More about extreme eigenvalues of perturbed random matrices

F. Benaych-Georges – A. Guionnet – M. Maïda

LPMA, Univ Paris 6 - UMPA, ENS Lyon - LM Orsay, Univ Paris-Sud

Conference on Random Matrices – ANR GranMa Chevaleret - June 2010

・ の 2 の 、 手 、 手 、 人 目 、 人 目 、

2

】 う A C ・ 重 ・ 重 ・ (重 + 《 国 + 《 ロ +

- Presentation of the models
- Recall on almost sure convergence

2

→ シック・目: 《日》《日》 《日》 《日》

- Presentation of the models
- Recall on almost sure convergence
- Fluctuations far from the bulk

→ シック・ 声 〈 声 〉 〈 声 〉 〈 雨 〉 〈 □ 〉

- Presentation of the models
- Recall on almost sure convergence
- Fluctuations far from the bulk
- Fluctuations near the bulk

-うとの 団 〈田〉〈田〉〈田〉〈日〉

- Presentation of the models
- Recall on almost sure convergence
- Fluctuations far from the bulk
- Fluctuations near the bulk
- Large deviation principle

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

$$(H1) \quad \frac{1}{n}\sum_{i=1}^n \delta_{\lambda_i} \longrightarrow \mu_X,$$

with μ_X compactly supported,

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

$$(H1) \quad \frac{1}{n}\sum_{i=1}^{n}\delta_{\lambda_{i}}\longrightarrow \mu_{X}, \lambda_{1}^{n}\longrightarrow a, \lambda_{n}^{n}\longrightarrow b$$

with μ_X compactly supported, with edges of support *a* and *b*.

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

$$(H1) \quad \frac{1}{n}\sum_{i=1}^{n}\delta_{\lambda_{i}}\longrightarrow \mu_{X}, \lambda_{1}^{n}\longrightarrow a, \lambda_{n}^{n}\longrightarrow b$$

with μ_X compactly supported, with edges of support *a* and *b*.

 R_n finite rank perturbation

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

$$(H1) \quad \frac{1}{n}\sum_{i=1}^{n}\delta_{\lambda_{i}}\longrightarrow \mu_{X}, \lambda_{1}^{n}\longrightarrow a, \lambda_{n}^{n}\longrightarrow b$$

with μ_X compactly supported, with edges of support *a* and *b*.

 R_n finite rank perturbation

$$\widetilde{X_n} = X_n + R_n = X_n + \sum_{j=1}^r \theta_j G_j^n (G_j^n)^*,$$

with $\sqrt{n}G_i^n$ vectors with iid entries with law ν satisfying log-Sobolev

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

$$(H1) \quad \frac{1}{n}\sum_{i=1}^{n}\delta_{\lambda_{i}}\longrightarrow \mu_{X}, \lambda_{1}^{n}\longrightarrow a, \lambda_{n}^{n}\longrightarrow b$$

with μ_X compactly supported, with edges of support *a* and *b*.

 R_n finite rank perturbation

$$\widetilde{X_n} = X_n + R_n = X_n + \sum_{j=1}^r \theta_j U_i^n (U_i^n)^*,$$

) シック・ゴー ヘボマ ヘボマ A ロマ

with $\sqrt{n}G_i^n$ vectors with iid entries with law ν satisfying log-Sobolev (or U_i^n orthonormalized version of the vectors G_i^n)

 X_n deterministic self-adjoint with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$

$$(H1) \quad \frac{1}{n}\sum_{i=1}^{n}\delta_{\lambda_{i}}\longrightarrow \mu_{X}, \lambda_{1}^{n}\longrightarrow a, \lambda_{n}^{n}\longrightarrow b$$

with μ_X compactly supported, with edges of support *a* and *b*.

