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Almost sure convergence of extreme
eigenvalues
We define

G H(1/6) if 6 € (—o0,8) U (8, +00),

X

po =X a if 9 € [0,0)
b if 0 € (0, 0]
and almost sure convergence of the extreme eigenvalues is governed by
Theorem
Forallie{1,... rn} we have

n a.s.
/\7 P6;

and for all i > ry,

AP 2% p,
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Let a3 > - -+ > ag > 0 be the different values of the §;'s such that
po; > b.
For each j, let /; be the set of indices i so that §; = ;. Set k; = |/;|.

Theorem
The random vector

(9 = V¥ = pa), i € 1)

1<j<q

converges in law to the eigenvalues of (c;M;)1<j<q with independent
matrices M; € GOE(k;) (or M; + D; depending on k4(v)).
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We have to study, for p, := po + ﬁ,
n n 1 n n
M7i(a,x) == /n (Gi,j(Pn) - ali—j) =: M,)J’-l(X) + M,-f(x)

where

MEN(x) = <<G,-", (pn = Xa) 1G] = 1"=f%tr((p” - X”)1)> ’
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Fluctuations outside the bulk : sketch of proof
We have to study, for p, := pa + ﬁ,
M0, i= Vi (G (on) = 111 ) = M0 + MZF00) + M3
where
M) = VA (60,0 X)) = it X))
M) = b (Su(on = X))~ Sur(oa = X)) )
M7P(x) = Liyv/n (ztr((pa — X)) - Gﬂx(pa)> :
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Theorem

Under additional hypotheses, if none of the QL'S is critical, with
overwhelming probability, the eigenvalues of X, converging to a or b are
at distance at most n~11¢ of the extreme eigenvalues of X,,, for any
e>0.

Rough explanation : for fixed values of the 6;'s, we have a repulsion
phenomenon from the eigenvalues of X, at the edge.

» If the repulsion is very strong, the extreme ev of )~<,, converge away
from the bulk.

» If the repulsion is milder, the extreme ev of )~<,, stick to the edge of
the bulk.

» If the repulsion is even milder, the extreme ev of )N(,, stick to the
extreme ev of X, even at the level of fluctuations.
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Fluctuations near the bulk : precise statement

If none of the 6;'s is critical, if there exists m, = O(n*) with a € (0,1),

1,1’ > 0 such that for any 6 > 0,

and

then if I, is the set of indices for which py, = b, for any o/ > «a, with

overwhelming probability,
—1+o/.

maxmin|\; — A\¢| < n
i€ly k



Fluctuations near the bulk : sketch of proof

10



Fluctuations near the bulk : sketch of proof

On the set Qn = {z/ mink |Z _ )\k| > n*1+a’},

10



Fluctuations near the bulk : sketch of proof

On the set Q, := {z/miny |z — \¢| > n~1F"}, for i # j, there is k > 0,
so that

sup |G| < n™"

zeQ, |

with overwhelming probability.

10



Fluctuations near the bulk : sketch of proof

On the set Q, := {z/miny |z — \¢| > n~1F"}, for i # j, there is k > 0,
so that
sup |G| < n™"
zeQ,
with overwhelming probability.
Therefore

10



Fluctuations near the bulk : sketch of proof

On the set Q, := {z/miny |z — \¢| > n~1F"}, for i # j, there is k > 0,

so that
sup |G| < n™"
zeQ,

with overwhelming probability.
Therefore
d 1
f,,z = G,'niff +O nil{
=11 (1= )+ 0™
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Fluctuations near the bulk : sketch of proof

On the set Q, := {z/miny |z — \¢| > n~1F"}, for i # j, there is k > 0,
so that

sup |G| < n™"
zeQ, |

with overwhelming probability.

Therefore
. 1
fn(z) = H <G,'r:,' — 9> + O(nil{)

i=1

but with overwhelming probability,

1
sup max G, < =+90
zeQ, ISiSr 7 0
so that
G/ 1 < L +6<0
b S0 i '

10



Possible generalisations

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

Consequences :

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

Consequences :

» Wigner, Wishart matrices with entries having a fourth moment
(some band Hermitian matrices, non-white Wishart) : Gaussian
fluctuations away from the bulk

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

Consequences :

» Wigner, Wishart matrices with entries having a fourth moment
(some band Hermitian matrices, non-white Wishart) : Gaussian
fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

Consequences :

» Wigner, Wishart matrices with entries having a fourth moment
(some band Hermitian matrices, non-white Wishart) : Gaussian
fluctuations away from the bulk

Cf Péché, Féral-Péché, Capitaine-Donati-Féral
» GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

Consequences :

» Wigner, Wishart matrices with entries having a fourth moment
(some band Hermitian matrices, non-white Wishart) : Gaussian
fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral

» GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.

