Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

Conclusion

Free convolution with a semi-circular distribution and convergence of eigenvalues of spiked deformations of large Wigner matrices

M. Capitaine

I M T Univ Toulouse 3 and CNRS, Equipe de Statistique et Probabilités

joint work with C. Donati-Martin, D. Féral and M. Février

Large	Wigner	matrices
-------	--------	----------

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices C

Definition

 W_N is a $N \times N$ Wigner Hermitian matrix associated with a distribution μ of variance σ^2 and mean zero :

 $(W_N)_{ii}, \sqrt{2}\Re e((W_N)_{ij})_{i < j}, \sqrt{2}\Im m((W_N)_{ij})_{i < j}$ are i.i.d, with distribution μ .

If $\mu = \mathcal{N}(0, \sigma^2)$, $W_N =: W_N^G$ is a G.U.E-matrix.

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

Conclusion

Notation : $\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge \lambda_N(X)$ eigenvalues of X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation :
$$\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_N(X)$$
 eigenvalues of X.

Theorem

Convergence of the spectral measure : *Wigner (50')*

$$\begin{split} \mu_{\frac{W_N}{\sqrt{N}}} &:= \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(\frac{W_N}{\sqrt{N}})} \to \mu_\sigma \quad \text{a.s when} \quad N \to +\infty \\ \frac{d\mu_\sigma}{dx}(x) &= \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2} \, \mathbb{1}_{[-2\sigma, 2\sigma]}(x) \end{split}$$

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

Conclusion

Notation : $\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge \lambda_N(X)$ eigenvalues of X.

Theorem

Convergence of the spectral measure : *Wigner (50')*

$$\mu_{\frac{W_N}{\sqrt{N}}} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(\frac{W_N}{\sqrt{N}})} \to \mu_\sigma \quad \text{a.s when} \quad N \to +\infty$$

$$\frac{d\mu_{\sigma}}{dx}(x) = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - x^2}\,\mathbf{1}_{[-2\sigma, 2\sigma]}(x)$$

Theorem

Convergence of the extremal eigenvalues (Bai-Yin 1988) : If $\int x^4 d\mu(x) < +\infty$, then

$$\lambda_1(rac{W_N}{\sqrt{N}}) o 2\sigma \text{ and } \lambda_N(rac{W_N}{\sqrt{N}}) o -2\sigma \text{ a.s when } N o +\infty.$$

Model

Finite rank deformation :
$$M_N = \frac{1}{\sqrt{N}}W_N + A_N$$

- W_N is a $N \times N$ Wigner Hermitian matrix associated with a distribution μ of variance σ^2 and mean zero.
- A_N : a deterministic Hermitian matrix of fixed finite rank r with J distinct non-null eigenvalues (spikes) $\theta_1 > \cdots > \theta_J$ independent of N, θ_j of fixed multiplicity k_j .

$$F_X(x) := \mu_X(] - \infty; x])$$
$$\sup_x |F_{\frac{1}{\sqrt{N}}W_N + A_N}(x) - F_{\frac{1}{\sqrt{N}}W_N}(x)| \le \frac{\operatorname{rank}A_N}{N}$$

Model

Finite rank deformation :
$$M_N = \frac{1}{\sqrt{N}}W_N + A_N$$

- W_N is a $N \times N$ Wigner Hermitian matrix associated with a distribution μ of variance σ^2 and mean zero.
- A_N : a deterministic Hermitian matrix of fixed finite rank r with J distinct non-null eigenvalues (spikes) $\theta_1 > \cdots > \theta_J$ independent of N, θ_j of fixed multiplicity k_j .

$$F_X(x) := \mu_X(] - \infty; x])$$
$$\sup_x |F_{\frac{1}{\sqrt{N}}W_N + A_N}(x) - F_{\frac{1}{\sqrt{N}}W_N}(x)| \le \frac{\operatorname{rank}A_N}{N}$$

 \implies Convergence of the spectral measure $\mu_{M_N} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i(M_N)}$ towards the semi-circular distribution μ_{σ} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results

