Matrix Models for Random Partitions

Alexander Alexandrov
CEA, IPhT and Ecole Normale Superieure, LPT, France ITEP, Moscow, Russia
Conference on Random Matrices
June 4, 2010

Summary

1. The problem and the motivation
2. Introduction

- Characters and specifications
- Known character decompositions of the ordinary matrix integrals

3. Casimirs

- Sums over partitions and less known matrix integrals
- Operators for Casimirs

4. Second Casimir

- Matrix integral valued operator
- Hermitian matrix integral
- Normal matrix integral
- Integrability
- Some specifications

5. All Casimirs with Miwa parametrization

- Complex matrix integral
- Normal matrix integral
- Integrability

6. Conclusion and open questions

Random Partitions vs Matrix Models

$$
\begin{gathered}
\text { Matrix Models } \\
\int[d \Phi] \ldots \\
\hline
\end{gathered}
$$

$$
\uparrow
$$

Random Partitions

Motivation

Different sums over partitions play an important role in the modern mathematical physics:

- 2d Yang-Mills
- Instantonic calculus of supersymmetric gauge theories
- Hurwitz numbers
- Gromow-Witten invariants
- Chern-Simons
- 2d conformal field theories (Alday-Gaiotto-Tachikawa conjecture)

Characters

We consider $G L(\infty)$ characters, which are parameterized by an infinite set of independent times t and on the partition $\lambda: \chi_{\lambda}(t)$. Miwa variables $t_{k}=\frac{1}{k} \operatorname{Tr} \mathbf{X}^{k}$, where $\mathbf{X}-N \times N$ matrix. Representations of $G L(N)$ are parameterized by partitions (Young diagrams) λ with the size $|\lambda|=\sum \lambda_{i}$ and the length $I(\lambda) \leq N$:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{l(\lambda)}>0=\lambda_{l(\lambda)+1}=\ldots
$$

Weyl's formulas (Jacobi-Trudi identity)

$$
\begin{aligned}
& \chi_{\lambda}(\mathbf{X})=\frac{\operatorname{det}_{i, j} x_{i}^{\lambda_{j}+N-j}}{\Delta(x)} \\
& \chi_{\lambda}(t)=\operatorname{det}_{i, j} p_{\lambda_{i}-i+j}(t)
\end{aligned}
$$

Cauchy-Littlewood identity

$$
e^{\sum_{k=1}^{\infty} k t_{k} \bar{t}_{k}}=\sum_{\lambda} \chi_{\lambda}(t) \chi_{\lambda}(\bar{t})
$$

Dimensions

A very important role in the story is played by dimensions of the representations of the general linear

$$
\operatorname{dim}_{\lambda}=\chi_{\lambda}(\mathbf{1})=\operatorname{dim}_{\lambda}(G L(N))=\prod_{0<i<j \leq N} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i}
$$

and symmetric groups

$$
d_{\lambda}=\chi_{\lambda}\left(t_{k}=\delta_{k, 1}\right)=\frac{\operatorname{dim}_{\lambda}\left(S_{N}\right)}{N!}=\prod_{0<i<j \leq \infty} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i}
$$

The difference between $\operatorname{dim}_{\lambda}$ and d_{λ} is that the first one explicitly depends on N, while the second does not. The ratio of two functions is

$$
\frac{\operatorname{dim}_{\lambda}}{d_{\lambda}}=\prod_{i=1}^{\infty} \frac{\left(\lambda_{i}+N-i\right)!}{(N-i)!}
$$

Character expansion: known examples without Casimirs

Character decomposition for usual unitary, complex and Hermitian matrix integral is well known. Harish-Chandra-Itzykson-Zuber matrix integral

$$
\int_{N \times N}[d \mathbf{U}] e^{\operatorname{Tr}\left(\mathbf{U A U}^{\dagger} \mathbf{B}\right)}=\sum_{\lambda_{;}((\lambda) \leq N} \frac{d_{\lambda} \chi_{\lambda}(\mathbf{A}) \chi_{\lambda}(\mathbf{B})}{\operatorname{dim}_{\lambda}}
$$

Unitary matrix model

$$
\int_{N \times N}[d \mathbf{U}] \exp \left(\sum_{k=0}^{\infty} t_{k} \operatorname{Tr} \mathbf{U}^{k}+\bar{t}_{k} \operatorname{Tr} \mathbf{U}^{\dagger k}\right)=\sum_{\lambda ;(\lambda) \leq N} \chi_{\lambda}(t) \chi_{\lambda}(\bar{t})
$$

It is trivial to insert $e^{q|\lambda|}$ into the sums.

