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Introduction

This text is a presentation of my main researches in mathematics since the beginning of
my PhD Thesis, which are all about random matrices and free probability theory, except
one of them, devoted to the cycles of random permutations. I have divided them into seven
chapters, to which are added a chapter where I present several research projects and an
appendix giving a short introduction to free probability theory. Moreover, short reviews
of various subjects are included in the form of inserts, so that the reader can easily refer
to the ones which are useful to him and, just as easily, ignore those which are not.

The first chapter is about the construction of the rectangular free convolution �c, and
about the results I have obtained on this subject [A5, A8, A10, A16]. This work was
initially part of a larger framework, the study of the non-commutative joint distributions
of collections of rectangular random matrices. Indeed, I proved that freeness with amal-
gamation on a certain sub-algebra allows to model the asymptotic behavior of rectangular
random matrices, once they have been embedded in larger square matrices. However, af-
ter my thesis, I have not developed this point of view much further, focusing on the rich
enough and a bit more concrete study of rectangular free convolution. Besides, the asymp-
totic freeness results are quite hard to formulate, especially for random matrices, and can
seem a bit arid to the reader unaware to their practical consequences. For these reasons,
I chose to construct this chapter around the free rectangular convolution and to get into
freeness with amalgamation only in the last paragraph, even though the existence of the
free convolution follows from this freeness. For the same reasons, I do not tackle my work
of [A8] on R-diagonal operators between two subspaces and on the associated entropy.

This convolution is the operation which allows to infer the empirical singular values
distribution of the sum A+B of two independent random matrices from the knowledge of
the empirical singular values distributions of A and B. This operation is analogous to the
classical convolution ∗ and to the “square type” free convolution � of Voiculescu. It has
recently been used by Gregoratti, Hachem and Mestre to analyse a telecommunications
system in [59].

The second chapter is devoted to the so-called BBP phase transition, named after the
authors Baik, Ben Arous and Péché who discovered it. It concerns the extreme eigenvalues
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of a random matrix X perturbed by a matrix whose rank stays bounded as the dimension
goes to infinity. The general principle is that if the amplitude of the perturbation stays
below a certain threshold, the largest eigenvalues do not move significantly, whereas above
this threshold, they move significantly away from their initial positions. This phenomenon
had first been proved for particular examples of random matrices X (namely Wigner and
Wishart matrices). I have generalized it with my co-authors Raj Rao, Alice Guionnet
and Mylène Mäıda [A14, A15, A17], and in this text I propose an interpretation of this
phenomenon via free probabilities. Moreover, with Alice Guionnet and Mylène Mäıda, I
have proposed a large deviations analysis of this model [A18].

The third chapter is devoted to the theory of free infinite divisibility and to its ap-
plications, which are about the definition of new matricial models, the regularization by
convolution, and the repulsion of the singular values at the origin.

There exists a quite deep relation between infinitely divisible laws for the convolutions
∗, � and �c. These sets of laws are indeed indexed, via the Lévy-Kinchine Formulas, with
the same objects. As a consequence, they are in bijective correspondance with each other.
These bijections happen to preserve the limit theorems of the type Law of Large Numbers,
Central Limit Theorem, etc... It has been proved for � by Voiculescu, Bercovici and Pata
in the papers [15, 16, 14] and in my paper [A4] for �c. In this chapter, I present some
new matrix ensembles I constructed in my papers [A2, A4], which generalize the GO(U)E
and which give to the above-mentioned bijections a more concrete interpretation. Besides,
in my paper [A7] with Serban Belinschi and Alice Guionnet, the particular properties of
the infinitely divisible laws for �c and � are used to prove some regularizing properties
of their semigroups, and a repulsion of the singular values at zero phenomenon, that says
that the singular values of the sum of two independent non Hermitian random matrices
are likely to avoid a neighborhood of zero.

In the fourth chapter, I present a recent work, devoted to a universality result for the
eigenvectors of Wigner matrices. It is proved that for [ui,j]

n
i,j=1 the eigenvectors matrix of

a Wigner matrix, the random bivalued process( ∑
1≤i≤ns, 1≤j≤nt

(|ui,j|2 − 1/n)

)
(s,t)∈[0,1]2

converges in distribution (in a quite weak sense). The interesting fact is that when the
entries of the Wigner matrix are centered with variance one, the law of the limit process
depends only on their fourth moment (and not on their third one). In the case where this
fourth moment coincides with the one of a Gaussian law, the limit process is a bivariate
Brownian bridge and the convergence is proved in a stronger sense, the one of the Sko-
rokhod topology.
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In the fifth chapter, I present a joint work with Thierry Lévy, [A11], where I con-
structed a family of dependence structures in a non-commutative probability space, which
interpolate between independence and freeness. It was known that if A and B are two
large diagonal matrices whose eigenvalues are approximately distributed according to two
probability distributions µ and ν, and if U is a permutation matrix chosen uniformly at
random (resp. a unitary matrix chosen under the Haar measure), then the eigenvalues of
A + UBU−1 are distributed according to the measure µ ∗ ν, the classical convolution of
µ and ν (resp. according to µ � ν, the free convolution of µ and ν). Giving to U the
distribution of a Brownian motion on the unitary group at time t whose distribution at
time 0 is the uniform measure on the group of permutation matrices, we have defined an
operation of convolution ∗t for all non-negative real numbers t, which for t = 0 is the clas-
sical convolution and, for t tending to infinity, tends to the free convolution. In fact, we
defined the structure of dependence between two sub-algebras of a non-commutative prob-
ability space which underlies this convolution. Our initial hope was to identify cumulants
associated with this t-free convolution, that is, universal multilinear forms, the cancellation
of which would characterise the t-freeness of some of their arguments. We thought that
they might interpolate between classical cumulants, which are intimately connected to the
combinatorics of the partitions of a set, and free cumulants, related to the non-crossing
partitions of a set endowed with a cyclic order. This hope has been turned down and we
have in fact proved that there are no t-free cumulants.

The sixth chapter is devoted to a central limit theorem for the Brownian motion on the
group of unitary n × n matrices, as n goes to infinity. More specifically, I consider linear
combinations of the entries of such a process and I prove that as the dimension goes to
infinity, there are three possible limit regimes, depending on whether we consider small,
large or intermediate scales of time. In the first case, the limit process corresponds to a
Brownian motion on the space of infinite skew-Hermitian matrices, in the second one, the
limit process is a Brownian motion on the space of infinite complex matrices, and in the in-
termediate scale of time, one obtains an interpolation between both extremes. These three
limit regimes can be explained by the way the unitary Brownian motion is constructed by
rolling the unitary group on its Lie algebra along a Brownian motion on this algebra. A
by-product of this work is a very short proof of the central limit theorem for the entries of
a Haar-distributed unitary random matrix, a well known result already proved by Diaconis
et al.

The seventh chapter is devoted to a work to which I devoted quite much energy and
time during the two years following my thesis, that I still consider rather interesting and
deep, though I have to confess it had very little echo. The reasons, totally justified in my
opinion, why this work seemed to bring me to a kind of impasse, have taught me a lot to
me about the way mathematics are built. Certain mistakes are instructive.

In this work, published in my paper [A12], we consider random permutations which
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can be written as free words in several independent random permutations: firstly, we fix a
non trivial word w in letters g1, g

−1
1 , . . . , gk, g

−1
k , secondly, for all n, we introduce a k-tuple

s1(n), . . . , sk(n) of independent random permutations of {1, . . . , n}, and the random per-
mutation σn we are going to consider is the one obtained by replacing each letter gi in w by
si(n). For example, for w = g1g2g3g

−1
2 , σn = s1(n)◦s2(n)◦s3(n)◦s2(n)−1. Moreover, we al-

low to restrict the set of possible lengths of the cycles of the si(n)’s: we fix sets A1, . . . , Ak
of positive integers and suppose that for all i, si(n) is uniformly distributed on the set
of permutations of {1, . . . , n} which have all their cycle lengths in Ai. For example, if
A1 = {1, 2}, s1(n) is a uniform random involution. We are interested in small cycles of σn,
i.e. cycles whose length is fixed independently of n. Since the law of σn is invariant under
conjugation, the positions of its cycles are uniform, and only their lengths contain some
unknown randomness. So we introduce, for each positive integer `, the number N`(σn) of
cycles of length ` of σn. We are interested in the asymptotic behavior of the N`(σn)’s as
n −→ ∞. We first prove that the elements the word w represents in a certain quotient of
the free group with generators g1, . . . , gk determines the asymptotic order of the N`(σn)’s
and we prove that in many cases, the N`(σn)’s are asymptotically independent, and dis-
tributed according to a Poisson law with parameter 1/`. Beyond some asymptotic freeness
issues, my interest for the question comes from another, seemingly quite hard problem,
that Thierry Lévy and myself have tried to solve in vain: the characterization of the words
w in the letters g1, g

−1
1 , . . . , gk, g

−1
k such that for any compact (or finite) group G, for any

family s1, . . . , sk of independent Haar distributed random variables on G, the law of the
random variable obtained by replacing each letter gi in w by si is the Haar measure on G.

At last, considering my papers [A1, A3, A6, A9, A20] as a bit isolated in my works, I
will not present them here.
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Chapter 1

Singular values of sums of random
matrices

In this chapter, I am going to present my work on rectangular random matrices. As
I explained in the introduction, this chapter is constructed around the rectangular free
convolution, relegating its “ground”, the freeness with amalgamation, to the second plan.

Most of the results presented in this text have been proved in both the real and complex
cases. As a consequence, K denotes either R or C and β = dimRK. In the real case, the
unitary matrices to consider are real, hence orthogonal.

1.1 Rectangular free convolution

The starting point of this study is the following question:

What can be said about the singular values of the sum A + B of two matrices
A and B, out of the singular values of A and B ?

In full generality, it is of course very hard to answer this question, which is relevant to
algebraic geometry (the definition and the geometric interpretation of the singular values
of a matrix are recalled in Insert 1.1, at the end of this section). However, focusing on
the large dimensional generic case, i.e. supposing A and B to be chosen at random,
independently and according to isotropic distributions, and letting their dimensions go to
infinity, one can give an answer.

More specifically, we shall consider random matrices A,B ∈ Kn×p whose dimensions
n, p will tend to infinity in such a way that n/p −→ c ∈ [0, 1] (the dependance of A and B
in n and p is implicit in the notation).

We make moreover the following hypotheses:

11



(a) A and B are independent,

(b) A or B is invariant, in law, under multiplication, on the right and on the left, by any
unitary matrix,

(c) there exists µ1, µ2 laws on R+ such that, for the weak convergence in probability, we
have

1

n

∑
σ sing. val. of A

δσ −→ µ1 and
1

n

∑
σ sing. val. of B

δσ −→ µ2 (1.1)

as n, p −→∞ with n/p −→ c.

Hypothesis (b) is an isotropy hypothesis (satisfied, for example, for a matrix with i.i.d.
Gaussian entries) and Hypothesis (c) is the formalization of the idea that we know the
singular values of A and B).

The answer to the question asked above is then given by the following theorem, which
I proved during my thesis (see [A5, Th. 3.13]1).

Theorem 1.1 Under Hypotheses (a), (b) and (c) above, there is a non random law µ on
R+, depending only on µ1, µ2 and c, such that for the weak convergence in probability, we
have

1

n

∑
σ sing. val. of A+B

δσ −→ µ (1.2)

as n, p −→∞ with n/p −→ c.

The law µ, denoted by µ1�cµ2, is called the rectangular free convolution with ratio c of
the laws µ1 and µ2.

Concretely, this theorem means that under Hypotheses (a) and (b) above, one can
deduce the empirical singular values distribution of A+B from the ones of A and B (and
of n/p) : other types of informations on the singular values (extreme values, spacings,...)
have no influence. Figure 1.1 gives an illustration of this phenomenon.

1The vocabulary used in certain articles, as [A5], is different: in order to have equlity, for c = 1, between
�c and the convolution � of Voiculescu, we therein consider the symmetrizations of the measures in (1.1)
and (1.2). Since any law on R+ is entirely defined by its symmetrization, the results are equivalent.

12



0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1.1: Singular values of A + B for different types of spacings : Histograms of the
singular values of A + B for A a Gaussian matrix and B a matrix with singular values equal to
1
n ,

2
n , . . . ,

n
n (left picture) or B a matrix with i.i.d. singular values uniformly distributed on [0, 1]

(right picture): the spacings of the singular values of B are much less regular in the second case
than in the first one, and that does not impact the limit shape of the histogram (however, one
can notice that the rate of convergence seems to be better in the left picture than in the right
one, which corroborates the predictions given by the second order freeness theory). Here, the
matrices have size n× p with n = 4800, p = 6000.

In the case of compactly supported probability measures (the general case being then
deduced by approximation, with a control on the rank of the error), Theorem 1.1 is a
consequence of Theorem 1.10, which characterizes the asymptotic behavior of the non-
commutative distribution of large rectangular random matrices. This characterization
allows to prove that the random variables

1

n
Tr[((A+B)(A+B)∗)k] (k ≥ 1)

(which are the moments of the empirical singular values distributions) concentrate around
values which only depend on the numbers 1

n
Tr[(AA∗)`] et 1

n
Tr[(BB∗)`] (and of the ratio

n/p). The dependance of the moments of the limit singular values distribution of A + B
on the numbers 1

n
Tr[(AA∗)`] and 1

n
Tr[(BB∗)`] is made explicit in the following section,

via the rectangular free cumulants and the rectangular R-transform.

Remark 1.2 (Link with the convolution � of Voiculescu) Theorem 1.1 is the ana-
logue, for the singular values, of the result due to Voiculescu about the convolution � and
presented at Section 9.5 of the appendix. Relations between convolutions �c and � will
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be presented below. We shall see that in the cases c = 0 and c = 1, �c can be expressed
via � and that for 0 < c < 1, certain relations can be proved (c.f. Theorems 1.8 and 1.9).

Remark 1.3 (Singular values of AB) In the same way, for A,B isotropic matrices with
respective sizes n×m and m× p, as n,m, p −→∞ limit with n/m −→ c, m/p −→ d, the
empirical singular values distribution of AB can be expressed out of the ones of A and B
and of the limit ratios c, d. However, unlike for A+B, the “square type” multiplicative free
convolution � of Voiculescu suffices to solve the problem. Indeed, up to some zeros and a
square root, the singular values of AB are the eigenvalues of ABB∗A∗, i.e. of A∗ABB∗.

INSERT 1.1 – Singular values of a matrix

Let us recall the definition of the singular values of a matrix. Any matrix A ∈ Kn×p can be written
A = UDV , with U ∈ Kn×n, V ∈ Kp×p both unitary and D ∈ Rn×p null out of the diagonal and with
non negative diagonal entries. The diagonal entries of D are then unique up to their order, and are
called the singular values of A. The geometric interpretation of these values is the following: A maps
the Euclidian unit ball to an ellipsoid, and the the singular values of A are exactly the half lengths of
the n∧ p largest principal axes of this ellipsoid, the other axes having null length. Figure 1.2 gives an
illustration in dimension two. The singular values of A are the eigenvalues of

√
AA∗ (resp. of

√
A∗A)

if n ≤ p (resp. n ≥ p).

A
s1

s2

Figure 1.2: Singular values s1 and s2 of A ∈ R2×2.

1.2 An analytic tool to compute the convolution �c :

the rectangular R-transform

Theorem 1.1 states that the singular values of A + B are distributed according to a law
µ1�cµ2 which depends only on µ1 and µ2, but does not allow to compute it concretely out
of µ1 and µ2. In this section, we make the dependence of µ1�cµ2 in µ1, µ2 and c explicit.

1.2.1 Definition

The rectangular free convolution �c can be computed thanks to an integral transform, like
the classical convolution ∗ with the Fourier transform or the free convolution � with the
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R-transform. This transform, called the rectangular R-transform with ratio c, is defined as
follows.

Let µ be a law on R+ and c ∈ [0, 1]. One defines the functions2

Mµ(z) :=

∫
t∈R+

t2z

1− t2z
dµ(t), (1.3)

then
H(c)
µ (z) := z(cMµ(z) + 1)(Mµ(z) + 1), (1.4)

and at last

C(c)
µ (z) = T (c)−1

(
z

H
(c)
µ

−1
(z)

)
for z 6= 0, and C(c)

µ (0) = 0, (1.5)

where T (c)(z) = (cz + 1)(z + 1).

The function C
(c)
µ (·) defined at (1.5) is called the rectangular R-transform with ratio c

of µ. This transform allows to compute the rectangular free convolution of two laws, as
asserted by the following theorem [A5, Th. 3.12].

Theorem 1.4 (i) The analytic function C
(c)
µ (·) characterizes the law µ.

(ii) For µ1, µ2 laws on R+,

C
(c)
µ1�cµ2

(z) = C(c)
µ1

(z) + C(c)
µ2

(z). (1.6)

The proof of Formula (1.6) does not rely directly on the definition of the function

C
(c)
µ via Formulas (1.3), (1.4) and (1.5), but on the study of the coefficients of the series

expansion of C
(c)
µ around zero: setting, for µ compactly supported (the general case being

then deduced by approximation)

C(c)
µ (z) =

∑
n≥1

k�c
2n (µ)zn, (1.7)

2In the case where µ is compactly supported, all these functions are analytic on a neighborhood of zero
in C, whose amplitude is controlled by the one of the support of µ. In the general case, the functions are
still analytic, but they are defined on subsets of the type {ρeiθ ; 0 ≤ ρ < c, |θ−π| < c′} (c > 0, 0 < c′ < π).
The most adequate notion is then the one of germ of analytic functions on neighborhoods of zero which
are non tangential to R+.
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the coefficients (k�c
2n (µ))n≥1 are called the rectangular free cumulants with ratio c of µ. The

function Mµ being the generating function of the moments of µ, it is not very hard to see
that the relation between the moments m`(µ) :=

∫
R t

`dµ(t) and these cumulants is the
following one:

m2n(µ) =
∑
π

ce(π)
∏

v bloc de π

k�c
|v| (µ) (n ≥ 1),

where the sum runs through the set of non-crossing partitions of the set {1, . . . , 2n} whose
blocs all have an even cardinality and where e(π) denotes the number of blocs of π with
even minimal element. The study of the combinatoric structures underlying the freeness
with amalgamation (c.f. Section 1.4) allows then to prove, via an analogue of Proposition
9.9, that

k�c
2n (µ1�cµ2) = k�c

2n (µ1) + k�c
2n (µ2) (n ≥ 1).

Formula (1.6) follows immediately.

As showed by Formula (1.6), the rectangular R-transform with ratio c linearizes the
convolution �c. It will allow the concrete computation of �c, but also to understand the
links between the convolution �c and the convolution � associated to Hermitian matrices
(c.f. paragraph 1.3), to prove that �c is continuous for the weak topology, etc...

Let us now give an example of direct application of Theorem 1.4, corresponding to
δ1�cδ1 (which is not a degenerate probability measure). Other examples can be found in
[A5, Sect. 3.10].

Example 1.5 (Sum of isometries) Consider A,B ∈ Kn×p chosen at random, indepen-
dently, one of them at least being invariant, in law, by left and right unitary actions, such
that for all ε > 0, we have the convergence in probability

]{σ sing. val. of A or B such that |σ − 1| > ε} = o(n)

as n, p −→∞ with n/p −→ c. Then, we have the weak convergence in probability

1

n

∑
σ sing. val. of A+B

δσ −→
2
√
κ2 − (x2 − 2)2

cπx(4− x2)
1|x2−2|≤κ1x≥0dx, (1.8)

with κ = 2
√
c(2− c) (in the case where c = 0, the right term has to be interpreted as the

Dirac mass at
√

2). Figure 1.3 illustrates this convergence.

1.2.2 Link with spherical integrals

Theorem 1.4 allows to assert that the rectangular R-transform plays an analogue role, for
the convolution �c, to the role played by the logarithm of the Laplace transform for the
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Figure 1.3: Singular values of a sum of isometries: Histogram of the singular values of A+B
and density of the limit law as predicted by Equation (1.8), under the hypotheses of Example
1.5. Here, n = 103, c = 0.3.

classical convolution ∗. The following theorem, from [A16], allows to claim that, beyond
this analogy, the R-transform of a law µ is actually, up to an integration, the limit of the
logarithm of a sequence of Laplace transforms.

We consider a matrix M ∈ Kn×p, depending implicitly on the parameters n and p. We
suppose that M can be written M = UDV , with U ∈ Kn×n and V ∈ Kp×p independent
and distributed according to the Haar measure on the unitary group, and D deterministic,
uniformly bounded, such that

1

n

∑
σ sing. val. of D

δσ −→ µ,

where µ is a compactly supported law. We also introduce a matrix E ∈ Kn×p whose entries
are all zero, except one of them, equal to one. Then we have the following theorem.

Theorem 1.6 As n, p −→ ∞ with n/p −→ c ∈ [0, 1] (if c = 0, we also suppose that
p = o(n2)), we have, for θ a small enough real number,

1

n
logE{exp[

√
npθ<(Tr(EM))]} −→ β

∫ θ
β

0

C
(c)
µ (t2)

t
dt. (1.9)
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Let Rν denote the “square type” R-transform of any probability measure ν (see Section
9.6.3 of the appendix). In the cases c = 0 and c = 1, the function C(c) being related re-
spectively to the functions Rµ2 and Rs(µ), where µ2 denotes the law of X2 for X distributed
according to µ and s(µ) denotes the symmetrization of µ (see Equation (1.11) below), one
gets the following corollary.

Corollary 1.7 In the case where c = 0 (resp. c = 1), we have

1

n
logE{exp[

√
npθ<(Tr(EM))]} −→ β

∫ θ
2

0

tRµ2(t2)dt (resp. β

∫ θ
2

0

Rs(µ)(t)dt).

The starting point of the study which led me to the previous results can be found
in the works of Guionnet, Zeitouni, Collins, Zinn-Justin, Zuber, Mäıda, Śniady, Mingo
and Speicher, who proved, in the papers [63, 125, 39, 61, 41, 42, 40], that under various
hypotheses on the n × n matrices A,E, for U distributed according to the Haar measure
on the unitary group, for an adequate value of the exponent α, the asymptotic behavior of

1

nα
logE{exp[nθTr(EUAU∗)]}

is linked to free probability theory. For example, it has been proved [61, Th. 2] that
if the empirical spectral law of an Hermitian matrix A tends to a law µ, then for E =
Diag(1, 0, . . . , 0) and θ small enough real number,

1

n
logE{exp[nθTr(EUAU∗)]} −→

n→∞

β

2

∫ 2θ
β

0

Rµ(t)dt. (1.10)

Theorem (1.6) is proved by expressing the columns of U and V out of Gaussian vectors,
which allows to express the expectation E{exp[

√
npθ<(Tr(EM))]} as a Gaussian integral.

An adequate change of variable makes then appear the rectangular R-transform of the
empirical singular values distribution of M . To my knowledge, this technic is due to
Guionnet and Mäıda [61].

