k ≤ n), E(Y (n)
p,u ) = 0 and |Y (n)

p,u | ≤ |Z
(u)
p (X )| +mp(X(u),T ne,X ), so that

the stochastic domination assumption (2) ensures that there exists a measure with finite
first moment µ such that

sup
u∈∪nGn

Pe,δx(|Y
(n)
p,u | > t|F|u|) ≤ µ(t,∞).

We can then apply the law of large number of Lemma 4 to get that for every p ≥ 0,
εn,p → 0 a.s. on the event An0,l , as n→ ∞. Recalling that Zn+p(X ) ≥ Zn(X ) for n large
enough ends up the proof.

We can now prove the Theorem.

Proof of Theorem 2. We use again the branching decomposition in generation n to write∣∣∣∣∣∣fn+p.Zn+p(f )

Zn+p(X )
−µn+p(f )

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ 1
Zn(X )

∑
u∈Gn

Zn(X )
Zn+p(X )

fn+p.Z
(u)
p (f )−µn+p(f )

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑
u∈Gn

Xu,n,p
Zn(X )

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
|u|=n

Yu,n,p
Zn+p(X )

∣∣∣∣∣∣∣∣+µn+p(f )

∣∣∣∣∣∣∣∣
∑
u∈Gn

mp(X(u),T ne,X )

Zn+p(X )
− 1

∣∣∣∣∣∣∣∣ ,
where

Xu,n,p =
Zn(X )

fn+p.Zn+p(X )

[
fn+p.Z

(u)
p (f )−mp(X(u),T ne, f ◦ fn+p)

]
and

Yu,n,p =mp(X(u),T ne,X )[Q0,p(X(u),T ne, f ◦ fn+p)−µn+p(f )].

We want to prove that these quantities go to zero. First we note that

Xu,n,p ≤ fn+p.Z
(u)
p (f ) +mp(X(u),T ne, f ◦ fn+p)

≤ ‖ f ‖∞ [Z(u)
p (X ) +mp(X(u),T ne,X )],

so that Assumption (2) ensures that the r.v. Xu,n,p are stochastically dominated. Then,
we can apply the law of large numbers of Lemma 4 and get that for each p ≥ 0,∑
u∈Gn

Xu,n,p/Zn(X )→ 0 as n→∞.
Moreover the many-to-one formula (Lemma 2) ensures that

Yu,n,p = mp(X(u),T ne,X )[Q0,p(X(u),T ne, f ◦ fn+p)−µn+p(f )]

≤ mp(X(u),T ne,X )Mp,

where
Mp := sup

n≥0
|Q0,p(X(u),T ne, f ◦ fn+p)−µn+p(f )|.
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Combining these results, we get

limsup
n→∞

∣∣∣∣∣∣fn+p.Zn+p(f )

Zn+p(X )
−µn+p(f )

∣∣∣∣∣∣
≤Mp limsup

n→∞

∑
u∈Gn

mp(X(u),T ne,X )

Zn+p(X )

+ ‖ f ‖∞ limsup
n→∞

∣∣∣∣∣∣∣∣
∑
u∈Gn

mp(X(u),T ne,X )

Zn+p(X )
− 1

∣∣∣∣∣∣∣∣ ≤Mp.

by means of Lemma 4. Using now that Mp→ 0 as p→∞ by (3), we have

limsup
p→∞

limsup
n→∞

∣∣∣∣∣∣ Zn+p(f )

fn+p.Zn+p(X )
−µn+p(f )

∣∣∣∣∣∣ = 0

and the proof is complete.

3.4 L2 estimates

We consider the variance of the size of the population and for that purpose we recall
notation (8).

