Multiple Orthogonal Polynomials in Random Matrix Theory

ARNO KUIJLAARS

Katholieke Universiteit Leuven, Belgium

Unitary ensembles

A Probability measure on $n \times n$ Hermitian matrices

$$\frac{1}{\tilde{Z}_n} e^{-n \operatorname{Tr} V(M)} \, dM$$

 $\blacktriangle~$ This is GUE for $~V(M)=\frac{1}{2}M^2$

Explicit formula for joint density of eigenvalues

$$\frac{1}{Z_n} \prod_{1 \le j < k \le n} (x_k - x_j)^2 \prod_{j=1}^n e^{-nV(x_j)}$$

Global eigenvalue behavior

- As $n \to \infty$, there is a limiting mean eigenvalue density $\rho_V(x)$.
- A The probability measure $d\mu_V(x) = \rho_V(x)dx$ minimizes

$$\iint \log \frac{1}{|x-y|} d\mu(x) d\mu(y) + \int V(x) d\mu(x) d\mu($$

▲ If V is real analytic, then $\operatorname{supp}(\mu_V)$ is a finite union of intervals and

$$\rho_V(x) = \frac{1}{\pi} \sqrt{Q_-(x)}$$
$$Q(x) = \left(\frac{V'(x)}{2}\right)^2 - \int \frac{V'(x) - V'(s)}{x - s} d\mu_V(s)$$

▲ Typical behavior: ρ_V is positive and real analytic on each interval and vanishes as a square root at endpoints.

- p. 3/3

Orthogonal polynomials

Average characteristic polynomial

$$P_{n,n}(x) = \mathbb{E}\left[\det(xI_n - M)\right]$$

is *n*th degree orthogonal polynomial with respect to $e^{-nV(x)}$ on real line

▲ Orthogonality with respect to varying weight

 $\textbf{ Monic OPs } P_{k,n}(x) = x^k + \cdots$

$$\int_{-\infty}^{\infty} P_{k,n}(x) \, x^j \, e^{-nV(x)} \, dx = h_{k,n} \delta_{j,k}, \qquad j = 0, \dots, k.$$

L Eigenvalues are determinantal point process with correlation kernel

$$K_n(x,y) = \sqrt{e^{-nV(x)}} \sqrt{e^{-nV(y)}} \sum_{k=0}^{n-1} \frac{P_{k,n}(x)P_{k,n}(y)}{h_{k,n}}$$

A This means that the k point eigenvalue correlation function (which is proportional to marginal density) is given by $k \times k$ determinant

$$\det \left[K_n(x_i, x_j) \right]_{i,j=1}^k$$

Global eigenvalue behavior

$$\lim_{n \to \infty} \frac{1}{n} K_n(x, x) = \rho_V(x)$$

- **L**ocal eigenvalue statistics have universal behavior as $n \to \infty$.
 - \blacktriangle Sine kernel in the bulk: if $c=\rho_V(x^*)>0$ then

$$\lim_{n \to \infty} \frac{1}{cn} K_n \left(x^* + \frac{x}{cn}, x^* + \frac{y}{cn} \right) = \frac{\sin \pi (x - y)}{\pi (x - y)}$$

Pastur, Shcherbina (1997), Bleher, Its (1999)

Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

McLaughlin, Miller (2008), Lubinsky (2009)

Airy kernel at the spectral edge (if ho_V vanishes as a square root at x^*)

$$\lim_{n \to \infty} \frac{1}{cn^{2/3}} K_n \left(x^* + \frac{x}{cn^{2/3}}, x^* + \frac{y}{cn^{2/3}} \right)$$
$$= \frac{\operatorname{Ai}(x) \operatorname{Ai}'(y) - \operatorname{Ai}'(x) \operatorname{Ai}(y)}{x - y}$$

Singular behavior

- ▲ Other limiting kernels at special points.
 - Painlevé II kernels at interior points where density vanishes.

Bleher, Its (2003), Claeys, K (2006)

Shcherbina (2008)

Painlevé I₂ kernels at edge points where density vanishes at higher order.

Claeys, Vanlessen (2007)

- ▲ Powerful tool for asymptotic analysis in case of real analytic V is the
 Riemann-Hilbert problem for OPs
 Fokas, Its, Kitaev (1992)
 (1) Y : C \ R → C^{2×2} is analytic
 - (2) Y has limiting values Y_+ on \mathbb{R} , satisfying

$$Y_{+}(x) = Y_{-}(x) \begin{pmatrix} 1 & e^{-nV(x)} \\ 0 & 1 \end{pmatrix} \text{ for } x \in \mathbb{R}$$

(3)
$$Y(z) = (I + O(1/z)) \operatorname{diag} \begin{pmatrix} z^n & z^{-n} \end{pmatrix}$$
 as $z \to \infty$.

