Multiple Orthogonal Polynomials in Random Matrix Theory

Arno Kuidlafas

Katholieke Universiteit Leuven, Belgium

Unitary ensembles

Δ Probability measure on $n \times n$ Hermitian matrices

$$
\frac{1}{\tilde{Z}_{n}} e^{-n \operatorname{Tr} V(M)} d M
$$

Δ This is GUE for $V(M)=\frac{1}{2} M^{2}$
\triangle Explicit formula for joint density of eigenvalues

$$
\frac{1}{Z_{n}} \prod_{1 \leq j<k \leq n}\left(x_{k}-x_{j}\right)^{2} \prod_{j=1}^{n} e^{-n V\left(x_{j}\right)}
$$

Global eigenvalue behavior

Δ As $n \rightarrow \infty$, there is a limiting mean eigenvalue density $\rho_{V}(x)$.
Δ The probability measure $d \mu_{V}(x)=\rho_{V}(x) d x$ minimizes

$$
\iint \log \frac{1}{|x-y|} d \mu(x) d \mu(y)+\int V(x) d \mu(x)
$$

Δ If V is real analytic, then $\operatorname{supp}\left(\mu_{V}\right)$ is a finite union of intervals and

$$
\begin{aligned}
\rho_{V}(x) & =\frac{1}{\pi} \sqrt{Q_{-}(x)} \\
Q(x) & =\left(\frac{V^{\prime}(x)}{2}\right)^{2}-\int \frac{V^{\prime}(x)-V^{\prime}(s)}{x-s} d \mu_{V}(s)
\end{aligned}
$$

Δ Typical behavior: ρ_{V} is positive and real analytic on each interval and vanishes as a
 square root at endpoints.

Orthogonal polynomials

A Average characteristic polynomial

$$
P_{n, n}(x)=\mathbb{E}\left[\operatorname{det}\left(x I_{n}-M\right)\right]
$$

is nth degree orthogonal polynomial with respect to $e^{-n V(x)}$ on real line
© Orthogonality with respect to varying weight
© Monic OPs $P_{k, n}(x)=x^{k}+\cdots$

$$
\int_{-\infty}^{\infty} P_{k, n}(x) x^{j} e^{-n V(x)} d x=h_{k, n} \delta_{j, k}, \quad j=0, \ldots, k
$$

Determinantal correlation functions

Δ Eigenvalues are determinantal point process with correlation kernel

$$
K_{n}(x, y)=\sqrt{e^{-n V(x)}} \sqrt{e^{-n V(y)}} \sum_{k=0}^{n-1} \frac{P_{k, n}(x) P_{k, n}(y)}{h_{k, n}}
$$

Δ This means that the k point eigenvalue correlation function (which is proportional to marginal density) is given by $k \times k$ determinant

$$
\operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{k}
$$

Δ Global eigenvalue behavior

$$
\lim _{n \rightarrow \infty} \frac{1}{n} K_{n}(x, x)=\rho_{V}(x)
$$

Local eigenvalue behavior

L Local eigenvalue statistics have universal behavior as $n \rightarrow \infty$.
A Sine kernel in the bulk: if $c=\rho_{V}\left(x^{*}\right)>0$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{c n} K_{n}\left(x^{*}+\frac{x}{c n}, x^{*}+\frac{y}{c n}\right)=\frac{\sin \pi(x-y)}{\pi(x-y)}
$$

Pastur, Shcherbina (1997), Bleher, Its (1999)
Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)
McLaughlin, Miller (2008), Lubinsky (2009)

- Airy kernel at the spectral edge (if ρ_{V} vanishes as a square root at x^{*})

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{c n^{2 / 3}} K_{n}\left(x^{*}+\frac{x}{c n^{2 / 3}},\right. & \left.x^{*}+\frac{y}{c n^{2 / 3}}\right) \\
& =\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}
\end{aligned}
$$

Singular behavior

Δ Other limiting kernels at special points.

- Painlevé Il kernels at interior points where density vanishes.

Bleher, Its (2003), Claeys, K (2006)

Shcherbina (2008)
© Painlevé I_{2} kernels at edge points where density vanishes at higher order.

