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A Probability measure on 71 X m Hermitian matrices

1
= o TrV(M) gpp

~

Zin

A ThisisGUEfor V(M) = tM?

A Explicit formula for joint  density of eigenvalues
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" 1<j<k<n j=1
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Global eigenvalue behavior

As n — 00, there is a limiting mean eigenvalue density pv(a:).

The probability measure (d,uv(a:) = pv(az)daf;] minimizes

[ 108 ——dut@)dutn) + [ V@yin(a)

If V' is real analytic, then supp(uy ) is a finite

union of intervals and

pvie) = =V @)
Q@ = (V1) - [V V6, )

Typical behavior:  py is positive and real

analytic on each interval and vanishes as a

square root at endpoints.
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A Average characteristic polynomial

P, n(x) = E|det(zI, — M)]

is nth degree orthogonal polynomial with respect to

A Orthogonality with respect to varying weight

A Monic OPs Py ,(z) = BT A

/ Py () 27 e V(@) dp = Rk,

— OO

e~V (%) g real line
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A Eigenvalues are determinantal point process with correlation kernel

n—1
P, (2)P,
Kp(2,y) = VeV @/ eV 3 2k () Pr,n(y)
k=0 Pe,n

A This means that the £ point eigenvalue correlation function (which is

proportional to marginal density) is given by k x k determinant

det [K, (3, 25)]7

1,J=1
A Global eigenvalue behavior

1
lim —K,(z,x) = py(x)

n—oo M,
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A Local eigenvalue statistics have universal behavior as n — OQ.

A Sine kernel inthe bulk: if ¢ = py (z*) > 0 then

sinm(x — y)
m(z —y)

1
lim —K, (:U* + i,x* + i) —
n—oo CN, chn cn

Pastur, Shcherbina (1997), Bleher, Its (1999)
Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

McLaughlin, Miller (2008), Lubinsky (2009)
A Airy kernel at the spectral edge (if py vanishes as a square root at ™)
s’ Y )
27300 T o3
~ Ai(x) Ai'(y) — Ai'(2) Ai(y)
— p—

1
im L1 (o ¢

n— 00 c'n,2/3
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Singular behavior

A Other limiting kernels at special points.

A Painlev é Il kernels at interior points where

density vanishes.

Bleher, Its (2003), Claeys, K (2006)

Shcherbina (2008)

A Painlev é |5 kernels at edge points where

density vanishes at higher order.

Claeys, Vanlessen (2007)
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Powerful tool for asymptotic analysis in case of real analyt ic V is the

Riemann-Hilbert problem for OPs Fokas, Its, Kitaev (1992)
1) Y : C\ R — C?*?is analytic
(2) Y has limiting values Y4 on R, satisfying

1 e—nV(x)

Yi(z) =Y_(x) ) | for x € R,

3) Y(z2) = 4+ 0O(1/2))diag (z” z—”) as z — 00.

Correlation kernel is

\/e—nV(x) \/e—nV(y)

Kn(2,y) = 2mi(x — )

(0 1) Y WY
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A Asymptotics of orthogonal polynomials can be proved by mean sofa
steepest descent analysis of RH problem

A Essential role is played by minimizer  duy (s) = py (s)ds of equilibrium

problem
[ 108 ——dut@)dutn) + [ V@yin(a)

A the associated g-function [g(z) = [log(z — s)pv(s)ds]
is analyticin C \ R with

g+(x) +9-(z) =V(x)+£, = esupp(pv),
g+ (@) +g-(z) <V(x)+¥¢, xR,

+00
g+(x) — = 27?2/ r € R.
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A Extend all these results to other matrix ensembles where eig envalues have

determinantal structure

A Random matrices with external source

1
L Te(V(M)—AM) g 1

Zn,
A Coupled random matrices (two matrix model)

1
—e

—n Tr(V (M1)+W (M2)—7M MZ)dMldM2
Zn,

A Find extensions / analogues of
A Orthogonal polynomials
A Riemann-Hilbert problem

A Equilibrium problem
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1
e TI‘(V(M)—AM)dM

Zin
A A is given Hermitian matrix ( the extenal source )
A Because of the Harish-Chandra/ltzykson-Zuber integral we can integrate
out eigenvectors of M

A Suppose eigenvalues aq, ..., a, of A are all distinct. Then

eigenvalues have joint p.d.f.

n

1 . _
Z_ det [ena%xj]lgi,jgn H (ij _ xj) H e nV (xy)
n 1<j<k<n k=1
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A Let P, be the average characteristic polynomial
P,(x) =E |zI, — M]

A Suppose ai,...,a, are distinct eigenvalues of A with multiplicities
N1,y ...,TN0p.