 R_n finite rank perturbation

$$\widetilde{X_n} = X_n + R_n = X_n + \sum_{j=1}^r \theta_j U_i^n (U_i^n)^*,$$

with $\sqrt{n}G_i^n$ vectors with iid entries with law ν satisfying log-Sobolev (or U_i^n orthonormalized version of the vectors G_i^n) and

$$\theta_1 \geqslant \cdots \geqslant \theta_{r_0} > 0 > \theta_{r_0+1} \geqslant \cdots \geqslant \theta_r.$$

「 う ク ク の 「 「 」 (I) 〈 I) 〈 I) 〈 I 」 〉 (I)

Main tool :

$$f_n(z) = det\left(\left[G_{i,j}^n(z)\right]_{i,j=1}^r - diag\left(\theta_1^{-1},\ldots,\theta_r^{-1}\right)\right),$$

with

$$G_{i,j}^n(z) = \langle U_i^n, (z-X_n)^{-1}U_j^n \rangle.$$

4

うりの ほー (ボットボット (中)・ (ロー・

Main tool :

$$f_n(z) = det\left(\left[G_{i,j}^n(z)\right]_{i,j=1}^r - diag\left(\theta_1^{-1},\ldots,\theta_r^{-1}\right)\right),$$

with

$$G_{i,j}^n(z) = \langle U_i^n, (z-X_n)^{-1}U_j^n \rangle.$$

Key point :

$$G_{i,j}^n(z) \longrightarrow \mathbf{1}_{i=j} G_{\mu_X}(z) := \mathbf{1}_{i=j} \int \frac{1}{z-x} d\mu_X(x)$$

4

▼ シック・山 → 山 → 山 → → 山 → → → → → →

Main tool :

$$f_n(z) = det\left(\left[G_{i,j}^n(z)\right]_{i,j=1}^r - diag\left(\theta_1^{-1},\ldots,\theta_r^{-1}\right)\right),$$

with

$$G_{i,j}^n(z) = \langle U_i^n, (z-X_n)^{-1}U_j^n \rangle.$$

Key point :

$$G_{i,j}^n(z) \longrightarrow \mathbf{1}_{i=j} G_{\mu_X}(z) := \mathbf{1}_{i=j} \int \frac{1}{z-x} d\mu_X(x)$$

$$f_n(z) \longrightarrow \prod_{i=1}^r \left(G_{\mu_X}(z) - \frac{1}{ heta_i} \right)$$

+ ・ロン・4回ン・4回ン・4回ン・4回ン・4日ン・4日ン・4日ン・4日ン・4日ン・4日ン・1000

We define

$$ho_{ heta} := egin{cases} G_{\mu_{X}}^{-1}(1/ heta) & ext{if } heta \in (-\infty, \underline{ heta}) \cup (\overline{ heta}, +\infty), \ a & ext{if } heta \in [\underline{ heta}, 0) \ b & ext{if } heta \in (0, \overline{ heta}] \end{cases}$$

5

We define

$$\rho_{\theta} := \begin{cases} G_{\mu_{\chi}}^{-1}(1/\theta) & \text{if } \theta \in (-\infty, \underline{\theta}) \cup (\overline{\theta}, +\infty), \\ \mathsf{a} & \text{if } \theta \in [\underline{\theta}, \mathbf{0}) \\ b & \text{if } \theta \in (\mathbf{0}, \overline{\theta}] \end{cases}$$

and almost sure convergence of the extreme eigenvalues is governed by

Theorem

For all $i \in \{1, \ldots, r_0\}$ we have

$$\widetilde{\lambda}_i^n \xrightarrow{a.s.} \rho_{\theta_i}$$

and for all $i > r_0$,

$$\widetilde{\lambda}_i^n \xrightarrow{a.s.} b.$$

、 シック・ 声 - 《 声 > 《 声 > 《 **一** > ~

6

Let $\alpha_1 > \cdots > \alpha_q > 0$ be the different values of the θ_i 's such that $\rho_{\theta_i} > b$.

U うとの 言 《声》《声》《声》《一》

Let $\alpha_1 > \cdots > \alpha_q > 0$ be the different values of the θ_i 's such that $\rho_{\theta_i} > b$. For each j, let I_j be the set of indices i so that $\theta_i = \alpha_j$. Set $k_j = |I_j|$.

