More about extreme eigenvalues of perturbed random matrices

F. Benaych-Georges - A. Guionnet - M. Maïda

LPMA, Univ Paris 6 - UMPA, ENS Lyon - LM Orsay, Univ Paris-Sud
Conference on Random Matrices - ANR GranMa Chevaleret - June 2010

Outline of the talk

Outline of the talk

- Presentation of the models

Outline of the talk

- Presentation of the models
- Recall on almost sure convergence

Outline of the talk

- Presentation of the models
- Recall on almost sure convergence
- Fluctuations far from the bulk

Outline of the talk

- Presentation of the models
- Recall on almost sure convergence
- Fluctuations far from the bulk
- Fluctuations near the bulk

Outline of the talk

- Presentation of the models
- Recall on almost sure convergence
- Fluctuations far from the bulk
- Fluctuations near the bulk
- Large deviation principle

Presentation of the models

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

$$
\text { (H1) } \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} \longrightarrow \mu_{X},
$$

with μ_{X} compactly supported,

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

$$
\text { (H1) } \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} \longrightarrow \mu_{X}, \lambda_{1}^{n} \longrightarrow a, \lambda_{n}^{n} \longrightarrow b
$$

with μ_{X} compactly supported, with edges of support a and b.

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

$$
\text { (H1) } \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} \longrightarrow \mu_{X}, \lambda_{1}^{n} \longrightarrow a, \lambda_{n}^{n} \longrightarrow b
$$

with μ_{X} compactly supported, with edges of support a and b.
R_{n} finite rank perturbation

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

$$
\text { (H1) } \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} \longrightarrow \mu_{X}, \lambda_{1}^{n} \longrightarrow a, \lambda_{n}^{n} \longrightarrow b
$$

with μ_{X} compactly supported, with edges of support a and b.
R_{n} finite rank perturbation

$$
\widetilde{X}_{n}=X_{n}+R_{n}=X_{n}+\sum_{j=1}^{r} \theta_{i} G_{i}^{n}\left(G_{i}^{n}\right)^{*}
$$

with $\sqrt{n} G_{i}^{n}$ vectors with iid entries with law ν satisfying log-Sobolev

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

$$
\text { (H1) } \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} \longrightarrow \mu_{X}, \lambda_{1}^{n} \longrightarrow a, \lambda_{n}^{n} \longrightarrow b
$$

with μ_{X} compactly supported, with edges of support a and b.
R_{n} finite rank perturbation

$$
\widetilde{X}_{n}=X_{n}+R_{n}=X_{n}+\sum_{j=1}^{r} \theta_{i} U_{i}^{n}\left(U_{i}^{n}\right)^{*}
$$

with $\sqrt{n} G_{i}^{n}$ vectors with iid entries with law ν satisfying log-Sobolev (or U_{i}^{n} orthonormalized version of the vectors G_{i}^{n})

Presentation of the models

X_{n} deterministic self-adjoint with eigenvalues $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$

$$
\text { (H1) } \quad \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} \longrightarrow \mu_{X}, \lambda_{1}^{n} \longrightarrow a, \lambda_{n}^{n} \longrightarrow b
$$

with μ_{X} compactly supported, with edges of support a and b.
R_{n} finite rank perturbation

$$
\widetilde{X}_{n}=X_{n}+R_{n}=X_{n}+\sum_{j=1}^{r} \theta_{i} U_{i}^{n}\left(U_{i}^{n}\right)^{*}
$$

with $\sqrt{n} G_{i}^{n}$ vectors with iid entries with law ν satisfying log-Sobolev (or U_{i}^{n} orthonormalized version of the vectors G_{i}^{n}) and

$$
\theta_{1} \geqslant \cdots \geqslant \theta_{r_{0}}>0>\theta_{r_{0}+1} \geqslant \cdots \geqslant \theta_{r} .
$$

Almost sure convergence of extreme eigenvalues

Almost sure convergence of extreme eigenvalues

Main tool :

$$
f_{n}(z)=\operatorname{det}\left(\left[G_{i, j}^{n}(z)\right]_{i, j=1}^{r}-\operatorname{diag}\left(\theta_{1}^{-1}, \ldots, \theta_{r}^{-1}\right)\right),
$$

with

$$
G_{i, j}^{n}(z)=\left\langle U_{i}^{n},\left(z-X_{n}\right)^{-1} U_{j}^{n}\right\rangle .
$$

