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Definition

WN is a N × N Wigner Hermitian matrix associated with a
distribution µ of variance σ2 and mean zero :

(WN)ii ,
√

2<e((WN)ij)i<j ,
√

2=m((WN)ij)i<j are i.i.d, with
distribution µ.

If µ = N (0, σ2), WN =: W G
N is a G .U.E -matrix.
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Notation : λ1(X ) ≥ λ2(X ) ≥ · · · ≥ λN(X ) eigenvalues of X .

Theorem

Convergence of the spectral measure : Wigner (50’)

µWN√
N

:=
1

N

N∑
i=1

δ
λi (

WN√
N

)
→ µσ a.s when N → +∞

dµσ
dx

(x) =
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x)

Theorem

Convergence of the extremal eigenvalues (Bai-Yin 1988) :
If
∫

x4dµ(x) < +∞, then

λ1(
WN√

N
)→ 2σ and λN(

WN√
N

)→ −2σ a.s when N → +∞.



Large Wigner matrices Finite rank deformation of large Wigner matrices General deformed Wigner matrices Conclusion

Notation : λ1(X ) ≥ λ2(X ) ≥ · · · ≥ λN(X ) eigenvalues of X .

Theorem

Convergence of the spectral measure : Wigner (50’)

µWN√
N

:=
1

N

N∑
i=1

δ
λi (

WN√
N

)
→ µσ a.s when N → +∞

dµσ
dx

(x) =
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x)

Theorem

Convergence of the extremal eigenvalues (Bai-Yin 1988) :
If
∫

x4dµ(x) < +∞, then

λ1(
WN√

N
)→ 2σ and λN(

WN√
N

)→ −2σ a.s when N → +∞.



Large Wigner matrices Finite rank deformation of large Wigner matrices General deformed Wigner matrices Conclusion

Notation : λ1(X ) ≥ λ2(X ) ≥ · · · ≥ λN(X ) eigenvalues of X .

Theorem

Convergence of the spectral measure : Wigner (50’)

µWN√
N

:=
1

N

N∑
i=1

δ
λi (

WN√
N

)
→ µσ a.s when N → +∞

dµσ
dx

(x) =
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x)

Theorem

Convergence of the extremal eigenvalues (Bai-Yin 1988) :
If
∫

x4dµ(x) < +∞, then

λ1(
WN√

N
)→ 2σ and λN(

WN√
N

)→ −2σ a.s when N → +∞.



Large Wigner matrices Finite rank deformation of large Wigner matrices General deformed Wigner matrices Conclusion

Model

Finite rank deformation : MN =
1√
N

WN + AN

• WN is a N × N Wigner Hermitian matrix associated with a
distribution µ of variance σ2 and mean zero.

• AN : a deterministic Hermitian matrix of fixed finite rank r with
J distinct non-null eigenvalues (spikes) θ1 > · · · > θJ independent
of N, θj of fixed multiplicity kj .

FX (x) := µX (]−∞; x ])

sup
x
|F 1√

N
WN+AN

(x)− F 1√
N

WN
(x)| ≤ rankAN

N

=⇒ Convergence of the spectral measure µMN
:= 1

N

∑N
i=1 δλi (MN)

towards the semi-circular distribution µσ.
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Results

Theorem (Finite rank deformation of a G.U.E matrix : Péché
2006)

µ = N (0, σ2)

If θ1 < σ, σ−1N2/3(λ1(MG
N )− 2σ)

D→ F2 (T.W)

If θ1 = σ, σ−1N2/3(λ1(MG
N )− 2σ)

D→ F3,k1 .

If θ1 > σ, N1/2(λ1(MG
N )− ρθ1)

D→ the distribution of the
largest eigenvalue of a k1 × k1 GUE matrix,
with ρθ1 := θ1 + σ2

θ1
.

-

−2σ 2σ ρθ1 := θ1 + σ2

θ1
(θ1 > σ)
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Results

Theorem

The non-Gaussian case for a PARTICULAR AN :
Féral-Péché 2007
µ symmetric with subgaussian moments.

AN :=


θ
N · · ·

θ
N

... · · ·
...

θ
N · · ·

θ
N

 .

The convergence and fluctuations of λ1(MN) are the same as
λ1(MG

N ) (the Gaussian case) :

If θ < σ, σ−1N2/3(λ1(MN)− 2σ)
D→ F2 (T.W)

If θ = σ, σ−1N2/3(λ1(MN)− 2σ)
D→ F3,1.

If θ > σ, N1/2(λ1(MN)− ρθ)
D→ N (0, σ2

θ);

ρθ := θ +
σ2

θ
; σθ := σ

√
1− (σ/θ)2.

