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Prelude

Weyl chamber:

Ck = {x ∈ Rk : x1 ≥ x2 ≥ · · · ≥ xk}.

Interlacing: for x ∈ Ck , y ∈ Ck−1 write x � y if

x1 ≥ y1 ≥ x2 ≥ · · · yk−1 ≥ xk .

For x ∈ RN , denote

ΓN(x) = {(Tk ,i)1≤i≤k≤N ∈ RN(N−1)/2 : TN,i = xi , 1 ≤ i ≤ N}

Gelfand-Tsetlin polytope (assuming x ∈ CN ):

GTN(x) = {T ∈ ΓN(x) : x ≡ TN,· � TN−1,· � · · ·T2,· � T1,·}
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Prelude

It is well-known that

Vol(GTN(x)) =

∫
ΓN (x)

N−1∏
k=1

k∏
i=1

1Tk,i≤Tk+1,i 1Tk+1,i+1≤Tk,i

=

(
N−1∏
k=1

k !

)−1

h(x)

where h(x) =
∏

i<j(xi − xj).
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Prelude

Note that
1x≤y = lim

β→∞
exp(−eβ(x−y)) x 6= y

Consider the substitution:

1x≤y ⇐⇒ exp(−ex−y )
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The quantum Toda lattice

The quantum Toda lattice is a quantum integrable system with
Hamitonian given by the Schrödinger operator

H =
N∑

i=1

∂2

∂x2
i
− 2

N−1∑
i=1

exi+1−xi .

It is closely associated with the Lie group GL(N,R).

More generally,
H = ∆a − 2

∑
simpleα

e−α(x).
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Givental’s integral formula

Givental (1997): The eigenfunctions of H are given by

ψν(x) =

∫
ΓN (x)

eFν(T )
N−1∏
k=1

k∏
i=1

dTk ,i ,

where

Fν(T ) =
N∑

k=1

νk

(
k∑

i=1

Tk ,i −
k−1∑
i=1

Tk−1,i

)

−
N−1∑
k=1

k∑
i=1

(
eTk,i−Tk+1,i + eTk+1,i+1−Tk,i

)
.
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Recursive structure

Write H = H(N), ψν = ψ
(N)
ν . Set H(1) = d2/dx2, ψ(1)

λ (x) = eλx .

Define a kernel on RN × R(N−1) by

Q(N)
θ (x , y) = exp

(
θ

(
N∑

i=1

xi −
N−1∑
i=1

yi

)
−

N−1∑
i=1

(
eyi−xi + exi+1−yi

))
;

Q(N)
θ f (x) :=

∫
RN−1

Q(N)
θ (x , y)f (y)dy .

Givental’s formula is equivalent to:

ψ(N)
ν1,...,νN

= Q(N)
νN
ψ(N−1)
ν1,...,νN−1

.
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An intertwining relation

Gerasimov et al (2006):

(H(N) − θ2) ◦Q(N)
θ = Q(N)

θ ◦ H(N−1).

Equivalently,

(H(N)
x − θ2)Q(N)

θ (x , y) = H(N−1)
y Q(N)

θ (x , y).

Combining this with

ψ(N)
ν1,...,νN

= Q(N)
νN
ψ(N−1)
ν1,...,νN−1

yields the eigenvalue equation

H(N)ψ(N)
ν =

(
N∑

i=1

ν2
i

)
ψ(N)
ν .
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Some probability

The Schrödinger operator

1
2

H =
1
2

N∑
i=1

∂2

∂x2
i
−

N−1∑
i=1

exi+1−xi

is the infinitesimal generator of a Brownian motion in RN killed at rate

V (x) =
N−1∑
i=1

exi+1−xi

when it is at position x .
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Some probability

This process can be conditioned to survive forever by a Doob
transform via the (positive) H-harmonic function ψ0.

The conditioned process has infinitesimal generator

L =
1
2
ψ0(x)−1Hψ0(x) =

1
2

∆ +∇ logψ0 · ∇.

Its transition kernel is given by

qt (x , y) =
ψ0(y)

ψ0(x)
pt (x , y),

where pt is the sub-Markov transition kernel associated with H/2.
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Some probability

The intertwining relation becomes

L(N) ◦ K (N) = K (N) ◦ L(N−1),

where K (N) is the Markov kernel/operator

K (N)(x , y) = ψ
(N)
0 (x)−1Q(N)

0 (x , y).

This suggests that we can couple the Markov processes with
generators L(N) and L(N−1).
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The coupled processes

Define a Markov process ((X (t),Y (t)), t ≥ 0) taking values in
RN × R(N−1), as follows.

The process Y evolves as an autonomous Markov process with
generator L(N−1). Let W be standard one-dim. Brownian motion,
independent of Y , and define the evolution of X via the SDEs

dX1 = dY1 + eX2−Y1dt

dX2 = dY2 +
(

eX3−Y2 − eX2−Y1
)

dt

...

dXN−1 = dYN−1 +
(

eXN−YN−1 − eXN−1−YN−2
)

dt

dXN = dW − eXN−YN−1dt .
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The coupled processes

Theorem
Let (X ,Y ) be the above Markov process, started with initial law

λx = δx × K (N)(x , ·).