Almost sure convergence of extreme eigenvalues

Main tool :

$$
f_{n}(z)=\operatorname{det}\left(\left[G_{i, j}^{n}(z)\right]_{i, j=1}^{r}-\operatorname{diag}\left(\theta_{1}^{-1}, \ldots, \theta_{r}^{-1}\right)\right),
$$

with

$$
G_{i, j}^{n}(z)=\left\langle U_{i}^{n},\left(z-X_{n}\right)^{-1} U_{j}^{n}\right\rangle .
$$

Key point:

$$
G_{i, j}^{n}(z) \longrightarrow \mathbf{1}_{i=j} G_{\mu x}(z):=\mathbf{1}_{i=j} \int \frac{1}{z-x} d \mu_{X}(x)
$$

Almost sure convergence of extreme eigenvalues

Main tool :

$$
f_{n}(z)=\operatorname{det}\left(\left[G_{i, j}^{n}(z)\right]_{i, j=1}^{r}-\operatorname{diag}\left(\theta_{1}^{-1}, \ldots, \theta_{r}^{-1}\right)\right),
$$

with

$$
G_{i, j}^{n}(z)=\left\langle U_{i}^{n},\left(z-X_{n}\right)^{-1} U_{j}^{n}\right\rangle .
$$

Key point:

$$
\begin{gathered}
G_{i, j}^{n}(z) \longrightarrow \mathbf{1}_{i=j} G_{\mu_{X}}(z):=\mathbf{1}_{i=j} \int \frac{1}{z-x} d \mu_{X}(x) \\
f_{n}(z) \longrightarrow \prod_{i=1}^{r}\left(G_{\mu x}(z)-\frac{1}{\theta_{i}}\right)
\end{gathered}
$$

Almost sure convergence of extreme eigenvalues

Almost sure convergence of extreme eigenvalues

We define

$$
\rho_{\theta}:= \begin{cases}G_{\mu_{X}}^{-1}(1 / \theta) & \text { if } \theta \in(-\infty, \underline{\theta}) \cup(\bar{\theta},+\infty), \\ a & \text { if } \theta \in[\underline{\theta}, 0) \\ b & \text { if } \theta \in(0, \bar{\theta}]\end{cases}
$$

Almost sure convergence of extreme eigenvalues

We define

$$
\rho_{\theta}:= \begin{cases}G_{\mu_{x}}^{-1}(1 / \theta) & \text { if } \theta \in(-\infty, \underline{\theta}) \cup(\bar{\theta},+\infty), \\ a & \text { if } \theta \in[\underline{\theta}, 0) \\ b & \text { if } \theta \in(0, \bar{\theta}]\end{cases}
$$

and almost sure convergence of the extreme eigenvalues is governed by
Theorem
For all $i \in\left\{1, \ldots, r_{0}\right\}$ we have

$$
\widetilde{\lambda}_{i}^{n} \xrightarrow{\text { a.s. }} \rho_{\theta_{i}}
$$

and for all $i>r_{0}$,

$$
\tilde{\lambda}_{i}^{n} \xrightarrow{\text { a.s. }} b .
$$

Gaussian fluctuations outside the bulk

Gaussian fluctuations outside the bulk

Let $\alpha_{1}>\cdots>\alpha_{q}>0$ be the different values of the θ_{i} 's such that $\rho_{\theta_{i}}>b$.

Gaussian fluctuations outside the bulk

Let $\alpha_{1}>\cdots>\alpha_{q}>0$ be the different values of the θ_{i} 's such that $\rho_{\theta_{i}}>b$.
For each j, let l_{j} be the set of indices i so that $\theta_{i}=\alpha_{j}$. Set $k_{j}=\left|\boldsymbol{l}_{j}\right|$.