(see also Furedi-Komlós 1981)
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Results

Theorem (Capitaine,Donati-Martin,Féral (AOP 2009) Universality
of the convergence)

µ symmetric, satisfying a Poincaré inequality.
AN : any deterministic Hermitian matrix of fixed finite rank r with
J distinct non-null eigenvalues θ1 > · · · > θJ independent of N, θj
of fixed multiplicity kj . such that

-

θi −σ σ θl

Then, almost surely,

-

ρθi −2σ 2σ ρθl := θl + σ2

θl
 	6 6
 	
ki eigenvalues of MN kl eigenvalues of MN
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Results

Theorem (Capitaine,Donati-Martin,Féral (AOP 2009) Universality
of the convergence)

AN : any deterministic Hermitian matrix of fixed finite rank r with
J distinct non-null eigenvalues θ1 > · · · > θJ independent of N, θj
of fixed multiplicity kj .
µ symmetric, satisfying a Poincaré inequality.
Let J+σ (resp. J−σ) be the number of j’s such that θj > σ (resp.

θj < −σ). ρθj := θj + σ2

θj
.

∀1 ≤ j ≤ J+σ, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i (MN)→ ρθj a.s.,

λk1+···+kJ+σ+1(MN)→ 2σ a.s.,

λk1+···+kJ−J−σ
(MN) −→ −2σ a.s.,

∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i (MN)→ ρθj a.s.
=⇒ The limiting values do not depend on µ.
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Results

µ satisfies a Poincaré inequality : there exists a positive constant
C such that for any C1 function f : R→ C such that f and f ′ are
in L2(µ),

Eµ(|f − Eµ(f )|2) ≤ CEµ(|f ′|2).

Poincaré inequality is just a technical condition : we conjecture
that our results still hold under weaker assumptions.
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Results

I will try, dealing with a finite rank deformation, to explain how
free probability may throw light on these results and thus allows to
extend them to non-finite rank deformations and general Wigner
matrices.
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Description of the results in terms of subordination function

For a probability measure τ on R, z ∈ C\R, gτ (z) =
∫

R
dτ(x)
z−x .

ν : a probability measure on R. µσ :the centered semi-circular
distribution with variance σ2,
There exists an analytic map Fσ,ν : C+ → C+ (subordination
function) such that

∀z ∈ C+, gν�µσ(z) = gν(Fσ,ν(z)).

Theorem (P.Biane 1997)

Fσ,ν :
C+ → {u + iv ∈ C+, v > vσ,ν(u)} := Ων,σ

z 7→ z − σ2gν�µσ(z)

vσ,ν(u) = inf

{
v ≥ 0,

∫
R

dν(x)

(u − x)2 + v 2
≤ 1

σ2

}
.

Hσ,ν : z 7→ z + σ2gν(z)

is a homeomorphism from Ων,σ to C+ ∪ R with inverse Fσ,ν .
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Description of the results in terms of subordination function

Theorem (P. Biane (1997))

The measure ν � µσ is absolutely continuous with respect to the
Lebesgue measure with density pσ,ν . Ψσ,ν : R→ R being the
homeomorphism defined by :

Ψσ,ν(u) = Hσ,ν(u + ivσ,ν(u)) = u + σ2

∫
R

(u − x)dν(x)

(u − x)2 + vσ,ν(u)2
,

pσ,ν(Ψσ,ν(u)) =
vσ,ν(u)

πσ2
.

Uσ,ν := {u, vσ,ν(u) > 0} =

{
u ∈ R,

∫
R

dν(x)

(u − x)2
>

1

σ2

}
,

support(ν � µσ) = Ψσ,ν(Uσ,ν).

Ψσ,ν is strictly increasing on Uσ,ν . Note that Ψσ,ν = Hσ,ν on cUσ,ν .
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Description of the results in terms of subordination function

When ν = δ0,

Uσ,ν =

{
u ∈ R,

∫
R

dν(x)

(u − x)2
>

1

σ2

}
= {u ∈ R, |u| < σ}

gν�µσ(z) = gν(Fσ,ν(z))⇒ Fσ,δ0 =
1

gµσ

Hσ,δ0(z) = z + σ2gν(z) = z +
σ2

z
[−2σ; 2σ] = [Hσ,δ0(−σ); Hσ,δ0(σ)].

Remark

• The characterisation of the spikes of the finite rank matrix AN

that generate jumps of eigenvalues of 1√
N

WN + AN : θi ∈c Uσ,δ0

• The relationship between a spike θi of AN such that |θi | > σ and
the limiting point ρθi of the corresponding eigenvalues of

1√
N

WN + AN :

ρθi = θi +
σ2

θi
= Hσ,δ0(θi ).
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Model

MN =
1√
N

WN + AN

WN is a N × N Wigner Hermitian matrix associated with a
distribution µ of variance σ2 and mean zero which is
symmetric and satisfies a Poincaré inequality.