Theorem (**Finite rank deformation of a G.U.E matrix :** Péché 2006)

$$\mu = \mathcal{N}(\mathbf{0}, \sigma^2)$$

• If
$$\theta_1 < \sigma$$
, $\sigma^{-1} N^{2/3} (\lambda_1(M_N^G) - 2\sigma) \xrightarrow{\mathcal{D}} F_2$ (T.W)

• If
$$\theta_1 = \sigma$$
, $\sigma^{-1} N^{2/3} (\lambda_1(M_N^G) - 2\sigma) \xrightarrow{\mathcal{D}} F_{3,k_1}$.

• If
$$\theta_1 > \sigma$$
, $N^{1/2}(\lambda_1(M_N^G) - \rho_{\theta_1}) \xrightarrow{\mathcal{D}}$ the distribution of the largest eigenvalue of a $k_1 \times k_1$ GUE matrix, with $\rho_{\theta_1} := \theta_1 + \frac{\sigma^2}{\theta_1}$.

$$-2\sigma \qquad 2\sigma \qquad \rho_{\theta_1} := \theta_1 + \frac{\sigma^2}{\theta_1} \ (\theta_1 > \sigma)$$

General deformed Wigner matrices

Conclusion

Results

Theorem

The non-Gaussian case for a PARTICULAR A_N :

Féral-Péché 2007

 μ symmetric with subgaussian moments.

 $A_N := \begin{pmatrix} \frac{\theta}{N} \cdots \frac{\theta}{N} \\ \vdots \dots \vdots \\ \frac{\theta}{N} \cdots \frac{\theta}{N} \end{pmatrix}.$

The convergence and fluctuations of $\lambda_1(M_N)$ are the same as $\lambda_1(M_N^G)$ (the Gaussian case) :

- If $\theta < \sigma$, $\sigma^{-1} N^{2/3} (\lambda_1(M_N) 2\sigma) \xrightarrow{\mathcal{D}} F_2$ (T.W)
- If $\theta = \sigma$, $\sigma^{-1} N^{2/3} (\lambda_1(M_N) 2\sigma) \xrightarrow{\mathcal{D}} F_{3,1}$.
- If $\theta > \sigma$, $N^{1/2}(\lambda_1(M_N) \rho_\theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_\theta^2);$

$$ho_{ heta} := heta + rac{\sigma^2}{ heta}; \quad \sigma_{ heta} := \sigma \sqrt{1 - (\sigma/ heta)^2}.$$

(see also Furedi-Komlós 1981)

・ロト・雪・・雪・・雪・ うらぐ

General deformed Wigner matrices

Results

Theorem (Capitaine, Donati-Martin, Féral (AOP 2009) **Universality** of the convergence)

 μ symmetric, satisfying a Poincaré inequality.

 A_N : any deterministic Hermitian matrix of fixed finite rank r with J distinct non-null eigenvalues $\theta_1 > \cdots > \theta_J$ independent of N, θ_j of fixed multiplicity k_i . such that

Then, almost surely,

$$\rho_{\theta_i} \quad -2\sigma \qquad 2\sigma \qquad \rho_{\theta_l} := \theta_l + \frac{\sigma^2}{\theta_l}$$

 k_i eigenvalues of M_N k_l eigenvalues of M_N

Results

Theorem (Capitaine, Donati-Martin, Féral (AOP 2009) **Universality** of the convergence)

 A_N : any deterministic Hermitian matrix of fixed finite rank r with J distinct non-null eigenvalues $\theta_1 > \cdots > \theta_J$ independent of N, θ_j of fixed multiplicity k_j .

 μ symmetric, satisfying a Poincaré inequality.

Let $J_{+\sigma}$ (resp. $J_{-\sigma}$) be the number of j's such that $\theta_j > \sigma$ (resp. $\theta_j < -\sigma$). $\rho_{\theta_j} := \theta_j + \frac{\sigma^2}{\theta_j}$.