Gaussian fluctuations outside the bulk

Let $\alpha_{1}>\cdots>\alpha_{q}>0$ be the different values of the θ_{i} 's such that $\rho_{\theta_{i}}>b$.
For each j, let l_{j} be the set of indices i so that $\theta_{i}=\alpha_{j}$. Set $k_{j}=\left|\boldsymbol{I}_{j}\right|$.
Theorem
The random vector

$$
\left(\gamma_{i}:=\sqrt{n}\left(\widetilde{\lambda}_{i}^{n}-\rho_{\theta_{i}}\right), i \in I_{j}\right)_{1 \leqslant j \leqslant q}
$$

Gaussian fluctuations outside the bulk

Let $\alpha_{1}>\cdots>\alpha_{q}>0$ be the different values of the θ_{i} 's such that $\rho_{\theta_{i}}>b$.
For each j, let l_{j} be the set of indices i so that $\theta_{i}=\alpha_{j}$. Set $k_{j}=\left|\boldsymbol{l}_{j}\right|$.
Theorem
The random vector

$$
\left(\gamma_{i}:=\sqrt{n}\left(\widetilde{\lambda}_{i}^{n}-\rho_{\theta_{i}}\right), i \in I_{j}\right)_{1 \leqslant j \leqslant q}
$$

converges in law to the eigenvalues of $\left(c_{j} M_{j}\right)_{1 \leqslant j \leqslant q}$ with independent matrices $M_{j} \in G O E\left(k_{j}\right)$

Gaussian fluctuations outside the bulk

Let $\alpha_{1}>\cdots>\alpha_{q}>0$ be the different values of the θ_{i} 's such that $\rho_{\theta_{i}}>b$.
For each j, let l_{j} be the set of indices i so that $\theta_{i}=\alpha_{j}$. Set $k_{j}=\left|\boldsymbol{I}_{j}\right|$.
Theorem
The random vector

$$
\left(\gamma_{i}:=\sqrt{n}\left(\widetilde{\lambda}_{i}^{n}-\rho_{\theta_{i}}\right), i \in I_{j}\right)_{1 \leqslant j \leqslant q}
$$

converges in law to the eigenvalues of $\left(c_{j} M_{j}\right)_{1 \leqslant j \leqslant q}$ with independent matrices $M_{j} \in \operatorname{GOE}\left(k_{j}\right)$ (or $M_{j}+D_{j}$ depending on $\kappa_{4}(\nu)$).

Fluctuations outside the bulk : sketch of proof

Fluctuations outside the bulk : sketch of proof

We have to study, for $\rho_{n}:=\rho_{\alpha}+\frac{x}{\sqrt{n}}$,

$$
M_{i, j}^{n}(\alpha, x):=\quad\left(G_{i, j}^{n}\left(\rho_{n}\right)-\frac{1}{\alpha} 1_{i=j}\right)
$$

Fluctuations outside the bulk : sketch of proof

We have to study, for $\rho_{n}:=\rho_{\alpha}+\frac{x}{\sqrt{n}}$,

$$
M_{i, j}^{n}(\alpha, x):=\sqrt{n}\left(G_{i, j}^{n}\left(\rho_{n}\right)-\frac{1}{\alpha} 1_{i=j}\right)
$$

Fluctuations outside the bulk : sketch of proof

We have to study, for $\rho_{n}:=\rho_{\alpha}+\frac{x}{\sqrt{n}}$,

$$
M_{i, j}^{n}(\alpha, x):=\sqrt{n}\left(G_{i, j}^{n}\left(\rho_{n}\right)-\frac{1}{\alpha} 1_{i=j}\right)=: M_{i, j}^{n, 1}(x)
$$

where

$$
M_{i, j}^{n, 1}(x):=\sqrt{n}\left(\left\langle G_{i}^{n},\left(\rho_{n}-X_{n}\right)^{-1} G_{j}^{n}\right\rangle-1_{i=j} \frac{1}{n} \operatorname{tr}\left(\left(\rho_{n}-X_{n}\right)^{-1}\right)\right),
$$

Fluctuations outside the bulk : sketch of proof

We have to study, for $\rho_{n}:=\rho_{\alpha}+\frac{x}{\sqrt{n}}$,

$$
M_{i, j}^{n}(\alpha, x):=\sqrt{n}\left(G_{i, j}^{n}\left(\rho_{n}\right)-\frac{1}{\alpha} 1_{i=j}\right)=: M_{i, j}^{n, 1}(x)+M_{i, j}^{n, 2}(x)
$$

where

$$
\begin{aligned}
M_{i, j}^{n, 1}(x) & :=\sqrt{n}\left(\left\langle G_{i}^{n},\left(\rho_{n}-X_{n}\right)^{-1} G_{j}^{n}\right\rangle-1_{i=j} \frac{1}{n} \operatorname{tr}\left(\left(\rho_{n}-X_{n}\right)^{-1}\right)\right), \\
M_{i, j}^{n, 2}(x) & :=1_{i=j} \sqrt{n}\left(\frac{1}{n} \operatorname{tr}\left(\left(\rho_{n}-X_{n}\right)^{-1}\right)-\frac{1}{n} \operatorname{tr}\left(\left(\rho_{\alpha}-X_{n}\right)^{-1}\right)\right),
\end{aligned}
$$