AN is a deterministic Hermitian matrix.
µAN
→ ν weakly , ν compactly supported.

AN has a number J of fixed eigenvalues (spikes) θ1 > . . . > θJ
which are independent of N, each θj having a fixed
multiplicity kj ,

∑
j kj = r . For any i = 1, . . . , J, θi 6∈ supp(ν).

AN has N − r eigenvalues βi (N) such that

N−r
max
i=1

dist(βi (N), supp(ν))→N→∞ 0
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Preliminary basic results

• The spectral distribution of MN converges weakly to the free
convolution ν � µσ a.s..

• support(ν � µσ) = Ψσ,ν(Uσ,ν).

• Uσ,ν =
1⋃

l=m

[
sl , tl

]
with sm < tm < . . . < s1 < t1.

•support ν � µσ =
1⋃

l=m

[
Hσ,ν(sl),Hσ,ν(tl)

]
•support ν ⊂ Uσ,ν

• Each connected component of Uσ,ν contains a least a connected
component of supp(ν).
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Results

Uσ,ν support ν

-
[ [] ][ ] [ ][ ]

s2 t2 s1 t1

support ν � µσ

-
[ ] [ ]

Hσ,ν(s2) Hσ,ν(t2) Hσ,ν(s1) Hσ,ν(t1)
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Results
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Results
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Theorem (Capitaine,Donati-Martin,Féral,Février)

Uσ,ν =
{

u ∈ R,
∫

R
dν(x)

(u−x)2 >
1
σ2

}
ni−1 + 1, . . . , ni−1 + ki : the descending ranks of θi among the
eigenvalues of AN .
(1) If θi ∈cUσ,ν , the ki eigenvalues (λni−1+j(MN), 1 ≤ j ≤ ki )
converge almost surely outside the support of ν � µσ towards
ρθi = Hσ,ν(θi ) = θi + σ2gν(θi ).
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Results
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Theorem (Capitaine,Donati-Martin,Féral,Février)

Uσ,ν =
{

u ∈ R,
∫

R
dν(x)

(u−x)2 >
1
σ2

}
, Uσ,ν =

1⋃
l=m

[
sl , tl

]
ni−1 + 1, . . . , ni−1 + ki : the descending ranks of θi among the
eigenvalues of AN .
(2) If θi ∈ Uσ,ν then we let li be the integer number in {1, . . . ,m}
such that [sli , tli ] contains θi . a) If θi is on the right (resp. the left)
of any connected component of supp(ν) which is included in
[sli , tli ] then the ki eigenvalues (λni−1+j(MN), 1 ≤ j ≤ ki ) converge
almost surely to Hσ,ν(tli ) (resp. Hσ,ν(sli )) which is a boundary
point of the support of ν � µσ.
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Results
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Main ideas of the proof

The asymptotic behaviour of the eigenvalues of a deformed Wigner
matrix comes from two phenomena :

Inclusion of the spectrum of MN in a ε-neighborhood of the
support of µAN

� µσ for all large N almost surely

Exact separation phenomenon between the spectrum of MN

and the spectrum of AN , involving the subordination function
Fσ,ν .
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Main ideas of the proof

For any ε > 0,

Theorem

Almost surely, for all large N

Spect(
1√
N

WN + AN) ⊂ ε-neighborhood of support(µAN
� µσ)

+for all large N,

support (µAN
� µσ) ⊂ ε-neighborhood of support (ν�µσ)

⋃
i ,|θi∈cUσ,ν

{ρθi}.

⇓

a.s, for all large N,

Spect(
1√
N

WN+AN) ⊂ ε-neighborhood of support (ν�µσ)
⋃

i ,|θi∈cUσ,ν

{ρθi}.
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Main ideas of the proof

Key ideas of the proof of the inclusion of the spectrum of MN in
an ε-neighborhood of support(µAN

� µσ) : for any z in C+,

g̃N(z) =

∫
1

z − x
dµAN

� µσ(x); gN(z) = E
[∫

1

z − x
dµMN

(x)

]
• gN satisfies an approximative subordination equation :

gN(z) = gµAN
(z − σ2gN(z)) +

1

N
LN(z) + O(

1

N2
).

• =⇒ |gN(z)− g̃N(z) + EN(z)
N | ≤ P(|=z|−1)

N2

where EN is the Stieltjes transform of a distribution ΛN whose
support is included in the support of µAN

� µσ.
• =⇒ inclusion of the spectrum by inverse Cauchy transform.
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Main ideas of the proof

Theorem

[a, b] ⊂ c
{

support (ν � µσ)
⋃

i ,|θi∈cUσ,ν
{ρθi}

}
.