Character expansion: less known examples with Casimirs

What about higher Casimirs?

$$
P_{N}(t, \bar{t} ; s)=\sum_{l(\lambda) \leq N} \chi_{\lambda}(t) \chi_{\lambda}(\bar{t}) \exp \sum_{i=1}^{\infty} s_{i} C_{i}
$$

Not actual group Casimirs, but analogs of single trace operators.

$$
\begin{gathered}
C_{k}=\sum_{i=1}^{\infty}\left(\lambda_{i}-i+\frac{1}{2}\right)^{k}-\left(-i+\frac{1}{2}\right)^{k} \\
C_{1}=|\lambda| \quad C_{2}=\sum_{i=1}^{\infty} \lambda_{i}\left(\lambda_{i}-2 i+1\right)
\end{gathered}
$$

Eguchi - Yang
Eynard et al.

Operators

Characters - eigenfunctions, Casimirs - eigenvalues

$$
\hat{C}_{k} \chi_{\lambda}=C_{k} \chi_{\lambda}
$$

There are at least three different representations for operators \hat{C}_{k}

$$
\begin{gathered}
\hat{C}_{1}=\sum_{i=1}^{N} x_{i} \frac{\partial}{\partial x_{i}}=\operatorname{Tr} \mathbf{X} \frac{\partial}{\partial \mathbf{X}^{\top}}=\sum_{k=1}^{\infty} k t_{k} \frac{\partial}{\partial t_{k}} \\
\hat{C}_{2}=\sum_{i=1}^{N} x_{i}^{2} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{i \neq j} \frac{x_{i} x_{j}}{x_{i}-x_{j}}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right)= \\
=\operatorname{Tr}\left(\mathbf{X} \frac{\partial}{\partial \mathbf{X}^{\top}}\right)^{2}-N \operatorname{Tr} \mathbf{X} \frac{\partial}{\partial \mathbf{X}^{\top}}= \\
=\sum_{k, m=1}^{\infty} k m t_{k} t_{m} \frac{\partial}{\partial t_{k+m}}+(k+m) t_{k+m} \frac{\partial^{2}}{\partial t_{k} \partial t_{m}}
\end{gathered}
$$

Operators, acting on eigenvalues

General expression for the Casimir operators in terms of eigenvalue derivatives:

$$
\begin{gathered}
\hat{C}_{k}=\frac{1}{\widetilde{\Delta}(x)} \sum_{i=1}^{N}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)^{k} \widetilde{\Delta}(x)-C_{k}^{0} \\
\widetilde{\Delta}(x)=\frac{\Delta(x)}{\operatorname{det} X^{N-\frac{1}{2}}} \\
C_{k}^{0}=\sum_{i=1}^{N}\left(-i+\frac{1}{2}\right)^{k}=(-1)^{k} \frac{N^{k+1}}{k+1}+\ldots
\end{gathered}
$$

Proof

Let us explicitly check that characters are eigenfunctions of operators with eigenvalues C_{k}. One has

$$
\begin{array}{r}
\hat{C}_{k} \chi_{\lambda}(\mathbf{X})=\widetilde{\Delta}^{-1}(x) \sum_{i=1}^{N}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)^{k} \frac{\operatorname{det}_{i, j} x_{i}^{\lambda_{j}+N-j}}{\operatorname{det} \mathbf{X}^{N-\frac{1}{2}}}-C_{k}^{0} \chi_{\lambda}(\mathbf{X})= \\
=\widetilde{\Delta}^{-1}(x) \sum_{i=1}^{N}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)^{k} \sum_{\sigma}(-1)^{|\sigma|} \prod_{i} x_{\sigma(i)}^{\lambda_{i}-i+\frac{1}{2}}-C_{k}^{0} \chi_{\lambda}(\mathbf{X})=C_{k} \chi_{\lambda}(\mathbf{X})
\end{array}
$$

