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Unitary ensembles

N Probability measure on n × n Hermitian matrices

1

Z̃n

e−n Tr V (M) dM

N This is GUE for V (M) = 1
2M2

N Explicit formula for joint density of eigenvalues

1

Zn

∏

1≤j<k≤n

(xk − xj)
2

n∏

j=1

e−nV (xj)
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Global eigenvalue behavior

N As n → ∞, there is a limiting mean eigenvalue density ρV (x).

N The probability measure
�

�

�

�
dµV (x) = ρV (x)dx minimizes

∫∫

log
1

|x − y|dµ(x)dµ(y) +

∫

V (x)dµ(x)

N If V is real analytic, then supp(µV ) is a finite

union of intervals and

ρV (x) =
1

π

√

Q−(x)

Q(x) =

(
V ′(x)

2

)2

−
∫

V ′(x) − V ′(s)

x − s
dµV (s)

N Typical behavior: ρV is positive and real

analytic on each interval and vanishes as a

square root at endpoints.
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Orthogonal polynomials

N Average characteristic polynomial

Pn,n(x) = E [det(xIn − M)]

is nth degree orthogonal polynomial with respect to e−nV (x) on real line

N Orthogonality with respect to varying weight

N Monic OPs Pk,n(x) = xk + · · ·
∫ ∞

−∞

Pk,n(x) xj e−nV (x) dx = hk,nδj,k, j = 0, . . . , k.
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Determinantal correlation functions

N Eigenvalues are determinantal point process with correlation kernel

Kn(x, y) =
√

e−nV (x)
√

e−nV (y)

n−1∑

k=0

Pk,n(x)Pk,n(y)

hk,n

N This means that the k point eigenvalue correlation function (which is

proportional to marginal density) is given by k × k determinant

det [Kn(xi, xj)]
k
i,j=1

N Global eigenvalue behavior

lim
n→∞

1

n
Kn(x, x) = ρV (x)
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Local eigenvalue behavior

N Local eigenvalue statistics have universal behavior as n → ∞.

N Sine kernel in the bulk: if c = ρV (x∗) > 0 then

lim
n→∞

1

cn
Kn

(

x∗ +
x

cn
, x∗ +

y

cn

)

=
sinπ(x − y)

π(x − y)

Pastur, Shcherbina (1997), Bleher, Its (1999)

Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

McLaughlin, Miller (2008), Lubinsky (2009)

N Airy kernel at the spectral edge (if ρV vanishes as a square root at x∗)

lim
n→∞

1

cn2/3
Kn

(

x∗ +
x

cn2/3
, x∗ +

y

cn2/3

)

=
Ai(x) Ai′(y) − Ai′(x) Ai(y)

x − y
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Singular behavior

N Other limiting kernels at special points.

N Painlev é II kernels at interior points where

density vanishes.

Bleher, Its (2003), Claeys, K (2006)

Shcherbina (2008)

N Painlev é I2 kernels at edge points where

density vanishes at higher order.

Claeys, Vanlessen (2007)
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Riemann-Hilbert problem

N Powerful tool for asymptotic analysis in case of real analyt ic V is the

Riemann-Hilbert problem for OPs Fokas, Its, Kitaev (1992)

(1) Y : C \ R → C
2×2 is analytic

(2) Y has limiting values Y± on R, satisfying

Y+(x) = Y−(x)




1 e−nV (x)

0 1



 for x ∈ R,

(3) Y (z) = (I + O(1/z)) diag
(

zn z−n
)

as z → ∞.

N Correlation kernel is

Kn(x, y) =

√
e−nV (x)

√
e−nV (y)

2πi(x − y)

(

0 1
)

Y −1
+ (y)Y+(x)




1

0




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Steepest descent analysis

N Asymptotics of orthogonal polynomials can be proved by mean s of a

steepest descent analysis of RH problem

N Essential role is played by minimizer dµV (s) = ρV (s)ds of equilibrium

problem
∫∫

log
1

|x − y|dµ(x)dµ(y) +

∫

V (x)dµ(x)

N the associated g-function
�

�

�

�
g(z) =

∫
log(z − s)ρV (s)ds

is analytic in C \ R with

g+(x) + g−(x) = V (x) + ℓ, x ∈ supp(µV ),

g+(x) + g−(x) ≤ V (x) + ℓ, x ∈ R,

g+(x) − g−(x) = 2πi

∫ +∞

x

ρV (s)ds, x ∈ R.
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Ultimate goal

N Extend all these results to other matrix ensembles where eig envalues have

determinantal structure

N Random matrices with external source

1

Zn
e−n Tr(V (M)−AM)dM

N Coupled random matrices (two matrix model)

1

Zn
e−n Tr(V (M1)+W (M2)−τM1M2)dM1dM2

N Find extensions / analogues of

N Orthogonal polynomials

N Riemann-Hilbert problem

N Equilibrium problem
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External source model

1

Zn
e−n Tr(V (M)−AM)dM

N A is given Hermitian matrix ( the extenal source )

N Because of the Harish-Chandra/Itzykson-Zuber integral we can integrate

out eigenvectors of M

N Suppose eigenvalues a1, . . . , an of A are all distinct. Then

eigenvalues have joint p.d.f.