•
$$\forall 1 \leq j \leq J_{+\sigma}, \, \forall 1 \leq i \leq k_j, \lambda_{k_1+\dots+k_{j-1}+i}(M_N) \to \rho_{\theta_j}$$
 a.s.,

•
$$\lambda_{k_1+\dots+k_{J_{+\sigma}}+1}(M_N) \rightarrow 2\sigma$$
 a.s.,

•
$$\lambda_{k_1+\dots+k_{J-J_{-\sigma}}}(M_N) \longrightarrow -2\sigma$$
 a.s.,

• $\forall j \ge J - J_{-\sigma} + 1, \ \forall 1 \le i \le k_j, \lambda_{k_1 + \dots + k_{j-1} + i}(M_N) \to \rho_{\theta_j}$ a.s. \implies The limiting values do not depend on μ .

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Results			

 μ satisfies a **Poincaré inequality** : there exists a positive constant C such that for any C^1 function $f : \mathbb{R} \to \mathbb{C}$ such that f and f' are in $L^2(\mu)$,

$$\mathbb{E}_{\mu}(|f-\mathbb{E}_{\mu}(f)|^2)\leq C\mathbb{E}_{\mu}(|f'|^2).$$

Poincaré inequality is just a technical condition : we conjecture that our results still hold under weaker assumptions.

Large Wigner matrices	Finite rank deformation of large Wigner matrices ○00000●○○○	General deformed Wigner matrices	Conclusion
Results			

I will try, dealing with a finite rank deformation, to explain how free probability may throw light on these results and thus allows to extend them to non-finite rank deformations and general Wigner matrices.

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

Conclusion

Description of the results in terms of subordination function

For a probability measure τ on \mathbb{R} , $z \in \mathbb{C} \setminus \mathbb{R}$, $g_{\tau}(z) = \int_{\mathbb{R}} \frac{d\tau(x)}{z-x}$. ν : a probability measure on \mathbb{R} . μ_{σ} : the centered semi-circular distribution with variance σ^2 ,

There exists an analytic map $F_{\sigma,\nu}: \mathbb{C}^+ \to \mathbb{C}^+$ (subordination function) such that

$$orall z \in \mathbb{C}^+, \quad g_{
u \boxplus \mu_\sigma}(z) = g_
u(\mathcal{F}_{\sigma,
u}(z)).$$

Theorem (P.Biane 1997)

$$F_{\sigma,\nu}: \begin{array}{l} \mathbb{C}^+ \to \{u + i\nu \in \mathbb{C}^+, v > v_{\sigma,\nu}(u)\} := \Omega_{\nu,\sigma} \\ z \mapsto z - \sigma^2 g_{\nu \boxplus \mu_{\sigma}}(z) \end{array}$$
$$v_{\sigma,\nu}(u) = \inf \left\{ v \ge 0, \int_{\mathbb{R}} \frac{d\nu(x)}{(u-x)^2 + v^2} \le \frac{1}{\sigma^2} \right\}.$$
$$H_{\sigma,\nu}: z \mapsto z + \sigma^2 g_{\nu}(z)$$

is a homeomorphism from $\overline{\Omega_{\nu,\sigma}}$ to $\mathbb{C}^+ \cup \mathbb{R}$ with inverse $F_{\sigma,\nu}$.

Ψ

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

Description of the results in terms of subordination function

Theorem (P. Biane (1997))

The measure $\nu \boxplus \mu_{\sigma}$ is absolutely continuous with respect to the Lebesgue measure with density $p_{\sigma,\nu}$. $\Psi_{\sigma,\nu} : \mathbb{R} \to \mathbb{R}$ being the homeomorphism defined by :