which proves the statement.
The crucial property of the expression for Casimir operators is that it can be easily exponentiated. Let us denote $x_{i}=e^{\varphi_{i}}$, then

$$
\exp \sum_{k=1}^{\infty} s_{k} \hat{C}_{k}=e^{-\sum_{k=1}^{\infty} s_{k} c_{k}^{0}} \frac{1}{\widetilde{\Delta}\left(e^{\varphi}\right)} \exp \left(\sum_{k=1}^{\infty} s_{k} \sum_{i=1}^{N} \frac{\partial^{k}}{\partial \varphi_{i}^{k}}\right) \widetilde{\Delta}\left(e^{\varphi}\right)
$$

Second Casimir

Matrix integral representation for the propagator

$$
P_{N}(t, \bar{t})=\sum_{I(\lambda) \leq N} \chi_{\lambda}(t) \chi_{\lambda}(\bar{t}) e^{q C_{1}+\frac{g C_{2}}{2}}
$$

Operator is really simple

$$
\begin{aligned}
\exp \left(q \hat{C}_{1}+\frac{g}{2} \hat{C}_{2}\right) & =D_{0} \exp \left(\sum_{i=1}^{N} q \frac{\partial}{\partial \varphi_{i}}+\frac{g}{2} \frac{\partial^{2}}{\partial \varphi_{i}^{2}}\right) \widetilde{\Delta}\left(e^{\varphi}\right) \\
D_{0} & =\frac{\exp \left(\frac{q N^{2}}{2}-\frac{g N^{3}}{6}+\frac{g N}{24}\right)}{\widetilde{\Delta}\left(e^{\varphi}\right)}
\end{aligned}
$$

As usual, let us convert an operator in to the shift operator

$$
\exp \left(\frac{g}{2} \frac{\partial^{2}}{\partial \varphi_{i}^{2}}\right)=\frac{1}{\sqrt{2 \pi g}} \int_{-\infty}^{\infty} d y_{i} \exp \left(-\frac{1}{2 g} y_{i}^{2}+y_{i} \frac{\partial}{\partial \varphi_{i}}\right)
$$

Matrix integral valued operator

Matrix integral valued operator

$$
e^{q \hat{c}_{1}+\frac{g}{2} \hat{C}_{2}}=\frac{D_{0}}{(2 \pi g)^{\frac{N}{2}}} \int_{-\infty}^{\infty} d^{N} y \widetilde{\Delta}\left(e^{\varphi+y+q}\right) e^{\sum_{i=1}^{N}\left(\left(y_{i}+q\right) \frac{\partial}{\partial \varphi_{i}}-\frac{1}{2 g} y_{i}^{2}\right)}
$$

It is easy to act by this operator on the "bare partition function":

$$
\exp \left(\sum_{k=1}^{\infty} t_{k} \operatorname{Tr} \mathbf{X}^{k}\right)=\sum_{l(\lambda) \leq N} \chi_{\lambda}(t) \chi_{\lambda}(\mathbf{X})
$$

An expression for the partition function as multiple integral

$$
\begin{array}{r}
P_{N}(t, \mathbf{X})=\exp \left(q \hat{C}_{1}+\frac{g}{2} \hat{C}_{2}\right) \exp \left(\sum_{k=1}^{\infty} t_{k} \operatorname{Tr} \mathbf{X}^{k}\right)= \\
=\frac{D_{0}}{(2 \pi g)^{\frac{N}{2}}} \int_{-\infty}^{\infty} d^{N} y \widetilde{\Delta}\left(e^{\varphi+y+q}\right) \exp \sum_{i=1}^{N}\left(\sum_{k=1}^{\infty} t_{k} e^{k\left(y_{i}+\varphi_{i}+q\right)}-\frac{1}{2 g} y_{i}^{2}\right)
\end{array}
$$