Fluctuations outside the bulk : sketch of proof

We have to study, for $\rho_{n}:=\rho_{\alpha}+\frac{x}{\sqrt{n}}$,

$$
M_{i, j}^{n}(\alpha, x):=\sqrt{n}\left(G_{i, j}^{n}\left(\rho_{n}\right)-\frac{1}{\alpha} 1_{i=j}\right)=: M_{i, j}^{n, 1}(x)+M_{i, j}^{n, 2}(x)+M_{i, j}^{n, 3}(x)
$$

where

$$
\begin{aligned}
M_{i, j}^{n, 1}(x) & :=\sqrt{n}\left(\left\langle G_{i}^{n},\left(\rho_{n}-X_{n}\right)^{-1} G_{j}^{n}\right\rangle-1_{i=j} \frac{1}{n} \operatorname{tr}\left(\left(\rho_{n}-X_{n}\right)^{-1}\right)\right), \\
M_{i, j}^{n, 2}(x) & :=1_{i=j} \sqrt{n}\left(\frac{1}{n} \operatorname{tr}\left(\left(\rho_{n}-X_{n}\right)^{-1}\right)-\frac{1}{n} \operatorname{tr}\left(\left(\rho_{\alpha}-X_{n}\right)^{-1}\right)\right), \\
M_{i, j}^{n, 3}(x) & \left.:=1_{i=j} \sqrt{n}\left(\frac{1}{n} \operatorname{tr}\left(\left(\rho_{\alpha}-X_{n}\right)^{-1}\right)\right)-G_{\mu_{x}}\left(\rho_{\alpha}\right)\right) .
\end{aligned}
$$

Non universality of the fluctuations near the bulk

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical,

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_{n} converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_{n}, for any $\varepsilon>0$.

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_{n} converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_{n}, for any $\varepsilon>0$.
Rough explanation: for fixed values of the θ_{i} 's,

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_{n} converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_{n}, for any $\varepsilon>0$.
Rough explanation : for fixed values of the θ_{i} 's, we have a repulsion phenomenon from the eigenvalues of X_{n} at the edge.

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_{n} converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_{n}, for any $\varepsilon>0$.
Rough explanation : for fixed values of the θ_{i} 's, we have a repulsion phenomenon from the eigenvalues of X_{n} at the edge.

- If the repulsion is very strong, the extreme ev of \widetilde{X}_{n} converge away from the bulk.

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical, with overwhelming probability, the eigenvalues of \tilde{X}_{n} converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_{n}, for any $\varepsilon>0$.
Rough explanation : for fixed values of the θ_{i} 's, we have a repulsion phenomenon from the eigenvalues of X_{n} at the edge.

- If the repulsion is very strong, the extreme ev of \widetilde{X}_{n} converge away from the bulk.
- If the repulsion is milder, the extreme ev of \widetilde{X}_{n} stick to the edge of the bulk.

Non universality of the fluctuations near the bulk

Theorem
Under additional hypotheses, if none of the θ_{i} 's is critical, with overwhelming probability, the eigenvalues of \tilde{X}_{n} converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_{n}, for any $\varepsilon>0$.
Rough explanation : for fixed values of the θ_{i} 's, we have a repulsion phenomenon from the eigenvalues of X_{n} at the edge.

- If the repulsion is very strong, the extreme ev of \widetilde{X}_{n} converge away from the bulk.
- If the repulsion is milder, the extreme ev of \widetilde{X}_{n} stick to the edge of the bulk.
- If the repulsion is even milder, the extreme ev of \widetilde{X}_{n} stick to the extreme ev of X_{n} even at the level of fluctuations.