$$\begin{split} \Psi_{\sigma,\nu}(u) &= H_{\sigma,\nu}(u+iv_{\sigma,\nu}(u)) = u + \sigma^2 \int_{\mathbb{R}} \frac{(u-x)d\nu(x)}{(u-x)^2 + v_{\sigma,\nu}(u)^2}, \\ p_{\sigma,\nu}(\Psi_{\sigma,\nu}(u)) &= \frac{v_{\sigma,\nu}(u)}{\pi\sigma^2}. \\ U_{\sigma,\nu} &:= \{u, v_{\sigma,\nu}(u) > 0\} = \left\{ u \in \mathbb{R}, \int_{\mathbb{R}} \frac{d\nu(x)}{(u-x)^2} > \frac{1}{\sigma^2} \right\}, \\ \text{support}(\nu \boxplus \mu_{\sigma}) &= \overline{\Psi_{\sigma,\nu}(U_{\sigma,\nu})}. \end{split}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Finite rank deformation of large Wigner matrices ○○○○○○○●

General deformed Wigner matrices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Description of the results in terms of subordination function

When
$$\nu = \delta_0$$
,
 $U_{\sigma,\nu} = \left\{ u \in \mathbb{R}, \int_{\mathbb{R}} \frac{d\nu(x)}{(u-x)^2} > \frac{1}{\sigma^2} \right\} = \{ u \in \mathbb{R}, |u| < \sigma \}$
 $g_{\nu \boxplus \mu_{\sigma}}(z) = g_{\nu}(F_{\sigma,\nu}(z)) \Rightarrow F_{\sigma,\delta_0} = \frac{1}{g_{\mu_{\sigma}}}$
 $H_{\sigma,\delta_0}(z) = z + \sigma^2 g_{\nu}(z) = z + \frac{\sigma^2}{z}$
 $[-2\sigma; 2\sigma] = [H_{\sigma,\delta_0}(-\sigma); H_{\sigma,\delta_0}(\sigma)].$

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

Description of the results in terms of subordination function

When
$$\nu = \delta_0$$
,
 $U_{\sigma,\nu} = \left\{ u \in \mathbb{R}, \int_{\mathbb{R}} \frac{d\nu(x)}{(u-x)^2} > \frac{1}{\sigma^2} \right\} = \{ u \in \mathbb{R}, |u| < \sigma \}$
 $g_{\nu \boxplus \mu_{\sigma}}(z) = g_{\nu}(F_{\sigma,\nu}(z)) \Rightarrow F_{\sigma,\delta_0} = \frac{1}{g_{\mu_{\sigma}}}$
 $H_{\sigma,\delta_0}(z) = z + \sigma^2 g_{\nu}(z) = z + \frac{\sigma^2}{z}$
 $[-2\sigma; 2\sigma] = [H_{\sigma,\delta_0}(-\sigma); H_{\sigma,\delta_0}(\sigma)].$

Remark

• The characterisation of the spikes of the finite rank matrix A_N that generate jumps of eigenvalues of $\frac{1}{\sqrt{N}}W_N + A_N$: $\theta_i \in^c \overline{U_{\sigma,\delta_0}}$ • The relationship between a spike θ_i of A_N such that $|\theta_i| > \sigma$ and the limiting point ρ_{θ_i} of the corresponding eigenvalues of $\frac{1}{\sqrt{N}}W_N + A_N$: σ^2

$$\rho_{\theta_i} = \theta_i + \frac{\sigma^2}{\theta_i} = H_{\sigma,\delta_0}(\theta_i).$$

Conclusion

Model

Finite rank deformation of large Wigner matrices

General deformed Wigner matrices

$M_N = \frac{1}{\sqrt{N}} W_N + A_N$

- W_N is a $N \times N$ Wigner Hermitian matrix associated with a distribution μ of variance σ^2 and mean zero which is symmetric and satisfies a Poincaré inequality.
- A_N is a deterministic Hermitian matrix. $\mu_{A_N} \rightarrow \nu$ weakly, ν compactly supported. A_N has a number J of fixed eigenvalues (spikes) $\theta_1 > \ldots > \theta_J$ which are independent of N, each θ_j having a fixed multiplicity k_j , $\sum_j k_j = r$. For any $i = 1, \ldots, J$, $\theta_i \notin \text{supp}(\nu)$. A_N has N - r eigenvalues $\beta_i(N)$ such that

$$\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$$

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Preliminary basic results			

• The spectral distribution of M_N converges weakly to the free convolution $\nu \boxplus \mu_\sigma$ a.s..