Before closing this paragraph, let us mention the fact that the expectations of exponen-
tials of traces of random matrices (which are the partition functions of Gibbs measures)
are usually called spherical integrals. The integral called Harich-Chandra-Itzykson-Zuber
Integral is a well known example of those. Beyond the link with free probability mentioned
above, the spherical integrals are of interest to the community of physicists and of Infor-
mation Theory. The reader might find some references about spherical integrals involving
square matrices in the texts [126, 63, 60]. The case of rectangular matrices has also been
the object of investigations before the work presented here, e.g. in the papers [102, 57, 74].
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1.3 Relations between square and rectangular free con-

volutions

The rectangular free convolution �c gives the distribution of the singular values of the
sum of two non Hermitian matrices chosen at random, independently and in an isotropic
way, whose dimensions n, p � 1 satisfy n/p = c. In the same way, the “square” free
convolution � gives the distribution of the eigenvalues of the sum of two large Hermitian
matrices, chosen at random independently and in an isotropic way. The singular values
of rectangular matrices and the eigenvalues of Hermitian matrices are related, since the
singular values of an n× p matrix M are the eigenvalues of the matrix

√
MM∗. However,

the operation M 7−→
√
MM∗ being non linear, it does not seem obvious that there exists

a relation between the convolutions � and �c.

However, when c = 1 (i.e. when the matrices are all square ones), putting together the
result of asymptotic freeness by Voiculescu [116] and the study of the sum of R-diagonal
elements by Haagerup and Larsen [65, Prop. 3.5], one gets the following theorem, which
can also be recovered very directly using the tools presented in this chapter, by noticing
that for c = 1, the rectangular R-transform with ratio c is more or less the R-transform
of Voiculescu. For µ a law on R+, we denote by s(µ) its symmetrization, i.e. the law R
defined by

s(µ)(A) =
µ(A) + µ(−A)

2
(1.11)

for each Borel set A.

Theorem 1.8 The rectangular free convolution with ratio 1 of two laws µ1, µ2 on R+ is
the law on R+ whose symmetrization is the free convolution of the symmetrizations of µ1

and µ2. In other words, for µ1, µ2 laws on R+, µ1 �1 µ2 is the law on R+ defined by the
formula

s(µ1 �1 µ2) = s(µ1) � s(µ2).

This result has a simple matricial interpretation. It means that for M,N independent
large isotropic square matrices, the spectral law of[

0 M
M∗ 0

]
+

[
0 N
N∗ 0

]
is close to the free convolution � of the spectral laws of[

0 M
M∗ 0

]
and

[
0 N
N∗ 0

]
, (1.12)
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though the matrices of (1.12), having too much structure in common, are in general not
asymptotically free.

The following result, [A10, Th. 3], which involves the free multiplicative convolution
�, seems more surprising. For c ∈ [0, 1], let us introduce the Marchenko-Pastur law 3 with
parameter c:

LMP, c :=

√
(b− x)(x− a)

2πcx
1x∈[a,b]dx, (1.13)

for a = (1−
√
c)2, b = (1 +

√
c)2 (when c = 0, this law has to be understood as the Dirac

mass at 1). For µ a law on R+, we denote by
√
µ the law of

√
X for X r.v. with law µ.

Theorem 1.9 For µ1, µ2 laws on R+ and c ∈ [0, 1], we have√
µ1 � LMP, c �c

√
µ2 � LMP, c =

√
(µ1 � µ2) � LMP, c . (1.14)

In particular, for c = 0, √
µ1 �0

√
µ2 =

√
µ1 � µ2 , (1.15)

in other words, the rectangular free convolution with ratio 0 of two laws is the unique law
on R+ whose push-forward by the map x 7−→ x2 is the free additive convolution � of the
push-forwards of these laws by this map.

This theorem has several unexpected consequences, concerning arithmetics of the con-
volutions � and � of Voiculescu as well as the infinite divisibility. The reader can find
them in [A10]. Let us now give interpretations, rather surprising in my point of view, of
Formulas (1.14) and (1.15).

Let us begin with (1.15), which is more simple. From the random matrices point of view,
this formula means that for A,B independent n × p random matrices, when 1 � n � p,
as far as the empirical spectral law is concerned, we have

(A+B)(A+B)∗ ' AA∗ +BB∗.

Let us now give a matricial interpretation of Formula (1.14). We consider the asymp-
totic regime n, p � 1 and n/p ' c. Let A,B be non Hermitian n × n random matrices,
one at least being invariant by left and right unitary multiplications, such that

1

n

∑
λ eig. of AA∗

δλ −→ µ1 and
1

n

∑
λ eig. of BB∗

δλ −→ µ2,

3The exists several conventions in the definition of the Marchenko-Pastur laws. This one corresponds
to the limit spectral law of XX∗, for X and n× p matrix with i.i.d. centered entries with variance 1/p, as
n, p −→∞ with n/p −→ c.
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and let X,X ′ be n × p matrices with i.i.d. Gaussian entries with variance 1/p. Then√
µ1 � LMP, c and

√
µ2 � LMP, c are the limit empirical singular values distributions of AX

and BX ′, whereas
√

(µ1 � µ2) � LMP, c is the limit empirical singular values distribution
of
√
AA∗ +BB∗X. Hence Equation (1.14) can be interpreted in the following way: as far

as empirical singular values distributions are concerned

AX +BX ′ '
√
AA∗ +BB∗X. (1.16)

Figure 1.4 illustrates this phenomenon.
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Figure 1.4: Illustration of Identity (1.16) : Histograms of the singular values of AX+BY (left)
and of

√
AA∗ +BB∗X (right) for A an n×n matrix whose eigenvalues are uniformly distributed

on [0, 1] and B,X, Y matrices with respective sizes n × n, n × p, n × p having i.i.d. Gaussian
entries with respective variances 1/n, 1/p, 1/p. Here, n = 2000, p = 2500.

1.4 Asymptotic non-commutative distribution of rect-

angular random matrices

In this section, we explain how freeness with amalgamation over a certain sub-algebra allows
to model the asymptotic behavior of rectangular random matrices, once they have been
embedded in larger square matrices. These results are the foundations of what precedes
in this chapter: indeed, Theorem 1.1, which allows to define the convolution �c, follows
from Theorem 1.10 below. The definitions relative to D-valued free probability theory and
to freeness with amalgamation can be found in Section 9.7 of the appendix.

Let us consider an integer d ≥ 1 and, for each n ≥ 1, some positive integers q1, . . . , qd
depending on n (this dependence is let implicit, in order to lighten the notation) such that
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q1 + · · · · · ·+ qd = n (1.17)

and such that for all i = 1, . . . , d, there is ρi > 0 such that qi
n
−→ ρi as n −→∞.

Let us denote by D the algebra of d×d complex diagonal matrices. We shall endow the
algebra Mn(C) of n×n complex matrices with a structure of D-valued non-commutative
probability space. To do so, we consider the n × n matrices as d × d bloc matrices,
following the subdivision of n given by formula (1.17). It allows, assimilating scalar matrices
and scalars, to see D as a sub-algebra of Mn(C). Moreover, we define an application ϕD,n :
Mn(C)→ D in the following way : for M ∈ Mn(C), we write, via the bloc decomposition
introduced above, M = [Mi,j]

d
i,j=1, and set

ϕD,n(M) =

tr(M1,1)
. . .

tr(Md,d)

 , (1.18)

tr denoting the normalized trace. This application ϕD,n : Mn(C) → D is a conditional
expectation.

For each n ≥ 1, we then consider two collections (Xi)i∈I and (Dj)j∈J of n× n matrices
(the dependence in n of each Xi and each Dj is still implicit) satisfying the following
hypotheses :

(a) (Dj)j∈J is a collection of deterministic matrices whose D-distribution converges, as
n −→∞, to the one of a collection (dj)j∈J of elements of aD-valued non-commutative
probability space,

(b) (Xi)i∈I is a collection of independent random matrices such that for all i ∈ I, each
of the d2 coordinates of Xi in the bloc decomposition introduced above is invariant,
in law, under the left and right unitary actions,

(c) for all i ∈ I, the non-commutative D-distribution of Xi converges in probability, as
n −→ ∞, to the one of an element xi of a D-valued non-commutative probability
space.

The following theorem is the analogue of the one of Voiculescu about the asymptotic
freeness of square matrices (Theorem 9.6 of the appendix).

Theorem 1.10 Under the preceding hypotheses, the collection

(Xi)i∈I ∪ (Dj)j∈J

converges in D-distribution, as n −→∞, to a collection (x̃i)i∈I∪(d̃j)j∈J whose D-distribution
is defined as follows :
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• we have the equalities in D-distributions (d̃j)j∈J = (dj)j∈J and x̃i = xi for all i,

• the x̃i’s are free with amalgamation over D together, and with {d̃j ; j ∈ J}.

One can find a slightly more sophisticated version of this theorem, allowing ρi = 0
and more latitude about the choice of the matrices Xi, in my paper [A5] (Theorems 1.6
and 1.7). I have also proved another version, for example for matrices with i.i.d. or band
entries, in [A8]. At last, let us mention that a result relying on the same philosophy has
been proved by Shlyakhtenko in [103].

Let us notice that this theorem allows to characterize the asymptotic non-commutative
distributions of rectangular random matrices. Indeed, choosing the qi’s in an adequate
way, one can always embed any rectangular matrix in a larger square matrix, by extending
it with some zeros.

Before closing this chapter, let us say a few words about the proof of Theorem 1.10. It
goes considering a matrix M which can be written

M = M1 · · ·Mp,

where each Mk can be written

Mk = P (Xi, X
∗
i ) or Mk = P (Dj, j ∈ J),

with P a non-commutative polynomial with D-valued coefficients such that as n −→∞,

ϕD,n(Mk) −→ 0 (1.19)

and such that two following matrices Mk, Mk+1 are always independent. One then has to
prove that as n −→∞,

ϕD,n(M) −→ 0. (1.20)

The proof of the convergence (1.20) is done by expanding the normalized traces appearing
in the definition of ϕD,n at Equation (1.18): one obtains a sum, rather heavy, where the
exploitation of Hypothesis (1.19) is not obvious. But working patiently, using the adequate
combinatorial structures to find out the order of each of the terms of the sum (see the
appendix of [A5]), one at last manages to prove the convergence of (1.20)...
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Chapter 2

The BBP phase transition

2.1 Presentation of the problem and case of Wigner

and Wishart matrices

2.1.1 General context: finite rank perturbations of large random
matrices

The question asked in this chapter is the following one :

What is the impact of a finite rank perturbation on the extreme eigenvalues of
a large Hermitian matrix ?

In the case where the matrix is not supposed to be Hermitian, we shall be interested
in the same question, concerning the extreme singular values instead of the extreme eigen-
values. The eigenvectors and singular vectors will be also considered.

As it is asked, the question is quite vague. Let us make it more precise. One considers
an Hermitian n×n matrix X, where n is an implicit parameter which shall tend to infinity.

We perturb X with an Hermitian matrix P whose rank r stays bounded as n tends to
infinity. Hence we define

X̃ := X + P (additive perturbation),

or

X̃ := (I + P )X (multiplicative perturbation)

(in the case of a multiplicative perturbation, the matrix X is supposed to be non negative).
We suppose that the operator norms of both X and P stay bounded as n goes to infinity.
Up to an extraction, one can as a consequence make the following hypotheses.
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Hypothesis 2.1 The empirical spectral law of X converges, as n −→ ∞, to a compactly
supported law µ.

Hypothesis 2.2 The rank r of P does not depend on n.

Up to an extraction, again, one can suppose that the r non zero eigenvalues of P converge.
In order to simplify the notation, we then make the following hypothesis1

Hypothesis 2.3 The r non zero eigenvalues

θ1 ≥ · · · · · · ≥ θr

of P do not depend on n.

At last, one has to make a hypothesis on the relative positions of the eigenspaces of X and
P , singular cases such as the one where X and P are codiagonalisable giving of course very
particular results.

Hypothesis 2.4 X and P are random and independent, in such a way that the eigenvec-
tors of X and P are asymptotically in generic position2 with each other.

Let us then denote by

λ1 ≥ · · · · · · ≥ λn and λ̃1 ≥ · · · · · · ≥ λ̃n

the respective eigenvalues of X and X̃ (again, the dependence in the dimension n is im-
plicit).

Let r0 ∈ {0, . . . , r} be the number of positive eigenvalues of P (which has hence r− r0

negative eigenvalues). By Weyl’s interlacing inequalities, [2, Th. A.7], in the case of
additive perturbations, for all i = r0 + 1, . . . , n− (r − r0), we have

λi−r0 ≥ λ̃i ≥ λi+(r−r0) (2.1)

1In the results concerning the convergence and the large deviations of the extreme eigenvalues of X̃,
this hypothesis can, without any impact on the statements, be replaced by the weaker one asserting the
convergence of the non zero eigenvalues of P to θ1, . . . , θr. However, when the fluctuations of the extreme
eigenvalues of X̃ are concerned, the rate of convergence of the non zero eigenvalues of P to θ1, . . . , θr could
change the conclusion.

2What being asymptotically in generic position exactly means is not specified here, but more precise
hypotheses will be given later.
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(for multiplicative perturbations, inequalities can also be proved). One deduces easily from

(2.1) that the empirical spectral law of X̃ converges to µ as n→∞, as the one of X. The
perturbation did not modify the global repartition of the eigenvalues. The same cannot be
said about the extreme ones : we shall see that large |θi|’s give rise to important movings of
the extreme eigenvalues, whereas for small ones, they shall stay quite close to their initial
positions, so close that their fluctuations around their limits will keep the same orders and
laws. This is the so-called Baik-Ben Arous-Péché phase transition, brought to light by
these authors in the seminal paper [7].

Figure 2.1 illustrates this phenomenon and can give to the reader a preview of the
results presented below.
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(a) Case where θ = 0.5
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(b) Case where θ = 1.5

Figure 2.1: Comparison between the largest eigenvalues of a GUE matrix and those of
the same matrix perturbed: the abscises of the vertical segments correspond to the largest
eigenvalues of X, a GUE matrix with size 2.103 (under the dotted line) or to those of X̃ =
X + diag(θ, 0, . . . , 0) (above the dotted line). Left picture : θ = 0.5. Right picture : θ = 1.5. On
the left picture, the eigenvalues of X̃ are very close to the ones of X. On the right picture, one
can observe the same mimicry between the eigenvalues of X̃ and the ones of X, up to a shift :
the larget eigenvalue of X̃ equals ≈ 2.17.

2.1.2 Baik-Ben Arous-Péché phase transition: the two first ex-
amples

Deformed Wigner matrices

Let us consider a Wigner matrix3
√
nX. Then we know that, under certain hypotheses on

the entries of X, we have the following convergences as n −→∞ :

3A Wigner matrix is a random real symmetric or Hermitian n × n matrix with i.i.d. centered entries,
having variance 1. More precisions about this definition and standard results (convergence to the semicircle
law, extreme eigenvalues fluctuations,...) are recalled in Insert 2.3 below.
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• the empirical spectral law of X tends to the semicircle law with support [−2, 2],

• for all fixed k ≥ 1, the kth extreme eigenvalues λk et λn+1−k of X tend to 2 and −2,

• for all fixed k ≥ 1, the collection of the k largest eigenvalues of X has Tracy-Widom
fluctuations with amplitude n−2/3 around its limit 2 : n2/3(λi− 2)i=1,...,k converges in
distribution to a Tracy-Widom law.

One then defines, as above, the additive perturbation X̃ of X by the formula

X̃ = X + diag(θ1, . . . , θr0︸ ︷︷ ︸
>0

, θr0+1, . . . , θr︸ ︷︷ ︸
<0

, 0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
n− r null eigenvalues

),

where r, r0 and θ1 ≥ · · · · · · ≥ θr are independent of n.

One then has the following theorem, giving the asymptotic behavior of the largest
eigenvalues λ̃1 ≥ λ̃2 ≥ · · · · · · of X̃. Of course, an identical result exists for the smallest
ones. For all θ > 0, we set

ρθ :=

{
θ + 1

θ
if θ > 1,

2 if 0 < θ ≤ 1.

Let us notice that the function θ 7−→ ρθ is increasing and that ρθ > 2 when θ > 1.

Theorem 2.5 Under certain hypotheses4 on the queues of the distributions of the entries
of X, one has the following convergences.

(a) For all fixed i = 1, . . . , r0,

λ̃i −→
n→∞

ρθi

and for all fixed i > r0,
λ̃i −→

n→∞
2.

(b) If X is a GUE matrix, for all i0 = 1, . . . , r0 such that θi0 > 1, setting

J := {i = 1, . . . , r0 ; θi = θi0},
4The hypotheses are of the type “sub-Gaussian tails” or “Poincaré inequality” (for the case “rank one”

in (c), the laws of the entries need also being symmetric).
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then up to a multiplicative constant, the collection

{
√
n(λ̃i − ρθi0 ) ; i ∈ J}

converges in distribution to the law of the collection of the ordered eigenvalues of a
GUE matrix with size ]J .

(c) Suppose firstly that θ1 ∈ (0, 1], and secondly that X is a GUE matrix or that r = 1.

Then the fluctuations of λ̃1 around its limit 2 have amplitude n−2/3 and are of Tracy-
Widom type if θ1 < 1 or of generalized Tracy-Widom type if θ1 = 1.

The (partial) definition of the Tracy-Widom distributions is recalled in Insert 2.4 below.
Parts (a) and (b) of the theorem are due to Péché, Féral, Capitaine eand Donati-Martin
[92, 52, 33, 34]. The proof of (c) is due to Péché (GUE case, [92, Th. 1.1]) and Péché and
Féral (r = 1 case, [52, Th. 1.4]). In the case where X is not a GUE matrix and where
]J = 1, the convergence of (b) still holds, but the limit law is not Gaussian anymore [33,
Th. 2.2].

Part (a) of the theorem signifies that to any eigenvalue θi > 0 of the perturbing matrix

P := diag(θ1, . . . , θr, 0, . . . , 0), one can associate an eigenvalue λ̃i of the perturbed matrix

X̃ which is out of the “bulk” of the spectrum of X if and only if θi > 1: a phase transition
with threshold equal to 1 occurs.

Parts (b) and (c) are manifestations of the repulsion principle for the eigenvalues.

Indeed, Part (b) can be interpreted as follows. To an eigenvalue θi0 > 1 of P with

multiplicity one, one can associate an eigenvalue λ̃i0 of X̃ which is isolated out of [−2, 2],
with rather large Gaussian fluctuations (with amplitude 1/

√
n). We shall see later (c.f.

Theorem 2.9) that the fluctuations of the eigenvalue λ̃i1 associated to another eigenvalue

θi1 > 1 of P with multiplicity 1 are independent of the ones of λ̃i0 . However, if one lets
θi0 and θi1 get closer and closer, until being equal, then the joint fluctuations are not
anymore the ones of two independent Gaussian variables, but the ones of the eigenvalues
of a Gaussian matrix with size 2, some variables in repulsive interaction.

Part (c) means that if the θi0 of the previous paragraph goes down below the threshold

1, then the associated eigenvalue λ̃i0 enters the “bulk” of the spectrum, where it is not
isolated anymore at all, and the amplitude of its fluctuations is sharply reduced from
1/
√
n to 1/n2/3. We shall even see later, at Theorem 2.9, that the joint fluctuations of

such eigenvalues are of Tracy-Widom type, which supports this idea.

29



Deformed empirical covariance matrices

Let us consider a centered Gaussian vector G ∈ Kn×1, with covariance matrix I. We
consider p independent copies G1, . . . , Gp of G and we define the empirical covariance
matrix (also called a Wishart matrix)

X :=
1

p

p∑
k=1

GkG
∗
k.

One can then prove that if n, p −→∞ in such a way that n/p −→ c ∈ (0, 1], we have :

• the empirical spectral distribution of X tends to the Marchenko-Pastur law LMP, c

introduced at Formula (1.13),

• for all fixed k ≥ 1, the kth extreme eigenvalues λk and λn+1−k of X tend to the
bounds a = (1−

√
c)2 and b = (1 +

√
c)2 of the support of LMP, c,

• for all fixed k ≥ 1, the kth largest eigenvalue λk of X has Tracy-Widom type fluctua-
tions with amplitude n−2/3 around its limit b : for a certain constant κ, κn2/3(λk− b)
converges in distribution to a Tracy-Widom law.

These results can be found respectively in [81, 56, 73].

We now consider the empirical covariance matrix

X̃ :=
1

p

p∑
k=1

G̃kG̃
∗
k

of a sample G̃1, . . . , G̃p of independent copies of a centered Gaussian vector G̃ ∈ Kn×1,
whose covariance matrix Σ has spectrum

`1 ≥ · · · · · · ≥ `r > 1 ≥ · · · · · · · · · · · · · · · · · · ≥ 1︸ ︷︷ ︸
n− r eigenvalues equal to 1

,

where r and the `i’s do not depend on n. The matrix X̃ is a multiplicative perturbation
of X because it can be realized via the formula X̃ =

√
I + PX

√
I + P , where I + P = Σ.

The following theorem has been proved by Baik, Ben Arous and Péché in the complex
case [7] and by Paul in the real case [91]. Let us recall that b, the upper bound of the
support of LMP, c, is the limit of the largest eigenvalue λ1 of X.
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Theorem 2.6 The largest eigenvalues of X̃ satisfy the following phase transition.

For all i ∈ {1, . . . , r}, as n, p −→∞ with n/p −→ c ∈ (0, 1],

λ̃i −→


`i(1 + c

`i−1
) > b if `i > 1 +

√
c,

b otherwise.

(2.2)

As for deformed Wigner matrices, ( c.f. Theorem 2.5), the fluctuations of the eigenvalues
with limit > b have amplitude 1/

√
n and are distributed as the eigenvalues of a GO(U)E

matrix with finite size, whereas the fluctuations of the eigenvalues tending to b have Tracy-
Widom fluctuations with amplitude n−2/3.

Notice that this theorem can be considered as relevant to statistics (it seems by the
way to be its origin [73]): it gives the base of the construction of a statistical test to detect
a signal (variables with variance `i > 1 +

√
c) among a noise (the variables with variance

1). It allows moreover to estimate such `i’s.

Besides, this phase transition can be interpreted in terms of last passage percolation
(see insert 2.2).

INSERT 2.2 – BBP transition for last passage percolation

Fix n ≥ 1, π1, . . . , πn > 0 and, for all p ≥ 1, π̂p ∈ [0,+∞).

We consider :

• a matrix (with n rows and infinitely many columns) [Ai,j ]1≤i≤n, 1≤j with independent complex
entries such that for all i, j, the real and imaginary parts of Ai,j are independent centered
Gaussian variables with variance 1

2(πi+π̂j)
,

• a collection [Wi,j ]1≤i≤n, 1≤j indexed by {1, . . . , n} × {1, 2, 3, . . .} of independent random vari-
ables, such that for all i, j, Wi,j is an exponential random variable with parameter πi + π̂j .

We denote by λ1(n, p) the largest eigenvalue of the matrix A(n, p)A(n, p)∗, where A(n, p) =
[Ai,j ]1≤i≤n, 1≤j≤p and we define the last passage percolation time

L(n, p) := max
π∈(1,1)↗(n,p)

∑
(i,j)∈π

Wi,j , (2.3)

where the max is over the up/right paths π on Z2 which join (1, 1) to (n, p).

Then one can prove the following identity in laws.

Theorem 2.7 The processes (λ1(n, p))p≥1 and (L(n, p))p≥1 have the same law.
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The most accomplished version of this result, presented here, has been proved in [44], but pre-
liminary versions had already appeared in [72, 7, 27]. One can then deduce from the behavior of
the largest eigenvalue of Wishart matrices that in the case where all the Wi,j have parameter 1, as
n, p −→∞ with n/p −→ c ∈ [0, 1], one has

1
p
L(n, p) −→ (1 +

√
c)2.