Matrix integral

Integral over Hermitian matrixes

$$
P_{N}\left(t, e^{\Phi}\right) \sim \int_{\mathfrak{H}}[d \mu(\mathbf{Y})] \exp \left(\frac{\operatorname{Tr}(\Phi+a) \mathbf{Y}}{g}-\frac{\operatorname{Tr} \mathbf{Y}^{2}}{2 g}+\sum_{k=1}^{\infty} t_{k} \operatorname{Tr} e^{k \mathbf{Y}}\right)
$$

Φ is a diagonal matrix, $a=q-\frac{g N}{2}$. Non-flat measure (B_{k}-Bernoulli numbers)

$$
\begin{gathered}
\quad[d \mu(\mathbf{Y})]=\Delta(y) \Delta\left(e^{y}\right)[d \mathbf{U}] \prod_{i=1}^{N} e^{-\frac{N-1}{2} y_{i}} d y_{i}= \\
=\exp \left(\sum_{i ; j=0, i+j>0} \frac{(-1)^{j}}{2(i+j)} \frac{B_{i+j}}{i!j!} \operatorname{Tr} \mathbf{Y}^{i} \operatorname{Tr} \mathbf{Y}^{j}\right)[d \mathbf{Y}]= \\
=\sqrt{\operatorname{det} \frac{\sinh \left(\frac{\mathbf{Y} \otimes \mathbf{1}-\mathbf{1} \otimes \mathbf{Y}}{2}\right)}{\left(\frac{\mathbf{Y} \otimes \mathbf{1}-\mathbf{1} \otimes \mathbf{Y}}{2}\right)}}[d \mathbf{Y}]
\end{gathered}
$$

Matrix integral for two sets of times

To get partition function $P_{N}(t, \bar{t})$ from $P_{N}(\bar{t}, \mathbf{X})$ one can glue it with "bare propagator" $\exp \sum t_{k} \operatorname{Tr} \mathbf{X}^{k}$ with a help of unitary matrix integral:

$$
P_{N}(t, \bar{t})=\int_{\mathfrak{U}}[d \mathbf{V}] P_{N}\left(\bar{t}, \mathbf{V}^{\dagger}\right) \exp \sum_{k=1}^{\infty} t_{k} \operatorname{Tr} \mathbf{V}^{k}
$$

An interplay between eigenvalues of unitary and Hermitian matrix model leads to the normal ($\left[\mathbf{Z}, \mathbf{Z}^{\dagger}\right]=0$) matrix integral

$$
\begin{gathered}
P_{N}(t, \bar{t})=\mathcal{P}^{-1} \int_{\mathfrak{N}}[d \mathbf{Z}] \exp \left(-\frac{1}{2 g} \operatorname{Tr} \log ^{2} \mathbf{Z} \mathbf{Z}^{\dagger}\right) \times \\
\times \exp \left(\left(\frac{q}{g}-N-\frac{1}{2}\right) \operatorname{Tr} \log \mathbf{Z Z} \mathbf{Z}^{\dagger}+\sum_{k=1}^{\infty}\left(t_{k} \operatorname{Tr} \mathbf{Z}^{k}+\bar{t}_{k} \operatorname{Tr} \mathbf{Z}^{\dagger k}\right)\right)
\end{gathered}
$$

The only special term is $\operatorname{Tr} \log ^{2} \mathbf{Z Z}^{\dagger}$.

