The single ring theorem

Alice Guionnet

CNRS, ENS de Lyon, France
Chevaleret, June 2010

Joint work with Manjuh Krishnapur and Ofer Zeitouni

Feinberg-Zee's single ring theorem

Ensemble of random, non-Normal $N \times N$ matrices with law

$$
d P_{N}\left(X_{N}\right)=\frac{1}{Z_{N}} e^{-N \operatorname{Tr} V\left(X_{N} X_{N}^{*}\right)} d X_{N}
$$

$\left\{\lambda_{i}^{N}\right\} \in \mathbb{C}^{N}$-eigenvalues of $X_{N}, L_{N}^{V}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}^{N}}$
Theorem (Feinberg-Zee 97')
Assume V is a polynomial. Then : L_{N}^{V} converges in probability to a deterministic, rotationally invariant μv whose support consists of a single ring : there exists constants $0 \leq a<b<\infty$ so that

$$
\operatorname{supp}(\mu v)=\left\{r e^{i \theta}: a \leq r \leq b, \theta \in[0,2 \pi[\}\right.
$$

If $V(x)=g x^{2}+m x$, phase transition occurs when the support changes from a disc to an annulus.

Singular values

$$
d P_{N}\left(X_{N}\right)=\frac{1}{Z_{N}} e^{-N \operatorname{Tr} V\left(X_{N} X_{N}^{*}\right)} d X_{N}
$$

Let $\sigma_{1}^{N} \geq \sigma_{2}^{N} \geq \cdots \geq \sigma_{N}^{N} \geq 0$ denote the singular values of X_{N} (ev $\left.\sqrt{X_{N} X_{N}^{*}}\right)$. Their joint distribution is

$$
\frac{1}{Z_{N}} \prod_{i<j}\left[\left(\sigma_{i}^{N}-\sigma_{j}^{N}\right)\left(\sigma_{i}^{N}+\sigma_{j}^{N}\right)\right]^{2} e^{-N \sum_{i=1}^{N} V\left(\left(\sigma_{i}^{N}\right)^{2}\right)} \prod_{i=1}^{N} \sigma_{i}^{N} d \sigma_{i}^{N}
$$

One easily deduces the convergence of the empirical measure of the singular values to the probability measure which minimizes

$$
\int V\left(x^{2}\right) d \mu(x)-\iint \log \left|x^{2}-y^{2}\right| d \mu(x) d \mu(y)
$$

If V has k sufficiently deep wells, its support consists of at list k intervals!

Generalization

Under the Feinberg-Zee model, $X_{N}=U_{N} D_{N} V_{N}$ with D_{N} a real diagonal matrix with converging spectral distribution ($D_{N}=\operatorname{diag}\left(\sigma^{N}\right)$) and independent U_{N}, V_{N}, unitary matrices following Haar distribution.

What can be said about the convergence of the empirical measure $L_{X_{N}}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}^{N}}$ of the eigenvalues of $X_{N}=U_{N} D_{N} V_{N}$ (or $\left.X_{N}=U_{N} D_{N}\right) ?$

Asymptotics of $X_{N}=U_{N} D_{N} V_{N}$

Let U_{N}, V_{N} follow Haar measure, be independent from D_{N} with spectral measure $L_{D_{N}}=\frac{1}{N} \sum \delta_{D_{N}(i i)}$ which converges to μ_{D}.
Theorem (G., Krishnapur, Zeitouni '09)
a)Take $X_{N}=U_{N} D_{N} V_{N}$. Assume some technical conditions on D_{N} and that for some $\kappa, \kappa^{\prime}>0$,

$$
\max _{\Im z \geq N^{-\kappa^{\prime}}}\left|\frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-D_{N}(i i)}-\int \frac{1}{z-x} d \mu_{D}(x)\right| \leq \frac{1}{N^{\kappa}|\Im z|}
$$

with probability going to one. Then $L_{X_{N}}=\frac{1}{N} \sum \delta_{\lambda_{i}^{N}}$ converges to a measure $\mu_{X_{D}}$ which is the Brown measure of μ_{D}.
b) Conditions of part a) hold in Feinberg-Zee model with V of polynomial growth at infinity, smooth.
c)If D_{N} and D_{N}^{-1} are bounded uniformly and μ_{D} has bounded density, $L_{X_{N}+N^{-\kappa} G_{N}}$ converges to μX_{D} if G_{N} is Gaussian and $\kappa>1 / 2$.