Let us now multiply the Wi,j ’s of the first column by ` ≥ 1 : the Wi,j ’s are then some independent
exponential variables with parameter 1/` if i = 1 and 1 otherwise. Hence the Wi,j ’s of the first
column are likely to be larger than the ones of the other columns, and the maximizing paths, in (2.3),
are likely to stay a bit on the first column before going to the right. The larger ` will be, the more
important this new trend will be. More specifically, Theorem 2.6 says that for n, p � 1 such that
n/p ≈ c ∈ [0, 1],

1
p
L(n, p) ≈


`(1 + c

`−1) if ` > 1 +
√
c,

(1 +
√
c)2 otherwise,

which means that the “bonus” allocated to the first column modifies significantly L(n, p) if and only
if ` > 1 +

√
c. It follows that the maximizing paths shall stay long5 on the first column if and only if

` > 1 +
√
c.

This result can be recovered heuristically with an elementary calculus by estimating the time

passed on the first column [94, Sect. 3.2].

INSERT 2.3 – Wigner matrices, GOE and GUE

A Wigner matrix is a random real symmetric or Hermitian matrix whose entries are independent, iden-
tically distributed on the diagonal, identically distributed above the diagonal and whose non diagonal
entries are centered with variance one. A GOE matrix is a real symmetric matrix whose entries are
Gaussian centered, with variance 2 on the diagonal. A GUE matrix is an Hermitian Wigner matrix
whose entries are Gaussian centered, with variance 1 on the diagonal and covariance diag(1/2, 1/2)
above the diagonal.

Let us consider an n× n Wigner matrix
√
nX = [xi,j ]ni,j=1, whose entries laws do not depend on

n. The following results are standard ones (see respectively [6, Th. 2.5], [6, Th. 5.2] et [107, 98]).

• The empirical spectral law of X tends to the semi circle law, with support [−2, 2] and density
1

2π

√
4− x2.

• The extreme eigenvalues of X tend to −2 and 2 if and only if E[x2
1,1] and E[|x1,2|4] are finite.

5Here, “long” means “a time proportional to p”.
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• If the laws of the xi,j ’s are symmetric or with sub-Gaussian tails6, then for all fixed k ≥ 1
denoting by

λ1 ≥ λ2 ≥ · · · ≥ λk

the k largest eigenvalues of X, the law of the random vector

{n2/3(λ1 − 2), . . . . . . , n2/3(λk − 2)}

tends to a Tracy-Widom law (either the real or complex one, depending on whether X is real
or complex).

INSERT 2.4 – Tracy-Widom laws

The classical Fisher-Tippet-Gnedenko Theorem on statistics of extreme values says that forX1, . . . , Xn

i.i.d. with law L, the maximum max{X1, . . . , Xn} can only converge (up to affine transformations),
as n −→∞, to a Dirac mass or to one of the following laws:

• a Gumbel law (for example when L is exponential or Gaussian)

• a Fréchet law (when L has heavy tails),

• a Weibull law (when L has compact support).

The behavior of the cumulative distribution function of L on the right of its support determines the
asymptotic fluctuations of max{X1, . . . , Xn}.

Beyond the case where the Xi’s are i.i.d., the presence of repulsion or attraction between the Xi’s
may completely change the asymptotic fluctuations of the maximum and give rise to new distributions
at the limit. For example a class of laws called the Tracy-Widom laws appears in the following
contexts:

• largest eigenvalue of a Wigner or Wishart matrix with sub-Gaussian tails,

• most right particle of a Coulomb gas,

• largest increasing subsequence of a random permutation,

• last passage percolation with geometric or exponential weights in dimension 2,

• ASEP and TASEP,

• polynuclear growth models.

6A law µ on R is said to have a sub-Gaussian tail if there exists α > 0 such that for all t large enough,
µ(R\[−t, t]) ≤ e−tα .
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This family of laws depends on two parameters : a positive integer k (the dimension of the
considered vector) and a real number β > 0 (the inverse of a temperature). For example, the law of
the fluctuations of the k largest eigenvalues of a GO(U)E matrix converges to the Tracy-Widom law
with parameters k and β = 1 (resp. β = 2).

Let us now succinctly describe the definition of the cumulative distribution function Fβ of the
Tracy-Widom law with parameters d = 1 and β = 1 or 2 (more general descriptions can be found in
[114, 115, 96]).

The function F2 is defined by the Fredholm determinant

F2(s) = det(I −KAi)L2([s,+∞)),

where KAi is the Airy kernel, defined by

KAi(x, y) =
Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y
=
∫ +∞

0
Ai(x+ t) Ai(y + t)dt.

The function F2 can also be defined by

F2(s) = exp
(
−
∫ +∞

s
(x− s)q2(x)dx

)
,

where q is the solution of the Painlevé II differential equation q′′(s) = sq(s) + 2q3(s) such that
q(x) ∼ Ai(x) at +∞.

The function F1 can also be defined thanks to q via the formula

F1(s) = exp
(
−1

2

∫ +∞

s
q(x) + (x− s)q2(x)dx

)
.

Each of the models enumerated above allows exact computations, letting the Tracy-Widom law
appear directly (except the non Gaussian matrices, that we simply compare to Gaussian ones). It
seems however likely that these laws might be more universal than up to our current knowledge,
appearing in various contexts where a maximum of repulsing variables appears.

2.2 Generalization

We expose here the works developed recently in collaboration with Raj Rao, Alice Guionnet
and Mylène Mäıda, generalizing the phase transition presented above for Wigner and
Wishart matrices to more general matrix models, in the framework presented at Section
2.1.1. We also present the phase transition for eigenvectors and the perturbation of non
Hermitian matrices. At last, we relate these results to free probability theory.
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2.2.1 Main results

The models

We shall use here the framework outlined at Section 2.1.1 : X is a deterministic n × n
Hermitian random matrix whose eigenvalues are denoted by

λ1 ≥ · · · · · · ≥ λn.

We suppose that the empirical spectral law of X converges, as n −→ ∞, to a compactly
supported probability measure µ. In order to locate the extreme eigenvalues of X, we also
suppose that

λ1 −→ b and λn −→ a,

where a and b are the lower and upper bounds of the support of µ (under a weaker version
of this hypothesis, an important part of what follows stays true (c.f. [A14, Rem. 2.13])).
The matrix X is supposed to be deterministic, but up to a conditioning, one can apply
what follows to the case where X is chosen at random. We perturb X with an Hermitian
matrix P whose rank stays bounded as the dimension n grows:

X̃ := X + P (additive perturbation), (2.4)

or
X̃ := (I + P )X (multiplicative perturbation), (2.5)

with

P :=
r∑
j=1

θjuju
∗
j . (2.6)

Here r and the real numbers

θ1 ≥ · · · · · · ≥ θr0︸ ︷︷ ︸
>0

≥ θr0+1 ≥ · · · · · · ≥ θr︸ ︷︷ ︸
<0

are fixed independently of n and the column vectors u1, . . . , ur ∈ Kn×1 are :

• either the column vectors of a matrix 1√
n

g1,1 · · · g1,r
...

...
gn,1 · · · gn,r

, where the gi,j’s are i.i.d.

centered variables with variance 1, satisfying a log-Sobolev inequality7,

• either obtained from the column vectors of the matrix above by the Schmidt or-
thonormalization process.

7Log-Sobolev inequalities allow concentration in large dimensions (see [2]).
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Both of these ways to define P are formalization of Hypothesis 2.4 of Section 2.1.1. They
define two models, called respectively the i.i.d. perturbations model and the orthonor-
malized perturbations model, which are in fact asymptotically very close, the uj’s of the
i.i.d. model being almost orthornormalized for n� 1. Notice that in the orthonormalized
model, if the gi,j’s are Gaussian, the the collection {u1, . . . , ur} is uniformly distributed on
the manifold of r-uplets of orthonormal vectors.

Let us add a last hypothesis: in the case of a multiplicative perturbation, X is supposed
to be positive and µ 6= δ0.

Additive perturbations : X̃ = X + P

Let us introduce the Cauchy transform

Gµ(z) :=

∫
dµ(x)

z − x
of the limit empirical spectral distribution µ of X, defined for z out of the support of µ,
for example if z < a or z > b. We shall see that the isolated eigenvalues of X̃, when they
exist, are close to the solutions of the equations Gµ(z) = θ−1

i .

Indeed, setting, with the convention 1
±∞ = 0,

θ :=
1

limz↓bGµ(z)
≥ 0, θ :=

1

limz↑aGµ(z)
≤ 0 (2.7)

and, for θ ∈ R\{0},

ρθ :=


G−1
µ (1/θ) if θ ∈ (−∞, θ) ∪ (θ,+∞),

a if θ ∈ [θ, 0),

b if θ ∈ (0, θ],

(2.8)

we have the following theorem [A14, Th. 2.1], [A17, Th. 1.3].

Theorem 2.8 For all i ∈ {1, . . . , r0}, we have

λ̃i −→ ρθi (2.9)

and for all i ∈ {r0 + 1, . . . , r},

λ̃n−r+i −→ ρθi . (2.10)

Moreover, for all fixed i > r0 (resp. for all fixed i ≥ r − r0),

λ̃i −→ b (resp. λ̃n−i −→ a). (2.11)
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Moreover, the fluctuations of the extreme eigenvalues of X̃ are given by the following
theorem, which compiles theorems 3.2, 3.4, 4.3, 4.4 et 4.5 of [A17]. Part (1) is about the
isolated eigenvalues, and Part (2) is about the eigenvalues with limit a or b.

Theorem 2.9 Under a few supplementary technical hypotheses, we have the following re-
sults.

(1) Let α1 > · · · > αq0︸ ︷︷ ︸
>0

> αq0+1 > · · · > αq︸ ︷︷ ︸
<0

be the pairwise distinct values of the θi’s such

that ρθi /∈ {a, b} and for all j = 1, . . . , q, let

Ij := {i = 1, . . . , r ; θi = αj}.

Then the law of the random vector{√
n(λ̃i − ραj) ; i ∈ Ij

}
1≤j≤q0

∪
{√

n(λ̃n−r+i − ραj) ; i ∈ Ij
}
q0+1≤j≤q

converges to the one of the vector

{ordered eigenvalues of cαjMj}1≤j≤q, (2.12)

where the matrices Mj are independent GO(U)E kj × kj matrices and the cαj are
constants, depending only on µ and on αj (see [A17, Eq. (6)]).

(2)(2.1) If no θi is critical (i.e. equal to θ or θ), then there exists ε > 0 small such that

with large probability, the eigenvalues of X̃ with limit a or b are within n−1+ε of
the spectrum of X.

(2.2) If, moreover, we consider the i.i.d. perturbations model or if r = 1, then,

denoting by p+ and p− the number of eigenvalues of X̃ with limit respectively
> b and < a, we have, for all fixed i ≥ 1,

n1−ε(λ̃p++i − λi) −→ 0 (2.13)

and

n1−ε(λ̃n+1−(p−+i) − λn+1−i) −→ 0. (2.14)
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Let us make precise the technical hypotheses needed here. The supplementary hy-
potheses needed to the proof of (1) are about the rate of convergence of the empirical
spectral law of X to µ, (which has to be � n−1/2) and about the fourth cumulant of
the gi,j’s. The supplementary hypotheses needed to the proof of (2) are about the spac-
ings of the extreme eigenvalues of X. All of these hypotheses are satisfied almost surely
when X is random and chosen according to a standard model (Wigner, Wishart, Coulomb

gas...). Moreover, in these models, the ε of (2) is small enough so that the λ̃i’s with limit a
or b inherit the Tracy-Widom fluctuations of the λi’s (see the Section“Examples” in [A17]).

Instead of detailing these examples, let us make both previous theorems more concrete
by showing how they allow to explain Figure 2.1 presented at the beginning of this chapter.

In this figure, we perturb a GUE matrix with a rank-one matrix P whose sole non zero
eigenvalue is denoted by θ. The law of X is invariant under unitary conjugation, so this
fits with the model with orthonormalized perturbations, up to a conditioning by X. By
the formula of the Cauchy transform of the semi-circle law, we know that the threshold θ
of the phase transition equals 1 and that ρθ = θ + 1

θ
when θ > b = 2.

• In the left picture of Figure 2.1, θ = 0.5 < θ and as predicted by (2.9), λ̃1 ≈ b = 2,

whereas in the right one, θ = 1.5 > θ, which indeed implies λ̃1 ≈ ρθ = 2.17 and
λ̃2 ≈ b, in accordance with (2.9) and (2.11).

• Moreover, in the left picture, we have, for all i, λ̃i ≈ λi, with some deviations

|λ̃i − λi| � deviation of λi from its limit 2.

In the same way, in the right picture, for all i, λ̃i+1 ≈ λi, with some deviations

|λ̃i+1 − λi| � deviation of λi from its limit 2.

Both of these observations are conform to (2.13).

• At last, here, n = 2.103, and Equation (6) of [A17] gives the formula of the cα
in (2.12) : c2

α = 1 − α−2. In the right picture, we have λ̃1 ≈ 2.167, which gives
√
n(eλ1−ρθ)
cθ

≈ 0.040, a reasonable value for a standard Gaussian variable.

Let us now give a sketch of the proofs of these theorems. For all z out of the spectrum
of X, we have

det(z − X̃) = det(z −X − P ) = det(z −X) det(1− (z −X)−1P ).

38



From there, using the formula of P given in (2.6) and the identity det(1 +AB) = det(1 +

BA), true even when A,B are not square matrices, one characterizes the eigenvalues of X̃
which are out of the spectrum of X in the following way: these are the z’s such that

det


θ
−1
1

. . .

θ−1
r

−
u
∗
1(z −X)−1u1 · · · u∗1(z −X)−1ur

...
...

u∗r(z −X)−1u1 · · · u∗r(z −X)−1ur


 = 0. (2.15)

This is a characterization of the eigenvalues of X̃ via an r×r (and not n×n) determinant.

This characterization is enough to prove Theorem 2.8. Indeed, it is enough to control
Equation (2.15) for the z’s whose distance to [a, b] has order 1, which can easily be done
thanks to concentration inequalities like Hanson-Wright Theorem [67]. They imply that
for n� 1, u

∗
1(z −X)−1u1 · · · u∗1(z −X)−1ur

...
...

u∗r(z −X)−1u1 · · · u∗r(z −X)−1ur

 ≈
Gµ(z)

. . .

Gµ(z)

 , (2.16)

which makes the characterization of the limits of the isolated eigenvalues of X̃ as the
solutions of the equations Gµ(z) = θ−1

i quite obvious.

Let us now explain how GO(U)E matrices appear in Part (1) of Theorem 2.9. We
suppose for example that

θ1 = θ2 > θ3 ≥ θ4 ≥ · · · ≥ θr

and that θ1 > θ, so that Gµ(ρα1) = 1
θ1

= 1
θ2

. In order to determine the fluctuations

of the vector (λ̃1, λ̃2) around its limit (ρα1 , ρα1), we shall Taylor-expand the left hand
term of (2.15) for z = ρα1 + x√

n
. The Central Limit Theorem and a fine analysis of the

orthonromalization process allow to push the approximation of (2.16) further and give, for
z = ρα1 + x√

n
, θ

−1
1

. . .

θ−1
r

−
u
∗
1(z −X)−1u1 · · · u∗1(z −X)−1ur

...
...

u∗r(z −X)−1u1 · · · u∗r(z −X)−1ur



≈


1√
n
(x−N) − 1√

n
N ′′

− 1√
n
N ′′ 1√

n
(x−N ′)

θ−1
3 − θ−1

1
. . .

θ−1
r − θ−1

1

 ,

where the matrix

[
N N ′′

N ′′ N ′

]
is a GO(U)E one. Considering the determinants of these

matrices, we deduce, up to an approximation, that z = ρα1 + x√
n

is a solution of the
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equation (2.15) if and only if x is a solution of Equation

det

(
x−

[
N N ′′

N ′′ N ′

])
= 0.

Part (2) of Theorem 2.9, is proved by showing that when no θi is critical, for z closed
enough to a or b, Equation (2.15) can only be verified if z is very close to one of the
λi’s. To simplify, let us suppose for example that r = 1, consider the model with i.i.d.
perturbations and restrict ourselves to the vicinity of b. We want to prove that according
to whether θ1 < θ or θ1 > θ, we have

λ̃1 ≈ λ1 , λ̃2 ≈ λ2 , λ̃3 ≈ λ3 , . . . . . .

or
λ̃2 ≈ λ1 , λ̃3 ≈ λ2 , λ̃4 ≈ λ3 , . . . . . . ,

the symbol ≈ meaning here equal up to an n−2/3−ε error, with ε > 0 small.

In the particular case where r = 1, Equation (2.15) can be written

1

n

n∑
j=1

g2
j

z − λj
=

1

θ1

. (2.17)

The left hand term of this equation being a decreasing function of z, with limit +∞ at the
right of each λj and −∞ at the left of each λj, the equation admits exactly one solution in
each interval (λj+1, λj), what Weyl’s interlacing inequalities already said to us, up to the
equality case. If θ1 > 0 (resp. θ1 < 0), as the left hand term of (2.17) vanishes at ±∞, we
know that the equation admits a solution > λ1 (resp. < λn). Thus, we have

λ̃1 > λ1 > λ̃2 > λ2 > · · · · · · (resp. λ1 > λ̃1 > λ2 > λ̃2 > · · · · · · ).

Let us focus for example on the interval [λ2, λ1] and prove that, according to whether we
are in one of the two following alternative situations

0 < θ1 < θ or θ1 ∈ R\[0, θ], (2.18)

the solution of Equation (2.17) is this interval is situated respectively to the right or the
left of the sub-interval [λ2 + 1

n2/3+ε , λ1 − 1
n2/3+ε ]. Let us first notice that it suffices to prove

that on the interval [λ2 + 1
n2/3+ε , λ1 − 1

n2/3+ε ],

1

n

n∑
j=1

g2
j

z − λj
≈ 1

θ
. (2.19)

Indeed, according to the one of the two alternatives of (2.18) which is verified, we have
respectively

1

θ1

>
1

θ
or

1

θ1

<
1

θ
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and the decreasingness of the function z 7−→ 1
n

∑n
j=1

g2j
z−λj allows then to locate the solution

of Equation (2.17).

Let us now explain quickly how one obtains Approximation (2.19). Let z be such that

λ2 + n−2/3−ε ≤ z ≤ λ1 − n−2/3−ε (2.20)

with ε > 0 small. We decompose the left term of (2.19) in the following way :

1

n

n∑
j=1

g2
j

z − λj
=

1

n

m∑
j=1

g2
j

z − λj
+

1

n

n∑
j=m+1

g2
j

z − λj
. (2.21)

First, when m� 1 and n−m� 1, a concentration result of the type Hanson-Wright [67]
allows us to replace the g2

j ’s by 1 in both sums above :

1

n

m∑
j=1

g2
j

z − λj
≈ 1

n

m∑
j=1

1

z − λj
et

1

n

n∑
j=m+1

g2
j

z − λj
≈ 1

n

n∑
j=m+1

1

z − λj
. (2.22)

For z satisfying (2.20), choosing m = n1/3−ε′ , with ε′ > ε small, we can neglect the
proximity effects due to the first λj’s, and obtain

1

n

n∑
j=m+1

1

z − λj
≈ lim

z↓b
Gµ(z) =

1

θ
. (2.23)

Besides, Equation (2.20) gives∣∣∣∣∣ 1n
m∑
j=1

1

z − λj

∣∣∣∣∣ ≤ 1

n

m∑
j=1

1

n−2/3−ε = nε−ε
′ −→

n→∞
0. (2.24)

Joining (2.21), (2.22), (2.23) and (2.24), we see that for z ∈ [λ2 + 1
n2/3+ε , λ1 − 1

n2/3+ε ],

1

n

n∑
j=1

g2
j

z − λj
≈ 1

θ
.

Eigenvectors

Let us now present our results about the eigenvectors. For i ∈ {1, . . . , r0}, denoting by ũi
a unitary eigenvector of X̃ associated to λ̃i, the scalar product

〈ũi, ui〉

contains a hint of the “trace” (in the common sense of the term) that the deformation
P has let on X. We are going to see that this scalar product satisfies the same phase
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transition, i.e. that to each θi beyond the threshold, one can associate an eigenvalue with
an eigenvector that has a positive component according to ui, which does not happen when
θi is below the threshold.

The following theorem, [A14, Th. 2.2 et 2.3], formalizes these ideas. It has only been
proved for the model with orthonormalized perturbations, but can be easily extended to
the one with i.i.d. perturbations. For F a subspace of a Hilbert space and x a vector of
this space, we denote by |〈x, F 〉| the norm of the orthogonal projection of x onto F .

Theorem 2.10 (1) Let i0 be such that θi0 > θ and ũi0 a unit eigenvector of X̃ associated

to λ̃i0. Then as n −→∞,

|〈ũi0 , Span{ui ; θi = θi0}〉|2 −→ −1

θ2
i0
G′µ(ρθi0 )

> 0 (2.25)

and
|〈ũi0 , Span{ui ; θi 6= θi0}〉| −→ 0.

(2) Suppose that r = 1, that the sole non zero eigenvalue θ of P is below the threshold θ
and that limz↓bG

′
µ(z) = −∞, as it is the case in most of the classical models. Let ũ

be a unit eigenvector of X̃ associated to λ̃1. Then

|〈ũ, ker(θ − P )〉| −→ 0.

Multiplicatives perturbations: X̃ = (I + P )X

In the case of multiplicative perturbations, everything which has been seen for additive
perturbations stays true (for both the largest and the smallest eigenvalues), up to a re-
placement of the Cauchy transform by the T -transform

Tµ(z) :=

∫
x∈R

x

z − x
dµ(x)

(only Formula (2.25) is changed, see [A14, Th. 2.8]). The empirical covariance matrices
are of course the standard application. However, the hypothesis needed to apply these
results to their smallest eigenvalues have not been verified (they have been verified for
their largest eigenvalues).

The key of the proofs is an analogue of Equation (2.15): a real number z out of the

spectrum of X is an eigenvalue of X̃ if and only if

det


θ
−1
1

. . .

θ−1
r

−
u
∗
1X(z −X)−1u1 · · · u∗1X(z −X)−1ur

...
...

u∗rX(z −X)−1u1 · · · u∗rX(z −X)−1ur


 = 0. (2.26)
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2.2.2 Singular values of finite rank perturbations of non Hermi-
tian matrices

One of the benefits of the method relying on Equation (2.15) is that it can be adapted
to other models, as we saw above with multiplicative perturbations. In the paper [A15],
co-written with Raj Rao, we prove that the extreme singular values of non Hermitian (pos-
sibly rectangular) matrices satisfy the same kind of phase transition when submitted to
finite rank perturbations.

The model is analoguous to the one presented in Section 2.2.1, except that X is an
n × p matrix, with n, p −→ ∞ in such a way that n/p −→ c ∈ [0, 1]. The hypothesis
relative to the convergence of the empirical spectral distribution of X to µ is replaced by
the convergence of the empirical singular values distribution of X to a compactly supported
law µ and the hypothesis relative to the convergence of the extreme eigenvalues is replaced
by the convergence of the extreme singular values of X to the bounds a and b of the support
of µ. At last, P is defined by the formula

P =
r∑
j=1

θjujv
∗
j ,

where the uj’s and the vj’s are respectively n×1 and p×1 column vectors and the collections
{uj ; j = 1, . . . , r} and {vj ; j = 1, . . . , r} are independent, each of them being defined ac-
cording to one of the processes presented above (i.i.d. and orthonormalized perturbations).