Claeys, Vanlessen (2007)

Riemann-Hilbert problem

Δ Powerful tool for asymptotic analysis in case of real analytic V is the Riemann-Hilbert problem for OPs

Fokas, Its, Kitaev (1992)
(1) $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{2 \times 2}$ is analytic
(2) Y has limiting values $Y_{ \pm}$on \mathbb{R}, satisfying

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{cc}
1 & e^{-n V(x)} \\
0 & 1
\end{array}\right) \text { for } x \in \mathbb{R}
$$

(3) $Y(z)=(I+O(1 / z)) \operatorname{diag}\left(z^{n} \quad z^{-n}\right)$ as $z \rightarrow \infty$.
Δ Correlation kernel is

$$
K_{n}(x, y)=\frac{\sqrt{e^{-n V(x)}} \sqrt{e^{-n V(y)}}}{2 \pi i(x-y)}\left(\begin{array}{ll}
0 & 1
\end{array}\right) Y_{+}^{-1}(y) Y_{+}(x)\binom{1}{0}
$$

Steepest descent analysis

A Asymptotics of orthogonal polynomials can be proved by means of a steepest descent analysis of RH problem
Δ Essential role is played by minimizer $d \mu_{V}(s)=\rho_{V}(s) d s$ of equilibrium problem

$$
\iint \log \frac{1}{|x-y|} d \mu(x) d \mu(y)+\int V(x) d \mu(x)
$$

Δ the associated g-function $g(z)=\int \log (z-s) \rho_{V}(s) d s$ is analytic in $\mathbb{C} \backslash \mathbb{R}$ with

$$
\begin{aligned}
& g_{+}(x)+g_{-}(x)=V(x)+\ell, \quad x \in \operatorname{supp}\left(\mu_{V}\right) \\
& g_{+}(x)+g_{-}(x) \leq V(x)+\ell, \quad x \in \mathbb{R} \\
& g_{+}(x)-g_{-}(x)=2 \pi i \int_{x}^{+\infty} \rho_{V}(s) d s, \quad x \in \mathbb{R}
\end{aligned}
$$

Ultimate goal

Δ Extend all these results to other matrix ensembles where eigenvalues have determinantal structure

- Random matrices with external source

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}(V(M)-A M)} d M
$$

- Coupled random matrices (two matrix model)

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}\left(V\left(M_{1}\right)+W\left(M_{2}\right)-\tau M_{1} M_{2}\right)} d M_{1} d M_{2}
$$

Δ Find extensions / analogues of
A Orthogonal polynomials

- Riemann-Hilbert problem
- Equilibrium problem

External source model

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}(V(M)-A M)} d M
$$

ΔA is given Hermitian matrix (the extenal source)
A Because of the Harish-Chandra/Itzykson-Zuber integral we can integrate out eigenvectors of M
Δ Suppose eigenvalues a_{1}, \ldots, a_{n} of A are all distinct. Then eigenvalues have joint p.d.f.

$$
\frac{1}{Z_{n}} \operatorname{det}\left[e^{n a_{i} x_{j}}\right]_{1 \leq i, j \leq n} \prod_{1 \leq j<k \leq n}\left(x_{k}-x_{j}\right) \prod_{k=1}^{n} e^{-n V\left(x_{k}\right)}
$$

Average characteristic polynomial

Δ Let P_{n} be the average characteristic polynomial

$$
P_{n}(x)=\mathbb{E}\left[x I_{n}-M\right]
$$

Δ Suppose a_{1}, \ldots, a_{r} are distinct eigenvalues of A with multiplicities n_{1}, \ldots, n_{r}.
Δ Then P_{n} is the monic polynomial of degree n that satisfies

$$
\int_{-\infty}^{\infty} P_{n}(x) x^{j} e^{-n\left(V(x)-a_{k} x\right)} d x=0, \quad j=0, \ldots, n_{k}-1, \quad k=1, \ldots, r
$$

Δ This is an example of multiple orthogonality

Multiple orthogonal polynomials

Δ Assume we are given
© $r \geq 2$ weight functions w_{1}, \ldots, w_{r} on \mathbb{R}
© a multi-index $\vec{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$
Δ The multiple orthogonal polynomial (MOP) $P_{\vec{n}}$ satisfies

$$
\begin{gathered}
\int_{-\infty}^{\infty} P_{\vec{n}}(x) x^{j} w_{k}(x) d x=0, \quad \text { for } j=0, \ldots, n_{k}-1, \quad k=1, \ldots, r . \\
P_{\vec{n}}(x)=x^{n}+\cdots, \quad \text { where } n=|\vec{n}|=n_{1}+\cdots+n_{r}
\end{gathered}
$$

A Existence and uniqueness is not always guaranteed.

MOP ensemble

Δ Assume p.d.f. on \mathbb{R}^{n} of the form

$$
\frac{1}{Z_{n}} \operatorname{det}\left[f_{j}\left(x_{k}\right)\right]_{j, k=1, \ldots, n} \prod_{1 \leq j<k \leq n}\left(x_{k}-x_{j}\right)
$$

with $n=|\vec{n}|$ and $\quad \operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}=$

$$
\operatorname{span}\left\{x^{j} w_{k}(x) \mid j=0, \ldots, n_{k}-1, k=1, \ldots, r\right\}
$$