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Preliminary basic results			

(ロ)、(型)、(E)、(E)、 E) の(の)

• The spectral distribution of M_N converges weakly to the free convolution $\nu \boxplus \mu_\sigma$ a.s..

• support(
$$\nu \boxplus \mu_{\sigma}$$
) = $\overline{\Psi_{\sigma,\nu}(U_{\sigma,\nu})}$.

•
$$\overline{U_{\sigma,\nu}} = \bigcup_{l=m}^{1} [s_l, t_l]$$
 with $s_m < t_m < \ldots < s_1 < t_1$.
• support $\nu \boxplus \mu_{\sigma} = \bigcup_{l=m}^{1} [H_{\sigma,\nu}(s_l), H_{\sigma,\nu}(t_l)]$

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Preliminary basic results			

• The spectral distribution of M_N converges weakly to the free convolution $\nu \boxplus \mu_\sigma$ a.s..

• support(
$$\nu \boxplus \mu_{\sigma}$$
) = $\overline{\Psi_{\sigma,\nu}(U_{\sigma,\nu})}$.

•
$$\overline{U_{\sigma,\nu}} = \bigcup_{l=m}^{1} [s_l, t_l]$$
 with $s_m < t_m < \ldots < s_1 < t_1$.
• support $\nu \boxplus \mu_{\sigma} = \bigcup_{l=m}^{1} [H_{\sigma,\nu}(s_l), H_{\sigma,\nu}(t_l)]$
• support $\nu \subset \overline{U_{\sigma,\nu}}$

• Each connected component of $\overline{U_{\sigma,\nu}}$ contains a least a connected component of $\operatorname{supp}(\nu)$.

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Preliminary basic results			

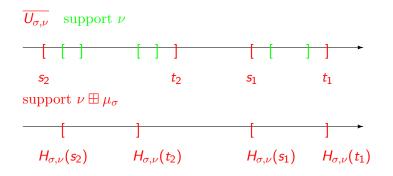
• The spectral distribution of M_N converges weakly to the free convolution $\nu \boxplus \mu_\sigma$ a.s..

• support(
$$\nu \boxplus \mu_{\sigma}$$
) = $\overline{\Psi_{\sigma,\nu}(U_{\sigma,\nu})}$.

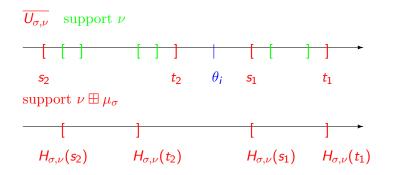
•
$$\overline{U_{\sigma,\nu}} = \bigcup_{l=m}^{1} [s_l, t_l]$$
 with $s_m < t_m < \ldots < s_1 < t_1$.
• support $\nu \boxplus \mu_{\sigma} = \bigcup_{l=m}^{1} [H_{\sigma,\nu}(s_l), H_{\sigma,\nu}(t_l)]$
• support $\nu \subset \overline{U_{\sigma,\nu}}$

• Each connected component of $\overline{U_{\sigma,\nu}}$ contains a least a connected component of $\operatorname{supp}(\nu)$.

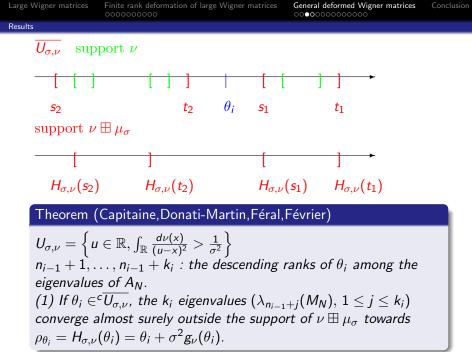
Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Results			