Lemma 5. Let e ∈ E, x0 ∈ X and 0 ≤ k ≤ n. We have

Ee,δx0
(#{(u,v) ∈G2

n : |u ∧ v| ≥ k})

=mn(x0,e) +
n∑

i=k+1

Ee,δx0

 ∑
(u1,u2)∈Vi

mn−i(X(u1),T ie)mn−i(X(u2),T ie)

 .
In particular, defining

Vi(e,u1,u2) = sup
k≥0

mk(X(u1),T ie,X )mk(X(u2),T ie,X )
mi+k(x0,e,X )2

and assuming that for some sequence en ∈ E,

liminf
n→∞

mn(x,en,X ) > 0; sup
n≥0

∑
i≥1

Een,δx0

 ∑
(u1,u2)∈Vi

Vi(en,u1,u2)

 <∞, (11)

then Zn(X )/mn(x,en,X ) is bounded in L2
en,δx0

.

Proof of Lemma 5. We omit the initial state δx0
in the notations and write mn(x,e) for

mn(x,e,X ). Using the branching property and distinguishing if the common ancestor of
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two individuals lives before generation n or in generation n, we have

Ee(#{(u,v) ∈G2
n : |u ∧ v| ≥ k})

= Ee


∑

(u,v)∈G2
n

|u∧v|≥k

1


= Ee(Zn(X )) +Ee


∑

k+1≤i≤n

∑
w∈Gi−1
a,b

(wa,wb)∈Gi

∑
u∈Gn:u≥wa
v∈Gn:v≥wb

1


=mn(x0,e) +

∑
k+1≤i≤n

Ee


∑

w∈Gi−1, a,b
(wa,wb)∈G2

i

mn−i(X(wa),T ie)mn−i(X(wb),T ie)

 .
This yields the first part of the Lemma. Then, letting k = 0 and dividing by mn(x,e)2

ensures that

Ee(Zn(X )2)
mn(x0,e)2 ≤

1
mn(x0,e)

+
∑
i≤n

Ee

 ∑
(u1,u2)∈Vi

Vi(e,X(u1),X(u2))

 ,
which ends up the proof.

Let us end up this part with a lemma, which provides a convenient sufficient condi-
tion for (11). It will be used for applications in Section 4.2. We recall that it ensures that
the common ancestor of two individuals chosen independently lives at the beginning of
the tree.

Lemma 6. Assume that there exist positive real numbers (C(e) : e ∈ E) such that for all
x,y ∈ X and n ≥ 0,

mn(y,e,X ) ≤ C(e)mn(x,e,X ) (12)

and consider a sequence en ∈ E such that

sup
n≥0

n∑
i=1

1∧D(x,T i−1en)
mi(x,en,X )

<∞, (13)

where

σ (e) := sup
y∈X

E(N (y,e)2), D(x,e) :=
σ (e)C(e)
m(x,e)

C(T e)2. (14)

Then (11) holds and Zn(X )/mn(x,en,X ) is bounded in L2
en,δx

.
Moreover, if en = e is constant, then (9) also holds.

Proof. Using the branching property in generation i and (12), we have for all y ∈ X ,

mi+k(x,e) ≥mi(x,e)C(T ie)−1mk(y,T
ie). (15)
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Then

Vi(e,u1,u2) ≤ C(T ie)2

mi(x,e,X )2

and

Ee,δx

 ∑
(u1,u2)∈Vi

Vi(en,u1,u2)

 ≤ Een (Vi)
C(T ie)2

mi(x,e,X )2 .

Adding that
Ee (Vi) ≤mi−1(x,e,X )σ (T i−1e)

and using again (15) with k = 1, we get

Ee,δx

 ∑
(u1,u2)∈Vi

Vi(e,u1,u2)

 ≤ σ (T i−1e)C(T i−1e)
m(x,T i−1e)

C(T ie)2

mi(x,e,X )
.

Thus, (11) and (9) hold. Applying Lemma 5 and considering a sequence en in the previ-
ous estimates ends up the proof.

3.5 Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. Let us prove the first part of the Theorem under Assumptions 1(a)
and 2(a). In the whole proof, x is fixed and we omit δx in the notation of the prob-
ability and of the expectation. For convenience, we also write m(x,en) := m(x,en,X ),
b := supf ∈F ‖ f ‖∞ and denote

gn(.) := f (fn(.))−µn(f ).