Let $\alpha_1 > \cdots > \alpha_q > 0$ be the different values of the θ_i 's such that $\rho_{\theta_i} > b$. For each j, let I_j be the set of indices i so that $\theta_i = \alpha_j$. Set $k_j = |I_j|$. Theorem The random vector

$$\left(\gamma_i := \sqrt{n} (\widetilde{\lambda}_i^n - \rho_{\theta_i}), i \in I_j\right)_{1 \leq j \leq q}$$

U うどの min with with with with a wit

Let $\alpha_1 > \cdots > \alpha_q > 0$ be the different values of the θ_i 's such that $\rho_{\theta_i} > b$. For each j, let I_j be the set of indices i so that $\theta_i = \alpha_j$. Set $k_j = |I_j|$. Theorem The random vector

$$\left(\gamma_i := \sqrt{n}(\widetilde{\lambda}_i^n - \rho_{\theta_i}), i \in I_j\right)_{1 \leq j \leq q}$$

・ シック・ 単 - 4 単 + 4 単 + 4 ■ + 4 ■ +

converges in law to the eigenvalues of $(c_j M_j)_{1 \leqslant j \leqslant q}$ with independent matrices $M_j \in GOE(k_j)$

Let $\alpha_1 > \cdots > \alpha_q > 0$ be the different values of the θ_i 's such that $\rho_{\theta_i} > b$. For each j, let I_j be the set of indices i so that $\theta_i = \alpha_j$. Set $k_j = |I_j|$. Theorem The random vector

$$\left(\gamma_i := \sqrt{n}(\widetilde{\lambda}_i^n - \rho_{\theta_i}), i \in I_j\right)_{1 \leq j \leq q}$$

converges in law to the eigenvalues of $(c_j M_j)_{1 \leq j \leq q}$ with independent matrices $M_j \in GOE(k_j)$ (or $M_j + D_j$ depending on $\kappa_4(\nu)$).

7 < □ > < @ > < ≧ > < ≧ > < ≧ > < ≧ > < ≥ > < ⊘ < ↔

We have to study, for $\rho_n := \rho_\alpha + \frac{x}{\sqrt{n}}$,

$$M_{i,j}^n(\alpha, x) := \left(G_{i,j}^n(\rho_n) - \frac{1}{\alpha} \mathbf{1}_{i=j}\right)$$

We have to study, for $\rho_n := \rho_\alpha + \frac{x}{\sqrt{n}}$,

$$M_{i,j}^n(\alpha, x) := \sqrt{n} \left(G_{i,j}^n(\rho_n) - \frac{1}{\alpha} \mathbb{1}_{i=j} \right)$$

We have to study, for $\rho_n := \rho_\alpha + \frac{x}{\sqrt{n}}$,

$$M_{i,j}^n(\alpha, x) := \sqrt{n} \left(G_{i,j}^n(\rho_n) - \frac{1}{\alpha} \mathbb{1}_{i=j} \right) =: M_{i,j}^{n,1}(x)$$

where

$$M_{i,j}^{n,1}(x) := \sqrt{n} \left(\langle G_i^n, (\rho_n - X_n)^{-1} G_j^n \rangle - \mathbb{1}_{i=j} \frac{1}{n} tr((\rho_n - X_n)^{-1}) \right),$$

We have to study, for $\rho_n := \rho_\alpha + \frac{x}{\sqrt{n}}$,

$$M_{i,j}^{n}(\alpha, x) := \sqrt{n} \left(G_{i,j}^{n}(\rho_{n}) - \frac{1}{\alpha} \mathbb{1}_{i=j} \right) =: M_{i,j}^{n,1}(x) + M_{i,j}^{n,2}(x)$$

where

$$M_{i,j}^{n,1}(x) := \sqrt{n} \left(\langle G_i^n, (\rho_n - X_n)^{-1} G_j^n \rangle - \mathbb{1}_{i=j} \frac{1}{n} \operatorname{tr}((\rho_n - X_n)^{-1}) \right),$$

$$M_{i,j}^{n,2}(x) := \mathbb{1}_{i=j} \sqrt{n} \left(\frac{1}{n} \operatorname{tr}((\rho_n - X_n)^{-1}) - \frac{1}{n} \operatorname{tr}((\rho_\alpha - X_n)^{-1}) \right),$$