A Then P, is the monic polynomial of degree  n that satisfies

— OO

A This is an example of multiple orthogonality

/ P,(z)zle V@=ad)qe — 0, j=0,...,n—1, k=1,...
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A Assume we are given
A r > 2 weight functions wq,...,w,on R
A amulti-index 7= (ny,...,n,) € N"

A The multiple orthogonal polynomial  (MOP) P;5 satisfies

/ Py (z) 2’ wy(z)de =0, for j=0,...,n; —1,

— OO

Pi(z)=2" +---, where n = |17| =ng + - -

A Existence and unigueness is not always guaranteed.
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A Assume p.d.f. on RR" of the form

1
Zn

with n = || and span{fi,..., fn} =

— det [fj(xk)]j,kzl,...,n

11

1<5<k<n

(T — )

span{ 2/wy(z) |7 =0,...,np — 1, k=1,...,r}

A Then MOP P; exists, is unique, and

P%(m)::]E

J

n

1

(z —z;)
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A MOP ensemble

7l @), I @)

is a determinantal point process.

A Thereis akernel K, sothatall k point correlation functions are given

by determinants

det [Kn(xw xj)]z',jzl,...,k

A K, is constructed out of MOPs and certain dual functions
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A Find (r+ 1) X (r 4 1) matrix valued function Y so that
1) Y :C\R — Cr+x(r+1) s analytic

(2) Y has limiting values Y4 on IR, satisfying

(1 wi(@) - @)
0

1 . 0
Yi(z)=Y_(z) | | | for x € R,
KO 0 . 1 )
3) Y(2) = (I +0(1/2)) diag (Zn o Z—nr) as z — o0.
A Then Van Assche, Geronimo, K (2001)
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A The correlation kernel of MOP ensemble is

for z,y € R.
A Y contains MOPs
A The inverse matrix Y ~! contains the dual functions
A The formula is based on a Christoffel-Darboux formula for MO Ps
Daems, K (2004)

A RH problem is also useful for asymptotic analysis
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1
Z_e—n TI‘(V(M)—AM)dM

A Special case V(M) = 3 M?

A Gaussian model with external source is equivalent with

A M = My + A where My is GUE matrix (deformed GUE)

A Non-intersecting Brownian paths with several starting poi nts and one

ending point
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A Assume r different starting points a1, ..., a,, and one ending pointat 0.

A The positions of the Brownian paths attime ¢ € [0,7] is
T 2132—}-%3’}

wj(z) =e FT=H ,  J=1...m

and multi-index (m1,...,n,) if n; of the paths startat a;

1 1 1
o 0.25 0.5 0.75 1
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A Two starting positions =4a and one endpointat 0

A MOP ensemble with two weights

T 5 @
_ 4z
=P ( (T — 1) tl)

A Rescale time variables T +— 1/n,t — t/n,sothat 0 <t < 1.

1 1 1
~o 0.25 0.5 0.75 1
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1
e TI‘(V(M)—AM)dM

n

A Assume n is even and

A = diag(a,...,a,—a,...,—a)

7

Vv = Vo
n /2 times n /2 times
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A Limiting mean eigenvalue density is

p(rsa) = — I (x)

where &1 () is a solution of the Pastur equation Pastur (1972)

& —z&? + (1 -a*)é+a’x=0
Three cases

A For a > 1: two intervals
A For 0 < a < 1: oneinterval

A For a = 1: transition with with density
[p(x) ~ c|:13|1/3J near v = (
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A Steepest descent analysis of 3 X 3 RH problem

A Yisanalyticin C\ R with

1 e—n(%xz—ax) e—n(%xQ—l—ax)
Yi(z)=Y_(x) ]| 0 1 0 for x € R,
0 0 1
zZ" 0 0

AYR2)=T+01/2)] 0 zm/?2 0 as z — 00.
0 0 2z /2
A We can analyze the RH problem in all three cases

A We do not need an equilibrium problem, since we have the Pastu r

equation.
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A We find the usual sine kernel inthe bulk and the Airy kernel at the regular

edge points
A New family of kernels for the critical case  a = 1.