We compute for K ≥ 1,

Een

(
Zn(gn)2

)
= Een

 ∑
(u,v)∈G2

n

gn(X(u))gn(X(v)


= Een


∑

(u,v)∈G2
n

|u∧v|<K

gn(X(u))gn(X(v))

+Een


∑

(u,v)∈G2
n

|u∧v|≥K

gn(X(u))gn(X(v))


The second term of the right hand side is smaller than

2 ‖ f ‖2∞ E(#{u,v ∈Gn : |u ∧ v| > K}) ≤ 2b2m(x,en)2.εK,n,

where limsupn→∞ εK,n → 0 as K → ∞ using the first part of Assumption 3(a). So we
just deal with the first term and the most recent common ancestor is labeled by i −1 for
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i = 1, . . . ,K . Thanks to the branching property,

Een


∑
u,v∈Gn
|u∧v|=i−1

gn(X(u))gn(X(v))

 = Een


∑
w∈Gi−1

(wa,wb)∈G2
i

∑
u∈Gn
u≥wa

∑
v∈Gn
v≥wb

gn(X(u))gn(X(v))


= Een


∑
w∈Gi−1

(wa,wb)∈G2
i

Ri,n(X(wa))Ri,n(X(wb))

 ,
where the many-to-one formula of Lemma 2 allows us to write

Ri,n(x) := ET ien

 ∑
u∈Gn−i

gn(X(u))

 =mn−i(x,T
ien)Q0,n−i(x,T

ien, gn). (16)

Then

m(x0,en,X )−2
Een


∑

(u,v)∈G2
n

|u∧v|≤K

gn(X(u))gn(X(v))


= Een


∑

i<K,w∈Gi−1
(wa,wb)∈Gi

Fi,n(wa)Fi,n(wb)
mn−i(X(wa),T ien)mn−i(X(wb),T ien)

mn(x0,en)2

 .
and Assumption 2(a) ensures that

Fi,n(u) :=
Ri,n(X(u))

mn−i(X(u),T ien)
=Q0,n−i(X(u),T ien, f ◦ fn)−µn(f ) (17)

goes to 0 a.s. for each i ∈N and u ∈Gi . Moreover this convergence is uniform for f ∈ F .
Adding that Fi,n is bounded by b, we have

Fi,n(wa)Fi,n(wb)
mn−i(X(wa),T ien)mn−i(X(wb),T ien)

mn(x0,en)2

≤ b2 sup
n

mn−i(X(wa),T ien)
mn(x0,en)

.sup
n

mn−i(X(wb),T ien)
mn(x0,en)

.

By bounded convergence, the second part of Assumption 3(a) ensures that
Zn(gn)/mn(x0,en) → 0 in L2

en uniformly for f ∈ F . It ends up the proof of (7) un-
der Assumptions 2(a) and 3(a).

The proof of (7) under Assumptions 2(b) and 3(b) is almost the same, replacing K by
n−kn with kn→∞. Indeed, Assumption 3(b) ensures that there exists kn→∞ such that

Een,δx0

(
#{(u,v) ∈G2

n : |u ∧ v| > n− kn}
)

mn(x0,en)2
n→∞−→ 0,
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whereas

Een


∑

i≤n−kn,w∈Gi−1
(wa,wb)∈G2

i

Fi,n(wa)Fi,n(wb)
mn−i(X(wa),T ien)mn−i(X(wb),T ien)

mn(x,en)2


≤

 sup
i≤n−kn
x∈X

Fi,n(x)


2

E(Zn(X )2)
mn(x,en)2 .

Assumption 2(b) ensures that supi≤n−kn,x∈X Fi,n(x)→ 0 as kn→∞ and the second part of
Assumption 3(b) ensures that Een(Zn(X )2)/mn(x,en)2 is bounded. The conclusion is thus
the same and the proof is complete.