\triangle Then MOP $P_{\vec{n}}$ exists, is unique, and

$$
P_{\vec{n}}(x)=\mathbb{E}\left[\prod_{j=1}^{n}\left(x-x_{j}\right)\right]
$$

Correlation kernel

- MOP ensemble

$$
\frac{1}{Z_{n}} \operatorname{det}\left[f_{j}\left(x_{k}\right)\right]_{j, k=1, \ldots, n} \prod_{1 \leq j<k \leq n}\left(x_{k}-x_{j}\right)
$$

is a determinantal point process.
Δ There is a kernel K_{n} so that all k point correlation functions are given by determinants

$$
\operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, k}
$$

ΔK_{n} is constructed out of MOPs and certain dual functions

Riemann-Hilbert problem

Δ Find $(r+1) \times(r+1)$ matrix valued function Y so that
(1) $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{(r+1) \times(r+1)}$ is analytic
(2) Y has limiting values $Y_{ \pm}$on \mathbb{R}, satisfying

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{cccc}
1 & w_{1}(x) & \cdots & w_{r}(x) \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \text { for } x \in \mathbb{R}
$$

(3) $Y(z)=(I+O(1 / z)) \operatorname{diag}\left(\begin{array}{llll}z^{n} & z^{-n_{1}} & \cdots & z^{-n_{r}}\end{array}\right)$ as $z \rightarrow \infty$.
Δ Then
Van Assche, Geronimo, K (2001)

$$
P_{\vec{n}}(x)=Y_{1,1}(x)
$$

Christoffel-Darboux formula

\triangle The correlation kernel of MOP ensemble is

$$
K_{n}(x, y)=\frac{1}{2 \pi i(x-y)}\left(\begin{array}{llll}
0 & w_{1}(y) & \cdots & w_{r}(y)
\end{array}\right) Y_{+}^{-1}(y) Y_{+}(x)
$$

for $x, y \in \mathbb{R}$.

- Y contains MOPs
Δ The inverse matrix Y^{-1} contains the dual functions
Δ The formula is based on a Christoffel-Darboux formula for MOPs
Daems, K (2004)
\triangle RH problem is also useful for asymptotic analysis

External source model

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}(V(M)-A M)} d M
$$

Δ Special case $V(M)=\frac{1}{2} M^{2}$
Δ Gaussian model with external source is equivalent with
© $M=M_{0}+A$ where M_{0} is GUE matrix (deformed GUE)

- Non-intersecting Brownian paths with several starting points and one ending point

Non-intersecting Brownian motion

Δ Assume r different starting points a_{1}, \ldots, a_{r}, and one ending point at 0 .
Δ The positions of the Brownian paths at time $t \in[0, T]$ is

$$
w_{j}(x)=e^{-\frac{T}{2 t(T-t)} x^{2}+\frac{a_{j}}{t} x}, \quad j=1, \ldots, r
$$

and multi-index $\left(n_{1}, \ldots, n_{r}\right)$ if n_{j} of the paths start at a_{j}

Non-intersecting Brownian motion

Δ Two starting positions $\pm a$ and one endpoint at 0
\triangle MOP ensemble with two weights

$$
\exp \left(-\frac{T}{2 t(T-t)} x^{2} \pm \frac{a}{t} x\right)
$$

Δ Rescale time variables $T \mapsto 1 / n, t \mapsto t / n$, so that $0<t<1$.

Large n behavior

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}(V(M)-A M)} d M
$$

\triangle Assume n is even and

$$
A=\operatorname{diag}(\underbrace{a, \ldots, a}_{n / 2 \text { times }}, \underbrace{-a, \ldots,-a}_{n / 2 \text { times }})
$$

Global eigenvalue behavior

A Limiting mean eigenvalue density is

$$
\rho(x ; a)=\frac{1}{\pi} \operatorname{Im} \xi_{1}(x)
$$

where $\xi_{1}(x)$ is a solution of the Pastur equation

$$
\xi^{3}-x \xi^{2}+\left(1-a^{2}\right) \xi+a^{2} x=0
$$

Three cases
Δ For $a>1$: two intervals
Δ For $0<a<1$: one interval
\triangle For $a=1$: transition with with density $\rho(x) \approx c|x|^{1 / 3}$ near $x=0$

RH problem

Δ Steepest descent analysis of 3×3 RH problem
ΔY is analytic in $\mathbb{C} \backslash \mathbb{R}$ with

$$
\begin{gathered}
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccc}
1 & e^{-n\left(\frac{1}{2} x^{2}-a x\right)} & e^{-n\left(\frac{1}{2} x^{2}+a x\right)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } x \in \mathbb{R}, \\
\boldsymbol{\Delta} Y(z)=(I+O(1 / z))\left(\begin{array}{ccc}
z^{n} & 0 & 0 \\
0 & z^{-n / 2} & 0 \\
0 & 0 & z^{-n / 2}
\end{array}\right) \text { as } z \rightarrow \infty .
\end{gathered}
$$

Δ We can analyze the RH problem in all three cases

- We do not need an equilibrium problem, since we have the Pastur equation.