Correlation kernel is

$$K_n(x,y) = \frac{\sqrt{e^{-nV(x)}}\sqrt{e^{-nV(y)}}}{2\pi i(x-y)} \begin{pmatrix} 0 & 1 \end{pmatrix} Y_+^{-1}(y)Y_+(x) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- Asymptotics of orthogonal polynomials can be proved by means of a steepest descent analysis of RH problem
- **A** Essential role is played by minimizer $d\mu_V(s) = \rho_V(s)ds$ of equilibrium problem

$$\iint \log \frac{1}{|x-y|} d\mu(x) d\mu(y) + \int V(x) d\mu(x)$$

• the associated *g*-function
$$g(z) = \int \log(z - s)\rho_V(s)ds$$

is analytic in $\mathbb{C} \setminus \mathbb{R}$ with

$$g_{+}(x) + g_{-}(x) = V(x) + \ell, \qquad x \in \operatorname{supp}(\mu_{V}),$$
$$g_{+}(x) + g_{-}(x) \leq V(x) + \ell, \qquad x \in \mathbb{R},$$
$$g_{+}(x) - g_{-}(x) = 2\pi i \int_{x}^{+\infty} \rho_{V}(s) ds, \qquad x \in \mathbb{R}.$$

Ultimate goal

- Extend all these results to other matrix ensembles where eigenvalues have determinantal structure
 - A Random matrices with external source

$$\frac{1}{Z_n} e^{-n \operatorname{Tr}(V(M) - AM)} dM$$

▲ Coupled random matrices (two matrix model)

$$\frac{1}{Z_n} e^{-n \operatorname{Tr}(V(M_1) + W(M_2) - \tau M_1 M_2)} dM_1 dM_2$$

- Find extensions / analogues of
 - ▲ Orthogonal polynomials
 - ▲ Riemann-Hilbert problem
 - **Equilibrium problem**

External source model

$$\frac{1}{Z_n} e^{-n \operatorname{Tr}(V(M) - AM)} dM$$

- ▲ A is given Hermitian matrix (the extenal source)
- A Because of the Harish-Chandra/Itzykson-Zuber integral we can integrate out eigenvectors of ${\cal M}$
 - **A** Suppose eigenvalues a_1, \ldots, a_n of A are all distinct. Then eigenvalues have joint p.d.f.

$$\frac{1}{Z_n} \det \left[e^{na_i x_j} \right]_{1 \le i,j \le n} \prod_{1 \le j < k \le n} (x_k - x_j) \prod_{k=1}^n e^{-nV(x_k)}$$

Let P_n be the average characteristic polynomial

$$P_n(x) = \mathbb{E}\left[xI_n - M\right]$$

- Suppose a_1, \ldots, a_r are distinct eigenvalues of A with multiplicities n_1, \ldots, n_r .
 - **A** Then P_n is the monic polynomial of degree n that satisfies

$$\int_{-\infty}^{\infty} P_n(x) x^j e^{-n(V(x) - a_k x)} dx = 0, \qquad j = 0, \dots, n_k - 1, \quad k = 1, \dots, r$$

▲ This is an example of multiple orthogonality

Multiple orthogonal polynomials

Assume we are given

- $r \geq 2 \text{ weight functions } w_1, \ldots, w_r \text{ on } \mathbb{R}$
- **a multi-index** $\vec{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$
- **A** The multiple orthogonal polynomial (MOP) $P_{\vec{n}}$ satisfies

$$\int_{-\infty}^{\infty} P_{\vec{n}}(x) \, x^{j} \, w_{k}(x) \, dx = 0, \quad \text{for } j = 0, \dots, n_{k} - 1, \quad k = 1, \dots, r.$$

$$P_{\vec{n}}(x) = x^n + \cdots,$$
 where $n = |\vec{n}| = n_1 + \cdots + n_r$

Existence and uniqueness is not always guaranteed.

MOP ensemble

Assume p.d.f. on \mathbb{R}^n of the form

$$\frac{1}{Z_n} \det [f_j(x_k)]_{j,k=1,...,n} \prod_{1 \le j < k \le n} (x_k - x_j)$$

with $n = |\vec{n}|$ and $\operatorname{span}\{f_1, \ldots, f_n\} =$

span{
$$x^{j}w_{k}(x) \mid j = 0, \dots, n_{k} - 1, k = 1, \dots, r$$
 }

A Then MOP
$$P_{ec n}$$
 exists, is unique, and

$$P_{\vec{n}}(x) = \mathbb{E}\left[\prod_{j=1}^{n} (x - x_j)\right]$$

MOP ensemble

$$\frac{1}{Z_n} \det \left[f_j(x_k) \right]_{j,k=1,...,n} \prod_{1 \le j < k \le n} (x_k - x_j)$$

is a determinantal point process.