Fluctuations near the bulk : precise statement

Fluctuations near the bulk : precise statement

If none of the θ_{i} 's is critical,

Fluctuations near the bulk : precise statement

If none of the θ_{i} 's is critical, if there exists $m_{n}=O\left(n^{\alpha}\right)$ with $\alpha \in(0,1)$, $\eta, \eta^{\prime}>0$ such that for any $\delta>0$,

$$
\sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{r}-\lambda_{i}\right)^{2}} \leqslant n^{2-\eta}, \quad \sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{r}-\lambda_{i}\right)^{4}} \leqslant n^{4-\eta^{\prime}}
$$

and

$$
\sum_{i=m_{n}+1}^{n} \frac{1}{\lambda_{r}-\lambda_{i}} \leqslant \frac{1}{\bar{\theta}}+\delta
$$

Fluctuations near the bulk : precise statement

If none of the θ_{i} 's is critical, if there exists $m_{n}=O\left(n^{\alpha}\right)$ with $\alpha \in(0,1)$, $\eta, \eta^{\prime}>0$ such that for any $\delta>0$,

$$
\sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{r}-\lambda_{i}\right)^{2}} \leqslant n^{2-\eta}, \quad \sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{r}-\lambda_{i}\right)^{4}} \leqslant n^{4-\eta^{\prime}}
$$

and

$$
\sum_{i=m_{n}+1}^{n} \frac{1}{\lambda_{r}-\lambda_{i}} \leqslant \frac{1}{\bar{\theta}}+\delta
$$

then if I_{b} is the set of indices for which $\rho_{\theta_{i}}=b$, for any $\alpha^{\prime}>\alpha$, with overwhelming probability,

$$
\max _{i \in I_{b}} \min _{k}\left|\widetilde{\lambda}_{i}-\lambda_{k}\right| \leqslant n^{-1+\alpha^{\prime}} .
$$

Fluctuations near the bulk : sketch of proof

Fluctuations near the bulk : sketch of proof

On the set $\Omega_{n}:=\left\{z / \min _{k}\left|z-\lambda_{k}\right|>n^{-1+\alpha^{\prime}}\right\}$,

Fluctuations near the bulk : sketch of proof

On the set $\Omega_{n}:=\left\{z / \min _{k}\left|z-\lambda_{k}\right|>n^{-1+\alpha^{\prime}}\right\}$, for $i \neq j$, there is $k>0$, so that

$$
\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}\right| \leqslant n^{-\kappa}
$$

with overwhelming probability.

Fluctuations near the bulk : sketch of proof

On the set $\Omega_{n}:=\left\{z / \min _{k}\left|z-\lambda_{k}\right|>n^{-1+\alpha^{\prime}}\right\}$, for $i \neq j$, there is $k>0$, so that

$$
\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}\right| \leqslant n^{-\kappa}
$$

with overwhelming probability.
Therefore

$$
f_{n}(z)=\prod_{i=1}^{r}\left(G_{i, i}^{n}-\frac{1}{\theta_{i}}\right)+O\left(n^{-\kappa}\right)
$$

Fluctuations near the bulk : sketch of proof

On the set $\Omega_{n}:=\left\{z / \min _{k}\left|z-\lambda_{k}\right|>n^{-1+\alpha^{\prime}}\right\}$, for $i \neq j$, there is $k>0$, so that

$$
\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}\right| \leqslant n^{-\kappa}
$$

with overwhelming probability.
Therefore

$$
f_{n}(z)=\prod_{i=1}^{r}\left(G_{i, i}^{n}-\frac{1}{\theta_{i}}\right)+O\left(n^{-\kappa}\right)
$$

but with overwhelming probability,

$$
\sup _{z \in \Omega_{n}} \max _{1 \leqslant i \leqslant r} G_{i, i}^{n} \leqslant \frac{1}{\bar{\theta}}+\delta
$$

Fluctuations near the bulk : sketch of proof

On the set $\Omega_{n}:=\left\{z / \min _{k}\left|z-\lambda_{k}\right|>n^{-1+\alpha^{\prime}}\right\}$, for $i \neq j$, there is $k>0$, so that

$$
\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}\right| \leqslant n^{-\kappa}
$$

with overwhelming probability.
Therefore

$$
f_{n}(z)=\prod_{i=1}^{r}\left(G_{i, i}^{n}-\frac{1}{\theta_{i}}\right)+O\left(n^{-\kappa}\right)
$$

but with overwhelming probability,

$$
\sup _{z \in \Omega_{n}} \max _{1 \leqslant i \leqslant r} G_{i, i}^{n} \leqslant \frac{1}{\bar{\theta}}+\delta
$$

so that

$$
G_{i, i}^{n}-\frac{1}{\theta_{i}} \leqslant \frac{1}{\bar{\theta}}-\frac{1}{\theta_{i}}+\delta<0 .
$$

Possible generalisations

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Consequences :

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Consequences :

- Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Consequences :

- Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Consequences :

- Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral
- GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Consequences :

- Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral
- GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

Our perturbation has delocalized eigenvectors.