Proof of Theorem 4. The fact that Zn(X )/mn(x0,e,X ) is bounded in L2
e,δx

comes directly
from the second part of Lemma 5. To get the a.s. convergence, we prove that

Ee

∑
n≥1

[
fn.Zn(f )−µn(f )Zn(X )

mn(x,e)

]2
 <∞.

For that purpose, we use the notations of the proof of the previous theorem, in particular
gn(.) := f (fn(.))−µn(f ), and we are inspired by L2 computations for Markov chain indexed
by trees, see the proof of Theorem 14 in [G07]. Using Fubini inversion, the branching
property and (16), we have∑

n≥0

mn(x,e)−2
Ee(Zn(gn)2)

= Ee

∑
n∈N

∑
(u,v)∈G2

n

mn(x,e)−2gn(X(u))gn(X(v))


= Ee


∑
n∈N

∑
i≤n

∑
(u,v)∈G2

n
|u∧v|=i

mn(x,e)−2gn(X(u))gn(X(v))


= Ee


∑
n∈N
i≤n

∑
w∈Gi−1

(wa,wb)∈G2
i

∑
u∈Gn:u≥wa
v∈Gn:v≥wb

mn(x,e)−2gn(X(u))gn(X(v))


+Ee

 ∑
n∈N,u∈Gn

mn(x,e)−2gn(X(u))2

 .
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Then ∑
n≥0

mn(x,e)−2
Ee(Zn(gn)2)

≤ Ee


∑
n∈N
i≤n

∑
w∈Gi−1

(wa,wb)∈Gi

mn−i(X(wa),T ie)mn−i(X(wb),T ie)
mn(x,e)2 Fi,n(X(wa))Fi,n(X(wb))


+2 ‖ gn ‖∞ Ee

∑
n∈N

mn(x,e)−2Zn(X )


≤ Ee


∑

i∈N,w∈Gi−1
(wa,wb)∈Gi

Vi(e,wa,wb)Hi

+ b
∑
n∈N

mn(x,e)−1,

where b := (2 ‖ f ‖∞)2 and recalling definition (17),

Hi = sup
y,z

∑
n≥i

Fi,n(y)Fi,n(z), Vi(e,u1,u2) = sup
n≥i

mn−i(X(u1),T ie)mn−i(X(u2),T ie)
mn(x,e)2 .

The assumptions (9) and (10) ensure that∑
n≥0

mn(x,e,X )−2
Ee(Zn(gn)2) ≤

b
∑
n≥0

mn(x,e)−1 + sup
i∈N

Hi .
∑
i∈N

E

 ∑
(u1,u2)∈Vi

Vi(e,u1,u2)

 <∞.
Then, Zn(gn)/mn(x,e)→ 0 Pe a.s., which completes the proof.

4 Applications and examples

We illustrate now the previous theorems and derive asymptotic results for branching
processes in varying or random environment.

4.1 Quenched mean growth rate in some ergodic random environment

In this section, we consider the mean growth rate of the population in a random
environment, under a strong Doeblin assumption of the transition kernel P defined in
Section 2.1. This assumption allows us to use the large deviation principle obtained in
[S94] and apply Theorem 1. Following [S94], we assume in this section that T : E→ E is
an homeomorphism. Let π be a T invariant ergodic probability, i.e. π ◦ T −1 = π and if
A ∈ BE satisfies T −1A = A, then π(A) ∈ {0,1}. We require :

Assumption A. There exist a positive integer b, a T invariant subset E′ of E and a mea-
surable function M : E → [1,∞) such that logM ∈ L1(π), π(E′) = 1 and for all x,y ∈ X ,
A ∈ BX and e ∈ E′,

P b(x,e,A) ≤M(e)P b(y,e,A).
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We denote by Vb(X ×E) the set of bounded continuous functions from X ×E into [1,∞)
andMπ

1 (X ×E) the set of probabilities on X ×E whose X marginal is equal to π.