Local eigenvalue behavior

Δ We find the usual sine kernel in the bulk and the Airy kernel at the regular edge points
Δ New family of kernels for the critical case $a=1$.

- Pearcey ODEs

$$
p^{\prime \prime \prime}(x)=x p(x)-s p^{\prime}(x) \text { and } \quad q^{\prime \prime \prime}(y)=y q(y)+s q^{\prime}(y)
$$

Δ Double scaling limit at $x^{*}=0$ are the Pearcey kernels

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 4}} & K_{n}\left(\frac{x}{n^{3 / 4}}, \frac{y}{n^{3 / 4}} ; a=1+\frac{s}{2 \sqrt{n}}\right) \\
& =\frac{p(x) q^{\prime \prime}(y)-p^{\prime}(x) q^{\prime}(y)+p^{\prime \prime}(x) q(y)-s p(x) q(y)}{x-y}
\end{aligned}
$$

Brézin, Hikami (1998), Tracy, Widom (2006)
Adler, Van Moerbeke (2007), Okounkov, Reshetikhin (2007)

External source model

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}(V(M)-A M)} d M, \quad A=\operatorname{diag}(\underbrace{a, \ldots, a}_{n / 2 \text { times }}, \underbrace{-a, \ldots,-a}_{n / 2 \text { times }})
$$

Δ How to analyze the RH problem for more general V

$$
\begin{aligned}
& Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccc}
1 & e^{-n(V(x)-a x)} & e^{-n(V(x)+a x)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } x \in \mathbb{R} \\
& Y(z)=(I+O(1 / z))\left(\begin{array}{ccc}
z^{n} & 0 & 0 \\
0 & z^{-n / 2} & 0 \\
0 & 0 & z^{-n / 2}
\end{array}\right) \text { as } z \rightarrow \infty
\end{aligned}
$$

Δ We do not have an algebraic equation, but there is an equilibrium problem if V is an even polynomial ...

Vector equilibrium problem

Δ Minimize the energy functional

$$
\begin{array}{r}
\iint \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{1}(y)+\iint \log \frac{1}{|x-y|} d \mu_{2}(x) d \mu_{2}(y) \\
-\iint \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{2}(y) \\
\\
\quad+\int(V(x)-a|x|) d \mu_{1}(x)
\end{array}
$$

over pairs $\left(\mu_{1}, \mu_{2}\right)$ of measures, where
$\Delta \mu_{1}$ is on \mathbb{R} with $\int d \mu_{1}=1$,
$\Delta \mu_{2}$ is on $i \mathbb{R}$ with $\int d \mu_{2}=1 / 2$,
$\Delta \mu_{2} \leq \sigma$, where σ has constant density $\frac{d \sigma}{|d z|}=\frac{a}{\pi}$

Structure of minimizer

Δ There is a unique minimizer $\left(\mu_{1}, \mu_{2}\right)$
Δ The support of μ_{1} is a finite union of intervals
Δ The support of μ_{2} is full imaginary axis
© The constraint σ for μ_{2} is active along symmetric interval around 0 , which can be empty

$$
\operatorname{supp}\left(\sigma-\mu_{2}\right)=(-i \infty,-i c] \cup[i c, i \infty), \quad c \geq 0
$$

Theorem

Δ The density of the measure μ_{1} is the limiting mean eigenvalue density

$$
\frac{d \mu_{1}(x)}{d x}=\lim _{n \rightarrow \infty} \frac{1}{n} K_{n}(x, x)
$$

Δ We find the usual sine kernel in the bulk and the Airy kernel at the regular edge points Bleher, Delvaux, K (2010)

A From equilibrium problem we obtain two g-functions

$$
g_{j}(z)=\int \log (z-s) d \mu_{j}(s), \quad j=1,2
$$

that satisfy a number of (in)equalities

$$
\begin{array}{ll}
g_{1,+}(x)+g_{1,-}(x)-g_{2}(x)=V(x)+\ell, & x \in \operatorname{supp}\left(\mu_{1}\right) \\
g_{2,+}(x)+g_{2,-}(x)-g_{1}(x)=0, & x \in \operatorname{supp}\left(\sigma-\mu_{2}\right)
\end{array}
$$

that are used in the steepest descent analysis of RH problem.

Quartic potential

- We can completely analyze the external source model with quartic potential

$$
V(x)=\frac{1}{4} x^{4}-\frac{t}{2} x^{2}
$$

Δ Phase diagram in $t a$-plane

Quartic potential

- We can completely analyze the external source model with quartic potential

$$
V(x)=\frac{1}{4} x^{4}-\frac{t}{2} x^{2}
$$

Δ Phase diagram in $t a$-plane