We introduce the integral transform

Dµ(z) =

[∫
x∈R

z

z2 − t2
dµ(z)

]
×
[∫

x∈R

z

z2 − t2
dµ̃X(z)

]
, (2.27)

where µ̃X = cµX + (1− c)δ0. The results of the paper [A15] show that the extreme singu-

lar values of X̃ satisfy the same kind of phase transition as the previous ones. However,
when the limit ratio c is < 1, certain technical difficulties restrict the results to the largest
singular values. Besides, the fluctuations of the singular values with limit a or b have not
been studied.

For example, if X is an n× p matrix with i.i.d. Gaussian entries with variance 1/p, the
empirical singular values distribution of X tends to the law√

(b2 − x2)(x2 − a2)

πcx
1x∈[a,b]dx,

where a = 1−
√
c, b = 1 +

√
c. In this case, each θi > c1/4 gives rise to a singular value of
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X̃ with limit out of the support of µ, equal to√
(1 + θ2

i )(c+ θ2
i )

|θi|
,

whereas the θi’s which are ≤ c1/4’s do not cause any isolated singular value.

Another example: the one where X is an n× n unitary matrix with Haar distribution.
Then all singular values of X are equal to 1 and each θi gives rise to an isolated singular
value of X̃ on the right of 1 with limit

θi +
√
θ2
i + 4

2

and to an isolated singular value of X̃ on the left of 1 with limit

−θi +
√
θ2
i + 4

2
.

More details on both of these examples are given to Section 3 of [A15].

At last, let us mention that the results of both papers [A14, A15] have been the base
of the construction of a parameters estimation algorithm by Hachem, Loubaton, Mestre,
Najim and Vallet [66].

2.2.3 Link with free probability theory

It has to be noticed that the phase transitions brought to light here (the one relative to ad-
ditive perturbations of Hermitian matrices, the one relative to multiplicative perturbations
of Hermitian matrices and the one relative to additive perturbations of non Hermitian, pos-
sibly rectangular, matrices) are all governed by functions playing a role in the respective
convolutions �, � and �c. Indeed,

• the function G−1
µ is linked to the R-transform Rµ of µ by formula

G−1
µ (z) = Rµ(z) +

1

z
,

• the function T−1
µ is linked to the S-transform Sµ of µ by the formula

T−1
µ (z) =

z + 1

zSµ(z)
,
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• the function D−1
µ is linked to the rectangular R-transform with ratio c of µ by the

formula (
D−1
µ (z))

)2
=

(cC
(c)
µ (z) + 1)(C

(c)
µ (z) + 1)

z
.

Hence it seems that free probability theory is at the heart of this phase transition.
That can be appear as surprising, because until now, the link between free probability and
random matrices only concerned macroscopic issues, i.e. the whole spectrum, and did not
allow to locate any isolated eigenvalue.

One can explain these coincidences. The spectrum of a large matrix X deformed by a
finite rank matrix P with spectrum

θ1, . . . , θr, 0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
n− r null eigenvalues

can be understood as the limit, as ε −→ 0, of the free convolution of the spectral law of X
with the law

(1− ε)δ0 + ε
δθ1 + · · ·+ δθr

r
.

Let us consider for example the case of an additive perturbation of an Hermitian matrix
X by a rank one matrix with sole non zero eigenvalue θ. As the dimension n gets large,
the empirical spectral distribution of X̃ gets close to

µε := µ� ((1− ε)δ0 + εδθ) (2.28)

with ε = 1
n
.

Lemma 2.11 As ε −→ 0, the law µε admits a Taylor expansion

µε = µ+ εm + o(ε),

where m is a null mass signed measure which satisfies the following phase transition (with
the notations introduced at (2.7) and (2.8)) :

• if θ ≤ θ ≤ θ, then the support of m is contained in the one of µ,

• if θ < θ or θ > θ, m can be written as the sum of a measure with support contained
in the one of µ and of a Dirac mass at ρθ, with weight 1.
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Before proving the lemma, notice that it gives an explanation to the BBP phase transi-
tion as far as positions of extreme eigenvalues are concerned (the fluctuations issue is more
delicate, but we shall see later that one can however say something about it). Indeed, up

to the approximation of the empirical spectral distribution of X̃ by µε with ε = 1/n, it
allows to understand the apparition, in this spectral law, of a Dirac mass with weight 1/n

(i.e. of an eigenvalue of X̃) at ρθ when θ /∈ [θ, θ].

Proof of Lemma 2.11. By [A7, Lem. 2.11] and [8, Lem. 2.17], proving this lemma amounts
to prove that the Cauchy transform of µε admits the Taylor expansion

Gµε(z) = Gµ(z) + ε g(z) + o(ε),

where g is a function satisfying the following properties :

• if θ ≤ θ ≤ θ, then g is analytic on the complementary of the support of µ with real
values on the real line,

• if θ < θ or θ > θ, then g is a meromorphic function on the complementary of the
support of µ with with real values on the real line and a unique pole, located at ρθ
and with residue 1.

The R-transform of µε is Rµ +R(1−ε)δ0+εδθ . The function R(1−ε)δ0+εδθ can be computed
and admits the Taylor expansion

R(1−ε)δ0+εδθ(z) =
εθ

1− θz
+ o(ε),

hence

Rµε = Rµ(z) +
εθ

1− θz
+ o(ε).

By formula G−1
µε (z) = Rµε(z) + 1

z
, we deduce

Gµε(z) = Gµ(z)− ε
θG′µ(z)

1− θGµ(z)
+ o(ε),

which allows to conclude immediately. �

The theory of Second Order Freeness, developed by Mingo, Nica, Speicher, Śniady and
Collins [83, 84, 85, 40] allows to understand the asymptotic fluctuations of the spectral law
of sums or products of random matrices. This theory explains, at least at the heuristic
level, why the law of the eigenvalues of GO(U)E matrices is the limit law of the joint fluc-

tuations of collections of eigenvalues of X̃ with common limit located out of the support
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of µ. We do not detail it here, but the approach is the one already used above.

Besides, in the recent prepublications [35, 30], Capitaine, Donati-Martin, Féral and
Février have proved that in the case where X is the sum of a Wigner or Wishart matrix
and a deterministic matrix, the phase transitions presented in Theorems 2.8 et 2.10 can be
understood via the subordination (presented in this text at Section 3.3.1).

Up to my knowledge, Part (2) of Theorem 2.9 (about the eigenvalues of X̃ which “stick”
to the bulk) cannot be related to free probability theory.

2.3 Large deviations for deformed matrix models

Large deviations principles for random matrices are quite seldom. The first ones are those
of Ben Arous and Guionnet [11] for the GO(U)E matrices (which can be generalized to
Coulomb matrices [51, 2]) and those of Ben Arous and Zeitouni for Gaussian non sym-
metric matrices [13]. At the same time, Hiai et Petz have also studied large deviations
for Wishart and uniform unitary matrices [68]. Cabanal-Duvillard, Guionnet, Zeitouni,
Capitaine and Biane, in [29, 63, 23], have established LDP for matricial processes, linked
to spherical integrals and to the free entropy of Voiculescu. Besides, a LDP for the largest
eigenvalues of a GO(U)E matrix is proved in [2], based on the works of Ben Arous, Dembo
and Guionnet on the spin glasses [10]. As I an writing this memoir, Chaterjee et Varad-
han make their preprint [38] public, devoted to large deviations of random matrices in a
quite different context. At last, deviations of the largest eigenvalue of a GO(U)E matrix
perturbed by the addition of a rank one matrix, have been studied by Mäıda in [80] and
large deviations of the largest eigenvalues of a Wishart matrix of the type MM∗, with M
an n× p matrix such that n/p −→ 0, have been studied by Fey, van der Hofstad and Klok
in [53].

Most of these LDPs (more specifically: all but the three last ones) are about some
matrices with density proportional to e−n trV (M), whose eigenvalues distribution can be
exactly computed. For more general matrices, as non Gaussian Wigner matrices, the rate
function of a LDP might depend on the laws of the entries, and we do not even have any
hint on the definition of such a function.

In the paper [A18], co-written with Alice Guionnet and Mylène Mäıda, we study the

large deviations of the extremes eigenvalues in the model X̃ = X + P of Section 2.2.1,
and also in a quite different model, where we do not suppose anymore that the extreme
eigenvalues of X tend to a and b. In a first time we focus on the case where X is determin-
istic and diagonal, having exactly p+ eigenvalues on the right of the support of its limit
empirical spectral distribution µ. We denote by r0 the number of j’s such that θj > 0, as
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previously.

Theorem 2.12 The r0 + p+ largest eigenvalues of X̃ satisfy a LDP with scale n and with
a good rate function.

The rate function is not explicit generally, however, one can say enough of it to deduce
a new proof of Theorem 2.8 (see [A18, Rem. 6.5]).

From this theorem, one can deduce some results about the case where X is chosen
at random if we control the deviations of X well enough. For example, (c.f. [A18, Th.
2.13]), it allows to prove a LDP with scale n and good rate function for the the k largest

eigenvalues (k being any integer) of X̃ when X is chosen at random in a so-called classical
ensemble, i.e. with a distribution of the type

1

Zβ
n

e−n trV (X)dβX,

where dβX is the standard Lebesgue measure in the space of symmetric real matrices
(β = 1) or Hermitian matrices (β = 2) and V : R → R ∪ {+∞} is a continuous function
≥ β log(x). Deformed Gaussian Wishart matrices and GO(U)E matrices are examples of
applications of this work.

The proof of Theorem 2.12 relies again on the representation of the eigenvalues of X̃
as the solutions of Equation (2.15): any real number z out of the spectrum of X is an

eigenvalue of X̃ if and only if

det


θ
−1
1

. . .

θ−1
r

−
u
∗
1(z −X)−1u1 · · · u∗1(z −X)−1ur

...
...

u∗r(z −X)−1u1 · · · u∗r(z −X)−1ur


 = 0.

We first establish a LDP for a function which, up to a random but well controlled factor,
is the left term of the previous equation, then deduce a LDP for the zeros of this function.
This last step, a kind of application of the contraction principle, is quite delicate because
the application which, to a function, associates its zeros is not continuous in the space we
are working in.
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Chapter 3

Infinite divisibility and limit
theorems for free convolutions,
applications

In this chapter, we recall some basic results on infinitely divisible laws for the classical
convolution ∗, that one can find for example in [58, 100], and then we expose the gener-
alization of this theory to the free additive convolution, due to Voiculescu, Bercovici et
Pata, bringing to light a deep relation between the convolutions ∗ and �. We shall then
expose the matricial interpretation I gave in [A2] and the rectangular version of infinite
divisibility, that I developped during my PhD Thesis.

At last, we give applications of this theory, first to the regularization of measures, and
secondly bringing to light a phenomenon of repulsion of the singular values faraway from
zero.

3.1 The Bercovici-Pata bijection between ∗- and �-

infinitely divisible law, matricial interpretation

One can define infinitely divisible laws as the limit laws of sums of i.i.d. variables : a law
µ on R is said to be ∗-infinitely divisible if there exists a sequence (kn) of integers tending
to infinity and a sequence (νn) of laws such that as n −→∞,

νn ∗ · · · ∗ νn︸ ︷︷ ︸
kn times

−→ µ. (3.1)

In this case, there exists a unique family (µ∗t)t∈[0,∞) of laws, starting at δ0 such that µ∗1 = µ
and which is a semigroup for the convolution ∗.

These laws are characterized and classified thanks to their Fourier transforms: µ is
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∗-infinitely divisible if and only if there exists γ ∈ R and a positive measure σ on R such
that the Fourier transform of µ can be written

∫
t∈R e

itξdµ(t) = eΨµ(ξ), with

Ψµ(ξ) = iγξ +

∫
R

(eitξ − 1− itξ

t2 + 1
)
t2 + 1

t2︸ ︷︷ ︸
:=− ξ2

2
for t = 0

dσ(t). (3.2)

Moreover, in this case, the pair (γ, σ), unique, is called the Lévy pair1 of µ and the law µ
is denoted by νγ,σ∗ .

Voiculescu and Bercovici have proved in [15, 16] that everything that precedes stays
true if one replaces the classical convolution ∗ by the free additive convolution �, except
that the characterization via the Fourier transform in Formula 3.2 has to be replaced by
the following one, via the R-transform: µ is �-infinitely divisible if and only if there exists
γ ∈ R and a positive finite measure σ on R such that R-transform of µ can be written

Rµ(z) = γ +

∫
R

z + t

1− tz
dσ(t). (3.3)

The law µ is then denoted by νγ,σ� .

Once the characterizations (3.2) and (3.3), called Lévy-Kinchine Formulas, etablished,
one can define a bijection Λ from the set of ∗-infinitely divisible laws to the set of �-
infinitely divisible laws, which associates νγ,σ� to the law νγ,σ∗ . This bijection, called the
Bercovici-Pata bijection, is clearly a morphism for the operations ∗ and �. Moreover, one
can prove that it is a homeomorphism for the weak topology and that it commutes with
the push-forwards by affine maps. It can then be fully characterized by the fact that, when
restricted to the set of laws with moments, it transforms classical cumulants into free ones
(the definitions of cumulants are recalled at Section 9.6 of the appendix). The following
facts can be deduced of this characterization :

• the image, by the bijection Λ, of the Gaussian law with mean m and variance σ2 is
the semi-circle law with center m and radius 2σ,

• the bijection Λ admits the Dirac masses and the Cauchy measures for fixed points,

1The real number γ is sometimes called the drift of the semigroup associated to µ, whereas the finite
measure σ can be interpreted as follows: σ({0}) represents the Brownian component of this semigroup
and the measure 1x6=0

1+x2

x2 dσ(x), when it is finite, represents its compound Poisson process component
(in the case where this measure is not finite, the semigroup can be understood by a subtile limit on such
decompsitions).
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• for all λ > 0, Λ maps the Poisson law with parameter λ to the law2
√

(b−x)(x−a)

2πx
1x∈[a,b]dx if λ ≥ 1,

(1− λ)δ0 +

√
(b−x)(x−a)

2πx
1x∈[a,b]dx if λ ≤ 1,

with a = (1−
√
λ)2, b = (1 +

√
λ)2.

The correspondence between classical and free infinitely divisible laws given by the
Bercovici-Pata bijection would be quite formal, wouldn’t have the following theorem been
proved by Bercovici and Pata in [14].

Theorem 3.1 The Bercovici-Pata bijection preserves the limit theorems for sums of i.i.d.
random variables. More specifically, for any sequence of integers (kn) tending to +∞, for
any sequence (νn) of laws, for any ∗-infinitely divisible law µ, we have

νn ∗ · · · · · · ∗ νn︸ ︷︷ ︸
kn times

−→
n→∞

µ ⇐⇒ νn � · · · · · ·� νn︸ ︷︷ ︸
kn times

−→
n→∞

Λ(µ). (3.4)

Notice that this theorem is not a consequence of the fact that Λ is a morphism for
∗ and � and an homeomorphism, because the laws νn are not supposed to be infinitely
divisible and we do not take their images by Λ. It means that to an infinitesimal level, ∗
and � behave in parallel ways. The proof of the theorem, relying on integral transforms
and complex analysis, do not give a very concrete aproach of the phenomena. My first PhD
Thesis work, that I present below, was motivated by the aim of giving an interpretation
of the previous theorem in terms of random matrices, making the Bercovici-Pata bijection
ad the equivalence (3.4) more intuitive.

Let us fix a ∗-infinitely divisible law µ, and consider a sequence (kn) of integers tending
to +∞ and a sequence (νn) of laws such that ν∗knn −→ µ, as in the left hand term of
(3.4). We are going to construct a random matrix model which will turn the proof of the
convergence

νn � · · · · · ·� νn︸ ︷︷ ︸
kn fois

−→
n→∞

Λ(µ) (3.5)

into a random matrices issue. For each fixed n, νn is the limit, as d→∞, of the empirical
spectral distribution of the d× d random matrix

Md(νn) := U

λ
(νn)
1

. . .

λ
(νn)
d

U∗, (3.6)

2If λ > 1, this law is equal, up to a dilation, to the Marchenko-Pastur law with 1/λ as defined at
Equation (1.13).
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where the λ
(νn)
i (i = 1, . . . , d) are i.i.d. with law νn and U is a Haar-distributed orthogonal

or unitary matrix, independent of the λ
(νn)
i ’s. Indeed, it follows from the law of large

numbers that almost surely,

1

d

d∑
i=1

δ
λ
(νn)
i

−→
d→∞

νn.

It then follows from the definition of � that for each fixed n, if the random matrices
Md(νn)(1), . . . ,Md(νn)(kn) are independent copies of the matrix Md(νn) defined in (3.6),
then

spectral law
(
Md(νn)(1) + · · · · · ·+Md(νn)(kn)

)
−→
d→∞

ν�kn
n .

We deduce that (3.5) can be re-written :

lim
n→∞

lim
d→∞

(
spectral law

(
Md(νn)(1) + · · · · · ·+Md(νn)(kn)

))
= Λ(µ).

Up to a permutation of the limits, the convergence (3.5) is then a consequence of the fol-
lowing theorem [A2, Th. 3.1, Th. 6.1].

Theorem 3.2 (a) For each fixed d, the sequence of Hermitian random d× d matrices

Md(νn)(1) + · · · · · ·+Md(νn)(kn)

converges in law, as n −→∞, to a law Pµd on the space of d× d Hermitian matrices, with
Fourier transform∫

eiTr(AM)dPµd(M) = eE[dψµ(〈u,Au〉)] for each Hermitian matrix A ∈ Kd×d,

where u is a vector with uniform law on the unit sphere of Kd and Ψµ is the Lévy exponent
of µ, defined at Equation (3.2).

(b) As d −→ ∞, the empirical spectral distribution of a Pµd-distributed random matrix
converges in probability to the law Λ(µ).

Thanks to this theorem, the fact that the Bercovici-Pata bijection preserves limit the-
orems is the expression of the commutativity of the limits d → ∞ and n → ∞ in the
following diagram :

Md(νn)(1) + · · · · · ·+Md(νn)(kn)
n→∞
−−−−→ Pµd

| |
d→∞ d→∞
↓ ↓

empirical spectral law:

µ�n
n

n→∞
−−−−→ empirical spectral law:

Ψ(µ)
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Another interest of the paper [A2] is that we therein study the spectral laws of new
matrix ensembles: in the preceding construction, µ can be any ∗-infinitely divisible law, as
for example a heavy-tailed stable law, a Cauchy law... For example, this paper is, up to my
knowledge, the first one giving a rigorous result for the limit spectral law of random ma-
trices whose entries have stable non Gaussian laws (but these entries are not independent,
which distinguish this model from the ones studied in [12, 9]). The same matrix models
have been studied simultaneously by Cabanal-Duvillard in [28].

To conclude, let us say a few words of the proof of Theorem 3.2. Part (a) is proved
using the Fourier transform, and Part (b) is proved using the method of moments when µ
has moments to all orders, and then can be extended by approximation, with a control on
the rank of the error.

3.2 �c-infinitely divisible laws

In the paper [A4], I studied the infinite divisibility for the convolutions �c (c ∈ [0, 1]). It
appears that as for the convolutions ∗ and �, the laws appearing at the limit in “limit
theorems” are also the ones belonging to semigroups for �c indexed by R+ and can be
characterized by a Lévy-Kinchine formula [A4, Th. 2.2, 2.5, 2.6]:

Theorem 3.3 For µ a law on R+, we have equivalence between the following propositions:

(i) There exists a sequence (kn) of integers with infinite limit and a sequence (νn) of laws
on R+ such that νn�c · · · · · ·�cνn︸ ︷︷ ︸

kn times

−→
n→∞

µ.

(ii) There exists a collection (µ�ct)t∈[0,+∞) of laws, starting at δ0, such that µ�c1 = µ and
which is a semigroup for �c.

(iii) There exists a finite symmetric positive measure σ on R such that the rectangular
R-transform with ratio c of µ is given by the formula

C(c)
µ (z) = z

∫
t∈R

1 + t2

1− t2z
dσ(t).

In this case, σ is unique and µ is denoted by νσ�c.

Such laws are said to be �c-infinitely divisible.
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Part (iii) of the previous theorem allows to define a Bercovici-Pata bijection with ratio
c from the set of symmetric ∗-infinitely divisible laws3 to the set of �c-infinitely divisible
laws: this map, denoted by Λc, maps any law ν0,σ

∗ (with symmetric σ mesure on R) to νσ�c .
As Λ, the bijection Λc preserves limit theorems [A4, Th. 3.3]:

Theorem 3.4 Let (kn) be a sequence of positive integers with infinite limit and (νn) be a
sequence of symmetric laws on R. We set |νn| to be the law of |X| for X a νn-distributed
random variable. Then for any symmetric ∗-infinitely divisible law µ, we have

νn ∗ · · · · · · ∗ νn︸ ︷︷ ︸
kn times

−→ µ ⇐⇒ |νn|�c · · · · · ·�c|νn|︸ ︷︷ ︸
kn times

−→ Λc(µ). (3.7)

This theorem allows to see easily that for c = 1, Λc is the restriction of the “square
type” Bercovici-Pata bijection Λ to the set of symmetric ∗-infinitely divisible laws.

Example 3.5 (a) For µ the standard Gaussian law, Λc(µ) is the law of
√
x for x a

random variable distributed according to the Marchenko-Pastur law LMP, c introduced
at (1.13), i.e. Λc(µ) is the law with density√

(m2
+ − x2)(x2 −m2

−)

πcx
1x∈[m−,m+]dx

and support [m−,m+] for m± = 1±
√
c (if c = 0, this formula has to be understood

as the one of the Dirac mass at 1).

(b) For µ the standard Cauchy law,

Λc(µ) =
12x>1−c

π

√
1− (1−c)2

4x2

c+ x2
dx.

The densities of these laws are represented at Figure 3.1.

The case of the Gaussian law allows to put the semicircle law and the Marchenko-Pastur
law on the same level: the semi-circle law, that is the limit distribution of the eigenvalues
of Gaussian Hermitian matrices, plays the role of the Gaussian law for the convolution
�, whereas the push-forward of the Marchenko-Pastur law LMP, c by the map x 7−→

√
x,

giving the limit distribution of the singular values of Gaussian n × p matrices, plays the
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Figure 3.1: Densities of the �c-infinitely divisible analogues of the Gaussian and
Cauchy laws, for c = 0.1, 0.5, 0.9 and 1. One can notice a phenomenon on which we shall
come back later: when c < 1, the supports of these laws do not contain zero. The reader who
has no color version of this text can however distinguish the curves by observing that the more
close c is to 1, the more extended the supports of these laws are.

role of the Gaussian law for the convolution �c.

In the paper [A4], I constructed a matrix model for the bijection Λc of the type of the
one associated to the bijection Λ and presented at the previous section: the role of the
eigenvalues is payed by the singular values and the square Hermitian d× d matrix Md(νn)
defined at Equation (3.6) is played by the d× d′ matrix

Md,d′(νn) := U

λ
(νn)
1 0 · · · 0

. . .
...

...