How does it work: $N=1$

Let us make a simplest check of our result, namely consider $N=1$. In this case the partition function is a simple sum of Schur polynomials:

$$
P_{1}(t, \bar{t})=\sum_{k=0}^{\infty} p_{k}(t) p_{k}(\bar{t}) e^{q k+\frac{g}{2} k(k-1)}
$$

Matrix integral is simplified to an ordinary one

$$
\begin{aligned}
P_{1}(t, \bar{t})= & \frac{e^{-\frac{q^{2}}{2 g}+\frac{q}{2}-\frac{g}{8}}}{\sqrt{g}} \int d^{2} z \exp \left(-\frac{1}{2 g} \log ^{2}|z|^{2}-\left(\frac{3}{2}-\frac{q}{g}\right) \log |z|^{2}\right) \times \\
& \times \exp \left(\sum_{k=1}^{\infty}\left(t_{k} z^{k}+\bar{t}_{k} \bar{z}^{k}\right)\right)= \\
= & \frac{e^{-\frac{q^{2}}{2 g}+\frac{q}{2}-\frac{g}{8}}}{\sqrt{2 \pi g}} \sum_{k=0}^{\infty} p_{k}(t) p_{k}(\bar{t}) \int_{-\infty}^{\infty} d R e^{-\frac{1}{2 g} R^{2}+\left(k+\frac{q}{g}-\frac{1}{2}\right) R}
\end{aligned}
$$

Integrability

Derived partition function, as usual for matrix integrals, can be represented in the determinant form

$$
\begin{gathered}
P_{N}(t, \bar{t})=\mathcal{P}^{-1} N!{ }_{i, j=1}^{N} h_{i, j} \\
h_{i, j}=\int_{C} d^{2} z z^{2-i} \bar{z}^{2-j} \\
\exp \left(-\frac{1}{2 g} \log ^{2}|z|^{2}-\left(\frac{1}{2}-\frac{q}{g}\right) \log |z|^{2}\right) \times \\
\times \exp \left(\sum_{k=1}^{\infty}\left(t_{k} z^{k}+\bar{t}_{k} \bar{z}^{\dagger k}\right)\right)
\end{gathered}
$$

An obvious property

$$
\frac{\partial h_{i, j}}{\partial t_{k}}=h_{i-k, j}, \quad \frac{\partial h_{i, j}}{\partial \bar{t}_{k}}=h_{i, j-k}
$$

guarantees Toda lattice integrability, where N plays a role of the discrete time.

Some specifications

Generation function of single Hurwitz numbers $(N \rightarrow \infty)$.

$$
\begin{gathered}
P_{N}\left(t, \delta_{k, 1}\right)=\sum_{l(\lambda) \leq N} d_{\lambda} \chi_{\lambda}(t) \exp \left(q C_{1}+\frac{g C_{2}}{2}\right)= \\
=\mathcal{P}^{-1} \int_{\mathfrak{N}}[d \mathbf{Z}] e^{-\frac{1}{2 g} \operatorname{Tr} \log ^{2} \mathbf{z Z}^{\dagger}-\left(N+\frac{1}{2}-\frac{q}{g}\right) \operatorname{Tr} \log \mathbf{Z Z}+\operatorname{Tr} \mathbf{Z}^{\dagger}+\sum_{k=1}^{\infty}\left(t_{k} \operatorname{Tr} \mathbf{Z}^{\kappa}\right)}
\end{gathered}
$$

Plancherel measure. Gromov-Witten invariants for $\mathbf{C P}^{1}$ with only two first times switched on. Formal series!

$$
\begin{gathered}
P_{N}\left(\delta_{k, 1}, \delta_{k, 1}\right)=\sum_{l(\lambda) \leq N} d_{\lambda}^{2} \exp \left(q C_{1}+\frac{g C_{2}}{2}\right)= \\
=\mathcal{P}^{-1} \int_{\mathfrak{N}}[d \mathbf{Z}] e^{-\frac{1}{2 g} \operatorname{Tr} \log ^{2} \mathbf{Z Z}^{\dagger}-\left(N+\frac{1}{2}-\frac{q}{g}\right) \operatorname{Tr} \log \mathbf{Z Z}+\operatorname{Tr} \mathbf{Z}+\operatorname{Tr} \mathbf{Z}^{\dagger}}
\end{gathered}
$$