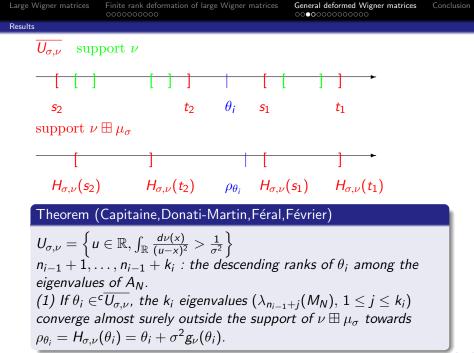


Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Results			

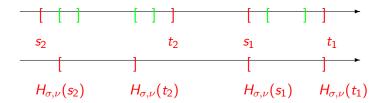


くしゃ (中)・(中)・(中)・(日)

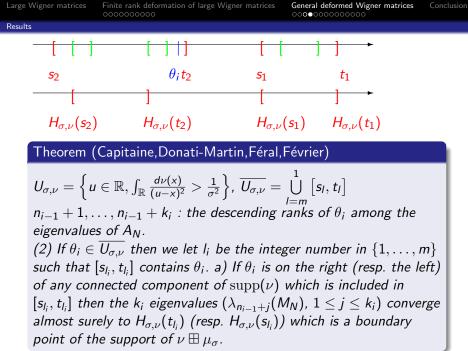


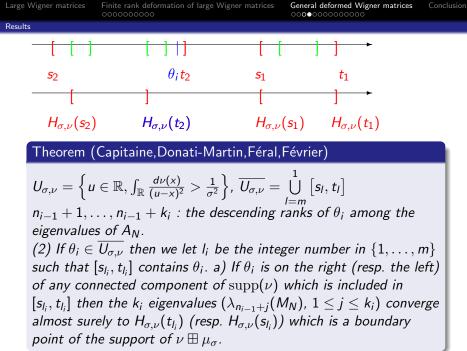


Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Results			
,			



Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Results			





Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Main ideas of the proof			

The asymptotic behaviour of the eigenvalues of a deformed Wigner matrix comes from two phenomena :

- Inclusion of the spectrum of M_N in a ϵ -neighborhood of the support of $\mu_{A_N} \boxplus \mu_{\sigma}$ for all large N almost surely
- Exact separation phenomenon between the spectrum of M_N and the spectrum of A_N , involving the subordination function $F_{\sigma,\nu}$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Large Wigner	Finite rank	< deformation	large Wigner	matrices
		000		

General deformed Wigner matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main ideas of the proof

For any $\epsilon > 0$,

Theorem

Almost surely, for all large N

$$Spect(rac{1}{\sqrt{N}}W_N + A_N) \subset \epsilon$$
-neighborhood of $support(\mu_{A_N} \boxplus \mu_{\sigma})$

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Main ideas of the proof			

For any
$$\epsilon > 0$$
,

Theorem

Almost surely, for all large N

$$Spect(rac{1}{\sqrt{N}}W_N + A_N) \subset \epsilon$$
-neighborhood of $support(\mu_{A_N} \boxplus \mu_{\sigma})$

for all large N,

support $(\mu_{A_N} \boxplus \mu_{\sigma}) \subset \epsilon$ -neighborhood of support $(\nu \boxplus \mu_{\sigma}) \bigcup_{i, |\theta_i \in c \overline{U_{\sigma,\nu}}} \{\rho_{\theta_i}\}.$

a.s, for all large N,

 $Spect(\frac{1}{\sqrt{N}}W_{N}+A_{N}) \subset \epsilon\text{-neighborhood of support}(\nu \boxplus \mu_{\sigma}) \bigcup_{i,|\theta_{i} \in {}^{c}\overline{U_{\sigma,\nu}}} \{\rho_{\theta_{i}}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Main ideas of the proof			

Key ideas of the proof of the inclusion of the spectrum of M_N in an ϵ -neighborhood of support $(\mu_{A_N} \boxplus \mu_{\sigma})$: for any z in \mathbb{C}^+ ,

$$ilde{g_N}(z) = \int rac{1}{z-x} d\mu_{A_N} \boxplus \mu_\sigma(x); \hspace{0.2cm} g_N(z) = \mathbb{E}\left[\int rac{1}{z-x} d\mu_{M_N}(x)
ight]$$