We have to study, for $\rho_n := \rho_\alpha + \frac{x}{\sqrt{n}}$,

$$M_{i,j}^{n}(\alpha, x) := \sqrt{n} \left(G_{i,j}^{n}(\rho_{n}) - \frac{1}{\alpha} \mathbb{1}_{i=j} \right) =: M_{i,j}^{n,1}(x) + M_{i,j}^{n,2}(x) + M_{i,j}^{n,3}(x)$$

where

$$\begin{split} M_{i,j}^{n,1}(x) &:= \sqrt{n} \left(\langle G_i^n, (\rho_n - X_n)^{-1} G_j^n \rangle - \mathbb{1}_{i=j} \frac{1}{n} \mathrm{tr}((\rho_n - X_n)^{-1}) \right), \\ M_{i,j}^{n,2}(x) &:= \mathbb{1}_{i=j} \sqrt{n} \left(\frac{1}{n} \mathrm{tr}((\rho_n - X_n)^{-1}) - \frac{1}{n} \mathrm{tr}((\rho_\alpha - X_n)^{-1}) \right), \\ M_{i,j}^{n,3}(x) &:= \mathbb{1}_{i=j} \sqrt{n} \left(\frac{1}{n} \mathrm{tr}((\rho_\alpha - X_n)^{-1})) - \mathcal{G}_{\mu_X}(\rho_\alpha) \right). \end{split}$$

Non universality of the fluctuations near the bulk

Non universality of the fluctuations near the bulk

Theorem Under additional hypotheses, if none of the θ_i 's is critical,

Theorem

Under additional hypotheses, if none of the θ_i 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_n converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_n , for any $\varepsilon > 0$.

・ロ・・ ●・ ● ●・ ● ●・ ● ●・ ●

Theorem

Under additional hypotheses, if none of the θ_i 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_n converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_n , for any $\varepsilon > 0$.

-・ロ・ 4 昂 + 4 王 + 4 目 - 9 9 9 9

Rough explanation : for fixed values of the θ_i 's,

Theorem

Under additional hypotheses, if none of the θ_i 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_n converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_n , for any $\varepsilon > 0$.

Rough explanation : for fixed values of the θ_i 's, we have a repulsion phenomenon from the eigenvalues of X_n at the edge.

Theorem

Under additional hypotheses, if none of the θ_i 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_n converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_n , for any $\varepsilon > 0$.

Rough explanation : for fixed values of the θ_i 's, we have a repulsion phenomenon from the eigenvalues of X_n at the edge.

• If the repulsion is very strong, the extreme ev of \widetilde{X}_n converge away from the bulk.

Theorem

Under additional hypotheses, if none of the θ_i 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_n converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_n , for any $\varepsilon > 0$.

Rough explanation : for fixed values of the θ_i 's, we have a repulsion phenomenon from the eigenvalues of X_n at the edge.

- If the repulsion is very strong, the extreme ev of \widetilde{X}_n converge away from the bulk.
- If the repulsion is milder, the extreme ev of \widetilde{X}_n stick to the edge of the bulk.

Theorem

Under additional hypotheses, if none of the θ_i 's is critical, with overwhelming probability, the eigenvalues of \widetilde{X}_n converging to a or b are at distance at most $n^{-1+\varepsilon}$ of the extreme eigenvalues of X_n , for any $\varepsilon > 0$.

Rough explanation : for fixed values of the θ_i 's, we have a repulsion phenomenon from the eigenvalues of X_n at the edge.

- If the repulsion is very strong, the extreme ev of \widetilde{X}_n converge away from the bulk.
- If the repulsion is milder, the extreme ev of \widetilde{X}_n stick to the edge of the bulk.
- If the repulsion is even milder, the extreme ev of \tilde{X}_n stick to the extreme ev of X_n even at the level of fluctuations.