Asymptotics of $X_{N}=U_{N} D_{N} V_{N}$

Let U_{N}, V_{N} follow Haar measure, be independent from D_{N} with spectral measure $L_{D_{N}}=\frac{1}{N} \sum \delta_{D_{N}(i i)}$ which converges to μ_{D}.
Theorem (G., Krishnapur, Zeitouni '10)
Assume some technical conditions on D_{N} and that for some $\kappa^{\prime}>0$ and $\kappa>1$

$$
\max _{\Im z \geq N^{-\kappa^{\prime}}}\left|\frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-D_{N}(i i)}-\int \frac{1}{z-x} d \mu_{D}(x)\right| \leq \frac{1}{N^{\kappa}|\Im z|}
$$

with probability going to one.
Then

$$
\operatorname{supp}\left(X_{N}\right) \rightarrow \operatorname{supp}\left(\mu_{X_{D}}\right) \quad \text { in probability. }
$$

If the above conditions hold almost surely wrt D_{N}, the support of the eigenvalues of X_{N} converges almost surely.

Generalization: Asymptotics of $X_{N}=U_{N}+D_{N}$

Let U_{N} follow Haar measure, be independent from D_{N} which converges in $*$-moments to D.

Theorem (G., Krishnapur, Zeitouni '10)
Let D_{N} satisfy some technical assumptions, then the spectral measure of $U_{N}+D_{N}+N^{-\kappa} G_{N}$, with G_{N} Gaussian, $\kappa>1 / 2$, converges weakly in probability towards the Brown measure of $U+D$.
These assumptions are verified if $D_{N}(i, j)=1_{i=j} f\left(\frac{i}{N}\right)$ with f smooth, $f^{\prime} \neq 0$.
Rmk: Convergence of the spectral measure of $U_{N}+D_{N}+t N^{-1 / 2} G_{N}$ for all $t>0$ was obtained by Sniady (01).

Generalization: Asymptotics of $X_{N}=U_{N}+D_{N}$

Our assumptions require that the spectral measure of $\left|D_{N}\right|$ converges to a measure with bounded density, which excludes the cases studied by Biane and Lehner.

Spectrum of $U_{N}+U \wedge U^{*}, \Lambda$ symmetry with vanishing trace

Generalization: Asymptotics of $X_{N}=U_{N}+D_{N}$

Our assumptions require that the spectral measure of $\left|D_{N}\right|$ converges to a measure with bounded density, which excludes the cases studied by Biane and Lehner.

SOME EXAMPLES OF BROWN MEASURES

Spectrum of $U_{N}+U_{3}$

Idea of the proof

Based on the Green formula: if $\left(\lambda_{i}^{N}\right)$ ev of $X_{N}=U_{N} D_{N} V_{N}$

$$
\begin{aligned}
\sum_{i=1}^{N} \psi\left(\lambda_{i}^{N}\right) & =\frac{1}{2 \pi} \int_{\mathbb{C}} \Delta \psi(z) \log \left|\prod_{i=1}^{N}\left(z-\lambda_{i}^{N}\right)\right| d z \\
& =\frac{N}{4 \pi} \int_{\mathbb{C}} \Delta \psi(z) \int \log |x| d L_{\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}}(x) d z
\end{aligned}
$$

depends on the empirical measures of the Hermitian matrices $\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}$.