Our perturbation has delocalized eigenvectors.

11



Possible generalisations

If the hypotheses hold in probability and X, is independent of the
perturbation, the theorems still hold.

Consequences :

» Wigner, Wishart matrices with entries having a fourth moment
(some band Hermitian matrices, non-white Wishart) : Gaussian
fluctuations away from the bulk
Cf Péché, Féral-Péché, Capitaine-Donati-Féral

» GUE, GOE, LUE, LOE : inheritance of Tracy-Widom laws.
Our perturbation has delocalized eigenvectors.

Open question : fluctuations for critical 6;'s.
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Consider the following model :

X, diagonal, deterministic, satisfying (H1).

G =(g1,...,g ) a random vector satisfying that E(e® > &) < oo for
some « > 0 (and not charging an hyperplane)

G/ random vector whose entries are 1/1/n times independent copies of g;
and U obtained by orthonormalization.

In the iid case, f, depends polynomially on the entries of K"(z) with

i J k
(K” / Zgz—g)\(k
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Consider the following model :

X, diagonal, deterministic, satisfying (H1).

G =(g1,...,g ) a random vector satisfying that E(e® > &) < oo for
some « > 0 (and not charging an hyperplane)

G/ random vector whose entries are 1/1/n times independent copies of g;
and U obtained by orthonormalization.

We can find H"” having the same zeroes as f,, and depending polynomially
on the entries of K"(z) and C"

(K"(2))j = lzw and (C"); ::%Zg;(k)gj(k).

Theorem -

The law of the ry largest eigenvalues of X,, satisfies a LDP in the scale n
with a good rate function. It has a unique minimizer towards which we
have almost sure convergence.

Remark : minimizers depend on G only through its covariance matrix.
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Large deviation principle : sketch of proof |

Starting point :
H"(z) = Pe(K"(2), C")

First step : fix KL a compact interval contained in (b, o), the law of
(K"(2),C™) on C(K, H,) x H, equipped with the uniform topology
satisfies an LDP with good rate function

I(K(.),C) = sup {Tr (/ K'(2)P(z)dz + K(z*)X + cv) — (P, Y,X)}

P.X,Y

where ['(P, Y, X) is given by the formula

r(p, Y,X)z//\(—/(z_lx)zp(z)d”z -

and the supremum is taken over piecewise constant functions P with
values in H, and X, Y in H,.

xX + Y) dpx(x)

13



Large deviation principle : sketch of proof Il

14



Large deviation principle : sketch of proof Il

By contraction, the law of H” satisfies an LDP with good rate function,
for a continuousf,
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By contraction, the law of H” satisfies an LDP with good rate function,
for a continuousf,

Je(f) =inf{l(F): F € C(K,H,) x H,, Pe(F(z)) = f(z), Yz € K}.
Theorem _

The law ofx(ln), M of X, satisfies a LDP with good rate function L,
defined for o = (a1, ...,am) € R™, by
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By contraction, the law of H” satisfies an LDP with good rate function,
for a continuousf,

Je(f) = inf{I(F) : F € C(K, H,) x H,, Po(F(2)) = f(2), Vz € K}.

Theorem _ N N
The law of \" ... X of X, satisfies a LDP with good rate function L,
defined for o = (a1, ...,am) € R™, by

lime|o infuv>°5(ial,...,am,k),w Jk. ifac RT(b),am,kH = b and
L(OZ) = Om—k > b7
+00 otherwise.

with

m—k
Sy {f €C(K.): f(z) =s.g(2) H(z—a,-) withg}v},
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L good rate function, vanishes at minimizers (A}, ..., As). Let k be such
that Ay, > band A, .., = b. By compacity, one can find f vanishing
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Study of the minimizers

L good rate function, vanishes at minimizers (A}, ..., As). Let k be such
that Ay, > band A, .., = b. By compacity, one can find f vanishing
at ()\{7 .oy A5 ) such that Jk_(f) = 0 for any € > 0. It also means that

' Ym—k

f(z) = Po(K, C), with (K, C) minimizing I.

'E (eeTr(f( 2 P(2)z+ #s X+Y) Z )

-k (1 +eTr ((-/(le)2lv(z)c124r ix-i— Y) z))‘ <L,

so that
MeP,eX,eY)=c¢Tr </(K*)’(Z)P(z)dz + K*(z*)X + C* Y> + 0(€?)
with

M= [ a0y ana (€)= Elag)
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Study of the minimizers : last remark

In the case when (g1, ..., &) are independent centered variables with
variance one, one can check that C* = I,, K*(z) = [ -1 px(x).l, and

He =11 (5 - [ o)
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