If none of the θ_i 's is critical,

If none of the θ_i 's is critical, if there exists $m_n = O(n^{\alpha})$ with $\alpha \in (0, 1)$, $\eta, \eta' > 0$ such that for any $\delta > 0$,

$$\sum_{i=m_n+1}^n \frac{1}{(\lambda_r - \lambda_i)^2} \leqslant n^{2-\eta}, \quad \sum_{i=m_n+1}^n \frac{1}{(\lambda_r - \lambda_i)^4} \leqslant n^{4-\eta'}$$

and

$$\sum_{i=m_n+1}^n \frac{1}{\lambda_r - \lambda_i} \leqslant \frac{1}{\overline{\theta}} + \delta$$

If none of the θ_i 's is critical, if there exists $m_n = O(n^{\alpha})$ with $\alpha \in (0, 1)$, $\eta, \eta' > 0$ such that for any $\delta > 0$,

$$\sum_{i=m_n+1}^n \frac{1}{(\lambda_r - \lambda_i)^2} \leqslant n^{2-\eta}, \quad \sum_{i=m_n+1}^n \frac{1}{(\lambda_r - \lambda_i)^4} \leqslant n^{4-\eta'}$$

and

$$\sum_{i=m_n+1}^n \frac{1}{\lambda_r - \lambda_i} \leqslant \frac{1}{\overline{\theta}} + \delta$$

then if I_b is the set of indices for which $\rho_{\theta_i} = b$, for any $\alpha' > \alpha$, with overwhelming probability,

$$\max_{i\in I_b}\min_k|\widetilde{\lambda}_i-\lambda_k|\leqslant n^{-1+\alpha'}.$$

10 ৰিচাৰ বাটাৰ ইয়াৰ হা তি ও জ

On the set $\Omega_n := \{ z / \min_k | z - \lambda_k | > n^{-1+\alpha'} \},$

On the set $\Omega_n := \{z/\min_k | z - \lambda_k| > n^{-1+\alpha'}\}$, for $i \neq j$, there is k > 0, so that

$$\sup_{z\in\Omega_n}|G_{i,j}^n|\leqslant n^{-\kappa}$$

with overwhelming probability.

On the set $\Omega_n := \{z/\min_k | z - \lambda_k| > n^{-1+\alpha'}\}$, for $i \neq j$, there is k > 0, so that

$$\sup_{z\in\Omega_n}|G_{i,j}^n|\leqslant n^{-\kappa}$$

with overwhelming probability. Therefore

$$f_n(z) = \prod_{i=1}^r \left(G_{i,i}^n - \frac{1}{\theta_i}\right) + O(n^{-\kappa})$$

On the set $\Omega_n := \{z/\min_k | z - \lambda_k| > n^{-1+\alpha'}\}$, for $i \neq j$, there is k > 0, so that

$$\sup_{z\in\Omega_n}|G_{i,j}^n|\leqslant n^{-\kappa}$$

with overwhelming probability. Therefore

$$f_n(z) = \prod_{i=1}^r \left(G_{i,i}^n - \frac{1}{\theta_i} \right) + O(n^{-\kappa})$$

but with overwhelming probability,

$$\sup_{z \in \Omega_n} \max_{1 \leqslant i \leqslant r} G_{i,i}^n \leqslant \frac{1}{\overline{\theta}} + \delta$$

10

On the set $\Omega_n := \{z/\min_k | z - \lambda_k| > n^{-1+\alpha'}\}$, for $i \neq j$, there is k > 0, so that

$$\sup_{z\in\Omega_n}|G_{i,j}^n|\leqslant n^{-\kappa}$$

with overwhelming probability. Therefore

$$f_n(z) = \prod_{i=1}^r \left(G_{i,i}^n - \frac{1}{\theta_i} \right) + O(n^{-\kappa})$$

but with overwhelming probability,

$$\sup_{z\in\Omega_n}\max_{1\leqslant i\leqslant r}G^n_{i,i}\leqslant \frac{1}{\overline{\theta}}+\delta$$

so that

$$G_{i,i}^n - rac{1}{ heta_i} \leqslant rac{1}{\overline{ heta}} - rac{1}{ heta_i} + \delta < 0.$$

10 ▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _ - 의역은

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

Consequences :

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

Consequences :

 Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

Consequences :

Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk Cf Péché, Féral-Péché, Capitaine-Donati-Féral

11

** うりつ 点 《言》《言》《局》《曰》

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

Consequences :

Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk Cf Péché, Féral-Péché, Capitaine-Donati-Féral

► GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

Consequences :

Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk Cf Péché, Féral-Péché, Capitaine-Donati-Féral

11

▶ GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

Our perturbation has delocalized eigenvectors.