Proposition 1. Under Assumption A, we further suppose that logm : X × E → (−∞,∞) is
continuous and bounded. Then there exists E′′ ⊂ E such that π(E′′) = 1 and for all e ∈ E′′ and
x0 ∈ X ,

lim
n→∞

1
n

logEe,δx0
(Zn(X )) = sup

µ∈M1(X×E)

{∫
log(m(x,e))µ(dx,de)− I(µ)

}
,

where I is defined by

I(µ) := sup


∫
X×E

log

 u(x,e)∫
X P (x,e,dy)u(y,T e)

µ(dx,de) : u ∈ Vb(X ×E)

 (18)

for µ ∈Mπ
1 (X ×E) and I(µ) = +∞ otherwise.

Proof. Under Assumption A, Theorem 3.3 [S94] ensures that the function I defined by
(18) satisfies Assumption 1, π a.e. uniformly with respect to x ∈ X . The result is then a
direct application of Theorem 1.

4.2 Asymptotical empirical measure of traits in varying environment

We need here an additional assumption on the transition semi-groups, namely we
require a contraction property. Such contractions can be derived from classical technics
relying on Doeblin and Lyapounov type assumptions, see in particular [MT09, HM08,
M13]. The key point is that they can be composed in the non-homogenous framework.
We focus on the case of Doeblin type conditions to obtain the results below, while the
use of Lyapounov function in our context is more involved and left for future works. We
recall from Section 3.4 the definition σ (e) := supy∈X E(N (y,e)2).

Proposition 2. We assume that there exists M : E→ [1,∞) such that for all x,y ∈ X ,e ∈ E,

m1(x,e, .) ≤M(e)m1(y,e, .),

Let e0 ∈ E and x0 ∈ X be such that∑
n≥0

1
mn+1(x0,e0,X )

(
1 +

σ (T ne0)M(T ne0)
m(x0,T ne0)

M(T n+1e0)2
)
<∞

and ∑
n≥0

n∏
k=0

(
1− 1/M(T ke0)2

)2
<∞.

Then, Zn(X )/mn(x0,e0,X ) is bounded in L2
e0,δx0

and for every f ∈ Bb(X ),

Zn(f )−µn(f )Zn(X )
mn(x0,e0,X )

n→∞−→ 0 Pe0,δx0
a.s.
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This result can be applied to reproduction-dispersion branching processes on compact
sets, where both the reproduction and the dispersion may be affected by the environ-
ment. To give a simple example when this result can be applied, to apply this proposi-
tion, one can consider the case when when M and σ are bounded and the exists mi > 0
such that for any x ∈ X , m(x,T ie0) ≥mi and∑

i≥0

1

m2
i

<∞.

Let us finally observe that in the particular case when there exists m > 0 such that for
any i ∈ N, mi ≥ m, Theorem 2 could also be applied to obtain the a.s. behavior of the
distribution of traits among the population Zn(f )/Zn(X )−µn(f )→ 0.
For the proof, we use the following lemma and recall definition (14). The space of prob-
abilities M1(X ) is now endowed with a distance d bounded by 1 such that for every
bounded measurable function f , there exists c0 > 0 such that |µ(f )− ν(f )| ≤ c0d(µ,ν).

Lemma 7. Assume that there exist real numbers (C(e),An(e) : e ∈ E) such that for any e ∈ E,
x,y ∈ X , λ,µ ∈M1(X ) and n ≥ 0,

mn(y,e,X ) ≤ C(e)mn(x,e,X ), d(Qn(λ,e, .),Qn(µ,e, .)) ≤ An(e)d(λ,µ). (19)

Let e0 ∈ E and x0 ∈ X be such that

∑
n≥1

1∧D(x0,T
n−1e0)

mn(x0,e0,X )
<∞,

∑
n≥0

n∏
k=0

Ak(T
n−ke0)2 <∞.

Then, Zn(X )/mn(x0,e0,X ) is bounded in L2
e0,δx0

and for every f ∈ Bb(X ),

Zn(f )−µn(f )Zn(X )
mn(x0,e0,X )

n→∞−→ 0 Pe0,δx0
a.s.