Possible generalisations

If the hypotheses hold in probability and X_{n} is independent of the perturbation, the theorems still hold.

Consequences :

- Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral
- GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

Our perturbation has delocalized eigenvectors.
Open question : fluctuations for critical θ_{i} 's.

Large deviation principle

Large deviation principle

Consider the following model : X_{n} diagonal, deterministic, satisfying (H1).

Large deviation principle

Consider the following model : X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)

Large deviation principle

Consider the following model : X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i}

Large deviation principle

Consider the following model : X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i} and U_{i}^{n} obtained by orthonormalization.

Large deviation principle

Consider the following model : X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i} and U_{i}^{n} obtained by orthonormalization.

In the iid case, f_{n} depends polynomially on the entries of $K^{n}(z)$ with

$$
\left(K^{n}(z)\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} \frac{g_{i}(k) g_{j}(k)}{z-\lambda_{k}}
$$

Large deviation principle

Consider the following model :
X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i} and U_{i}^{n} obtained by orthonormalization.

We can find H^{n} having the same zeroes as f_{n} and depending polynomially on the entries of $K^{n}(z)$ and C^{n}

$$
\left(K^{n}(z)\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} \frac{g_{i}(k) g_{j}(k)}{z-\lambda_{k}} \quad \text { and } \quad\left(C^{n}\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} g_{i}(k) g_{j}(k)
$$

Large deviation principle

Consider the following model :
X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i} and U_{i}^{n} obtained by orthonormalization.

We can find H^{n} having the same zeroes as f_{n} and depending polynomially on the entries of $K^{n}(z)$ and C^{n}

$$
\left(K^{n}(z)\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} \frac{g_{i}(k) g_{j}(k)}{z-\lambda_{k}} \quad \text { and } \quad\left(C^{n}\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} g_{i}(k) g_{j}(k) .
$$

Theorem
The law of the r_{0} largest eigenvalues of \widetilde{X}_{n} satisfies a LDP in the scale n with a good rate function.

Large deviation principle

Consider the following model :
X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i} and U_{i}^{n} obtained by orthonormalization.

We can find H^{n} having the same zeroes as f_{n} and depending polynomially on the entries of $K^{n}(z)$ and C^{n}

$$
\left(K^{n}(z)\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} \frac{g_{i}(k) g_{j}(k)}{z-\lambda_{k}} \quad \text { and } \quad\left(C^{n}\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} g_{i}(k) g_{j}(k)
$$

Theorem
The law of the r_{0} largest eigenvalues of \widetilde{X}_{n} satisfies a LDP in the scale n with a good rate function. It has a unique minimizer towards which we have almost sure convergence.

Large deviation principle

Consider the following model :
X_{n} diagonal, deterministic, satisfying ($H 1$).
$G=\left(g_{1}, \ldots, g_{r}\right)$ a random vector satisfying that $\mathbb{E}\left(e^{\alpha \sum\left|g_{i}^{2}\right|}\right)<\infty$ for some $\alpha>0$ (and not charging an hyperplane)
G_{i}^{n} random vector whose entries are $1 / \sqrt{n}$ times independent copies of g_{i} and U_{i}^{n} obtained by orthonormalization.

We can find H^{n} having the same zeroes as f_{n} and depending polynomially on the entries of $K^{n}(z)$ and C^{n}

$$
\left(K^{n}(z)\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} \frac{g_{i}(k) g_{j}(k)}{z-\lambda_{k}} \quad \text { and } \quad\left(C^{n}\right)_{i j}:=\frac{1}{n} \sum_{k=1}^{n} g_{i}(k) g_{j}(k) .
$$

Theorem
The law of the r_{0} largest eigenvalues of \widetilde{X}_{n} satisfies a LDP in the scale n with a good rate function. It has a unique minimizer towards which we have almost sure convergence.
Remark : minimizers depend on G only through its covariance matrix.