A There is a kernel K_n so that all k point correlation functions are given by determinants

$$\det \left[K_n(x_i, x_j) \right]_{i,j=1,\dots,k}$$

 \blacktriangle K_n is constructed out of MOPs and certain dual functions

Riemann-Hilbert problem

- Find $(r+1) \times (r+1)$ matrix valued function Y so that (1) $Y : \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}^{(r+1) \times (r+1)}$ is analytic
 - (2) Y has limiting values Y_\pm on $\mathbb R,$ satisfying

$$Y_{+}(x) = Y_{-}(x) \begin{pmatrix} 1 & w_{1}(x) & \cdots & w_{r}(x) \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \text{ for } x \in \mathbb{R},$$

(3)
$$Y(z) = (I + O(1/z)) \operatorname{diag} \left(z^n \quad z^{-n_1} \quad \cdots \quad z^{-n_r} \right)$$
 as $z \to \infty$.

Then

Van Assche, Geronimo, K (2001)

$$P_{\vec{n}}(x) = Y_{1,1}(x)$$

The correlation kernel of MOP ensemble is

$$K_n(x,y) = \frac{1}{2\pi i(x-y)} \begin{pmatrix} 0 & w_1(y) & \cdots & w_r(y) \end{pmatrix} Y_+^{-1}(y) Y_+(x) \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix}$$

for $x, y \in \mathbb{R}$.

- Y contains MOPs
- **A** The inverse matrix Y^{-1} contains the dual functions
- ▲ The formula is based on a Christoffel-Darboux formula for MOPs

Daems, K (2004)

A RH problem is also useful for asymptotic analysis

$$\frac{1}{Z_n} e^{-n \operatorname{Tr}(V(M) - AM)} dM$$

- ▲ Special case $V(M) = \frac{1}{2}M^2$
- Gaussian model with external source is equivalent with
 - $M = M_0 + A$ where M_0 is GUE matrix (deformed GUE)
 - Non-intersecting Brownian paths with several starting points and one ending point

Non-intersecting Brownian motion

- Assume r different starting points a_1, \ldots, a_r , and one ending point at 0.
- **A** The positions of the Brownian paths at time $t \in [0,T]$ is

$$w_j(x) = e^{-\frac{T}{2t(T-t)}x^2 + \frac{a_j}{t}x}, \qquad j = 1, \dots, r,$$

and multi-index (n_1, \ldots, n_r) if n_j of the paths start at a_j

Non-intersecting Brownian motion

- \blacktriangle Two starting positions $\pm a$ and one endpoint at 0
- MOP ensemble with two weights

$$\exp\left(-\frac{T}{2t(T-t)}x^2 \pm \frac{a}{t}x\right)$$

A Rescale time variables $T \mapsto 1/n$, $t \mapsto t/n$, so that 0 < t < 1.

Large *n* behavior

$$\frac{1}{Z_n} e^{-n \operatorname{Tr}(V(M) - AM)} dM$$

Assume n is even and

$$A = \operatorname{diag}(\underbrace{a, \dots, a}_{n/2 \text{ times}}, \underbrace{-a, \dots, -a}_{n/2 \text{ times}})$$

▲ Limiting mean eigenvalue density is

$$\rho(x;a) = \frac{1}{\pi} \operatorname{Im} \xi_1(x)$$

where $\xi_1(x)$ is a solution of the Pastur equation

$$\xi^3 - x\xi^2 + (1 - a^2)\xi + a^2x = 0$$

Three cases

- **For** a > 1: two intervals
- **For** 0 < a < 1: one interval

For
$$a = 1$$
: transition with with density $\rho(x) \approx c|x|^{1/3}$ near $x = 0$

RH problem

- **A** Steepest descent analysis of 3×3 RH problem
 - lackslash Y is analytic in $\mathbb{C}\setminus\mathbb{R}$ with

$$Y_{+}(x) = Y_{-}(x) \begin{pmatrix} 1 & e^{-n(\frac{1}{2}x^{2} - ax)} & e^{-n(\frac{1}{2}x^{2} + ax)} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ for } x \in \mathbb{R},$$
$$Y(z) = (I + O(1/z)) \begin{pmatrix} z^{n} & 0 & 0 \\ 0 & z^{-n/2} & 0 \\ 0 & 0 & z^{-n/2} \end{pmatrix} \text{ as } z \to \infty.$$

- ▲ We can analyze the RH problem in all three cases
 - ▲ We do not need an equilibrium problem, since we have the Pastur equation.