A Pearcey ODEs

p"(z) = zp(x) — sp’(x) and ¢"'(y) = ya(y) + sq'(y)

A Double scaling limitat x* = 0 are the Pearcey kernels

1
[ K,n(x Y a=1+ S)

n— 00 W n3/4’ n3/4’ 2\/ﬁ
_ p(x)q"(y) — p'(x)q' (y) + p"(x)q(y) — sp(x)q(y)
T =y

Brézin, Hikami (1998), Tracy, Widom (2006)
Adler, Van Moerbeke (2007), Okounkov, Reshetikhin (2007)

Bleher, K (2007)
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1
e Tr(V(M)—AM) dM,

/. \.
n ~ ~

n /2 times n /2 times

A = diag(a,...,a,—a,...,—a)

7

A How to analyze the RH problem for more general V'

1 e—n(V(m)—ax) e—n(V(w)—i—ax)
Yi(z)=Y_(x) |0 1 0 for x € R,
0 0 1
2" 0 0
Y)=I+01/2)| 0 2z 7/2 0 as z — 0.
0 0 2z /2
A We do not have an algebraic equation, but there is an equilibr ium problem

if V' is an even polynomial
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A Minimize the energy functional

//log ‘x_mdul x)dpa (y //log _y|du2( z)dp2(y)
- [ [ 108 s @)t

-+/uww—amwmm@

over pairs (f41, p2) of measures, where
A ppison Rwith [dpy =1,
A pgison iRwith [ dus =1/2,
do

a
A 12 < 0, where o has constant density \d—| = —
2z ™
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A There is a unique minimizer  (p1, f12)
A The support of (4 is a finite union of intervals
A The support of 9 is full imaginary axis

A The constraint o for us is active along symmetric interval around 0,

which can be empty

supp(o — p2) = (—ioco, —ic] U [ic,i00), ¢ >0
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A The density of the measure (47 is the limiting mean eigenvalue density

d 1
i (@) = lim —K,(x,x)

dx n—oo N,

A We find the usual sine kernel inthe bulk and the Airy kernel at the regular

edge points Bleher, Delvaux, K (2010)

A From equilibrium problem we obtain two g-functions

9;(2) = / log(z — $)dp;(s),  j=1,2

that satisfy a number of (in)equalities

gi+(x) +g1,—(x) — g2(x) = V() + £, T € supp(p1),
92,4+ () + g2, (%) — g1(x) = 0, T € supp(o — pi2),

that are used in the steepest descent analysis of RH problem.
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A We can completely analyze the external source model with qua rtic

potential

A Phase diagram in ta-plane

2*

two|intervals, constraint is not active
a  IT.
one interval A
constraint is active : — :
m intervals, constraint Is active
P ] o e e e, e [ e o ] o o o ) e e, o, ) [ o e o o P e e
—2 -1 l 1 2 3 4 5
| t
1
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A We can completely analyze the external source model with qua rtic

potential

A Phase diagram in ta-plane

2*
-..Pearcey transitipn
a I%
T Painlev € Il transition
]
—2 -1 y 1 2 3 4 Q)
| t
—1-

Conference on Random Matrices. Paris. 2 June 2010 —n. 30/



	Unitary ensembles
	Global eigenvalue behavior
	Orthogonal polynomials
	Determinantal correlation functions
	Local eigenvalue behavior
	Singular behavior
	Riemann-Hilbert problem
	Steepest descent analysis
	Ultimate goal
	External source model
	Average characteristic polynomial
	Multiple orthogonal polynomials
	MOP ensemble
	Correlation kernel
	Riemann-Hilbert problem
	Christoffel-Darboux formula
	External source model
	Non-intersecting Brownian motion
	Non-intersecting Brownian motion
	Large $n$ behavior
	Global eigenvalue behavior
	RH problem
	Local eigenvalue behavior
	External source model
	Vector equilibrium problem
	Structure of minimizer
	Theorem
	Quartic potential
	Quartic potential