Large deviation principle : sketch of proof I

Large deviation principle : sketch of proof I

Starting point :

$$
H^{n}(z)=P_{\Theta}\left(K^{n}(z), C^{n}\right)
$$

Large deviation principle : sketch of proof I

Starting point :

$$
H^{n}(z)=P_{\Theta}\left(K^{n}(z), C^{n}\right)
$$

First step : fix \mathcal{K} a compact interval contained in (b, ∞), the law of ($\left.K^{n}(z), C^{n}\right)$ on $\mathcal{C}\left(\mathcal{K}, H_{r}\right) \times H_{r}$ equipped with the uniform topology satisfies an LDP

Large deviation principle : sketch of proof I

Starting point :

$$
H^{n}(z)=P_{\Theta}\left(K^{n}(z), C^{n}\right)
$$

First step : fix \mathcal{K} a compact interval contained in (b, ∞), the law of ($\left.K^{n}(z), C^{n}\right)$ on $\mathcal{C}\left(\mathcal{K}, H_{r}\right) \times H_{r}$ equipped with the uniform topology satisfies an LDP with good rate function
$\mathbf{I}(K(), C)=.\sup _{P, X, Y}\left\{\operatorname{Tr}\left(\int K^{\prime}(z) P(z) d z+K\left(z^{*}\right) X+C Y\right)-\Gamma(P, Y, X)\right\}$
where $\Gamma(P, Y, X)$ is given by the formula

$$
\Gamma(P, Y, X)=\int \Lambda\left(-\int \frac{1}{(z-x)^{2}} P(z) d z+\frac{1}{z^{*}-x} X+Y\right) d \mu X(x)
$$

and the supremum is taken over piecewise constant functions P with values in H_{r} and X, Y in H_{r}.

Large deviation principle : sketch of proof II

Large deviation principle : sketch of proof II

By contraction, the law of H^{n} satisfies an LDP with good rate function, for a continuousf,

$$
J_{\mathcal{K}}(f)=\inf \left\{\mathbf{I}(F): F \in \mathcal{C}\left(\mathcal{K}, H_{r}\right) \times H_{r}, P_{\Theta}(F(z))=f(z), \forall z \in \mathcal{K}\right\} .
$$

Large deviation principle : sketch of proof II

By contraction, the law of H^{n} satisfies an LDP with good rate function, for a continuousf,

$$
J_{\mathcal{K}}(f)=\inf \left\{\mathbf{I}(F): F \in \mathcal{C}\left(\mathcal{K}, H_{r}\right) \times H_{r}, P_{\Theta}(F(z))=f(z), \forall z \in \mathcal{K}\right\} .
$$

Theorem
The law of $\widetilde{\lambda}_{1}^{(n)}, \ldots, \widetilde{\lambda}_{m}^{(n)}$ of \widetilde{X}_{n} satisfies a LDP with good rate function L, defined for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m}$, by
$L(\alpha)=\left\{\begin{array}{lc}\lim _{\varepsilon \downarrow 0} \inf _{\cup_{\gamma>0} S_{\left(\alpha_{1}, \ldots, \alpha_{m-k}\right), \gamma}^{\varepsilon}} J_{K_{\varepsilon}} & \text { if } \alpha \in \mathbb{R}_{\downarrow}^{m}(b), \alpha_{m-k+1}=b \text { and } \\ +\infty & \alpha_{m-k}>b, \\ \text { otherwise. }\end{array}\right.$

Large deviation principle : sketch of proof II

By contraction, the law of H^{n} satisfies an LDP with good rate function, for a continuousf,

$$
J_{\mathcal{K}}(f)=\inf \left\{\mathbf{I}(F): F \in \mathcal{C}\left(\mathcal{K}, H_{r}\right) \times H_{r}, P_{\Theta}(F(z))=f(z), \forall z \in \mathcal{K}\right\} .
$$

Theorem

The law of $\widetilde{\lambda}_{1}^{(n)}, \ldots, \widetilde{\lambda}_{m}^{(n)}$ of \widetilde{X}_{n} satisfies a LDP with good rate function L, defined for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m}$, by
$L(\alpha)=\left\{\begin{array}{lc}\lim _{\varepsilon \downarrow 0} \inf _{\cup_{\gamma>0} S_{\left(\alpha_{1}, \ldots, \alpha_{m-k}\right), \gamma}^{\varepsilon}} J_{K_{\varepsilon}} & \text { if } \alpha \in \mathbb{R}_{\downarrow}^{m}(b), \alpha_{m-k+1}=b \text { and } \\ +\infty & \alpha_{m-k}>b, \\ \text { otherwise. }\end{array}\right.$
with

$$
S_{\alpha, \gamma}^{\varepsilon}:=\left\{f \in \mathcal{C}\left(K_{\varepsilon}\right): f(z)=s \cdot g(z) \prod_{i=1}^{m-k}\left(z-\alpha_{i}\right) \text { with } g \geqslant \gamma\right\}
$$