If the hypotheses hold in probability and X_n is independent of the perturbation, the theorems still hold.

Consequences :

- Wigner, Wishart matrices with entries having a fourth moment (some band Hermitian matrices, non-white Wishart) : Gaussian fluctuations away from the bulk Cf Péché, Féral-Péché, Capitaine-Donati-Féral
- ▶ GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

Our perturbation has delocalized eigenvectors.

Open question : fluctuations for critical θ_i 's.

12 < ロ ト < 部 ト < 臣 ト < 臣 ト シ ミ ・ りへで

Consider the following model : X_n diagonal, deterministic, satisfying (H1).

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane)

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i

> ▲▲ ♡ 오 · 트 · · 트 · · · 트 · · · · · · · · ·

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i and U_i^n obtained by orthonormalization.

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i and U_i^n obtained by orthonormalization.

In the iid case, f_n depends polynomially on the entries of $K^n(z)$ with

$$(\mathcal{K}^n(z))_{ij} := rac{1}{n} \sum_{k=1}^n rac{g_i(k)g_j(k)}{z - \lambda_k}$$

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i and U_i^n obtained by orthonormalization.

We can find H^n having the same zeroes as f_n and depending polynomially on the entries of $K^n(z)$ and C^n

$$(\mathcal{K}^{n}(z))_{ij} := \frac{1}{n} \sum_{k=1}^{n} \frac{g_{i}(k)g_{j}(k)}{z - \lambda_{k}} \text{ and } (C^{n})_{ij} := \frac{1}{n} \sum_{k=1}^{n} g_{i}(k)g_{j}(k).$$

12 < ロ > < 母 > < 言 > < 言 > 言 の < で

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i and U_i^n obtained by orthonormalization.

We can find H^n having the same zeroes as f_n and depending polynomially on the entries of $K^n(z)$ and C^n

$$(\mathcal{K}^{n}(z))_{ij} := rac{1}{n} \sum_{k=1}^{n} rac{g_{i}(k)g_{j}(k)}{z - \lambda_{k}} \quad ext{and} \quad (C^{n})_{ij} := rac{1}{n} \sum_{k=1}^{n} g_{i}(k)g_{j}(k).$$

Theorem

The law of the r_0 largest eigenvalues of X_n satisfies a LDP in the scale n with a good rate function.

11 うりつ ほ 《日》《日》《日》 《日》

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i and U_i^n obtained by orthonormalization.

We can find H^n having the same zeroes as f_n and depending polynomially on the entries of $K^n(z)$ and C^n

$$(\mathcal{K}^{n}(z))_{ij} := rac{1}{n} \sum_{k=1}^{n} rac{g_{i}(k)g_{j}(k)}{z - \lambda_{k}} \quad ext{and} \quad (C^{n})_{ij} := rac{1}{n} \sum_{k=1}^{n} g_{i}(k)g_{j}(k).$$

Theorem

The law of the r_0 largest eigenvalues of X_n satisfies a LDP in the scale n with a good rate function. It has a unique minimizer towards which we have almost sure convergence.

Consider the following model : X_n diagonal, deterministic, satisfying (H1). $G = (g_1, \ldots, g_r)$ a random vector satisfying that $\mathbb{E}(e^{\alpha \sum |g_i^2|}) < \infty$ for some $\alpha > 0$ (and not charging an hyperplane) G_i^n random vector whose entries are $1/\sqrt{n}$ times independent copies of g_i and U_i^n obtained by orthonormalization.

We can find H^n having the same zeroes as f_n and depending polynomially on the entries of $K^n(z)$ and C^n

$$(\mathcal{K}^{n}(z))_{ij} := rac{1}{n} \sum_{k=1}^{n} rac{g_{i}(k)g_{j}(k)}{z - \lambda_{k}} \quad ext{and} \quad (C^{n})_{ij} := rac{1}{n} \sum_{k=1}^{n} g_{i}(k)g_{j}(k).$$

Theorem

The law of the r_0 largest eigenvalues of X_n satisfies a LDP in the scale n with a good rate function. It has a unique minimizer towards which we have almost sure convergence.

Remark : minimizers depend on G only through its covariance matrix.