- Show the weak convergence of the spectral measure of $\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}$ (free probability).
- Problem : Because of the singularity of \log at the origin, need not only the weak convergence of $L_{\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}}$! Example : X $N \times N$ with i.i.d entries, convergence to circular law : Girko 84', Bai 97', Gotze-Tikhomirov 07', Tao-Vu 08'

A free probability statement

Let U_{N} be a $N \times N$ unitary matrix distributed according to the Haar measure, and independent from D_{N}, bounded, diagonal matrix with real entries and spectral distribution converging to some measure μ_{D}.

Theorem (Voiculescu 91')
For any polynomial P,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{tr}\left(P\left(U_{N}, U_{N}^{*}, D_{N}\right)\right)=\tau\left(P\left(U, U^{*}, D\right)\right) \text { in probability. }
$$

with (U, D) free under τ. Moreover $\tau\left(D^{k}\right)=\int x^{k} d \mu_{D}(x)$ and

$$
\tau\left(U^{n_{1}}\left(U^{*}\right)^{m_{1}} U^{n_{2}} \cdots\left(U^{*}\right)^{m_{k}}\right)=1_{\sum n_{i}=\sum m_{i}}
$$

This implies in particular the convergence of $N^{-1} \operatorname{tr}\left[\left(\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}\right)^{k}\right]$ for all $k \geq 0$ if $X_{N}=U_{N} D_{N}$.

What is freeness?

$\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\mathbf{Y}=\left(Y_{1}, \cdots, Y_{n}\right) \in(B(H), \tau)$ are free iff for all polynomials P_{1}, \ldots, P_{ℓ} and Q_{1}, \cdots, Q_{ℓ} so that $\tau\left(P_{i}(\mathbf{X})\right)=0$ and $\tau\left(Q_{i}(\mathbf{Y})\right)=0$ for all i

$$
\tau\left(P_{1}(\mathbf{X}) Q_{1}(\mathbf{Y}) \cdots P_{\ell}(\mathbf{X}) Q_{\ell}(\mathbf{Y})\right)=0
$$

What is freeness?

$\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\mathbf{Y}=\left(Y_{1}, \cdots, Y_{n}\right) \in(B(H), \tau)$ are free iff for all polynomials P_{1}, \ldots, P_{ℓ} and Q_{1}, \cdots, Q_{ℓ} so that $\tau\left(P_{i}(\mathbf{X})\right)=0$ and $\tau\left(Q_{i}(\mathbf{Y})\right)=0$ for all i

$$
\tau\left(P_{1}(\mathbf{X}) Q_{1}(\mathbf{Y}) \cdots P_{\ell}(\mathbf{X}) Q_{\ell}(\mathbf{Y})\right)=0
$$

- τ is uniquely determined by $\tau(P(\mathbf{X}))$ and $\tau(Q(\mathbf{Y})), Q, P$ polynomials.

What is freeness?

$\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\mathbf{Y}=\left(Y_{1}, \cdots, Y_{n}\right) \in(B(H), \tau)$ are free iff for all polynomials P_{1}, \ldots, P_{ℓ} and Q_{1}, \cdots, Q_{ℓ} so that $\tau\left(P_{i}(\mathbf{X})\right)=0$ and $\tau\left(Q_{i}(\mathbf{Y})\right)=0$ for all i

$$
\tau\left(P_{1}(\mathbf{X}) Q_{1}(\mathbf{Y}) \cdots P_{\ell}(\mathbf{X}) Q_{\ell}(\mathbf{Y})\right)=0
$$

- τ is uniquely determined by $\tau(P(\mathbf{X}))$ and $\tau(Q(\mathbf{Y})), Q, P$ polynomials.
- If $A \geq 0, B$ are free, the moments of $A^{\frac{1}{2}} B A^{\frac{1}{2}}$ are described by the S-transform

$$
S_{A^{\frac{1}{2}} B A^{\frac{1}{2}}}(z)=S_{A}(z) S_{B}(z)
$$

with $S_{C}(z):=\frac{1+z}{z} m_{C}^{-1}(z)$ if $m_{C}(z)=\sum_{n \geq 1} \mu_{C}\left(x^{n}\right) z^{n}$.