λ
(νn)
d 0 · · · 0

V,

where the λ
(νn)
i (i = 1, . . . , d) are i.i.d. νn-distributed variables and U, V are d× d, d′ × d′

Haar-distributed unitary matrices, independent and independent of the λ
(νn)
i ’s (the dimen-

sions d, d′ tend to infinity on such a way that d/d′ −→ c).

3.3 Regularization properties of the free convolutions

and repulsion of the singular values at zero

The classical convolution ∗ is a standard tool to regularize functions and measures. In the
paper [A7], with Serban Belinschi and Alice Guionnet, we have studied the regularization

3It can easily be seen, via Formula (3.2), that the symmetric ∗-infinitely divisible laws are precisely the
laws νγ,σ∗ for which γ = 0 and σ is symmetric.
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properties of the convolutions � and �c. Because the densities of the distributions appear-
ing in the universe of free probabilities and random matrices often have infinite derivatives
at the border of their support as shown by Biane in [19], the regularization issue for the
free convolutions is linked to the positivity of the density. In order to use the semigroup
properties, the regularization by infinitely divisible laws is of particular interest, and we
brought a particular attention to this case.

We shall see that in the case of the rectangular free convolution �c, these questions
bring to light an interesting phenomenon, that one can already have observed in Figures
1.1, 1.3, 1.4 and 3.1: the density of the convolution is likely to vanish in a neighborhood of
zero, which means concretely that the singular values of the sum of two random matrices
are likely to avoid taking too small values.

3.3.1 Case of the “square type” free convolution �

The following theorem, proved in part by Bercovici and Voiculescu [17, Th. 7.4] and in
part by Belinschi [8, Th. 4.1], shows that the free convolution � has strong regularization
properties.

Theorem 3.6 Let µ, ν be laws on R, none of them being supported by a single point. Then:

(a) The law µ� ν can be decomposed into a sum of atoms and of part which is absolutely
continuous with respect to the Lebesgue measure.

(b) The atoms of µ � ν are the real numbers a such that there exists b, c ∈ R such that
a = b+ c and µ({b}) + ν({c}) > 1. In this case, µ({a}) = µ({b}) + ν({c})− 1.

(c) There exists an open subset U of R and an analytic, positive function f on U such
that the absolutely continuous part of µ� ν is the measure 1x∈Uf(x)dx.

This theorem, as impressive as it can be, does not solve the question of singular points,
i.e. the ones where the density vanishes (at the border of U), sometimes with an infinite
derivative. In the paper [A7], at Theorems 3.1 et 3.2, we prove that under certain technical
hypotheses that we do not detail here, it is possible to improve these results.

Theorem 3.7 Let µ be a law on R.

• Under certain hypotheses about Gµ, for any law ν that is not a Dirac mass, the mea-
sure ν �µ has a density with respect to the Lebesgue measure, that is analytic and positive
on the whole real line.
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• If µ is �-infinitely divisible, with semigroup (µ�t)t≥0, the under certain hypotheses
about Rµ, for any law ν, for all t > 0, the measure ν � µ�t has a density with respect to
the Lebesgue measure, that is analytic and positive on the whole real line.

The Cauchy law, whose free convolution � with any law coincides with its classical
convolution with the same law, if of course an example of regularizing law in the sense of
the previous theorem. There are other examples, given in [A7]. Unfortunately, the follow-
ing proposition [A7, Prop. 3.4] show that it is impossible to regularize with laws allowing
to use the method of moments.

Proposition 3.8 Let µ be an �-infinitely divisible law, with semi-group (µ�t)t≥0. If there
exists t < 1 such that µ�t has no atom and µ has a finite second moment, then there exists
a law ν such that the density of µ�ν is neither analytical nor positive on the whole real line.

Let us now give a few ideas about the proofs of both previous theorems.

The first one is to derive properties of probability measures out of their Cauchy trans-
forms: it is well known that for Lebesgue-almost x ∈ R, the density of the absolutely
continuous part of a law µ at x is equal to

− 1

π
lim
y→0+

Gµ(x+ iy), (3.8)

but one can even prove [A7, Lem. 2.11], that for any interval I ⊂ R, µ admits an analytic
density on I if and only if Gµ, initially defined on C+, can be analytically extended to a
neighborhood of C+ ∪ I (and in this case, the density is of course given by the imaginary
part of this extension, up to the factor −1/π). These remarks lead a general philosophy
used in these proofs: the less Gµ explodes at the neighborhood of a real number x, the more
regular µ is at x. In other words: the more Gµ admits analytic extensions below the real
line, the more regular µ is. The most flagrant example is the one where µ = ν � C, C
denoting the Cauchy law. In this case,

Gµ(z) = Gν(z + i), (3.9)

so that Gµ can be analytically extended to {z ∈ C ; =(z) > −1} (and of course µ admits
an analytic density on the whole real line).

From there, the main tool, in in the proofs of regularity results, will be the so-called
subordination, proved by Biane [21, Th. 3.1] : for µ, ν laws on R, there exists two analytic
functions ω1, ω2 on C+ := {z ∈ C ; =(z) > 0} such that for all z ∈ C+,

=(ωj(z)) ≥ =(z) (j = 1, 2), (3.10)
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and
Gµ�ν(z) = Gµ(ω1(z)) = Gν(ω2(z)). (3.11)

Formula (3.10) means that the functions ωj are likely to increase the imaginary part of their
arguments, which allows to hope, by (3.11), that in certain cases at least, the extension of
Gµ�ν beyond C+ will be possible.

3.3.2 Case of the rectangular free convolution �c : regularity and
repulsion of the singular values at the origin

We shall see here that the rectangular free convolution �c shares a few regularization
properties “square type” free convolution �, and that in this case, a supplementary phe-
nomenon happens : the density of the convolution is likely to vanish in a neighborhood of
zero, which means that the singular values of the sum of two random matrices are likely to
avoid the vicinity of zero. One can have already observed this phenomenon in Figures 1.1,
1.3, 1.4 and 3.1. The repulsion of singular values at the origin plays a key role in several
proofs relying on the relation between singular values and eigenvalues of non Hermitian
random matrices, as in the proof, by Tao, Vu and Krishnapur, of the universality of the
circle law [111] or in the proof, by Guionnet, Krishnapur and Zeitouni, of the Single Ring
Theorem [62].

Let us first give our regularity results. They have been established in the particular
case where one of the measures is �c-infinitely divisible [A7, Cor. 4.4 and 4.6, Prop. 4.10].

Theorem 3.9 Let µ be a �c-infinitely divisible law such that µ 6= δ0.

• Then for any law ν on R+, the singular part4 of µ�cν is supported by a closed set
with zero Lebesgue measure and the density of its absolutely continuous part is continuous
on the complementary of this closed set in R+.

• Under some supplementary hypotheses about µ, for any law ν on R+, µ�cν is abso-
lutely continuous, with continuous density on R+.

• Under some supplementary hypotheses about µ, for any law ν on R+, µ�cν is abso-
lutely continuous and its density is continuous on R+ and analytic on an open set U such

4The singular part (resp. the absolutely continuous part) of a measure µ is µs (resp. µac), where
µ = µs+µac, with µs (resp. µac) supported by a set of null Lebesgue measure (resp. absolutely continuous
with respect to the Lebesgue measure). Note that in the general case, nothing allows to assert that the
support of µs has null Lebesgue measure (the case where µ is the counting measure on the set of rational
numbers is a good example).
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that µ�cν(U) = 1.

In [A7, Prop. 4.11], we give a sufficient condition on the finite measure σ for the �c-
infinitely divisible law µ = νσ�c to satisfy the hypotheses of the third part of the previous
theorem. One can for example prove that for all α ∈ [1, 2), these hypotheses are satisfied
by the �c-stables laws with de parameter α, that are the images, by the Bercovici-Pata bi-
jection Λc, of the classical symmetric stable laws with same parameters, and among which
is the Cauchy law for �c, whose density is given at Formula (3.5).

Let us now present our work on the behavior of µ�cν in the neighborhood of the origin.
For µ, ν laws on R+, it is easy to see, by linear algebra arguments, that

(µ�cν)({0}) ≥ µ({0}) + ν({0})− 1. (3.12)

The first part of the following theorem, taken from Proposition 4.12 of [A7], gives a kind of
reciprocal to (3.12). The second part, taken from Proposition 4.13 of [A7], gives a concrete
sense to the repulsion of singular values away from zero phenomenon.

Theorem 3.10 Let µ, ν be laws on R+ such that µ is �c-infinitely divisible.

• We have (µ�cν)({0}) = (µ({0}) + ν({0})− 1)+, with x+ := max{x, 0}.

• If µ({0}) + ν({0}) < 1, then for a certain ε > 0, the law µ�cν does not charge the
interval [0, ε].

Let us finish with a simple consequence of this theorem. We hope that it will convince
the reader of the utility of the considerations of this chapter. This result is to compare
with the ones of Śniady [105] and of Haagerup [64].

Corollary 3.11 Let A,X ∈ Kn×p be independent random matrices, depending implicitly
on the integers n, p which shall tend to infinity in such a way that n/p → c ∈ [0, 1]. We
suppose that the entries of X are i.i.d. centered Gaussian variables with variance σ2/p (for
σ > 0 fixed) and that the empirical singular values distribution of A converges in probability
to a law 6= δ0. Then there exists ε > 0 such that for the convergence in probability,

]{λ sing. val. of A+X ; λ ≤ ε} = o(n).
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Chapter 4

Eigenvectors of Wigner matrices :
universality of the global fluctuations

In this chapter, I present the three main results my work of [A19] : Theorems 4.1 and 4.2
and Proposition 4.5.

4.1 Introduction

It is well known that the matrix Un = [ui,j]
n
i,j=1 whose columns are the eigenvectors of a

GOE or GUE matrix Xn can be chosen to be distributed according to the Haar measure
on the orthogonal or unitary group. As a consequence, much can be said about the ui,j’s:
their joint moments can be computed via the so-called Weingarten calculus developed in
[39, 41], any finite (or not too large) set of ui,j’s can be approximated, as n → ∞, by
independent Gaussian variables (see [71, 37] or Theorem 6.3 of the present text) and the
global asymptotic fluctuations of the |ui,j|’s are governed by a theorem of Donati-Martin
and Rouault, who proved in [45] that as n→∞, the bivariate càdlàg processBn

s,t :=

√
β

2

∑
1≤i≤ns,
1≤j≤nt

(|ui,j|2 − 1/n)


(s,t)∈[0,1]2

(where β = 1 in the real case and β = 2 in the complex case) converges in distribution,
for the Skorokhod topology, to the bivariate Brownian bridge, i.e. the centered continuous
Gaussian process (Bs,t)(s,t)∈[0,1]2 with covariance

E[Bs,tBs′,t′ ] = (min{s, s′} − ss′)(min{t, t′} − tt′). (4.1)

A natural question is the following:
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What can be said beyond the Gaussian case, when the entries of the Wigner
matrix Xn are general random variables ?

For a general Wigner matrix, the exact distribution of the matrix Un cannot be com-
puted and few works had been devoted to this subject until quite recently. One of the
reasons is that while the eigenvalues of an Hermitian matrix admit variational character-
izations as extremums of certain functions, the eigenvectors can be characterized as the
argmax of these functions, hence are more sensitive to perturbations of the entries of the
matrix. However, in the last three years, the eigenvectors of general Wigner matrices have
been the object of a growing interest, due in part to some relations with the universality
conjecture for the eigenvalues. In several papers (see, among others, [48, 49, 50]), a de-
localization property was shown for the eigenvectors of random matrices. More recently,
Knowles and Yin in [76] and Tao and Vu in [113] proved that if the first four moments
of the atom distributions1 of Xn coincide with the ones of a GOE or GUE matrix, then
under some tail assumptions on these distributions, the ui,j’s can be approximated by in-
dependent Gaussian variables as long as we only consider a finite (or not too large) set of
ui,j’s.

In this chapter, we consider the global behavior of the |ui,j|’s, and we prove (Theo-
rem 4.1) that for Wigner matrices whose entries have moments of all orders, the process
(Bn

s,t)(s,t)∈[0,1]2 has a limit in a weaker sense than for the Skorokhod topology and that this
weak limit is the bivariate Brownian bridge if and only if the off-diagonal entries of the
matrix have the same fourth moment as the GOE or GUE matrix (quite surprisingly, no
hypothesis on the third moment is necessary). Under some additional hypotheses on the
atom distributions (more coinciding moments and continuity), we prove the convergence
for the Skorokhod topology (Theorem 4.2).

This result was conjectured by Chafäı, who also conjectures the same kind of universal-
ity for unitary matrices appearing in other standard decompositions, such as the singular
values decomposition or the Housholder decomposition of non hermitian matrices, as long
as the matrix considered has i.i.d. entries with first moments agreeing with the ones of
Gaussian variables. It would also be interesting to consider the same type of question in the
context of band matrices, connecting this problem with the so-called Anderson conjecture
(see e.g. the works of Erdös and Knowles [46, 47], of Schenker [101] or of Sodin [106], or,
for a short introduction, the blog note by Chafäı [36]).

4.2 Main results

For each n, let us consider a real or complex Wigner matrix

Xn :=
1√
n

[xi,j]
n
i,j=1

1The atom distributions of a Wigner matrix are the distributions of its entries.
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such that the distributions of the xi,j’s on the diagonal and off the diagonal do not depend
on n (Wigner matrices have been defined in Insert 2.3, at the end of Section 2.1.2).

Let us denote by λ1 ≤ · · · ≤ λn the eigenvalues of Xn and consider an orthogonal or
unitary matrix Un = [ui,j]

n
i,j=1 such that

Xn = Un diag(λ1, . . . , λn)U∗n.

Note that Un is not uniquely defined. Let us choose it in a measurable way, no matter
which one.

We define the bivariate càdlàg processBn
s,t :=

√
β

2

∑
1≤i≤ns,
1≤j≤nt

(|ui,j|2 − 1/n)


(s,t)∈[0,1]2

,

where β = 1 in the real case and β = 2 in the complex case.

The bivariate Brownian bridge has been defined in the introduction. The exact defini-
tion of the functional spaces of the two following theorems and of their topologies can be
found in [A19, Sect. 4.1].

Theorem 4.1 Suppose that the xi,j’s have moments of all orders. Then the sequence

(distribution(Bn))n≥1

has a unique possible accumulation point supported by C([0, 1]2). This accumulation point
is the distribution of a centered Gaussian process which depends on the distributions of
the xi,j’s only through E[|x1,2|4], and which is the bivariate Brownian bridge if and only if
E[|x1,2|4] = 4− β, as in the Gaussian case.

More precisions about the way the unique possible accumulation point depends on the
fourth moment of the entries are given in Remark 4.3.

To get a stronger statement where the convergence in distribution to the bivariate
Brownian bridge is actually stated, one needs stronger hypotheses.

Theorem 4.2 Suppose that the xi,j’s have a density and moments of all orders, matching
with the ones of a GO(U)E matrix up to order 10 on the diagonal and 12 above the diago-
nal. Then, as n→∞, the bivariate process Bn converges in distribution, for the Skorokhod
topology in D([0, 1]2), to the bivariate Brownian bridge.
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Remark 4.3 Complements on Theorem 4.1. One can wonder how the unique accu-
mulation point mentioned in Theorem 4.1 depends on the fourth moment of the entries of
Xn. Let G := (Gs,t)(s,t)∈[0,1]2 be distributed according to this distribution. We know that
(Gs,t)(s,t)∈[0,1]2 is the bivariate Brownian bridge only in the case where E[|x1,2|4] = 4−β. In
the other cases, defining Fsemicircle as the cumulative distribution function of the semicircle
law, the covariance of the centered Gaussian process(∫ 2

u=−2

ukGs,Fsemicircle(u)du

)
s∈[0,1],k≥0

, (4.2)

which determines completely the distribution of the process G, can be computed. However,
making the covariance of G explicit out of the covariance of the process of (4.2) is a very
delicate problem, and we shall only stay at a quite vague level, saying that the variances
of the one-dimensional marginals of G are increasing functions of E[|x1,2|4]. For example,
that for all 0 ≤ s1, s2 ≤ 1,

Cov

(∫ 2

u=−2

u2Gs1,Fsemicircle(u)du,

∫ 2

u=−2

u2Gs2,Fsemicircle(u)du

)
=
E[|x1,2|4]− 1

4
(min{s1, s2}−s1s2).

Remark 4.4 Comments on the hypotheses of Theorem 4.2 (1). In order to prove
the convergence in the Skorokhod topology, we had to make several hypotheses on the
atom distributions: absolute continuity, moments of all orders and coincidence of their 10
(on the diagonal) and 12 (above the diagonal) first moments with the ones of a GOE or
GUE matrix. We needed these assumptions to control the discontinuities of the process
Bn. Even though these hypotheses might not be optimal (especially the continuity one),
a bound on the tails of the atom distributions seems to be necessary to avoid too large
variations of the process Bn. Indeed, as illustrated by Figure 4.1, for a GOE matrix (left
picture), |ui,j|2 is close to 1/n for all i, j with high probability, whereas when the atom
distributions have not more than a second moment (right picture), the matrix Xn looks
more like a sparse matrix, and so does Un, which implies that for certain (i, j)’s, |ui,j|2−1/n
is not small enough. Since |ui,j|2− 1/n is the jump of the process Bn at (s, t) = (i/n, j/n),
this could be an obstruction to the existence of a continuous limit for the process Bn. That
being said, we have hopes to prove the theorem under a four moments hypothesis instead
of a 12 moments one (see Remark 4.6 bellow).

Note that it follows from the previous theorem that for all 0 ≤ s < s′ ≤ 1 and
0 ≤ t < t′ ≤ 1, the sequence of random variables

1√
(s′ − s)(t′ − t)

∑
ns<i≤ns′
nt<j≤nt′

(|ui,j|2 − 1/n)
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Figure 4.1: Influence of the tails of the atom distributions of Xn on the |ui,j |’s: Plot of
the map (i/n, j/n) 7−→ ||ui,j |2 − 1/n| for two different choices of atom distributions. Left: GOE
matrix. Right: Wigner matrix with atom distribution admitting moments only up to order 2 + ε
for a small ε. For both pictures, the matrices are n× n with n = 50.

admits a limit in distribution as n→∞, hence is bounded in probability (in the sense of
[111, Def. 1.1]). In the same way, it follows from [76] and [113] that the sequence n|ui,j|2−1
is bounded in probability. In the next proposition, we improve these assertions by making
them uniform on s, s′, t, t′, i, j and upgrading them to the L2 and L4 levels.

Proposition 4.5 Suppose that the xi,j’s have densities and moments of all orders, match-
ing with the ones of a GO(U)E matrix up to order 4. Then as n → ∞, the sequences

n|ui,j|2 − 1 and
1√

(s′ − s)(t′ − t)

∑
ns<i≤ns′
nt<j≤nt′

(|ui,j|2 − 1/n) (4.3)

are bounded for the respective L4 and L2 norms, uniformly in s < s′, t < t′, i, j.

Remark 4.6 Comments on the hypotheses of Theorem 4.2 (2). This proposition
is almost sufficient to apply the tightness criterion that we use in this paper. Would the
second term of (4.3) have been bounded for the L2+ε norm (instead of L2), a four moments
hypothesis would have been enough to prove that Bn converges in distribution, for the
Skorokhod topology in D([0, 1]2), to the bivariate Brownian bridge.

Let us now outline the proofs of Theorems 4.1 and 4.2 and Proposition 4.5.
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Firstly, Theorem 4.2 can be deduced from Theorem 4.1 by proving that the sequence
(distribution(Bn))n≥1 is tight and only has C([0, 1]2)-supported accumulation points. This
can be done via some upper bounds on the fourth moment of the increments ofBn and on its
jumps (i.e. of its discontinuities). The proofs of these bounds and of Proposition 4.5 rely on
a comparison of the eigenvectors of Xn with the ones of a GO(U)E matrix. Indeed, thanks
to the Weingarten calculus, one can easily establish such bounds for Haar-distributed ma-
trices. Such a comparison is obtained with the “one-by-one entries replacement method”
developed by Tao and Vu in recent papers, such as [112, 113].

Secondly, the proof of Theorem 4.1 relies on the following remark, inspired by some ideas
of Jack Silverstein (see [6, Chap. 10] and [104]): even though we do not have any “direct
access” to the eigenvectors of Xn, we have access to the process (Bn

s,FµXn
(u))s∈[0,1],u∈R, for

FµXn (u) := 1
n
]{i ; λi ≤ u}. Indeed,

Bn
s,FµXn

(u) =

√
β

2

∑
1≤i≤ns

∑
1≤j≤n

s.t. λj≤u

(|ui,j|2 − 1/n),

hence for all fixed s ∈ [0, 1], the function u ∈ R 7−→ Bn
s,FµXn

(u) is the cumulative distribution

function of the signed measure√
β

2

∑
1≤i≤ns

n∑
j=1

(|ui,j|2 − 1/n)δλj , (4.4)

which can be studied via its moments∑
1≤i≤ns

(
e∗iX

k
nei −

1

n
TrXk

n

)
(k ≥ 1),

the ei’s being the vectors of the canonical basis. From the asymptotic behavior of the
moments of the signed measure of (4.4), one can then find out the asymptotic behavior of
its cumulative distribution function.

Once the asymptotic distribution of the process (Bn
s,FµXn

(u))s∈[0,1],u∈R identified, one

can obtain the asymptotic distribution of the process (Bn
s,t)s∈[0,1],t∈[0,1] because the function

FµXn tends to the (non random) cumulative distribution function Fsemicircle of the semicircle
law.
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Chapter 5

A continuum of notions of
independence notions between the
classical and the free one

With Thierry Lévy, in our paper [A11], we have used the Brownian motion on the unitary
group to propose an interpolation between the classical and the free notions of independence
for elements of a non-commutative probability space. We are going to introduce this
question from the point of view of the convolution of measures.

5.1 Convolutions

Let µ and ν be two probability measures on R. The classical convolution of µ and ν,
denoted by µ ∗ ν, can be described in the following way. Let A et B be diagonal n × n
matrices (A et B depend implicitly on the parameter n, as the matrices S, V and Ut below)
whose empirical spectral laws converge respectively to µ and ν as n −→ ∞. Let S be the
matrix of a uniform random permutation of {1, . . . , n}. Then as n −→∞, we have

1

n

∑
λ eig. of A+SBS∗

δλ −→ µ ∗ ν.

Let us now consider a Haar-distributed unitary matrix V . Then as n −→∞, we have

1

n

∑
λ eig. of A+V BV ∗

δλ −→ µ� ν.

There is a natural interpolation between the distribution of S and that of V : it is
the family of the distributions of a unitary Brownian motion Ut (t ∈ R+) whose initial
distribution is the one of S (see Insert 5.6). Then we have the following result [A11, Cor.
2.10].
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Theorem 5.1 With the notations introduced above, as n −→ ∞, the empirical spectral
distribution of the matrix A+ UtBU

∗
t converges weakly in probability to a law on R which

depends only on µ, ν and t, that we shall denote by µ ∗t ν and call the t-free convolution
of µ and ν.

This theorem can easily be deduced from the convergence of the empirical spectral
distribution of Ut to the one of a free unitary Brownian motion taken at time t, from
the convergence of the non-commutative distribution of the pair {A, SBS∗} and from the
asymptotic freeness of unitarily invariant random matrices.