• g_N satisfies an approximative subordination equation :

$$g_N(z) = g_{\mu_{A_N}}(z - \sigma^2 g_N(z)) + \frac{1}{N} L_N(z) + O(\frac{1}{N^2}).$$

•
$$\Longrightarrow$$
 $|g_N(z) - \tilde{g_N}(z) + \frac{E_N(z)}{N}| \le \frac{P(|\Im z|^{-1})}{N^2}$

where E_N is the Stieltjes transform of a distribution Λ_N whose support is included in the support of $\mu_{A_N} \boxplus \mu_{\sigma}$.

• \implies inclusion of the spectrum by inverse Cauchy transform.

Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Main ideas of the proof			

Theorem

$$\begin{split} [a,b] \subset \ ^{c} \left\{ \mathrm{support} \ (\nu \boxplus \mu_{\sigma}) \bigcup_{i,|\theta_{i} \in ^{c} \overline{U_{\sigma,\nu}}} \{\rho_{\theta_{i}}\} \right\}. \\ Then \ for \ large \ N, \ [F_{\sigma,\nu}(a), F_{\sigma,\nu}(b)] \subset ^{c} \mathrm{SpectA_{N}}. \\ i_{N} \in \{0, \ldots, N\} \ s.t \\ \lambda_{i_{N}+1}(A_{N}) < F_{\sigma,\nu}(a) \ and \ \lambda_{i_{N}}(A_{N}) > F_{\sigma,\nu}(b) \\ (\lambda_{0} := +\infty \ and \ \lambda_{N+1} := -\infty). \\ Then \\ \mathbb{P}[\lambda_{i_{N}+1}(M_{N}) < a \ and \ \lambda_{i_{N}}(M_{N}) > b, \ for \ large \ N] = 1. \end{split}$$

Finite rank deformation of large Wigner matrices

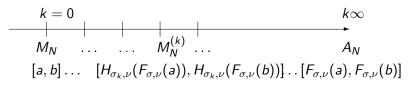
General deformed Wigner matrices

Main ideas of the proof

Key idea of the proof of the exact separation : introduce a continuum of matrices from M_N to A_N :

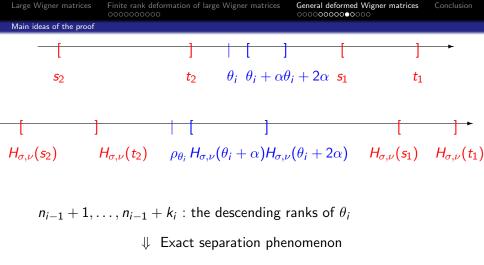
 $M_N^{(k)} := \frac{\sigma_k}{\sigma} \frac{W_N}{\sqrt{N}} + A_N, \ \sigma_0 = \sigma, \ \sigma_k \to 0$ when k goes to infinity.

 $H_{\sigma_k,\nu}(z) = z + \sigma_k^2 g_\nu(z), \ F_{\sigma_k,\nu} = H_{\sigma_k,\nu}^{-1}.$

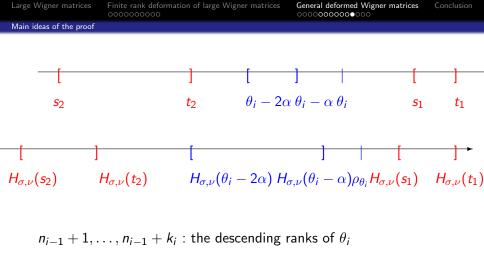


• For any k, the interval $[H_{\sigma_k,\nu}(F_{\sigma}(a)), H_{\sigma_k,\nu}(F_{\sigma,\nu}(b))]$ splits the spectrum of $M_N^{(k)}$ in exactly the same way.