Study of the minimizers

Study of the minimizers

L good rate function, vanishes at minimizers $\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)$. Let k be such that $\lambda_{m-k}^{*}>b$ and $\lambda_{m-k+1}^{*}=b$. By compacity, one can find f vanishing at $\left(\lambda_{1}^{*}, \ldots, \lambda_{m-k}^{*}\right)$ such that $J_{K_{\varepsilon}}(f)=0$ for any $\varepsilon>0$. It also means that $f(z)=P_{\Theta}(K, C)$, with (K, C) minimizing \mathbf{I}.

Study of the minimizers

L good rate function, vanishes at minimizers $\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)$. Let k be such that $\lambda_{m-k}^{*}>b$ and $\lambda_{m-k+1}^{*}=b$. By compacity, one can find f vanishing at $\left(\lambda_{1}^{*}, \ldots, \lambda_{m-k}^{*}\right)$ such that $J_{K_{\varepsilon}}(f)=0$ for any $\varepsilon>0$. It also means that $f(z)=P_{\Theta}(K, C)$, with (K, C) minimizing \mathbf{I}.

$$
\begin{aligned}
& \left\lvert\, \mathbb{E}\left(e^{\varepsilon \operatorname{Tr}\left(-\int \frac{1}{(z-x)^{2}} P(z) z+\frac{1}{z^{*}-x} x+Y\right) z}\right)\right. \\
- & \left.\mathbb{E}\left(1+\varepsilon \operatorname{Tr}\left(\left(-\int \frac{1}{(z-x)^{2}} P(z) d z+\frac{1}{z^{*}-x} X+Y\right) Z\right)\right) \right\rvert\, \leqslant \varepsilon^{2} L,
\end{aligned}
$$

Study of the minimizers

L good rate function, vanishes at minimizers $\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)$. Let k be such that $\lambda_{m-k}^{*}>b$ and $\lambda_{m-k+1}^{*}=b$. By compacity, one can find f vanishing at $\left(\lambda_{1}^{*}, \ldots, \lambda_{m-k}^{*}\right)$ such that $J_{K_{\varepsilon}}(f)=0$ for any $\varepsilon>0$. It also means that $f(z)=P_{\Theta}(K, C)$, with (K, C) minimizing \mathbf{I}.

$$
\begin{aligned}
& \left\lvert\, \mathbb{E}\left(e^{\varepsilon \operatorname{Tr}\left(-\int \frac{1}{(z-x)^{2}} P(z) z+\frac{1}{z^{*}-x} x+Y\right) z}\right)\right. \\
- & \left.\mathbb{E}\left(1+\varepsilon \operatorname{Tr}\left(\left(-\int \frac{1}{(z-x)^{2}} P(z) d z+\frac{1}{z^{*}-x} X+Y\right) z\right)\right) \right\rvert\, \leqslant \varepsilon^{2} L
\end{aligned}
$$

so that

$$
\Gamma(\varepsilon P, \varepsilon X, \varepsilon Y)=\varepsilon \operatorname{Tr}\left(\int\left(K^{*}\right)^{\prime}(z) P(z) d z+K^{*}\left(z^{*}\right) X+C^{*} Y\right)+O\left(\varepsilon^{2}\right)
$$

with

$$
\left(K^{*}(z)\right)_{i j}=\int \frac{\left(C^{*}\right)_{i j}}{z-\lambda} d \mu_{X}(\lambda) \quad \text { and } \quad\left(C^{*}\right)_{i j}=\mathbb{E}\left[g_{i} g_{j}\right]
$$

Study of the minimizers ：last remark

Study of the minimizers : last remark

In the case when $\left(g_{1}, \ldots, g_{r}\right)$ are independent centered variables with variance one, one can check that $C^{*}=I_{r}, K^{*}(z)=\int \frac{1}{z-x} \mu_{X}(x) . I_{r}$ and

$$
H(z)=\prod_{i=1}^{r}\left(\frac{1}{\theta_{i}}-\int \frac{1}{z-x} \mu_{X}(x)\right)
$$