Large deviation principle : sketch of proof I

13 ৰিচাং ৰাক্টাং ৰাইচাৰ হা তাওিকে

Large deviation principle : sketch of proof I

Starting point :

$$H^n(z) = P_{\Theta}(K^n(z), C^n)$$
Starting point :

$$H^n(z) = P_{\Theta}(K^n(z), C^n)$$

13

First step : fix \mathcal{K} a compact interval contained in (b, ∞) , the law of $(\mathcal{K}^n(z), \mathcal{C}^n)$ on $\mathcal{C}(\mathcal{K}, \mathcal{H}_r) \times \mathcal{H}_r$ equipped with the uniform topology satisfies an LDP

Starting point :

$$H^n(z) = P_{\Theta}(K^n(z), C^n)$$

First step : fix \mathcal{K} a compact interval contained in (b, ∞) , the law of $(\mathcal{K}^n(z), \mathcal{C}^n)$ on $\mathcal{C}(\mathcal{K}, \mathcal{H}_r) \times \mathcal{H}_r$ equipped with the uniform topology satisfies an LDP with good rate function

$$I(K(.), C) = \sup_{P,X,Y} \left\{ Tr\left(\int K'(z)P(z)dz + K(z^*)X + CY \right) - \Gamma(P, Y, X) \right\}$$

where $\Gamma(P, Y, X)$ is given by the formula

$$\Gamma(P,Y,X) = \int \Lambda\left(-\int \frac{1}{(z-x)^2}P(z)dz + \frac{1}{z^*-x}X + Y\right)d\mu_X(x)$$

and the supremum is taken over piecewise constant functions P with values in H_r and X, Y in H_r .

14 ৰামানাৰ বিলিন্দ হোৱা হা তাও্ও

By contraction, the law of H^n satisfies an LDP with good rate function, for a continuous f,

 $J_{\mathcal{K}}(f) = \inf \{ \mathbf{I}(F) : F \in \mathcal{C}(\mathcal{K}, H_r) \times H_r, P_{\Theta}(F(z)) = f(z), \ \forall z \in \mathcal{K} \}.$

By contraction, the law of H^n satisfies an LDP with good rate function, for a continuous f,

$$J_{\mathcal{K}}(f) = \inf \{ \mathbf{I}(F) : F \in \mathcal{C}(\mathcal{K}, H_r) \times H_r, P_{\Theta}(F(z)) = f(z), \ \forall z \in \mathcal{K} \}.$$

Theorem The law of $\tilde{\lambda}_1^{(n)}, \ldots, \tilde{\lambda}_m^{(n)}$ of \tilde{X}_n satisfies a LDP with good rate function L, defined for $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m$, by

$$L(\alpha) = \begin{cases} \lim_{\varepsilon \downarrow 0} \inf_{\bigcup_{\gamma > 0} S^{\varepsilon}_{(\alpha_1, \dots, \alpha_{m-k}), \gamma}} J_{K_{\varepsilon}} & \text{if } \alpha \in \mathbb{R}^m_{\downarrow}(b), \alpha_{m-k+1} = b \text{ and} \\ \\ \alpha_{m-k} > b, \\ +\infty & \text{otherwise.} \end{cases}$$

14 うりつ ボート (ボッ (ボッ (ロッ

By contraction, the law of H^n satisfies an LDP with good rate function, for a continuous f,

$$J_{\mathcal{K}}(f) = \inf \{ \mathbf{I}(F) : F \in \mathcal{C}(\mathcal{K}, H_r) \times H_r, P_{\Theta}(F(z)) = f(z), \ \forall z \in \mathcal{K} \}.$$

Theorem The law of $\tilde{\lambda}_1^{(n)}, \ldots, \tilde{\lambda}_m^{(n)}$ of \tilde{X}_n satisfies a LDP with good rate function L, defined for $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m$, by

$$\mathcal{L}(\alpha) = \begin{cases} \lim_{\varepsilon \downarrow 0} \inf_{\bigcup_{\gamma > 0} S^{\varepsilon}_{(\alpha_{1}, \dots, \alpha_{m-k}), \gamma}} J_{K_{\varepsilon}} & \text{if } \alpha \in \mathbb{R}^{m}_{\downarrow}(b), \alpha_{m-k+1} = b \text{ and} \\ \\ \alpha_{m-k} > b, \\ +\infty & \text{otherwise.} \end{cases}$$

with

$$S_{\alpha,\gamma}^{\varepsilon} := \left\{ f \in \mathcal{C}(K_{\varepsilon}) : f(z) = s.g(z) \prod_{i=1}^{m-k} (z - \alpha_i) \text{ with } g \ge \gamma \right\},$$