1

Zn
det [enaixj ]1≤i,j≤n

∏

1≤j<k≤n

(xk − xj)

n∏

k=1

e−nV (xk)
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Average characteristic polynomial

N Let Pn be the average characteristic polynomial

Pn(x) = E [xIn − M ]

N Suppose a1, . . . , ar are distinct eigenvalues of A with multiplicities

n1, . . . , nr .

N Then Pn is the monic polynomial of degree n that satisfies

∫ ∞

−∞

Pn(x)xje−n(V (x)−akx)dx = 0, j = 0, . . . , nk−1, k = 1, . . . , r

N This is an example of multiple orthogonality
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Multiple orthogonal polynomials

N Assume we are given

N r ≥ 2 weight functions w1, . . . , wr on R

N a multi-index ~n = (n1, . . . , nr) ∈ N
r

N The multiple orthogonal polynomial (MOP) P~n satisfies

∫ ∞

−∞

P~n(x) xj wk(x) dx = 0, for j = 0, . . . , nk − 1, k = 1, . . . , r.

P~n(x) = xn + · · · , where n = |~n| = n1 + · · · + nr

N Existence and uniqueness is not always guaranteed.
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MOP ensemble

N Assume p.d.f. on R
n of the form

1

Zn
det [fj(xk)]j,k=1,...,n

∏

1≤j<k≤n

(xk − xj)

with n = |~n| and span{f1, . . . , fn} =

span{xjwk(x) | j = 0, . . . , nk − 1, k = 1, . . . , r}

N Then MOP P~n exists, is unique, and

P~n(x) = E





n∏

j=1

(x − xj)




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Correlation kernel

N MOP ensemble

1

Zn
det [fj(xk)]j,k=1,...,n

∏

1≤j<k≤n

(xk − xj)

is a determinantal point process.

N There is a kernel Kn so that all k point correlation functions are given

by determinants

det [Kn(xi, xj)]i,j=1,...,k

N Kn is constructed out of MOPs and certain dual functions
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Riemann-Hilbert problem

N Find (r + 1) × (r + 1) matrix valued function Y so that

(1) Y : C \ R → C
(r+1)×(r+1) is analytic

(2) Y has limiting values Y± on R, satisfying

Y+(x) = Y−(x)











1 w1(x) · · · wr(x)

0 1 · · · 0
...

...
...

0 0 · · · 1











for x ∈ R,

(3) Y (z) = (I + O(1/z)) diag
(

zn z−n1 · · · z−nr

)

as z → ∞.

N Then Van Assche, Geronimo, K (2001)

P~n(x) = Y1,1(x)
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Christoffel-Darboux formula

N The correlation kernel of MOP ensemble is

Kn(x, y) =
1

2πi(x − y)

(

0 w1(y) · · · wr(y)
)

Y −1
+ (y)Y+(x)











1

0
...

0











for x, y ∈ R.

N Y contains MOPs

N The inverse matrix Y −1 contains the dual functions

N The formula is based on a Christoffel-Darboux formula for MO Ps

Daems, K (2004)

N RH problem is also useful for asymptotic analysis
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External source model

1

Zn
e−n Tr(V (M)−AM)dM

N Special case V (M) = 1
2M2

N Gaussian model with external source is equivalent with

N M = M0 + A where M0 is GUE matrix (deformed GUE)

N Non-intersecting Brownian paths with several starting poi nts and one

ending point
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Non-intersecting Brownian motion

N Assume r different starting points a1, . . . , ar , and one ending point at 0.

N The positions of the Brownian paths at time t ∈ [0, T ] is

wj(x) = e−
T

2t(T−t)
x2+

aj

t
x, j = 1, . . . , r,

and multi-index (n1, . . . , nr) if nj of the paths start at aj

0 0.25 0.5 0.75 1
−1.5

−1

−0.5

0

0.5

1

1.5
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Non-intersecting Brownian motion

N Two starting positions ±a and one endpoint at 0

N MOP ensemble with two weights

exp

(

− T

2t(T − t)
x2 ± a

t
x

)

N Rescale time variables T 7→ 1/n, t 7→ t/n, so that 0 < t < 1.