• For k large enough the interval $[H_{\sigma_k,\nu}(F_{\sigma,\nu}(a)), H_{\sigma_k,\nu}(F_{\sigma,\nu}(b))]$ splits the spectrum of $M_N^{(k)}$ as $[F_{\sigma,\nu}(a)), F_{\sigma,\nu}(b))]$ splits the spectrum of A_N ,

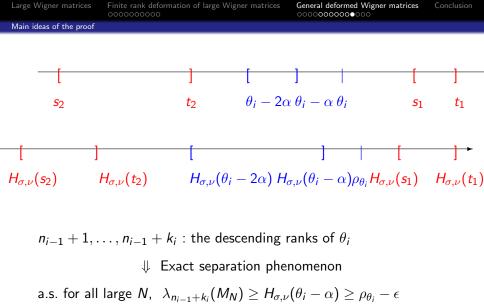


a.s. for all large N, $\lambda_{n_{i-1}+1}(M_N) \leq H_{\sigma,\nu}(\theta_i + \alpha) \leq \rho_{\theta_i} + \epsilon$



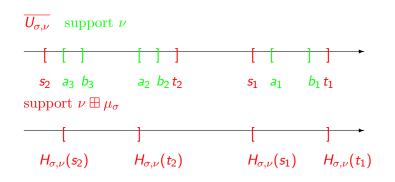
 \Downarrow Exact separation phenomenon

a.s. for all large N, $\lambda_{n_{i-1}+k_i}(M_N) \geq H_{\sigma,\nu}(\theta_i - \alpha) \geq \rho_{\theta_i} - \epsilon$

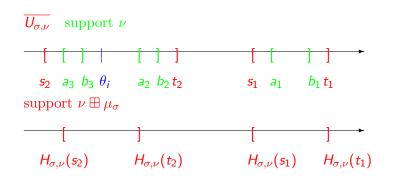


$$\Rightarrow \rho_{\theta_i} - \epsilon \leq \lambda_{n_{i-1}+k_i}(M_N) \leq \ldots \leq \lambda_{n_{i-1}+1}(M_N) \leq \rho_{\theta_i} + \epsilon$$

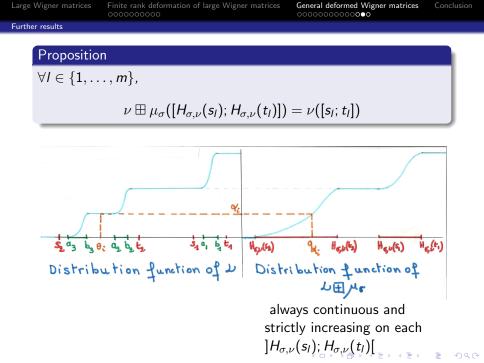
Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Further results			

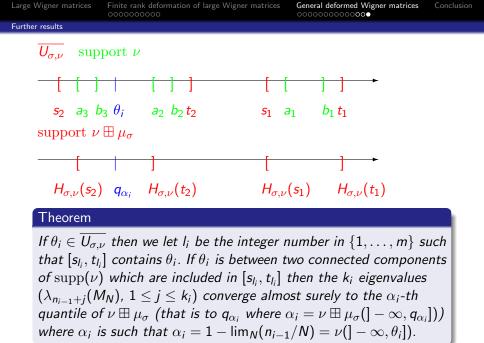


Large Wigner matrices	Finite rank deformation of large Wigner matrices	General deformed Wigner matrices	Conclusion
Further results			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





Finite rank deformation of large Wigner matrices

General deformed Wigner matrices Conclusion

Actually one can check that

-the results of Benaych-Georges-Rao about the convergence of the extremal eigenvalues of a matrix $X_N + A_N$, A_N being a finite rank perturbation whereas X_N is a unitarily invariant matrix with some limiting spectral compactly supported distribution μ , could be rewritten in terms of the subordination function related to the additive free convolution of δ_0 by μ .

- the results on spiked population models (Baik-Ben Arous-Péché, Baik-Silverstein, Bai-Yao) could be also fully described in terms of free probability involving the subordination function related to the multiplicative free convolution by a Marchenko-Pastur distribution.

Conclusion

Subordination property in free probability definitely sheds light on spiked deformed models.