Proof. The proof is an application of Lemma 6 and Theorem 4. Indeed, we first use
Lemma 6 to check that (9) hold and Zn(X )/mn(x0,e,X ) is bounded in L2

e,δx0
. Moreover,

by induction, the second part of (19) yields

d(Qi,n(λ,e, .)−Qi,n(µ,e, .)) ≤Πn−1
k=i An−k(T

ke)d(λ,µ) ≤Πn−1
k=i An−k(T

ke),

since d is bounded by 1. Then

|Qi,n(λ,e, f )−Qi,n(µ,e, f )| ≤ c0Π
n−1
k=i An−k(T

ke).

Adding that the right-hand-side is summable allows us to get (10) and apply Theorem
4 with fn = Id and conclude.

Proof of Proposition 2. Let us check that (19) hold and apply the previous lemma. In-
deed, we obtain the first part of (19) with C =M since

mn(x,e,X ) =
∫
X
m1(x,e,dz)mn−1(z,T e) ≤ M(e)

∫
X
m1(y,e,dz)mn−1(z,T e)

≤ M(e)mn(y,e,X ).
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The second part of (19) comes from

Qn(x,e,A) =
∫
X

m1(x,e,dz)
mn(x,e,X )

mn−1(z,T e,A)

≤ M(e)2
∫
X

m1(y,e,dz)
mn(y,e,X )

mn−1(z,T e,A) ≤M(e)2Qn(y,e,A)

Choosing for d the total variation distance d(λ,µ) = sup‖f ‖∞≤1

∣∣∣ ∫X f (x)λ(dx) −∫
X f (x)µ(dx)

∣∣∣ we get

d(Qn(λ,e, .),Qn(µ,e, .)) ≤ 1
M(e)2d(λ,µ).

Setting

D(e) =
σ (e)M(e)
m(x,e)

M(T e)2, A(e) =
1

M(e)2 ,

we can apply Lemma 7, which ends up the proof.

4.3 Supercritical regime in Kimmel’s branching model

Let us illustrate the choice of a relevant function fn and apply Theorem 3 to Kimmel’s
branching model [B08] for cell division with parasite infection. We consider two random
variables (Z(1),Z(2)) taking integer values and for safe of simplicity, we assume that

P(Z(1) ≥ 1) = P(Z(2) ≥ 1) = 1, m1 = E(Z(1)) > 1, m2 = E(Z(2)) ≥ 1

We also assume that

E(Z(1) log(Z(1))) <∞, E(Z(2) log(Z(2))) <∞. (20)

Kimmel’s branching model describes the division of a cell where in each generation,
each parasite reproduces and gives birth independently to a random number of para-
sites, distributed as Z(1) + Z(2), Z(1) of which go in the first daughter cell and Z(2) of
which go in the second daughter cell. Here X = N

∗ and the cell population is the binary
tree, so

Gn = {1,2}n.

We start with one sigle cell with one single parasite Z
∅

= δ1 and for any u ∈Gn,

(X(u1),X(u2)) =
X(u)∑
i=1

Zi(u),

where (Zi(u) : i ≥ 1) are i.i.d. and distributed as (Z(1),Z(2)).

Proposition 3. For any ε > 0,

lim
n→∞

#{u ∈Gn : | log(X(u))/n−L| ≤ ε}
2n

= 1

in probability, with

L =
1
2

log(m1) +
1
2

log(m2).
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This result ensures that in most of the cells u ∈ Gn, the infection X(u) grows exponen-
tially with rate L.