R-diagonal operators

The operators of the form $U D, U, D$ free, are called " R-diagonal operators".
The Brown measure μ_{X} of an operator $X \in(B(H), \tau)$ is given by

$$
\int \psi(x) d \mu_{X}(x)=\frac{1}{4 \pi} \int \Delta \psi(z) \tau\left[\log (z-X)(z-X)^{*}\right] d z
$$

Theorem (Haagerup-Larsen 00')
Take $X_{D}:=U D V$ or UD, U, V, D free, D self-adjoint with law μ_{D}, U, V unitaries. The Brown measure of X_{D} is rotation invariant and radially supported on an annulus

$$
\mu_{X_{D}}(B(0, f(t)))=t
$$

where $f(t)=1 / \sqrt{S_{D^{2}}(t-1)}$.

$$
\operatorname{supp}\left(\mu_{X_{D}}\right)=\left\{r e^{i \theta}, r \in\left[\left(\mu_{D}\left(x^{-2}\right)\right)^{-\frac{1}{2}},\left(\mu_{D}\left(x^{2}\right)\right)^{\frac{1}{2}}\right], \theta \in[0,2 \pi[\}\right.
$$

Idea of the proof

Therefore the results amount to say that

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \psi\left(\lambda_{i}^{N}\right) & =\frac{1}{4 \pi} \int_{\mathbb{C}} \Delta \psi(z) \frac{1}{N} \operatorname{tr}\left[\log \left(\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}\right)\right] d z \\
& \sim \frac{1}{4 \pi} \int \Delta \psi(z) \tau\left[\log (z-X)(z-X)^{*}\right] d z
\end{aligned}
$$

and we need to show that for almost all z
$\lim _{\epsilon \downarrow 0} \limsup _{N \uparrow \infty} E\left[\frac{1}{N} \operatorname{tr}\left[1_{\left(z-X_{N}\right)\left(z-X_{N}\right)^{*} \leq \epsilon} \log \left(\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}\right)\right]\right]=0$.
Strategy: - Assume this is true for $\epsilon<N^{-\gamma}$ for some $\gamma>0$ (true if replace X_{N} by $X_{N}+N^{-\gamma^{\prime}} G_{N}$ by Sankar and Spielman)

- Need to show the above for $n^{-\gamma}<\left(z-X_{N}\right)\left(z-X_{N}\right)^{*} \leq \epsilon$

Center of the proof.

We shall prove that for almost all $z, \nu_{N}^{z}:=E\left[L_{\left(z-X_{N}\right)\left(z-X_{N}\right)^{*}}\right]$ satisfies for any $x>n^{-\kappa}$ for some $\kappa>0$, and $C_{z}<\infty$

$$
\nu_{N}^{z}([-x, x]) \leq C_{z}|x| \quad(*) .
$$

- This implies for any $\gamma>0$,

$$
\lim _{\epsilon \downarrow 0} \limsup _{N \rightarrow \infty} \int_{n^{-\gamma}<x \leq \epsilon} \log (x) d \nu_{N}^{z}(x)=0
$$

- $\left({ }^{*}\right)$ is a consequence of

$$
\left|\Im\left(\int \frac{1}{w-x} d \nu_{N}^{z}(x)\right)\right| \leq C_{z} / 2 \quad \Im w \geq n^{-\kappa}
$$

Technical estimate : symmetrization

Want to show for $z \neq 0$,

$$
\left|\Im\left(\int \frac{1}{w-x} d \nu_{N}^{z}(x)\right)\right| \leq C / 2 \quad \Im w \geq n^{-\kappa}
$$