A classical example where one can compute explicitly the free convolution of two mea-
sures is that where µ = ν = 1

2
(δ1 + δ−1). In this case, µ ∗ ν = 1

4
δ−2 + 1

2
δ0 + 1

4
δ2 and

µ� ν = 1[−2,2](x) dx
π
√

4−x2 , a dilation of the arcsine law. One can show that for all t > 0,

δ1 + δ−1

2
∗t
δ1 + δ−1

2
= 1[−2,2](x)

ρ4t(e
4i arccos x

2 )

π
√

4− x2
dx, (5.1)

where ρt is the function introduced at Insert 5.7 below. Figure 5.1 represents the densities
of these laws, computed numerically according to the method presented at Insert 5.7.

Figure 5.1: Density of δ1+δ−1

2 ∗t δ1+δ−1

2 at x ∈ [−2, 2] as a function of x and t. One can describe
completely the support of the measure for each t. The first time at which this support is the
whole interval [−2, 2] is t = 1 and the last two points to enter this support are −

√
2 and

√
2.

5.2 Dependance structures and t-freeness

Just as in the case of independence and freeness, the existence of the t-free convolution of
two measures is a by-product of the existence of a structure of dependence between sub-
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algebras of a non-commutative probability space. By a structure of dependence, we mean
the following: in a non-commutative probability space (A, ϕ) where two sub-algebras A1

and A2 are given, a way of reconstructing the restriction of ϕ to the sub-algebra generated
by A1 ∪ A2 from the restrictions of ϕ to A1 and A2. In commutative terms, we would
say that such a structure allows one to infer the joint distribution of a family of random
variables from the knowledge of their individual distributions. More details are given at
Section 9.2 of the appendix, where the reader can find the definitions of the tensor and
free products of non-commutative probability spaces, as well as the ones of freeness and
independence in such spaces.

We are going to define a universal model for t-freeness by defining a state on the free
product of the algebras underlying two arbitrary non-commutative probability spaces. We
shall use here the free product A1 ? A2 of two algebras, defined at Section 9.2 of the
Appendix.

Definition 5.2 Let (A1, ϕ1) and (A2, ϕ2) be two non-commutative probability spaces. Let
t be a positive real number. Let (U , τ) be a non-commutative probability space generated by
a unitary element ut whose distribution is the measure νt defined at Insert 5.7. Let f be
the unique algebras morphism

f : A1 ?A2 → (A1 ⊗A2) ? U
such that f(a1) = a1⊗ 1 for all a1 ∈ A1 and f(a2) = ut(1⊗ a2)u∗t for all a2 ∈ A2. We call
t-free product of ϕ1 and ϕ2 the state ϕ1 ∗t ϕ2 on A1 ?A2 defined by

ϕ1 ∗t ϕ2 = [(ϕ1 ⊗ ϕ2) ? τ ] ◦ f.

The fact that the measure νt is invariant by complex conjugation implies that the
pair (ut, u

−1
t ) has the same distribution as the pair (u−1

t , ut), so that replacing f by the
morphism f ′ defined by f ′(a1) = ut(a1 ⊗ 1)u∗t and f ′(a2) = 1⊗ a2 would lead to the same
definition of ϕ1 ∗t ϕ2.

For t = 0, we recover the definition of the tensor product of two states, transported
from the tensor product of the algebras to their free product by the natural morphism
A1 ?A2 → A1⊗A2. On the other hand, if t > 0, the element ut is not scalar in U and this
allows one to prove that m is injective. So, the sub-algebra of (A1 ⊗A2) ? U generated by
A1 ⊗ 1 and ut(1⊗A2)u∗t is a realisation of the free product of A1 and A2.

Once a universal model is defined, we can define t-freeness [A11, Def. 2.5].

Definition 5.3 Let (A, ϕ) be a non-commutative probability space. Let A1 and A2 be two
sub-algebras of A. Let ϕ1 and ϕ2 denote the restrictions of ϕ to A1 and A2 respectively.
We say that A1 and A2 are t-free if the natural morphism of algebras f : A1 ? A2 → A
satisfies the equality ϕ ◦ f = ϕ1 ∗t ϕ2. We say that two subsets of A are t-free if the
involutive sub-algebras which they generate are.
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The observation made after Definition 5.2 ensures that this definition is symmetric in
A1 and A2.

We now check that t-convolution corresponds to t-freeness.

Proposition 5.4 Let (A, ϕ) be a non-commutative probability space. Let t ≥ 0 be a real
number and let a, b ∈ A be two self-adjoint elements which are t-free, with respective
distributions µ and ν. Then the distribution of a+ b is µ ∗t ν.

We can define other t-free convolutions. For example, we can multiply t-free elements:
if, with the notation of the proposition above, A is a C∗-algebra and a, b are non-negative,
we can define µ �t ν as the distribution of

√
ba
√
b. Also, if a and b are unitary, in which

case µ and ν are measures on the unit circle, we can define µ�t ν as the distribution of ab.

Let us give a brief explanation on the concrete meaning of the t-freeness. The freeness
characterizes the non-commutative distribution of two large Hermitian matrices A,B whose
eigenvector bases are in a generic position with each other (i.e. one can change one into the
other by a generic unitary transformation, which can for example be obtained by choosing
it randomly according to the Haar measure). The independence characterizes the non-
commutative distribution of two codiagonalisable matrices such that one can change the
eigenvector basis of A ordered by increasing eigenvalues into the ordered eigenbasis of
B via a generic permutation of the vectors of the basis [A11, Th. 1.8]. The t-freeness
characterizes the non-commutative distribution of two large Hermitian matrices that are
codiagonalisable up to the conjugation of one of then by a unitary Brownian motion taken
at time t.

Besides, the t-freeness is linked to the liberation process defined by Voiculescu in [119,
Sect. 2.1] : roughly, one can write

t-freeness = liberation process taken at time t + independence at time 0.

More specifically, if A1 and A2 are two independent algebras, then their images by the
liberation process starting at (A1,A2) at time t are t-free.

5.3 Differential systems

When one tries to perform computations with pairs of t-free variables, one is led to compute
expressions of the form

τ(a1utb1u
∗
t . . . anutbnu

∗
t ), (5.2)

where the family {a1, . . . , an} is independent of {b1, . . . , bn} and ut is free with the union
of these two families.

The best grip that one has on such expressions is to consider them as functions of t
and to establish as small a differential system as possible which they satisfy. In order to
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differentiate with respect to t an expression like (5.2), one uses a free stochastic differential
equation satisfied by the free unitary Brownian motion, which is the analogue (and in a
vague sense the limit as n tends to infinity) of the stochastic differential equation (5.5)
which defines the unitary Brownian motion.

This derivative involves products of expressions of the form (5.2). By considering all
possible products of expressions of this form where a1, . . . , an, utb1u

∗
t , . . . , utbnu

∗
t appear

each exactly once, one obtains a finite set of functions of t which satisfies a closed differ-
ential system. By solving such systems, one obtains the following result [A11, Proposition
3.5].

Proposition 5.5 Let us define a function G(t, z) in a neighbourhood of (0, 0) in R+ × C
in the following way.

Let (A, ϕ) be a non-commutative probability space. Let a and b be two normal elements
whose distributions have compact support and are symmetric (by this we mean that a and
−a on one hand, b and −b on the other, have the same distribution). Choose t ≥ 0.
Assume that a and b are t-free. We set

G(t, z) =
∑
n≥1

ϕ((autbu
∗
t )

2n)e2ntzn.

Then G is the unique solution, in a neighbourhood of (0, 0) in R+×C, of the non-linear
equation 

∂tG+ 2z∂z(G
2) = 0,

G(0, z) =
∑

n≥1 ϕ(a2n)ϕ(b2n)zn.

This proposition allows one for example to prove (5.1). We can also use it to compute
the distribution of the product of two t-free Bernoulli variables. The density obtained is
the one represented at Figure 5.2.

Proposition 5.6 For all t > 0, one has the following equality of measures on the unit
circle:

δ−1 + δ1

2
�t

δ−1 + δ1

2
= ρ4t(ξ

2)dξ,

where ρ4t is the function introduced at Insert 5.7 below, i.e. is the density of the measure
ν4t with respect to the uniform law on the unit circle.
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Figure 5.2: Density of δ−1+δ1
2 �t δ−1+δ1

2 at eiθ as a function of θ and t. The support of the measure
fills the entire circle for the first time at t = 1. The last points to enter the support are i and −i.

5.4 Non-existence of t-free cumulants

By analogy with the case of freeness, we have wondered if it was possible to find t-free
cumulants, that is, multilinear forms defined on every non-commutative probability space
and which would vanish as soon as they are evaluated on a set of arguments which can be
split into two non-empty families which are t-free (see Section 9.6 of the appendix for an
introduction to classical and free cumulants). In the t-free case for t > 0, we have shown
that there exists nothing as simple and powerful as the free cumulants.

In order to state this result, let us present the set of multilinear forms where we looked
for candidates to the role of t-free cumulants.

Let (A, ϕ) be a non-commutative probability space, n ≥ 1 and σ an element of the
group Sn of permutations of {1, . . . , n}. One defines an n-linear form on A by setting, for
all a1, . . . , an ∈ A,

ϕσ(a1, . . . , an) =
∏

(i1···ir) cycle of σ

ϕ(ai1 · · · air).

This definition makes sense thanks to the traciality of ϕ (i.e. the axiom ϕ(xy) = ϕ(yx)
for all x, y).

We now look for t-free cumulants in the set of linear combinations of ϕσ, σ ∈ Sn: this
model contains at the same time the classical cumulants and the free ones. Of course, we
are looking for linear combinations with the property that they vanish as soon as they are
evaluated on arguments which can be split in two non-empty subsets which form two t-free
families.
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Definition 5.7 Let n ≥ 2 be an integer. Let t ≥ 0 be a real number. A t-free cumulant of
order n is a collection (c(σ))σ∈Sn of complex numbers such that∑

σ n−cycle

c(σ) 6= 0 (5.3)

and such that the following property is satisfied in every non-commutative probability space
(A, ϕ): for all pair (A1,A2) of sub-algebras of A which are t-free with respect to ϕ, and
for all a1, . . . , an elements of A which belong each either to A1 or to A2, but neither all to
A1 nor all to A2, one has ∑

σ∈Sn

c(σ)ϕσ(a1, . . . , an) = 0. (5.4)

Let us explain why the constraint (5.3) is natural in this definition. It is clear that if
(c(σ))σ∈Sn is a t-free cumulant, then for all τ ∈ Sn, the collection (c(τστ−1))σ∈Sn is also
a t-free cumulant, as well as (

c̃(σ) :=
∑
τ∈Sn

c(τστ−1)

)
σ∈Sn

.

The advantage of the last one is that it is conjugation invariant, i.e. that for all σ, τ ,
c̃(σ) = c̃(τστ−1). The sum of (5.3) is then the common coefficient of all maximal length
cycles, and the fact that it is non zero for all n insures that it is possible to recover the
moments ϕ(ak) of an element a out of its cumulants.

Our result is the following one [A11, Th. 4.3 et 4.4]. By t-free for t = +∞, we mean
free.

Theorem 5.8 1. For all t ∈ [0,+∞] and all n ∈ {2, 3, 4, 5, 6}, there exists a t-free cumu-
lant of order n. If moreover one insists that this cumulant is invariant by conjugation, that
is such that c(σ1σ2σ

−1
1 ) = c(σ2) for all σ1, σ2 ∈ Sn, then it is unique up to multiplication

by a constant.
2. There exists a t-free cumulant of order 7 if and only if t = 0 or t = +∞.

We conclude this chapter with some inserts recalling basic formulas for the Îto matricial
calculus, the definition of the unitary Brownian motion, and the one of the free unitary
Brownian motion.

INSERT 5.5 – Matricial Îto calculus
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Let (Ft)t≥0 be a filtration K = (Kt)t≥0 be a standard Brownian motion on the space of skew-
Hermitian n × n matrices endowed with the scalar product A · B = nTr(A∗B), i.e. a process with
values in this space such that the diagonal entries of (i

√
nKt)t≥0 and the real and imaginary parts

of the non diagonal entries of (
√

2nKt)t≥0are independent standard Brownian motions. Then all the
matrix-valued semi-martingales X,Y of the type

dXt = At(dKt)Bt + Ctdt , dYt = Dt(dKt)Et + Ftdt,

where A,B,C,D,E, F are matricial (Ft)t≥0-adapted processes, we have

d(XY )t = (dXt)Yt +XtdYt −
1
n

Tr(BtDt)AtEtdt,

d〈Tr(X),Tr(Y )〉t = − 1
n

Tr(BtAtEtDt)dt,

〈·, ·〉 denoting the quadratic variation.

INSERT 5.6 – The three definitions of the Brownian motion on the unitary group

For K a skew-Hermitian n× n Brownian motion as defined at Insert 5.5, we call a unitary Brownian
motion any process U = (Ut)t≥0 taking values in the space of complex n × n matrices which is a
strong solution of

dUt = dKtUt −
1
2
Utdt (5.5)

such that U0 is almost surely unitary. Thanks to the matricial Îto calculus, on can then prove that
almost surely, Ut is unitary for all t, and that the left and right multiplicative increments of Ut are
stationary and independent: for all t0, the processes (Ut0+tU

∗
t0)t≥0 and (U∗t0Ut0+t)t≥0 are unitary

Brownian motions, independent of (Us)0≤s≤t0 .

The process U can also be defined by rolling the unitary group Un on its Lie algebra u along the
process K (starting at U0, that is independent of K). Let us be more precise. For γ : [0,+∞)→ u a
continuous, smooth by parts path starting at 0 and u0 ∈ Un, “the wrapping” of γ on Un starting at
u0 is the path wγ defined by wγ(0) = u0 and w′γ(t) = wγ(t)×γ′(t). Here, U can be roughly obtained
in that way with γ = K and u0 = U0, but K is not smooth by parts. However, one can prove that if
(K(p))p≥1is a sequence of continuous, affine by parts interpolations of K, the the sequence (wK(p))p≥1

converges in probability to a limit process that does not depend on the choice of the interpolations
and that is the process U solution of (5.5). Equivalenlty,

Ut = lim
p→∞

U0 expK t
p

exp(K 2t
p
−K t

p
) · · · · · · exp(K pt

p
−K (p−1)t

p

).

For more details on this construction, see [70, Sect. VI.7], [97, Eq. (35.6)] ot [55].

At last, one can define U as a continuous Markov process with generator 1
2∆, where ∆ is the

Laplacien on Un for the Riemannian structure associated to the scalar product on its Lie algebra

defined by A ·B = nTr(A∗B). We shall not detail this approach, thus we do not detail it.
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INSERT 5.7 – Free unitary Brownian motion

Let U be an n × n unitary Brownian motion, as defined at Insert 5.6, starting at I. Biane, in [18],
and Rains, in [95], have proved that for all t ≥ 0, the empirical spectral distribution of Ut converges
in probability, as n −→ ∞, to the unique law νt on the unit circle, invariant by z 7−→ z and with
moments

e−
kt
2

k−1∑
j=0

(−t)j

j!

(
k

j + 1

)
kj−1 (k ≥ 0).

The invariance of the law of U by conjugaison by any unitary matrix and the independence of its
increments allow easily to prove that the joint non-commutative distribution of (Ut)t≥0 converges to
the one of a process (ut)t≥0 of unitary elements1 of a non-commutative probability space (A, ϕ) such
that

• for all 0 ≤ s ≤ t, the distribution of utu
∗
s is νt−s,

• for all m ≥ 1, for all 0 = t0 ≤ t1 ≤ · · · ≤ tm, the elements ut1u
∗
t0 , . . . . . . , utmu

∗
tm−1

are free.

Such a family (ut)t≥0 is called a free unitary Brownian motion.

There exists a simple expression of the support of νt as a function of t (see [A11, Sect. 3.3.1])
but not of its density ρt with respect to the uniform law on the unit circle. However, the analytic
function on the unit circle κt whose real part is the harmonic extension of ρt, given by the formula
κt(z) =

∫
x+z
x−zdνt(x), satisfies the equation

κt(z)− 1
κt(z) + 1

e
t
2
κt(z) = z (5.6)

(this can be obtained by the Lagrange inversion, using the formula of the moments of νt). Solving
numerically Equation (5.6), one obtains Figure 5.3 below.

1A unitary element in a non-commutative probability space is an element u such that uu∗ = u∗u = 1.
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Figure 5.3: Density ρt of the law νt at eiθ as a function of θ and t. We see its support filling
progressively the circle up to time t = 4, which is the first time at which this support covers the whole
circle, and then becomes analytic for t > 4.
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Chapter 6

Central limit theorem for the
Brownian motion on the unitary
group

The Brownian motion on the unitary group has been introduced in the present text in
Insert 5.6. Mainly due to its relations with the free unitary Brownian motion (see Insert
5.7 above) and with the two-dimentional Yang-Mills theory, the Brownian motion on large
unitary groups has appeared in several papers during the last decade. Rains, in [95], Xu, in
[121], Biane, in [18, 20] and Lévy and Mäıda, in [77, 78], are all concerned with the asymp-
totics of the spectral distribution of large unitary Brownian motions. In this section, we
are concerned with the asymptotic distributions of linear combinations of the entries of an
n× n unitary Brownian motion as n tends to infinity.

It is clear that the same analysis would give similar results for the Brownian motion on
the orthogonal group. For notational brevity, we chose to focus on the unitary group.

Our main result is the following one [A13, Th. 1.2]. Let (e−t/2Vt)t≥0 a Brownian motion
the group of n×n matrices such that V0 = I (Vt depends implicitly on the parameter n, as
the matrix A below), let (αn) be a sequence of positive numbers with a limit α ∈ [0,+∞]
and let A a be deterministic n×n complex matrix such that for some fixed numbers a, p, q,
as n −→∞,

1

n
Tr(A) −→ a,

1

n
Tr(A2) −→ p,

1

n
Tr(AA∗) −→ q.

Let µ be the distribution of a complex-valued continuous Gaussian centered process (Xt)t≥0
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with independent increments such that

E(XtXt) = qt , E(X2
t ) =


−pt if α = 0,

−p log(αt+1)
α

+ a log2(αt+1)
2α

if 0 < α < +∞,

0 if α = +∞.

(6.1)

Theorem 6.1 As n −→∞, the distribution of the process

(α−1/2
n Tr[A(Vlog(αnt+1) − I)])t≥0

converges weakly to µ in the space C([0,∞),C) endowed with the topology of uniform con-
vergence on every compact subset.

Note that by the standard properties of the Gaussian spaces, this theorem implies its
multidimentional version : for any fixed d ≥ 1, if A1, . . . , Ad are n×n matrices (depending
implicitly on n) such that as n −→∞, for all i, j,

1

n
Tr(Ai) −→ ai,

1

n
Tr(AiAj) −→ pi,j,

1

n
Tr(AiA

∗
j) −→ qi,j,

then the d-dimensional complex process

{α−1/2
n Tr[A1(Vlog(αnt+1) − I)], . . . . . . , α−1/2

n Tr[Ad(Vlog(αnt+1) − I)]}t≥0

converges weakly to a distribution which can easily be expressed in terms of the ai’s, the
pi,j’s, the qi,j’s and of α.

Recall that a principal submatrix of a matrix is a submatrix obtained by removing some
columns, and the rows with the same indices.

Corollary 6.2 Let us fix p ≥ 1 and let (Ht), (St) be two independent standard Brownian
motions on the Euclidian spaces of p×p respectively Hermitian and skew-Hermitian matri-
ces endowed with the respective scalar products 〈X, Y 〉 = Tr(XY )/2, 〈X, Y 〉 = −Tr(XY )/2.
Then, as n tends to infinity, the distribution of the Cp×p-valued process of the entries of any
p× p principal submatrix of

√
n/αn(Vlog(αnt+1) − I)t≥0 converges to the one of the random

process (Ht−fα(t) + St+fα(t))t≥0, where

fα(t) =


t if α = 0,
log(αt+1)

α
if 0 < α < +∞,

0 if α = +∞.
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Let us comment these results. The most constructive way to define the unitary Brow-
nian motion is to consider a standard Brownian motion (Kt)t≥0 on the Lie algebra of the
unitary group and to take its image by the Itô map (whose inverse is sometimes called
the Cartan map), i.e. to wrap it around the unitary group: the process (Ut)t≥0 obtained
is a unitary Brownian motion starting at I. This construction is the second of the ones
presented in Insert 5.6. Our results give us an idea of the way the Itô map alterates the
process (Kt)t≥0 at different scales of time : for small times (i.e. when α = 0), the limit
process is still purely skew-Hermitian, whereas for large times (α = +∞), the limit pro-
cess is a standard complex matricial Brownian motion (for intermediate scales of time,
0 < α < +∞, the limit process is an interpolation between these extreme cases).

Moreover, the question of the choice of a rescaling of the time (depending on the dimen-
sion) raises interesting questions. There are other ways to scale the time for the Brownian
motion on the unitary group. Our scaling of the time is the one for which the three limit
regimes correspond respectively to small values of t, finite values of t and large values of
t and for which the limit non-commutative distribution of (e−t/2Vt)t≥0 is the one of a free
unitary Brownian motion. It also has a heuristic geometrical meaning: with this scaling,
for any fixed t, the distance between V0 and Vt has the same order as the diameter of the
unitary group (see [A13, Rem. 1.1]). It means that for any fixed t > 0, large values of
n, Vt is probably no longer too close to its departure point, while it also probably hasn’t
“orbited” the unitary group too many times.

To prove Theorem 6.1, we use Rebolledo’s Theorem [2, Th. H.14], which states that
to prove the convergence in distribution of a centered martingale to a Gaussian process
with independent increaments, it suffices to prove the L1-convergence of the bracket of the
martingale to the (deterministic) bracket of the limit process. Here, the convergence of the
bracket is obtained via several iterations of the so-called matricial Îto calculus, presented
in Insert 5.5.

A by-product of Theorem 6.1 is a proof of the following theorem, about the asymp-
totic normality of unit vectors and unitary matrices. This result is not new (see below),
but Theorem 6.1 allows to give a proof which, including the proof of Theorem 6.1, is the
shortest we found in the literature. Its proof relies on the fact that the Haar measure is
an invariant measure for the heat kernel on the unitary group.

Theorem 6.3 Let U be an n × n unitary random matrix with Haar distribution and A
be an n × n non-random matrix (both U and A depending implicitely on n) such that as
n −→∞,

1

n
Tr(AA∗) −→ q ≥ 0.

Then as n −→∞, the distribution of Tr(AU) tends to a rotation-invariant complex Gaus-
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sian distribution with variance q.

Note that just like Theorem 6.1, by standard properties of Gaussian spaces, this theorem
implies its mutlidimensional version: it follows directly from Theorem 6.3 that for any
d ≥ 1, if A1, . . . , Ad are n× n matrices (depending implicitly on n) such that as n −→∞,
for all i, j,

1

n
Tr(AiA

∗
j) −→ qi,j ∈ C,

then the distribution of the d-dimensional complex process

{Tr(A1U), . . . . . . ,Tr(AdU)}

converges to the one of a complex Gaussian centered vector {Z1, . . . , Zd} such that for all
i, j,

E[ZiZj] = 0 and E[ZiZj] = qi,j.