Proof. Here mn(x,e) = 2n and (1) becomes

Qn(x,e,dy) =
1
2
m1(x,e,dy) =

1
2

(P(X(u1) ∈ dy|X(u) = x) +P(X(u2) ∈ dy|X(u) = x)

and the auxiliary Markov chain (Y (n)
i : i = 0, . . . ,n) = (Yi : u = 0, . . . ,n) is a branching pro-

cess in random environment, whose reproduction law is distributed as Z(1) with proba-
bility 1/2 and as Z(2) with probability 1/2. Then, under assumption (20), [AK71] ensures
that for any initial state Y0 = i ∈N∗,

Yn
Πn−1
i=0Mi

→W,

where W is a finite positive random variable and (Mi : i ≥ 0) is a sequence of i.i.d.
random variable such that P(M0 = m1) = P(M0 = m2) = 1/2. In particular, log(Yn)/n
converges a.s. to L and for any continuous and bounded function f , writing fn(x) =
log(x)/n and µ = δL,

Qi,n(x,e, f ◦ fn)
n→∞−→ µ(f )

for any x ∈N∗ and i ∈N. Thus Assumption 2 (a) is fulfilled. Moreover Assumption 3
(a) is easily checked since Gn is the binary tree and mn(., ., .) = 2n.
Then we can apply Theorem 3 to get∑

u∈Gn
f (log(Xu)/n)

2n
n→∞−→ f (L)

in probability, where we use again #Gn =mn(., ., .) = 2n.

4.4 Further comments

We finally mention some links with classical branching models.

About multitype branching processes. When the state space X is finite, the process Z is
a multitype branching process and much finer results can be obtained. In particular, the
limit behavior of Zn/mn(x,e,X ) is known, see e.g. [KLPP97] in fixed environment and
[C89] in random environment. Let us yet stress that we provide in Lemma 2 a slightly
different spine decomposition than [KLPP97, GB03], without projection with respect to
the eigenvector associated to the mean operator or weighted paths. In Finally, we note
that the previous results (and in particular Corollary 7) can be applied to branching
processes in varying environment, when for example the mean growth rate decreases to
1 to mimic the effect of resources limitation.

About branching random walks and random environment. Branching random walks
have been largely studied from the pioneering works of Biggins (see e.g. [B77]) and
central limit theorems have been obtained to describe the repartition of the population
for large times [B90].
For branching random walks (possibly in varying environment in time and space), the
auxiliary Markov chain Y is a random walk (possibly in varying environment in time
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and space). To use results of the previous Section, we first check that a central limi
theorem hold, i.e. the weak convergence

(Yn − an)/bn⇒W

where the limit W does not depend on the initial state x ∈ X . Indeed, we can then
Theorem 3 with fn(x) = (x − an)/bn to obtain the asymptotic proportion of individuals
whose trait x satisfies fn(x) ∈ [a,b]. It is given by P(W ∈ [a,b]) as soon as P(W ∈ {a,b}) = 0.
In other words, one need to check that the auxiliary process satisfies a central limit
theorem. We refer to [BH13] Section 3.4 for some examples in the case when the
reproduction law does not depend on the trait x ∈ X and the environment is stationary
ergodic in time.
One can actually directly derive some (rougher) law of large numbers from the speed
of random walks (in environment), i.e. using Yn/an⇒ v. As an example, we recall that
in dimension 1, the random walk in random environment Y may be sub-ballistic and
bn = nγ with γ ∈ (0,1). We finally mention [N11] when the offspring distribution is
chosen in an i.i.d. manner for each time n and location x ∈Z.

5 Appendix : fixed environment and spectral gap of the mean
operator

In this section, we consider a fixed environment and we compare our statements
with classical results. Thus, we set P := Pe and

mn(x, .) :=mn(x,e, .), mn(µ, .) =
∫
X
µ(dx)mn(x, .)

for any x ∈ X and µ ∈ M(X ). We consider a subspace M of M(X ) stable by addition
which contains M1(X ). We endow M with a norm ‖ . ‖M and assume that there exists
c > 0 such that ‖ µ ‖M≤ cµ(X ) for any µ ∈ M and that µ→ m1(µ, .) is a bounded endo-
morphism on (M,‖ . ‖M). We denote by M′ the topological dual of M and require the
following spectral properties.