- We find the usual sine kernel in the bulk and the Airy kernel at the regular edge points
- A New family of kernels for the critical case a = 1.
 - ▲ Pearcey ODEs

$$p'''(x) = xp(x) - sp'(x)$$
 and $q'''(y) = yq(y) + sq'(y)$

A Double scaling limit at $x^* = 0$ are the Pearcey kernels

$$\lim_{n \to \infty} \frac{1}{n^{3/4}} K_n\left(\frac{x}{n^{3/4}}, \frac{y}{n^{3/4}}; a = 1 + \frac{s}{2\sqrt{n}}\right)$$
$$= \frac{p(x)q''(y) - p'(x)q'(y) + p''(x)q(y) - sp(x)q(y)}{x - y}$$

Brézin, Hikami (1998), Tracy, Widom (2006)

Adler, Van Moerbeke (2007), Okounkov, Reshetikhin (2007)

Bleher, K (2007)

External source model

$$\frac{1}{Z_n} e^{-n \operatorname{Tr}(V(M) - AM)} dM, \qquad A = \operatorname{diag}(\underbrace{a, \dots, a}_{n/2 \text{ times}}, \underbrace{-a, \dots, -a}_{n/2 \text{ times}})$$

 \blacktriangle How to analyze the RH problem for more general V

$$Y_{+}(x) = Y_{-}(x) \begin{pmatrix} 1 & e^{-n(V(x)-ax)} & e^{-n(V(x)+ax)} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ for } x \in \mathbb{R},$$
$$Y(z) = (I + O(1/z)) \begin{pmatrix} z^{n} & 0 & 0 \\ 0 & z^{-n/2} & 0 \\ 0 & 0 & z^{-n/2} \end{pmatrix} \text{ as } z \to \infty.$$

▲ We do not have an algebraic equation, but there is an equilibrium problem if *V* is an even polynomial ...

Minimize the energy functional

$$\iint \log \frac{1}{|x-y|} d\mu_1(x) d\mu_1(y) + \iint \log \frac{1}{|x-y|} d\mu_2(x) d\mu_2(y) - \iint \log \frac{1}{|x-y|} d\mu_1(x) d\mu_2(y) + \int (V(x) - a|x|) d\mu_1(x) d\mu_2(y)$$

over pairs (μ_1,μ_2) of measures, where

 ${f A}~\mu_1$ is on ${\Bbb R}$ with $\int d\mu_1 = 1$,

$$igwedge \mu_2$$
 is on $i\mathbb{R}$ with $\int d\mu_2 = 1/2$,

A $\mu_2 \leq \sigma$, where σ has constant density

$$\frac{d\sigma}{|dz|} = \frac{a}{\pi}$$

- **A** There is a unique minimizer (μ_1, μ_2)
 - **A** The support of μ_1 is a finite union of intervals
 - **A** The support of μ_2 is full imaginary axis
 - A The constraint σ for μ_2 is active along symmetric interval around 0, which can be empty

$$\operatorname{supp}(\sigma - \mu_2) = (-i\infty, -ic] \cup [ic, i\infty), \qquad c \ge 0$$

Theorem

A The density of the measure μ_1 is the limiting mean eigenvalue density

$$\frac{d\mu_1(x)}{dx} = \lim_{n \to \infty} \frac{1}{n} K_n(x, x)$$

- We find the usual sine kernel in the bulk and the Airy kernel at the regular edge points
 Bleher, Delvaux, K (2010)
 - **\blacktriangle** From equilibrium problem we obtain two *g*-functions

$$g_j(z) = \int \log(z-s)d\mu_j(s), \qquad j = 1, 2$$

that satisfy a number of (in)equalities

$$g_{1,+}(x) + g_{1,-}(x) - g_2(x) = V(x) + \ell, \qquad x \in \operatorname{supp}(\mu_1),$$

$$g_{2,+}(x) + g_{2,-}(x) - g_1(x) = 0, \qquad x \in \operatorname{supp}(\sigma - \mu_2),$$

that are used in the steepest descent analysis of RH problem.

We can completely analyze the external source model with quartic potential

$$V(x) = \frac{1}{4}x^4 - \frac{t}{2}x^2$$

We can completely analyze the external source model with quartic potential

$$V(x) = \frac{1}{4}x^4 - \frac{t}{2}x^2$$

A Phase diagram in ta-plane