15 ∢□▶∢∄▶∢≣▶∢≣⋗ ≣ ৩৫৫

L good rate function, vanishes at minimizers $(\lambda_1^*, \ldots, \lambda_m^*)$. Let *k* be such that $\lambda_{m-k}^* > b$ and $\lambda_{m-k+1}^* = b$. By compacity, one can find *f* vanishing at $(\lambda_1^*, \ldots, \lambda_{m-k}^*)$ such that $J_{K_{\varepsilon}}(f) = 0$ for any $\varepsilon > 0$. It also means that $f(z) = P_{\Theta}(K, C)$, with (K, C) minimizing **I**.

L good rate function, vanishes at minimizers $(\lambda_1^*, \ldots, \lambda_m^*)$. Let *k* be such that $\lambda_{m-k}^* > b$ and $\lambda_{m-k+1}^* = b$. By compacity, one can find *f* vanishing at $(\lambda_1^*, \ldots, \lambda_{m-k}^*)$ such that $J_{K_{\varepsilon}}(f) = 0$ for any $\varepsilon > 0$. It also means that $f(z) = P_{\Theta}(K, C)$, with (K, C) minimizing **I**.

$$\left| \mathbb{E} \left(e^{\varepsilon \operatorname{Tr} \left(-\int \frac{1}{(z-x)^2} P(z) z + \frac{1}{z^* - x} X + Y \right) Z} \right) - \mathbb{E} \left(1 + \varepsilon \operatorname{Tr} \left(\left(-\int \frac{1}{(z-x)^2} P(z) dz + \frac{1}{z^* - x} X + Y \right) Z \right) \right) \right| \leqslant \varepsilon^2 L,$$

L good rate function, vanishes at minimizers $(\lambda_1^*, \ldots, \lambda_m^*)$. Let k be such that $\lambda_{m-k}^* > b$ and $\lambda_{m-k+1}^* = b$. By compacity, one can find f vanishing at $(\lambda_1^*, \ldots, \lambda_{m-k}^*)$ such that $J_{K_{\varepsilon}}(f) = 0$ for any $\varepsilon > 0$. It also means that $f(z) = P_{\Theta}(K, C)$, with (K, C) minimizing **I**.

$$\left| \mathbb{E} \left(e^{\varepsilon \operatorname{Tr} \left(-\int \frac{1}{(z-x)^2} P(z) z + \frac{1}{z^* - x} X + Y \right) Z} \right) - \mathbb{E} \left(1 + \varepsilon \operatorname{Tr} \left(\left(-\int \frac{1}{(z-x)^2} P(z) dz + \frac{1}{z^* - x} X + Y \right) Z \right) \right) \right| \leq \varepsilon^2 L,$$

so that

$$\Gamma(\varepsilon P, \varepsilon X, \varepsilon Y) = \varepsilon \operatorname{Tr}\left(\int (K^*)'(z)P(z)dz + K^*(z^*)X + C^*Y\right) + O(\varepsilon^2)$$

with

$$(\mathcal{K}^*(z))_{ij} = \int \frac{(C^*)_{ij}}{z - \lambda} d\mu_X(\lambda) \quad \text{and} \quad (C^*)_{ij} = \mathbb{E}[g_i g_j].$$
15

15

Study of the minimizers : last remark

Study of the minimizers : last remark

In the case when (g_1, \ldots, g_r) are independent centered variables with variance one, one can check that $C^* = I_r$, $K^*(z) = \int \frac{1}{z-x} \mu_X(x) \cdot I_r$ and

$$H(z) = \prod_{i=1}^{r} \left(\frac{1}{\theta_i} - \int \frac{1}{z - x} \mu_X(x) \right)$$