All Casimirs: Miwa variables

Let us switch on all Casimirs by introduction of Miwa variables for correspondent times

$$
s_{k}=\frac{1}{k} \operatorname{Tr} \mathbf{Y}^{-k}
$$

where the matrix \mathbf{Y} is of the size $M \times M$. For Miwa variables the propagator looks as follows:

$$
\begin{gathered}
P_{N}(t, \bar{t} ; \mathbf{Y})=\sum_{I(\lambda) \leq N} \chi_{\lambda}(t) \chi_{\lambda}(\bar{t}) \exp \left(\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{Tr} \mathbf{Y}^{-k} C_{k}\right)= \\
\sum_{I(\lambda) \leq N} \chi_{\lambda}(t) \chi_{\lambda}(\bar{t}) \prod_{i=1}^{N} \prod_{j=1}^{M} \frac{y_{j}+i-\frac{1}{2}}{y_{j}-\lambda_{i}+i-\frac{1}{2}}
\end{gathered}
$$

Non-eigenvalue matrix integral

$$
P_{N}\left(t, e^{\Phi} ; \mathbf{Y}\right) \sim \int_{\mathfrak{C}}[d \mathbf{Z}] \exp \left(-\operatorname{Tr} \mathbf{Z} \mathbf{Z}^{\dagger} \mathbf{Y}+H\left(\mathbf{Z}^{\dagger} \mathbf{Z}+\Phi\right)\right)
$$

with the potential

$$
H(\mathbf{A})=-\frac{N}{2} \operatorname{Tr} \mathbf{A}+\sum_{k=1}^{\infty} t_{k} \operatorname{Tr} e^{k \mathbf{A}}+\sum_{i ; j=0, i+j>0} \frac{(-1)^{j}}{2(i+j)} \frac{B_{i+j}}{i!j!} \operatorname{Tr} \mathbf{A}^{i} \operatorname{Tr} \mathbf{A}^{j}
$$

where B_{k} are Bernoulli numbers.

Two sets of times - Normal matrix model

Further, for two sets of times we get again a normal matrix integral, where the eigenvalues of normal matrix are constrained by $|z|<1$:

$$
\begin{gathered}
P_{N}(t, \bar{t} ; \mathbf{Y})=\mathcal{P}_{\mathbf{Y}}^{-1} \oint_{\mathcal{C}} d b_{j} \frac{1}{\prod_{k}\left(y_{k}-b_{j}\right)} \int_{\mathfrak{N},\left|z_{i}\right|<1}[d \mathbf{Z}] \times \\
\times \exp \left(\sum_{k=1}^{\infty}\left(t_{k} \operatorname{Tr} \mathbf{Z}^{k}+\bar{t}_{k} \operatorname{Tr} \mathbf{Z}^{\dagger}\right)-\operatorname{Tr}\left(B+N+\frac{1}{2}\right) \log \mathbf{Z}^{\dagger} \mathbf{Z}\right)
\end{gathered}
$$

Integrability

Again, we present propagator as a determinant

$$
P_{N}(t, \bar{t} ; \mathbf{Y}) \sim \stackrel{N}{\operatorname{det}} h_{i, j=1}
$$

where

$$
\begin{aligned}
& h_{i, j}=\oint_{\mathcal{C}} d b \frac{1}{\prod_{k}\left(y_{k}-b\right)} \int_{\left|z_{i}\right|<1} d^{2} z z^{2-i} \bar{z}^{2-j} \times \\
\times & \exp \left(\sum_{k=1}^{\infty}\left(t_{k} z^{k}+\bar{t}_{k} z^{\dagger}\right)-\left(b+\frac{1}{2}\right) \log |z|^{2}\right)
\end{aligned}
$$

Equations

$$
\frac{\partial h_{i, j}}{\partial t_{k}}=h_{i-k, j}, \quad \frac{\partial h_{i, j}}{\partial \bar{t}_{k}}=h_{i, j-k}
$$

guarantee Toda lattice integrability with respect to times t and \bar{t}.

Conclusion and open questions

- Conclusion
- Matrix integrals
- Integrability
- Topological expansion: $\frac{1}{N}$ and \hbar corrections
- Further directions
- Virasoro constraints (powerful Eynard technique)
- M-theory of matrix models
- β - deformations
- q-deformations
- Multiple partitions