Assumption 4. There exists (λ,µ0, f0) ∈ (1,∞] ×M1(X ) ×M′ such that f0(µ) > 0 for any
non zero measure µ of M and

m1(µ0, .) = λµ0(.), f0(m1(.,dx)) = λf0(.).

Moreover, there exists a < λ and c > 0 such that

‖mn(µ, .)−λnf0(µ)µ0(.) ‖M≤ can ‖ µ− f0(µ)µ0(.) ‖M .

When X is finite, Perron Frobenius theory ensures that the previous Assumptions hold
if the matrix given by the mean operator m1 is aperiodic and irreducible. We refer to
[S01] for details and extension to a denumerable state space X . Moreover Krein Rutman
Theorem allows to tackle the non-denumerable framework when the mean operator is
compact and positive. Let us finally note that several technics in analysis allow to go
beyond these assumptions via the decompositions of the operator, see [MS14], where an
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overview of the results in the continuous time framework is given.
The previous assumption ensures that for any non-negative function f such that µ0(f ) ∈
(0,∞) and any µ ∈M,

mn(µ,f ) ∼ λnf0(µ)µ0(f ) and mn(µ,X ) ∼ f0(µ)λn (n→∞).

Proposition 4. Let f ∈ B(X ) bounded and x0 ∈ X . If Assumption 4 hold and
supx∈X E(N (x)2) <∞, then
(i) Zn(X )/mn(x0,X ) is bounded in L2

δx0
;

(ii) f0(Zn)/λn converges Pδx0
a.s. to W ∈ [0,∞) and Pδx0

(W > 0) > 0;
(iii) Zn(f )/Zn(X )−→µ0(f ) as n→∞, Pδx0

a.s. on the event {W > 0}.

Proof. First, we recall that f0(Zn)/λn is martingale since f0 is the eigenvector of the ad-
joint of the mean operator. Indeed, denoting by

Z1,u =
N (u)∑
i=1

δX(ui)

for u ∈Gn the punctual measures associated to the offsprings of each individual in gen-
eration n and combining the linearity of f0 and E, we get :

E(f0(Zn+1) | Fn) = E(
∑
u∈Gn

f0(Z1,u) | Fn) =
∑
u∈Gn

f0(E(Z1,u | Fn))

=
∑
u∈Gn

λf0(δX(u)) = λf0(Zn).

Using Assumption 4, we obtain (12). Recalling λ > 1, (13) is satisfied. Then we can
apply Lemma 6 and (11) hold. It ensures that Zn(X )/mn(x,X ) is bounded in L2 and so
does f0(Zn)/λn since f0 is bounded and ‖ Zn ‖X≤ cZn(X ). We deduce that the martingale
limit of f0(Zn)/λn is non-degenerated and (i)− (ii) are proved. Let us now focus on

Qn(x,f ) =mn(x,f )/mn(x,X ).

Using the second part of Assumption 4 and f0 bounded, there exist constant c′ , c′′ such
that for every y ∈ X

|Qn(y,f )−µ0(f )| ≤ c′(a/λ)n ‖ δy − f0(δy)µ0 ‖M≤ c′′(a/λ)n

and
|Qn(y,f )−Qn(z, f )| ≤ 2c′′(a/λ)n.

It ensures that condition (10) hold since a < λ and we can apply Theorem 4 to get

Zn(f )−Zn(X )µ0(f )
mn(x,X )

n→∞−→ 0 Pδx a.s.

Adding that liminfn→∞Zn(X )/mn(x,X ) > 0 a.s. on the event {W > 0} since f0 is bounded
ends up the proof.
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Let us give some additional comments. Checking that the martingale limitW is non-
degenerated is delicate in general. Classical N logN moment assumptions for single
type population in Kesten Stigum theorem (see [LPP95, KLPP97]) can be extended to
the case #X < ∞ [KLPP97] and less explicit but more general criteria can be found in
[A00] for #X = ∞. Here, we have used the L2 computations of the previous section to
get a strong law of large numbers for a general state space X .
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