At the limit

$$
\left|\Im\left(\int \frac{1}{w-x} d \nu^{z}(x)\right)\right| \leq C / 2 \quad \Im w \geq 0
$$

with $\nu^{z}=L_{(z-U D)(z-U D)^{*}}$. Let

$$
H^{z}:=\left(\begin{array}{cc}
0 & U+|z|^{-1} D \\
\left(U+|z|^{-1} D\right)^{*} & 0
\end{array}\right)
$$

Then

$$
\tau\left(\left(H^{z}-w\right)^{-1}\right)=\frac{1}{|z|^{2}} \int \frac{1}{|z|^{-2} w-x} d \nu^{z}(x)
$$

so that it is enough to study the spectral measure of H^{z}.

Technical estimates: Master loop equations

We obtain close equations for the Stieltjes transform G of the spectral measure of $H=\left(\begin{array}{cc}0 & U+D \\ (U+D)^{*} & 0\end{array}\right)$ by using Master loop equations based on the invariance of the Haar measure. If P is a monomial in U, U^{*}, D, they read

$$
\sum_{P=P_{1} U P_{2}} \tau\left(P_{1} U\right) \tau\left(P_{2}\right)=\sum_{P=Q_{1} U^{*} Q_{2}} \tau\left(Q_{1}\right) \tau\left(U^{*} Q_{2}\right)
$$

They give, with $R(z)=\left(\sqrt{1+4 z^{2}}-1\right) / 2 z$

$$
G\left(z_{1}\right)=\tau\left(\left(z_{2}-\left(\begin{array}{cc}
0 & D \\
D^{*} & 0
\end{array}\right)\right)^{-1}\right) \text { when } z_{2}=z_{1}-R\left(G\left(z_{1}\right)\right)
$$

G is bounded when the Stieltjes transform of D is.

Technical estimates: Master loop equations

Similarly, the Stieltjes transform G^{N} of the spectral measure of

$$
H^{N}=\left(\begin{array}{cc}
0 & U^{N}+D^{N} \\
\left(U^{N}+D^{N}\right)^{*} & 0
\end{array}\right)
$$

can be studied by the Master loop equations

$$
E\left[\sum_{P=P_{1} U P_{2}} \frac{1}{N} \operatorname{tr}\left(P_{1} U\right) \frac{1}{N} \operatorname{tr}\left(P_{2}\right)\right]=\sum_{P=Q_{1} U^{*} Q_{2}} E\left[\frac{1}{N} \operatorname{tr}\left(Q_{1}\right) \frac{1}{N} \operatorname{tr}\left(U^{*} Q_{2}\right)\right] .
$$

They yield for $z_{1} \gg$ with $\tilde{G}^{N}\left(z_{1}\right)=\sqrt{1+4 G^{N}\left(z_{1}\right)^{2}+\epsilon_{N}\left(z_{1}\right)}+1$

$$
G^{N}\left(z_{1}\right)=\frac{1}{2 N} \operatorname{tr}\left(\left(z_{2}-\left(\begin{array}{cc}
0 & D^{N} \\
\left(D^{N}\right)^{*} & 0
\end{array}\right)\right)^{-1}\right)+\epsilon_{N}\left(z_{1}, z_{2}\right)
$$

when $z_{2}=z_{1}-2 G^{N}\left(z_{1}\right) / \tilde{G}^{N}\left(z_{1}\right)$. The difficulty is to show that this extends to $\Im z_{1} \geq n^{-\kappa}$

Conclusion

- The Brown measure is not a continuous function of the moments. A typical example is given by

$$
\bar{E}^{N}:=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \cdot & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

which converges in *-moments to the Haar distributed unitary matrix with spectral measure uniformly distributed on the circle whereas the Brown measure of Ξ^{N} is δ_{0} for all N.

- Our proof heavily uses the Master loop equations and thus requires rather exact solutions. This approach is quite different from Tao and Vu (convergence to the circular law) who use a lot independence.
- Our proof generalizes to orthogonal matrices.