0 0.25 0.5 0.75 1
−1.5

−1

−0.5

0

0.5

1

1.5
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Large n behavior

1

Zn
e−n Tr(V (M)−AM)dM

N Assume n is even and

A = diag(a, . . . , a
︸ ︷︷ ︸

n/2 times

,−a, . . . ,−a
︸ ︷︷ ︸

n/2 times

)
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Global eigenvalue behavior

NN Limiting mean eigenvalue density is

ρ(x; a) =
1

π
Im ξ1(x)

where ξ1(x) is a solution of the Pastur equation Pastur (1972)

ξ3 − xξ2 + (1 − a2)ξ + a2x = 0

Three cases

N For a > 1: two intervals

N For 0 < a < 1: one interval

N For a = 1: transition with with density
�

�

�

�
ρ(x) ≈ c|x|1/3 near x = 0
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RH problem

N Steepest descent analysis of 3 × 3 RH problem

N Y is analytic in C \ R with

Y+(x) = Y−(x)







1 e−n( 1
2 x2−ax) e−n( 1

2 x2+ax)

0 1 0

0 0 1







for x ∈ R,

N Y (z) = (I + O(1/z))







zn 0 0

0 z−n/2 0

0 0 z−n/2







as z → ∞.

N We can analyze the RH problem in all three cases

N We do not need an equilibrium problem, since we have the Pastu r

equation.
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Local eigenvalue behavior

N We find the usual sine kernel in the bulk and the Airy kernel at the regular

edge points

N New family of kernels for the critical case a = 1.

N Pearcey ODEs

p′′′(x) = xp(x) − sp′(x) and q′′′(y) = yq(y) + sq′(y)

N Double scaling limit at x∗ = 0 are the Pearcey kernels

lim
n→∞

1

n3/4
Kn

(
x

n3/4
,

y

n3/4
; a = 1 +

s

2
√

n

)

=
p(x)q′′(y) − p′(x)q′(y) + p′′(x)q(y) − sp(x)q(y)

x − y

Brézin, Hikami (1998), Tracy, Widom (2006)

Adler, Van Moerbeke (2007), Okounkov, Reshetikhin (2007)

Bleher, K (2007)
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External source model

1

Zn
e−n Tr(V (M)−AM) dM, A = diag(a, . . . , a

︸ ︷︷ ︸

n/2 times

,−a, . . . ,−a
︸ ︷︷ ︸

n/2 times

)

N How to analyze the RH problem for more general V

Y+(x) = Y−(x)







1 e−n(V (x)−ax) e−n(V (x)+ax)

0 1 0

0 0 1







for x ∈ R,

Y (z) = (I + O(1/z))







zn 0 0

0 z−n/2 0

0 0 z−n/2







as z → ∞.

N We do not have an algebraic equation, but there is an equilibr ium problem

if V is an even polynomial ...
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Vector equilibrium problem

N Minimize the energy functional

∫∫

log
1

|x − y|dµ1(x)dµ1(y) +

∫∫

log
1

|x − y|dµ2(x)dµ2(y)

−
∫∫

log
1

|x − y|dµ1(x)dµ2(y)

+

∫

(V (x) − a|x|) dµ1(x)

over pairs (µ1, µ2) of measures, where

N µ1 is on R with
∫

dµ1 = 1,

N µ2 is on iR with
∫

dµ2 = 1/2,

N µ2 ≤ σ, where σ has constant density
dσ

|dz| =
a

π
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Structure of minimizer

N There is a unique minimizer (µ1, µ2)

N The support of µ1 is a finite union of intervals

N The support of µ2 is full imaginary axis

N The constraint σ for µ2 is active along symmetric interval around 0,

which can be empty

supp(σ − µ2) = (−i∞,−ic] ∪ [ic, i∞), c ≥ 0
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Theorem

N The density of the measure µ1 is the limiting mean eigenvalue density

dµ1(x)

dx
= lim

n→∞

1

n
Kn(x, x)

N We find the usual sine kernel in the bulk and the Airy kernel at the regular

edge points Bleher, Delvaux, K (2010)

N From equilibrium problem we obtain two g-functions

gj(z) =

∫

log(z − s)dµj(s), j = 1, 2

that satisfy a number of (in)equalities

g1,+(x) + g1,−(x) − g2(x) = V (x) + ℓ, x ∈ supp(µ1),

g2,+(x) + g2,−(x) − g1(x) = 0, x ∈ supp(σ − µ2),

that are used in the steepest descent analysis of RH problem.
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Quartic potential

N We can completely analyze the external source model with qua rtic

potential

V (x) =
1

4
x4 − t

2
x2

N Phase diagram in ta-plane

–1

1

2

a

–2 –1 1 2 3 4 5

t

two intervals, constraint is not active

one interval
constraint is active two intervals, constraint is active
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Quartic potential

N We can completely analyze the external source model with qua rtic

potential

V (x) =
1

4
x4 − t

2
x2

N Phase diagram in ta-plane

–1

1

2

a

–2 –1 1 2 3 4 5

t

Pearcey transition

Painlev é II transition
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