The historical first result of asymptotic normality of unit vectors was due to Émile Borel,
who proved a century ago, in [26], that, for a uniformly distributed point (X1, . . . , Xn) on
the unit Euclidian sphere Sn−1, the scaled first coordinate

√
nX1 converges weakly to

the standard Gaussian distribution as the dimension n tends to infinity. As explained
in the introduction of the paper [3] of Diaconis et al., this says that the features of the
“microcanonical” ensemble in a certain model for statistical mecanics (uniform measure
on the sphere) are captured by the “canonical” ensemble (Gaussian measure). Since then,
a long list of further-reaching results about the entries of uniformly distributed random
orthogonal or unitary matrices have been obtained. The most recent ones are the previously
cited paper of Diaconis et al., the papers of Meckes and Chatterjee [82, 37], the paper of
Collins and Stolz [43] and the paper of Jiang [71], where the point of view is slightly
different.

80



Chapter 7

Small cycles of free words in random
permutations

7.1 Introduction

This section is devoted to my works [N1, A12]. We consider random permutations which
can be written as free words in several independent random permutations: firstly, we fix a
non trivial word w in letters g1, g

−1
1 , . . . , gk, g

−1
k , secondly, for all n, we introduce a k-tuple

s1(n), . . . , sk(n) of independent random permutations of {1, . . . , n}, and the random per-
mutation σn we are going to consider is the one obtained by replacing each letter gi in w by
si(n). For example, for w = g1g2g3g

−1
2 , σn = s1(n) ◦ s2(n) ◦ s3(n) ◦ s2(n)−1. Moreover, we

allow to restrict the set of possible lengths of the cycles of the si(n)’s: we fix sets A1, . . . , Ak
of positive integers and suppose that for all i, si(n) is uniformly distributed on the set1

of permutations of {1, . . . , n} which have all their cycle lengths in Ai. For example, if
A1 = {1, 2}, s1(n) is a uniform random involution. We are interested in small cycles of σn,
i.e. cycles whose length is fixed independently of n. Since the law of σn is invariant under
conjugation, the positions of its cycles are uniform, and only their lengths contain some
unknown randomness. So we introduce, for each positive integer `, the number N`(σn) of
cycles of length l of σn. We are interested in the asymptotic behavior of the N`(σn)’s as
n −→∞.

Before stating the results, let us put this work into perspective.

It is well known [4] that if σn is a uniform random permutation of {1, . . . , n}, then
the N`(σn)’s (` ≥ 1) are asymptotically independent and distributed according to Poisson
laws with parameters 1/`. Besides, the law of the “large cycles” (i.e. cycles whose size is
proportional to n) can be expressed via the Poisson-Dirichlet law.

1I can be proved that for n large enough, this set is non empty as soon as n is a multiple of the largest
common divisor of Ai [87, Lem. 2.3].
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Nica has been the first to consider the case where σn is a word in independent random
permutations and their inverses, distributed according to the uniform law on the symmetric
group. He first proved, in [88], that the number of fixed points of such permutations is o(n),
which insures that independent random permutation matrices are asymptotically free. In
[89], he goes further in his analysis, finding out the limit law of the number of fixed points
of σn, and more generally of the N`(σn)’s: he proves that if the word considered is not a
power of another word, then for all ` ≥ 1, N`(σn) converges in law to the Poisson law with
parameter 1/`. A consequence of this result is that second order freeness cannot model
free words in random permutations. His result has moreover been used recently by Linial
and Puder in [79] where it appears that free words in random permutations play a role in
the analysis of n-lifts of graphs.

Besides, permutations with restricted cycles lengths have been a subject of interest in
the community of combinatorics for a long time (see [122]). In [123], for example, Yakymiv
considered the joint limit distribution of the N`(σn)’s in the case where σn is uniformly
distributed in the set of permutations of {1, . . . , n} whose cycle lengths belong to a fixed
infinite set A.

At last, in [87], Neagu somehow joins both previous approaches by proving the asymp-
totic freeness of the matrices of random permutations with restricted cycle lengths: it
leads him to consider words in such random matrices and to prove that they only have
o(n) fixed points. This is an extension of Neagu’s work which led us to the present work,
whose results imply for example that such matrices, though asymptotically free, are not
asymptotically second order free. Beyond these issues, my interest for the question comes
from another, seemingly quite hard problem, that Thierry Lévy and myself have tried to
solve in vain: the characterization of the words w in the letters g1, g

−1
1 , . . . , gk, g

−1
k such

that for any compact (or finite) group G, for any family s1, . . . , sk of independent Haar
distributed random variables on G, the law of the random variable obtained by replacing
each letter gi in w by si is the Haar measure on G.

7.2 Case of a trivial word

We first study the case where w = gi is a word with only one letter [N1, Prop. 2.1 et Th.
2.3].

Theorem 7.1 Fix i ∈ {1, . . . , k}. Under certain technical hypotheses on Ai, as n −→∞,
we have the following convergences:

• if Ai is infinite, then for any finite subset {`1, . . . , `p} of Ai, the random vector

{N`1(si(n)), . . . . . . , N`p(si(n))}
converges in law to

Poisson(1/`1)⊗ . . . . . .⊗ Poisson(1/`p),
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• if Ai is finite, for di := maxAi, for all ` ∈ Ai, we have

N`(si(n))

n`/di
−→
n→∞

1

`

in all Lp spaces.

The first part of the previous theorem, which has been proved as me in the same time
by Yakymiv under quite close hypotheses [123, Th. 1], signifies that if Ai is infinite, ev-
erything happens, for cycles with admitted lengths, as if there were no cycle restriction.
The second part means that if Ai is finite, then si(n) is not faraway from having order
di = maxAi in the symmetric group: le part of {1, . . . , n} recovered by the cycles with

length di has cardinality n − O(nκ), where κ = max(Ai\{di})
di

< 1. In the case where Ai is

finite, it would be interesting to understand the fluctuations of N`(si(n))

nl/di
around its limit.

It seems that Analytic Combinatorics, as presented in the book by Flajolet and Sedgewick
[54], could help studying this question.

Let us outline the proof of Theorem 7.1. We denote by S
(Ai)
n the set of permutations

of {1, . . . , n} whose cycle have their lengths in Ai. It can easily be seen that, for |z| < 1

∑
n≥1

]S
(Ai)
n

n!
zn = exp

(∑
`∈A

z`

`

)
. (7.1)

Moreover, Hayman’s method (see [54]) allows to link the asymptotic behaviors of the
coefficients of both sums in the previous equation. For example, in the case where Ai is
finite, one deduce from (7.1) that denoting by p largest common divisor of Ai, as n −→∞,
we have

]S
(Ai)
np−p

]S
(Ai)
np

∼ (np)
p
di
−p
.

Then, the inclusion/exclusion method allows to conclude.

7.3 Non trivial words

One considers now a random permutation σn constructed out of a word w in the way
presented at the first paragraph of Section 7.1. For each i, we suppose that Ai satisfies the
following technical hypothesis:

Ai is finite ou
∑
j≥1
j /∈Ai

1

j
<∞. (7.2)
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The structure of w is of course going to play a role in the behavior of the variables
N`(σn). Thanks to the previous theorem, it seems that for each i such that Ai is fi-
nite, for di = maxAi, si(n)di ≈ Id{1,...,n}, which gives the intuition that the sequences of

the type gdii in w are to neutralize. This intuition is confirmed by the following theorem
(see [A12, Th. 3.4 et 3.6] for slightly more precise statements). We denote by Fk the free
group with generators g1, . . . , gk and by Fk/H its quotient by the relations gdii = 1, for the
i’s in {1, . . . , k} such that Ai is finite.

Theorem 7.2 • If the element of Fk/H represented by the word w has finite order L, then
for large n, σn is not faraway from having order L, since as n −→∞, we have

NL(σn) ∼ n

L

and for all ` 6= d,
N`(σn)

n
−→ 0.

•If the element of Fk/H represented by the word w has infinite order, then two cases can
happen:

(a) in Fk/H, the word w does not represent that same element, up to any conjugation,
as a word of the type gαi , with i ∈ {1, . . . , k} and α an integer : then for all `,

lim inf
n→∞

E[N`(σn)] ≥ 1

`
. (7.3)

(b) up to a conjugation, w represents the same element of Fk/H as gαi , for a certain
i ∈ {1, . . . , k} and a certain non zero α : then (7.3) is true only for the `’s such that
`|α| ∈ Ai.

In the case where the order, in Fk/H, of the element represented by w is infinite, (7.3)
insures the existence of at least as much cycles with size ` as if σn had been uniformly dis-
tributed on the symmetric group (indeed, in this case, one would have had E[N`(σn)] = 1

`
).

The following theorem [A12, Th. 3.7 et 3.8], which establishes a convergence in distribu-
tion, gives a more precise estimation.

Theorem 7.3 For all ` ≥ 1, one has the convergence in distribution, as n −→ ∞, of the
vector

{N1(σn), . . . . . . , N`(σn)} (7.4)

to the law
Poisson(1/1)⊗ . . . . . .⊗ Poisson(1/`),

in each of the following cases:
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• all Ai’s are infinite and w is a non trivial word which is not a power of another word,

• w = g1 · · · gk with k > 2.

Note that if w is a power of another word v, the decomposition of σn in a product of
cycles can be deduced from the one of the random permutation associated to v. Besides,
in the case where w = g1 · · · gk with k = 2, one can also give the limit law of the vector of
(7.4), that is also a tensor product of Poisson-type laws (see [A12, Th. 3.8 and 3.12]).

The proof of both previous theorems relies on the same kind of considerations as the
proof of Theorem 7.1 above, and to the study (this is the main difficulty) of certain graphs
associated to the word w.
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Chapter 8

Perspectives

I indicate here some of the directions I would to follow now. They appear by order of
advancement of the project, which is not necessarily the one of the importance I would like
to give them in the future.

Heavy tailed random matrices

By “heavy tailed random matrices”, we mean random matrices whose coefficients are
heavy tailed random variables. These matrices have been studied by Ben Arous and
Guionnet in the article [12], and then by several authors in [9, 24, 25, 5]. A variant,
allowing more computations, is proposed by Zakharevich in [124].

Such matrices, duly renormalized, are close to “sparce” matrices, i.e. matrices con-
taining mainly zeros. In a work in progress with Alice Guionnet and Camille Mâle, we
are trying to understand the fluctuations of the empirical spectral distribution of such ma-
trices. The first result is that these fluctuations are in 1/

√
n, n denoting the dimension,

which corroborates the idea, already appeared in [5], that the eigenvalues of such matrices
are closer to independent random variables than the ones of Wigner matrices, which are
in a repulsion interaction. In the perspective of the study of the eigenvectors of such ma-
trices with the approach of my article [A19] (see Chapter 4 in this text), it would also be
interesting to study their spectral distribution with respect to a non random vector.

Besides, in a work in progress with Thierry Cabanal-Duvillard, we are trying to gen-
eralize the Marchenko-Pastur Theorem to the following context: we consider a matrix X
defined by

X =
1

p

p∑
j=1

CjC
∗
j ,

where the Cj’s are independent random columns, as in the original Marchenko-Pastur The-
orem, but we do not suppose anymore the coefficients of the column matrices to have the
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same order: certain entries are widely larger than the other ones, which alters strongly the
distribution of the eigenvalues of X.

Perturbations of random matrices

In a work in progress with with Nathanaël Enriquez, we are studying the following
simple question:

What happens to the eigenvectors and eigenvalues of an Hermitian matrix X
when it is submitted to a small random perturbation ?

More specifically, we study the eigenvalues and eigenvectors of an n×n matrix of the type
Xε = X +Pε, in the limit where Pε −→ 0 as n −→∞. Depending on the amplitude of the
pertutbation Pε, several regimes appear at the limit.

Random matrices with correlated entries

Such matrices share with heavy tailed and band random matrices the fact of not being
“white”, i.e. to keep a strong trace of the basis it has been written in. With Djalil Chafäı
and Camille Mâle, we would like, establishing a Schwinger-Dyson Formula, to obtain the
convergence of the empirical spectral distribution of such matrices.

Interacting particle systems

The simple exclusion process, introduced by Spitzer in 1970, is one of the simplest
statistical mechanics model. There exists several versions of this model, all relying on the
following principle: some particles are located at various points of a line and they move
to the right and/or the left, independently up to the constraint that the moves of each
particle are restricted by the fact that it cannot overtake its neighbors. Two aspects of
this process have drawn my attention recently.

Firstly, for several models of this type, the law of the positions of the particles coincides
with the one of the largest eigenvalues of certain random matrices (see, for example, [99]
or Theorem 2.7, related to these issues).

Besides, these processes induce a dynamic on Young diagrams. Philippe Biane, in his
article [22], has proved that random Young diagrams and free probabilities are linked, via
the representations of large symmetric groups. More specifically, he has proved that certain
large Young diagrams have limit shapes that can be expressed simply via free probabilities.
The dynamics of his process is not the one inherited from exclusion processes, but the tools
he brought to light seem to have a certain relevance in this context too.
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Both of these subjects interest me a lot. In particular, I have the project, with Damien
Simon, to use Biane’s ideas to find out the limit shape of the Young diagram associated to
the totally asymmetric simple exclusion process (TASEP) starting with initial conditions
that are more general than the well known case “all left sites occupied, no right site occu-
pied”.

Eigenvectors of band random matrices

Band matrices are one of the simplest models for the Anderson phase transition. In
this context, it can be expressed in the following way. Let us consider a (large) n × n
band matrix, whose band has width `: if ` �

√
n, the eigenvectors are delocalized and

the eigenvalues have statistics close to the ones of Wigner matrices, whereas if ` �
√
n,

the eigenvectors are localized and the eigenvalues have statistics close to the statistics of
a Poisson process. This is only a conjecture, though a few recent advances (c.f. the works
of Erdös and Knowles [46, 47], of Schenker [101] or of Sodin [106]). I would like to try to
use the method that I used in my paper [A19] to study these questions.

Maximum of correlated variables and Tracy-Widom laws

Insert 2.4 of this text, devoted to the Tracy-Widom laws, explains that these laws seem
to replace the usual max-stable laws when we consider supremums of repulsing variables.
I am very interested in this subject, and I would like to study its connections with the
theory of convex bodies and log-concave measures (see for example the paper of Klartag
[75]).
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Chapter 9

Appendice : introduction aux
probabilités libres

9.1 Espaces de probabilités non commutatifs et lib-

erté

Un espace de probabilités non commutatif (en abrégé e.p.n.c.) est1 un couple (A, ϕ), où A
est une algèbre sur C, unifère2 et involutive3, et ϕ est une forme linéaire sur A, appelée
état, valant 1 en 1A telle que ϕ(xy) = ϕ(yx) et ϕ(x∗) = ϕ(x) pour tout x, y dans A. On
suppose aussi que la forme sesquilinéaire hermitienne (x, y) 7−→ ϕ(xy∗) est définie positive.
On appelle variables aléatoires non commutatives les éléments de A. Une variable aléatoire
non commutative est dite constante si elle est proportionnelle à 1A.

Soit (A, ϕ) un e.p.n.c. Une famille (Ai)i∈I de sous-algèbres4 de A est dite libre si pour
tout n ≥ 1, pour tous i1, . . . , in ∈ I tels que i1 6= i2, i2 6= i3, . . . , in−1 6= in, pour tout
(x1, . . . , xn) ∈ Ai1 × · · · × Ain , on a

ϕ(x1) = · · · = ϕ(xn) = 0 =⇒ ϕ(x1 · · ·xn) = 0.

Une famille de parties de A, ou de variables aléatoires non commutatives est dite libre si
celles-ci sont contenues dans des sous-algèbres libres.

1 Dans certains articles, toutes ces hypothèses ne sont pas faites, et dans ce cadre particulier, on parle
alors de ∗-espace de probabilités non commutatif tracial et fidèle. Notons que si la forme sesquilinéaire
hermitienne associée à ϕ n’est que supposée positive, en quotientant l’algèbre par l’idéal bilatère contenu
dans kerϕ des a ∈ A tels que ϕ(aa∗) = 0, on obtient une forme définie positive.

2Une algèbre A est dite unifère si elle possède un élément neutre 1A pour la multiplication.
3Une algèbre A sur C est dite involutive si elle est munie d’une involution x 7−→ x∗ antilinéaire telle

que pour tous x, y ∈ A, (xy)∗ = y∗x∗.
4Par convention, on désignera ici par sous-algèbre de A une sous-algèbre contenant 1A et stable par

x 7−→ x∗.
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Si A est de plus munie d’une structure de C∗-algèbre (dans ce cas, ϕ est toujours
continue car elle est positive), alors on parle de C∗-espace de probabilités non commutatif.
On vérifie aisément que si des sous-algèbres sont libres, alors leurs adhérences le sont.

Enfin, si A est en plus une W ∗-algèbre et si ϕ est normale (i.e. continue pour la
topologie σ-faible d’opérateurs, ce qui équivaut au fait que si (xi)i∈I est un réseau croissant
d’éléments positifs deA qui converge faiblement vers x, alors ϕ(xi) tend vers ϕ(x)), on parle
de W ∗-espace de probabilités non commutatif. On vérifie, avec le théorème de densité de
Kaplansky, que si des sous-algèbres sont libres, alors leurs bicommutants (i.e. W ∗-algèbres
engendrées) le sont.

Example 9.1 1. Si (Ω,Σ,P) est un espace de probabilité, toute algèbre stable par con-
jugaison de variables aléatoires complexes admettant des moments, munie de l’état
donné par l’espérance, est un e.p.n.c.. Si de plus, Ω est un espace topologique com-
pact (resp. localement compact) et Σ est la tribu borélienne, alors en se restreignant
à l’algèbre des fonctions continues (resp. à L∞), on obtient un C∗- (resp. W ∗-
)e.p.n.c. agissant sur L2(Ω,P). Tout C∗- (resp. W ∗-)e.p.n.c. dans lequel l’algèbre
est commutative est de cette forme.

2. Un autre exemple classique est celui de l’algèbre Mn(C) des matrices n×n complexes
munie de la trace normalisée tr := 1

n
Tr.

3. On peut faire le produit tensoriel des deux exemples précédents en considérant une
algèbre de variables aléatoires défines sur un espace de probabilités classique, à valeurs
dans Mn(C), dont toutes les coordonnées possèdent des moments, que l’on munit de
l’état E ◦ tr.

À moins que l’une d’entre elles ne soit constante, si deux variables aléatoires non com-
mutatives a, b sont libres, alors elles ne commutent pas. En effet, on doit avoir, quitte à
retrancher à a et b leurs images par ϕ, ϕ(ab∗a∗b) = 0 et ϕ(aa∗b∗b) = ϕ(aa∗)ϕ(b∗b) > 0.
De plus, comme on le verra au paragraphe suivant, l’espace vectoriel qu’elles engendrent
est de dimension infinie. On en déduit donc que l’on n’a pas de sous-algèbres libres non
triviales dans les deux premiers exemples. Dans le troisième, cela reste vrai, mais c’est
plus difficile à démontrer.

9.2 Structures de dépendance et produit libre d’espaces

de probabilités non commutatifs

Une façon de décrire une structure de dépendance entre deux sous-algèbres A1 et A2

d’un espace de probabilités non-commutatif est de donner une règle qui permette de
calculer ϕ(P (a1, a2)) pour tous a1 ∈ A1, a2 ∈ A2 et tout polynôme à deux variables
non commutatives P connaissant les moments de a1 et a2. C’est, indirectement, de
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cette façon que nous avons défini la liberté. C’est aussi de cette nature qu’est la règle
E[f(X)g(Y )] = E[f(X)]E[g(Y )] qui caractérise l’indépendance de deux variables aléatoires.
Une telle description n’assure cependant pas l’existence d’exemples non triviaux de la struc-
ture de dépendance qu’on veut définir.

En probabilités classiques, la construction qui assure l’existence de variables indépendantes
de lois arbitraires est celle du produit cartésien d’espaces mesurables muni du produit ten-
soriel des lois. Du point de vue non pas des espaces de probabilités mais des variables
aléatoires, cette construction correspond au produit tensoriel des algèbres. Considérons
par exemple un espace de probabilités (Ω,P) et notons (A, ϕ) l’espace de probabilités
non-commutatif (commutatif !) (L∞(Ω,P),E). Donnons-nous deux variables aléatoires
bornées X et Y sur Ω. Notons AX la sous-algèbre de A engendrée par X, c’est-à-dire
l’ensemble des polynômes en X, et ϕX la forme linéaire induite par l’espérance sur AX .
Alors (AX , ϕX) est un e.p.n.c.. Considérons de façon analogue (AY , ϕY ). Il existe un
unique morphisme d’algèbre f : AX ⊗AY → A tel que f(X ⊗ 1) = X et f(1⊗ Y ) = Y , et
l’image de ce morphisme est exactement l’algèbre engendrée par X et Y . On peut définir
un état ϕX ⊗ ϕY sur AX ⊗ AY en posant (ϕX ⊗ ϕY )(a ⊗ b) = ϕX(a)ϕY (b). Cette étape
correspond à la construction du produit tensoriel de deux mesures. On peut alors, pour
tout élément c de AX ⊗AY , comparer son espérance dans AX ⊗AY et dans A, i.e. com-
parer (ϕX ⊗ ϕY )(c) et ϕ(f(c)). La proposition suivante est une caractérisation purement
algébrique de l’indépendance :

Les variables X et Y sont indépendantes si et seulement si le morphisme
d’algèbres f : AX⊗AY → A préserve les espérances, c’est-à-dire si ϕX⊗ϕY =
ϕ ◦ f .

En généralisant de façon évidente la définition de ϕX ⊗ ϕY à un produit quelconque
⊗i∈I ϕ|Ai , nous en tirons la définition générale suivante.

Definition 9.2 Soit (A, ϕ) un espace de probabilités non-commutatif et (Ai)i∈I une famille
de sous-algèbres de A. On dit que cette famille est indépendante si pour tout i 6= j,
tout élément de Ai commute à tout élément de Aj et si le morphisme d’algèbres naturel
f : ⊗i∈IAi → A satisfait l’égalité ϕ ◦ f = ⊗i∈I ϕ|Ai .

La construction algébrique qui correspond à la liberté est le produit libre d’algèbres.
Si (Ai)i∈I est une famille d’algèbres unifères, leur produit libre est la plus grosse algèbre
unifère engendrée par les Ai. Plus précisément, le produit libre des algèbres (Ai)i∈I est
défini à isomorphisme près comme l’unique algèbre A telle que pour tout i, on a une
injection d’algèbres ιi : Ai ↪→ A, et telle que si B est une algèbre unifère telle que pour
tout i, il existe un morphisme fi : Ai → B, alors il existe un unique morphisme f : A → B
tel que pour tout i, f ◦ ιi = fi. Cette algèbre, que l’on note ?i∈I Ai, se construit aisément
: si pour tout i, A◦i est un supplémentaire, dans Ai, de C · 1Ai , le produit libre des Ai est
l’espace vectoriel

C · 1⊕ ⊕
n≥1

⊕
i1 6=···6=in

A◦i1 ⊗ · · · ⊗ A
◦
in , (9.1)
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sur laquelle le produit se définit de façon naturelle (en tenant compte du fait que le produit
de deux éléments d’un même A◦i n’appartient pas forcément à A◦i ). Si les algèbres Ai sont
des ∗-algèbres, on peut munir le produit libre d’une involution qui en fera un produit libre
de ∗-algèbres.