Then for large N, [Fσ,ν(a),Fσ,ν(b)] ⊂c SpectAN.

iN ∈ {0, . . . ,N} s.t

λiN+1(AN) < Fσ,ν(a) and λiN (AN) > Fσ,ν(b)

( λ0 := +∞ and λN+1 := −∞).
Then

P[λiN+1(MN) < a and λiN (MN) > b, for large N] = 1.
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Main ideas of the proof

Key idea of the proof of the exact separation : introduce a
continuum of matrices from MN to AN :

M
(k)
N := σk

σ
WN√

N
+ AN , σ0 = σ, σk → 0 when k goes to infinity.

Hσk ,ν(z) = z + σ2
kgν(z), Fσk ,ν = H−1

σk ,ν
.

-
k = 0

MN

[a, b] . . .

. . . . . .

[Hσk ,ν(Fσ,ν(a)),Hσk ,ν(Fσ,ν(b))]

M
(k)
N . . . AN

. . . [Fσ,ν(a),Fσ,ν(b)]

k∞

• For any k , the interval [Hσk ,ν(Fσ(a)),Hσk ,ν(Fσ,ν(b))] splits the

spectrum of M
(k)
N in exactly the same way.

• For k large enough the interval [Hσk ,ν(Fσ,ν(a)),Hσk ,ν(Fσ,ν(b))]

splits the spectrum of M
(k)
N as [Fσ,ν(a)),Fσ,ν(b))] splits the

spectrum of AN ,
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Main ideas of the proof

-
[ ] [ ]

s2 t2 s1 t1

|

θi

[

θi + α

]

θi + 2α

-
[ ] [ ]

Hσ,ν(s2) Hσ,ν(t2) Hσ,ν(s1) Hσ,ν(t1)

|

ρθi

[

Hσ,ν(θi + α)

]

Hσ,ν(θi + 2α)

ni−1 + 1, . . . , ni−1 + ki : the descending ranks of θi

⇓ Exact separation phenomenon

a.s. for all large N, λni−1+1(MN) ≤ Hσ,ν(θi + α) ≤ ρθi + ε
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Main ideas of the proof
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Hσ,ν(θi − 2α)

]

Hσ,ν(θi − α)

ni−1 + 1, . . . , ni−1 + ki : the descending ranks of θi

⇓ Exact separation phenomenon

a.s. for all large N, λni−1+ki
(MN) ≥ Hσ,ν(θi − α) ≥ ρθi − ε

⇒ ρθi − ε ≤ λni−1+ki
(MN) ≤ . . . ≤ λni−1+1(MN) ≤ ρθi + ε
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Further results

Uσ,ν support ν

-
[ [

a3 a2

] ]

b3 b2

[ ] [

a1

]

b1

[ ]

s2 t2 s1 t1

support ν � µσ

-
[ ] [ ]

Hσ,ν(s2) Hσ,ν(t2) Hσ,ν(s1) Hσ,ν(t1)
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Further results

Proposition

∀l ∈ {1, . . . ,m},

ν � µσ([Hσ,ν(sl); Hσ,ν(tl)]) = ν([sl ; tl ])

always continuous and
strictly increasing on each
]Hσ,ν(sl); Hσ,ν(tl)[
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Further results

Uσ,ν support ν

-
[ [

a3 a2

] ]

b3 b2

[ ] [

a1

]

b1

[ ]

s2 t2 s1 t1

|

θi

support ν � µσ

-
[ ] [ ]

Hσ,ν(s2) Hσ,ν(t2) Hσ,ν(s1) Hσ,ν(t1)

|

qαi

Theorem

If θi ∈ Uσ,ν then we let li be the integer number in {1, . . . ,m} such
that [sli , tli ] contains θi . If θi is between two connected components
of supp(ν) which are included in [sli , tli ] then the ki eigenvalues
(λni−1+j(MN), 1 ≤ j ≤ ki ) converge almost surely to the αi -th
quantile of ν � µσ (that is to qαi where αi = ν � µσ(]−∞, qαi ]))
where αi is such that αi = 1− limN(ni−1/N) = ν(]−∞, θi ]).
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Actually one can check that

-the results of Benaych-Georges-Rao about the convergence of the
extremal eigenvalues of a matrix XN + AN , AN being a finite rank
perturbation whereas XN is a unitarily invariant matrix with some
limiting spectral compactly supported distribution µ, could be
rewritten in terms of the subordination function related to the
additive free convolution of δ0 by µ.

- the results on spiked population models (Baik-Ben Arous-Péché,
Baik-Silverstein, Bai-Yao) could be also fully described in terms of
free probability involving the subordination function related to the
multiplicative free convolution by a Marchenko-Pastur distribution.

Conclusion

Subordination property in free probability definitely sheds light on
spiked deformed models.
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