Étant donné une famille (Ai, ϕi)i∈I d’espaces de probabilités non commutatifs, il existe
sur ?i∈I Ai un unique état ψ conférant au produit une structure d’e.p.n.c. tel que pour
tout i, ϕi = ψ ◦ ιi et tel que les sous-algèbres ιi(Ai) sont libres dans le produit libre muni
de l’état ψ. Cet état ψ, noté ?i∈I ϕi, est défini de la façon suivante : dans la construction
précédente, on choisit, pour tout i, A◦i = kerϕi, et on définit ψ par ψ(1) = 1 et ψ est nulle
sur la somme située à droite de C · 1 dans (9.1). Notons que cet état sur le produit libre
des algèbres unifères est, en un sens, le plus naturel. L’e.p.n.c. obtenu est appelé produit
libre des (Ai, ϕi).

L’analogue de la caractérisation de l’indépendance donnée plus haut est alors le suivant :

Une famille (Ai)i∈I de sous-algèbres d’un même e.p.n.c. (A, φ) est libre si et
seulement si en notant ψ = ?i∈I ϕi, le morphisme canonique f du produit libre
des Ai dans A satisfait ψ = φ ◦ f .

Example 9.3 (Algèbre de groupes) Pour G un groupe, on définit définit l’agèbre de
G C[G] = C(G) de G comme l’ensemble des fonctions G → C de support fini (une telle
fonction est notée

∑
g∈G xg ·g) muni de sa structure d’espace vectoriel complexe canonique,

du produit de convolution :

∑
g∈G

xg · g ×
∑
g∈G

yg · g =
∑
g∈G

( ∑
h,k∈G, hk=g

xhyk

)
· g

et de la conjugaison (∑
g∈G

xg · g

)∗
=
∑
g∈G

xg · g−1.

On peut munir C[G] d’une structure d’e.p.n.c. avec l’état tracial ϕG défini par

ϕG

(∑
g∈G

xg · g

)
= xe,

où e désigne l’élément neutre de G.

Pour (Gi)i∈I une famille de groupes, l’e.p.n.c. associé au groupe produit cartésien des
Gi s’identifie naturellement à l’e.p.n.c. (⊗i∈IC[Gi],⊗i∈IϕGi), alors que l’e.p.n.c. associé
au groupe produit libre des Gi s’identifie naturellement à l’e.p.n.c. (?i∈IC[Gi], ?i∈IϕGi).
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Disons maintenant quelques mots sur les pendants topologiques de ces constructions.
On peut définir, de la même façon, le produit tensoriel et le produit libre de C∗- (resp. W ∗-)
e.p.n.c.. Dans l’idée, la construction est dans la continuité de la précédente : on considère
le produit tensoriel ou libre des e.p.n.c., on le fait agir sur un espace de Hilbert, et on
passe à l’adhérence. Cela dit, la construction détaillée est loin d’être évidente. Donnons ici
un résultat central dans cette construction : on peut montrer, avec la construction GNS,
que tout C∗-e.p.n.c. (resp. tout W ∗-e.p.n.c.) se plonge, en tant que C∗-algèbre (resp.
W ∗-algèbre), dans l’algèbre B(H) des opérateurs bornés sur un certain espace de Hilbert
dans lequel on peut trouver un vecteur ξ tel que ϕ(·) = 〈 · ξ, ξ〉.

9.3 Distributions de variables aléatoires non commu-

tatives

Soit I un ensemble. Définissons l’algèbre C〈Xi, i ∈ I〉 des polynômes à variables non
commutatives indexées par I : il s’agit tout simplement du produit libre des algèbres
unifères C[Xi], où i varie dans I.

La distribution d’une famille (ai)i∈I de variables aléatoires non commutatives d’un même
e.p.n.c. (A, ϕ), est la forme linéaire

µ(ai)i∈I : P ∈ C〈Xi, i ∈ I〉 7→ ϕ(P (ai, i ∈ I)) ∈ C.

Notons que par hypothèse, la suite des moments ϕ(ak), k ≥ 0 d’un élément auto-adjoint
a de A est une suite positive au sens de [1], donc la suite des moments d’une mesure de
probabilité sur la droite réelle : µa est l’intégration par rapport à une loi de probabilité
sur R, que l’on appellera, lorsqu’elle est unique, loi spectrale, ou distribution de a. Elle
est unique lorsque l’on travaille dans un C∗-e.p.n.c.. L’élément a est dit positif si µa est
l’intégration par rapport à une mesure portée par R+.

Example 9.4 1. Si (A, ϕ) est (Mn(C), tr), alors pour toute matrice auto-adjointe a,
µa est la loi empirique sur le spectre de a.

2. Si A est une algèbre de variables aléatoires définies sur un espace de probabilités
classique, à valeurs dans Mn(C), dont tous les coefficients possèdent des moments
exponentiels, que l’on munit de l’état E ◦ tr, alors pour toute matrice aléatoire her-
mitienne a de A, µa est l’espérance de la loi spectrale de a, i.e. la mesure d’intensité
de la mesure aléatoire donnée par la loi spectrale de a.

3. Si A est une sous-algèbre de B(H) pour un espace de Hilbert H et si ϕ(·) = 〈 · ξ, ξ〉,
µa est la mesure de probabilité dont la valeur sur tout borélien B est 〈pB(a)ξ, ξ〉, où
pB(a) est le projecteur spectral sur B pour a. Cette mesure est donc portée par le
spectre de a.
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Remarque 9.5 On peut montrer que si deux familles (ai, a
∗
i )i∈I et (bi, b

∗
i )i∈I de deux

e.p.n.c. (resp. C∗-e.p.n.c., W ∗-e.p.n.c.) (A, ϕ) et (B, ψ) ont la même distribution et
engendrent A et B comme ∗-algèbres unifères (resp. comme C∗-algèbres, comme W ∗-
algèbres), alors on peut trouver un isomorphisme de ∗-algèbres (resp. un isomorphisme
isométrique de C∗-algèbres, un isomorphisme isométrique de C∗-algèbres continu pour les
topologies σ-faibles d’opérateurs) entre A et B qui envoie chaque ai sur bi, et préserve
les états. Cette remarque nous éclaire sur l’intérêt que peut avoir cette théorie dans la
perspective de la classification de ces algèbres.

Notons que si (Ai)i∈I est une famille libre de sous-algèbres de (A, ϕ) et que si pour tout
i, ai ∈ Ai, alors la distribution de la famille (ai)i∈I dans (A, ϕ) et dans le produit libre des
(Ai, ϕ|Ai) est la même (par hypothèse de préservation de l’état). On en déduit le résultat
suivant : la distribution d’une famille libre ne dépend que des distributions individuelles. Ce
résultat est l’analogue du résultat de probabilités classiques qui dit que la loi jointe d’une
famille de variables aléatoires indépendantes ne dépend que de leurs lois individuelles. Il
sera central pour répondre à la question posée plus haut à propos des matrices aléatoires.

9.4 Liberté asymptotique des matrices aléatoires carrées

Si pour tout n ≥ 1, (ai(n))i∈I est une famille d’éléments d’un e.p.n.c. (A(n), ϕn), on dit que
(ai(n))i∈I converge en distribution vers une famille (ai)i∈I d’éléments d’un e.p.n.c. (A, ϕ) si
les distributions convergent point par point. La famille (ai(n))i∈I est dite asymptotiquement
libre si elle converge en distribution vers une famille libre.

On étend la notion de convergence en distribution (et donc la notion de liberté asymp-
totique) aux matrices aléatoires de la façon suivante : si pour tout n ≥ 1, (Ai(n))i∈I est une
famille de matrices aléatoires n×n, on dit que la famille converge en distribution en proba-
bilité vers une famille (ai)i∈I d’éléments d’un e.p.n.c. (A, ϕ) si pour tout P ∈ C〈Xi, i ∈ I〉,
la variable aléatoire classique donnée par la trace normalisée trP (Ai(n), i ∈ I) converge en
probabilité vers le nombre ϕ(P (ai, i ∈ I)).

Les résultats liant probabilités libres et matrices aléatoires caractérisent la distribu-
tion non commutative jointe de familles de matrices aléatoires à partir de lois spectrales
individuelles [120, 118].

Theorem 9.6 Soit, pour tout n ≥ 1, (Hi)i∈I une famille de matrices aléatoires n × n
hermitiennes5, dont les coordonnées ont des moments à tous les ordres. On suppose :

(a) la famille (Hi)i∈I est indépendante,

5La dépendance en n des matrices Hi = Hi(n) est maintenue implicite ici afin de ne pas alourdir les
notations. Il en sera de même des matrices Dj de la remarque 9.8 et pour A et B au paragraphe 9.5.
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(b) pour tout i ∈ I, Hi a une loi invariante par conjugaison par les matrices unitaires
ou bien est une matrice de Wigner,

(c) pour tout i ∈ I, lorsque n −→∞, la loi spectrale empirique de Hi converge faiblement
en probabilité vers une loi à support compact déterministe.

Alors la famille (Hi)i∈I est asymptotiquement libre : il existe une famille libre (ai)i∈I
d’éléments auto-adjoints d’un e.p.n.c. (A, ϕ) telle que pour tout P ∈ C〈Xi, i ∈ I〉, la
variable aléatoire trP (Hi, i ∈ I) converge en probabilité, lorsque n −→ ∞, vers le nombre
ϕ(P (ai, i ∈ I)).

Remarque 9.7 Ce théorème reste vrai en remplaçant l’hypothèse (ii) par le fait que les
matrices sont du type Hi = XiX

∗
i , où Xi est une matrice rectangulaire n× p, à coefficients

i.i.d., avec n/p −→ c > 0 [68, 31, 32].

Remarque 9.8 (Liberté asymptotique de matrices aléatoires avec des matrices
déterministes) Ce théorème peut être amélioré de la façon suivante : si pour tout n ≥ 1,
on considère aussi une famille (Dj)j∈J de matrices déterministes n × n, qui converge en
distribution, lorsque n −→∞, vers une famille (dj)j∈J , alors la famille

(Hi)i∈I , (Dj)j∈J ,

indexée par l’union disjointe I ∪ J , converge en distribution en probabilité vers la famille

(ai)i∈I , (dj)j∈J ,

où les ensembles {ai}i∈I , {dj ; j ∈ J} sont libres.

9.5 Convolutions libres � et �

Le théorème précédent permet d’affirmer que pour A,B des matrices aléatoires hermiti-
ennes n × n indépendantes telles que A ou B est invariante, en loi, par conjugaison par
n’importe quelle matrice unitaire et telles qu’il existe µ1, µ2 lois sur R telles que pour la
convergence faible en probabilités,

1

n

∑
λ val. pr. de A

δλ −→ µ1 et
1

n

∑
λ val. pr. de B

δλ −→ µ2,

il existe une loi µ sur R, ne dépendant que de µ1 et µ2 telle que pour la convergence faible
en probabilités,

1

n

∑
λ val. pr. de A+B

δλ −→ µ.
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La loi µ ainsi définie est alors appelée la convolution additive libre des lois µ1 et µ2. On la
note µ1 � µ2.

Lorsque A et B sont en plus supposées positives, il existe aussi une loi, notée µ1 � µ2

et appelée convolution multiplicative libre de µ1 et µ2, telle que pour la convergence faible
en probabilités,

1

n

∑
λ val. pr. de AB

δλ −→ µ1 � µ2.

9.6 Cumulants libres et R-transformée

Il est naturel, une fois les convolutions libres définies, de chercher des transformations
intégrales qui les linéarisent. Elles sont notamment utiles pour étendre à l’ensemble des
lois de probabilités des résultats qui, comme ceux du paragraphe précédent, se démontrent
d’abord pour les lois à support compact. Dans le contexte des probabilités classiques, la
convolution additive est linéarisée par le logarithme de la transformée de Fourier. Les
coefficients du développement en série entière du logarithme de la transformée de Fourier
de variables aléatoires classiques sont donc des fonctions additives de variables aléatoires
indépendantes. Ils sont appelés cumulants classiques des variables aléatoires. L’objet de
ce paragraphe est de rappeler la définition de ces cumulants classiques, puis de présenter
leurs analogues libres. Ils ont été construits et étudiés essentiellement par Speicher et Nica
[108, 109, 90], dans des travaux qui furent le point de départ de l’approche combinatoire
des probabilités libres, laquelle s’est révélée très fructueuse.

9.6.1 Cumulants classiques

Soit µ une mesure de probabilités à support compact sur R. Les cumulants (classiques) de
µ sont les nombres (c∗n(µ))n≥1 définis par l’égalité

log

∫
R
eztdµ(t) =

∑
n≥1

c∗n(µ)
zn

n!
.

Ils linéarisent la convolution : si µ et ν sont à support compact, on a c∗n(µ∗ν) = c∗n(µ)+c∗n(ν)
pour tout n ≥ 1.

Les cumulants sont reliés de façon combinatoire aux moments. Introduisons l’ensemble
Part(n) des partitions de {1, . . . , n}. Pour tout n ≥ 1, notons mn(µ) =

∫
R t

ndµ(t) le n-ième
moment de µ. Alors la relation qui lie moments et cumulants est la suivante: pour tout
n ≥ 1,

mn(µ) =
∑

π∈Part(n)

∏
B bloc de π

B={i1<···<ir}

c∗r(µ). (9.2)
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Cette relation se généralise à plusieurs variables de la façon suivante : pour X1, . . . , Xd vari-
ables aléatoires réelles bornées, les cumulants c∗(Xi1 , . . . , Xin) sont définis par la relation

logE[ez1X1+···+zdXd ] =
∑
n≥1

1

n!

∑
1≤i1,...,in≤d

c∗(Xi1 , . . . , Xin)zi1 · · · zin (9.3)

et par le fait que c∗(Xi1 , . . . , Xin) ne dépend pas de l’ordre de ses arguments. L’intérêt des
cumulants vient alors du fait que, en plus de leur rôle dans la formule (9.3) du logarithme
de la transformée de Fourier, ils caractérisent l’indépendance : on voit immédiatement par
(9.3) que X1, . . . , Xd sont indépendants if and only if leurs cumulants mixtes s’annulent,
i.e. si c∗(Xi1 , . . . , Xin) = 0 dès que l’on n’a pas i1 = · · · = in.

Voici la version multidimensionnelle de la relation (9.2) : pour Z1, . . . , Zn variables
aléatoires réelles bornées,

E[Z1 · · ·Zn] =
∑

π∈Part(n)

∏
B bloc de π

B={i1<···<ir}

c∗(Zi1 , . . . , Zir). (9.4)

En introduisant la fonction de Möbius6 Möb(·, ·) du treilli Part(n) muni de la relation
d’ordre partiel pour laquelle π ≤ π′ si tout bloc de π est contenu dans un bloc de π′, la
formule (9.4) s’inverse de la façon suivante :

c∗[Z1, . . . , Zn] =
∑

π∈Part(n)

Möb(π,1n)
∏

B bloc de π
B={i1<···<ir}

E[Zi1 · · ·Zir ], (9.5)

où 1n désigne le plus grand élément de Part(n), {{1, . . . , n}}.

9.6.2 Cumulants libres

C’est en adaptant la formule (9.4) au cadre non commutatif des probabilités libres que
l’on définit les cumulants libres. Pour (A, ϕ) espace de probabilités non-commutatif et
a1, . . . , an ∈ A, la non-commutativité entrâıne que l’ordre des éléments dans les expressions
du type ϕ(a1 · · · an) compte. C’est ce qui amène à apporter plus d’attention à la structure
des partitions utilisées. On introduit alors les partitions non croisées de {1, . . . , n} : une
partition π de {1, . . . , n} est dite non croisée s’il n’existe pas quatre éléments x < y < z < t
de E vérifiant x

π∼ z
π� y

π∼ t.

On note NC(n) l’ensemble des partitions non croisées de {1, . . . , n}, que l’on munit de
l’ordre induit par celui de Part(n). On note MöbNC(·, ·) sa fonction de Möbius.

6La définition de la fonction de Möbius d’un ensemble fini partiellement ordonné se trouve par exemple
au chapitre 10 de [90].
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Figure 9.1: La partition {{1, 2, 3, 7}, {4, 6}, {5}, {8, 9, 10}} est non-croisée alors que
{{1, 3, 7}, {2, 8, 9, 10}, {4, 6}, {5}} est croisée.

On définit alors, récursivement, pour tout n ≥ 1, la fonction n-linéaire kn sur An par
la formule :

∀a1, . . . , an ∈ A, ϕ(a1 · · · an) =
∑

π∈NC(n)

∏
B bloc de π

B={i1<···<ir}

kr(ai1 , . . . , air),

ou, de façon équivalente,

kn(a1, . . . , an) =
∑

π∈NC(n)

MöbNC(π,1n)
∏

B bloc de π
B={i1<···<ir}

ϕ(ai1 · · · air). (9.6)

Pour a ∈ A, les nombres kn(a, . . . , a), notés kn(a), sont appelés les cumulants libres de a.

Proposition 9.9 Soit (A, ϕ) un espace de probabilités non commutatif. Deux sous-algèbres
A1 et A2 de A sont libres si et seulement si pour tout n ≥ 1 et tous a1, . . . , an éléments de
A1 ∪ A2 qui n’appartiennent ni tous à A1, ni tous à A2, on a kn(a1, . . . , an) = 0.

En particulier, si a et b sont deux éléments libres de A, on a pour tout n ≥ 1 l’égalité
kn(a+ b) = kn(a) + kn(b).

9.6.3 La R-transformée

Ainsi, les cumulants libres linéarisent la convolution libre et caractérisent la liberté. Une
transformation intégrale analytique dont les coefficients seraient les cumulants libres per-
mettrait donc de linéariser la convolution additive libre.

Le théorème suivant donne le lien entre la série formelle dont les coefficients sont les
moments ϕ(an) d’une variable aléatoire non commutative a et la série formelle dont les
coefficients sont ses cumulants libres.
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Theorem 9.10 Soit a ∈ A. Alors les séries formelles

Ga(z) :=
∑
n≥0

ϕ(an)

(
1

z

)n+1

et Ra(z) :=
∑
n≥0

kn+1(a)zn

sont liées par la relation

Ra(z) = G−1
a (z)− 1

z
,

où G−1
a (·) désigne l’inverse de Ga(·) pour la composition.

En remarquant que si µ est une loi à support compact dont les moments concident avec
ceux de a, Ga(z) concide avec la transformée de Cauchy de µ

Gµ(z) :=

∫
x∈R

dµ(x)

z − x
(pour z /∈ support(µ)), (9.7)

on obtient alors (en étendant par densité aux lois à support non compact7) la transforma-
tion qui linéarise � : c’est la R-transformée de µ, définie par

Rµ(z) = G−1
µ (z)− 1

z
. (9.8)

Example 9.11 Pour µ respectivement égale à δa,
1
2
(δ0+δ1), 2

πr2

√
r2 − (x−m)21|x−m|≤rdx,

LMP, c,
dx

π(1+x2)
, on a Rµ(z) = a, z−1+

√
1+z2

2z
, m + r2

4
z, 1

1−cz , −i. On peut facilement
en déduire que la convolution libre et la convolution classique de la loi de Cauchy avec
n’importe quelle loi sont les mêmes, et que la convolution libre de deux lois de Bernouilli
symétriques est la loi d’arcsinus dx

π
√
x(2−x)

sur [0, 2].

De la même façon, la convolution multiplicative libre � se calcule via une transformation
intégrale : en posant

Tµ(z) =

∫
x∈R

xdµ(x)

z − x
(pour z /∈ support(µ)), (9.9)

et en définissant la S-transformée de µ par la formule

Sµ(z) = (1 + z)/(zT−1
µ (z)), (9.10)

on a la formule Sµ�ν(z) = Sµ(z)Sν(z) pour toutes lois µ, ν sur R+.

7Dans le cas où µ est à support compact, les fonctions Gµ et Rµ sont analytiques sur des voisinages
respectivement de∞ et de zéro dans C dont les amplitudes sont contrôlées par le support de µ. Dans le cas
général, on a encore des fonctions analytiques, mais elles sont définies sur des voisinages non tangentiels
de ∞ et de zéro . La notion la plus adéquate est alors celle de germes de fonctions analytiques.
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9.7 Probabilités libres à valeurs opérateurs

Les notions d’espérance conditionnelle et d’indépendance conditionnelle ont aussi leurs
analogues libres. Nous en présentons ici brièvement la théorie [120, 117, 109, 103], qui
est la clé de la modélisation que l’on fait du comportement asymptotique des matrices
aléatoires rectangulaires.

Si A est une ∗-algèbre unifère et D une sous-algèbre de A, une application linéaire
ϕD : A → D qui envoie 1A sur 1A et satisfait, pour tout a ∈ A, d, d′ ∈ D, ϕD(dad′) =
dϕD(a)d′, est appelée une espérance conditionnelle de A dans B. Le couple (A, ϕD) est
alors un espace de probabilités non commutatif D-valué.

De nombreuses notions des probabilités libres ont leurs analogues “B-valués”.

Une famille (Ai)1≤i≤r de sous ∗-algèbres unifères de A qui contiennent toutes D est
dite libre avec amalgamation sur D si pour tout n ≥ 1, pour tout i1, . . . , in ∈ I tels que
i1 6= i2 6= · · · 6= in, pour tout (x1, . . . , xn) ∈ Ai1 × · · · × Ain , on a

ϕD(x1) = · · · = ϕD(xn) = 0 =⇒ ϕD(x1 · · ·xn) = 0.

Une famille de parties de A, ou de variables aléatoires non commutatives est dite libre avec
amalgamation sur D si elles sont contenues dans des sous-algèbres qui le sont.

Si (ai)i∈I est une famille d’éléments d’un e.p.n.c. D-valué (A, ϕD), la D-distribution de
la famille (ai)i∈I est l’application

µD(ai)i∈I : P ∈ D〈Xi, i ∈ I〉 7→ ϕD(P (ai, i ∈ I)) ∈ D,

où D〈Xi, i ∈ I〉 est l’algèbre des polynômes à coefficients dans D, et à variables non
commutatives (ni entre elles, ni avec les éléments de D), indexées par I (c’est l’ensemble
des sommes finies de termes du type d0Xi1d1Xi2 · · ·Xikdk, avec k ≥ 0, i1, . . . , ik ∈ I et
d0, . . . , dk ∈ D).

On peut définir, de la même façon qu’au paragraphe 9.2, le produit libre avec amalgama-
tion sur D de n’importe quelle famille d’espaces de probabilités non commutatifs D-valués.
On en déduit le même genre de proriétés pour la liberté avec amalgamation qu’au para-
graphe 9.2, par exemple le fait de pouvoir construire à sa guise des variables libres avec
amalgamation de D-distributions individuelles prescrites, et le fait que la D-distribution
d’une famille libre avec amalgamation ne dépend que des D-distributions individuelles. No-
tons que si l’on a un état ϕ sur A tel que ϕ = ϕ◦ϕD, la distribution (avec ϕ) d’une famille
d’éléments libres avec amalgamation est entièrement déterminée par les D-distributions
individuelles, mais non par les distributions individuelles avec ϕ.

Enfin, lorsque D est de dimension finie, on peut définir, comme au paragraphe 9.4, la
convergence en D-distribution et la convergence en D-distribution en probabilité pour des
suites d’éléments de D-espaces de probabilités non commutatifs.
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[93] S. Péché Universality results for the largest eigenvalues of some sample covariance
matrix ensembles. Probab. Theory Related Fields 143 (2009) 481–516.
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