Then X is a Markov process (in its own filtration) with generator L(N)

started at x. Moreover, for each t ≥ 0, the conditional law of Y (t),
given {X (s), s ≤ t ; X (t) = x}, is given by K (N)(x , ·).
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The coupled processes

Proof.
The intertwining

L(N) ◦ K (N) = K (N) ◦ L(N−1)

extends to
L(N) ◦ K̃ (N) = K̃ (N) ◦ G(N),

where
K̃ (N)(x , (x , y)) = δx × K (N)(x , ·)

and
G(N)

x ,y = L(N−1)
y + I(N)

x ,y

is the generator of the process (X ,Y ).
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A representation theorem

With a bit of extra work, it follows that a certain ‘exponential functional’
TW of a Brownian motion W in RN is Markov with generator L(N).

The first coordinate of TW (t) is given by log Z N
t where

Z N
t =

∫
0=s0<s1<···<sN−1<sN =t

exp

(
N∑

i=1

Wi(si)−Wi(si−1)

)
ds1 . . . dsN−1.

This is the partition function for (1+1)-dimensional directed polymer in
a random environment which was introduced and studied in O’C-Yor
(2001), Moriarty-O’C (2007).
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Definition of T

For i = 1, . . . ,N − 1, and continuous η : (0,∞)→ RN , define

(Tiη)(t) = η(t) +

(
log
∫ t

0
eηi+1(s)−ηi (s)ds

)
(ei − ei+1),

where e1, . . . ,eN denote the standard basis vectors in RN .

The operator T is defined by

T = (T1 ◦ · · · ◦ TN−1) ◦ · · · ◦ (T1 ◦ T2) ◦ T1.

The operators T and Ti are studied extensively in the papers
Biane-Bougerol-O’C (05,09), in a more general setting, where various
Lie-theoretic interpretations are given.
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The case N = 2

When N = 2, the eigenfunctions ψν are given by

ψν(x) = 2 exp
(

1
2

(ν1 + ν2)(x1 + x2)

)
Kν1−ν2

(
2e(x2−x1)/2

)
and we recover the following:

Theorem (Matsumoto-Yor ’99)
Let (Bt , t ≥ 0) be a one-dimensional Brownian motion and

Zt =

∫ t

0
e2Bs−Bt ds.

Then log Z is a diffusion with infinitesimal generator

1
2

d2

dx2 +

(
d
dx

log K0(e−x )

)
d
dx
.
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Connection to random matrices I

Let β > 0, and define

Hβ =
N∑

i=1

∂2

∂x2
i
− 2β2

N−1∑
i=1

eβ(xi+1−xi ),

Lβ =
1
2
ψ0(βx)−1Hβψ0(βx) =

1
2

∆ +∇ logψ0(β·) · ∇.
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Connection to random matrices I

As β →∞,

β−N(N−1)/2ψ0(βx)→

(
N−1∏
k=1

k !

)−1

h(x)

where
h(x) =

∏
1≤i<j≤N

(xi − xj).

Thus,

Lβ →
1
2

h(x)−1∆Ch(x) =
1
2

∆ +∇ log h · ∇

where ∆C is the Dirichlet Laplacian in the Weyl chamber

C = {x ∈ RN : x1 > · · · > xN}.
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Connection to random matrices II

The diffusion with generator L has an entrance law given by

µt (dx) = ψ0(x)ϑt (x)dx , t > 0,

where ϑt is characterized by∫
RN
ψλ(x)ϑt (x)dx = exp

(
1
2

N∑
i=1

λ2
i t

)
, λ ∈ ιRN .

The law of TW (t) is given by µt and

P(log Z N
t ≤ u) = µt ({x ∈ RN : x1 ≤ u}).

Neil O’Connell (Warwick) Probability and the quantum Toda lattice Paris, June 2010 20 / 28



Connection to random matrices II

The fact that this characterizes ϑt follows from the Plancherel theorem
of Semenov-Tian-Shansky (cf. Kharchev-Lebedev) which states that

f 7→
∫

RN
f (x)ψλ(x)dx

is an isometry from L2(RN ,dx) to L2(ιRN , s(λ)dλ), where s(λ) is the
Sklyanin measure defined by

s(λ) =
1

(2πι)NN!

∏
j 6=k

Γ(λj − λk )−1.

In particular,

µt (dx) = ψ0(x)

(∫
ιRN

ψλ(x)e
P

i λ
2
i t/2s(λ)dλ

)
dx .
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Connection to random matrices II

The probability measure on ιRN with density proportional to

exp(
∑

i

λ2
i t/2)s(λ)

can be interpreted (up to factor of ι) as the law, at time 1/t , of the radial
part of a Brownian motion in the symmetric space of positive definite
N × N Hermitian matrices or, equivalently, the law of the eigenvalues,
at time 1/t , of an N × N Hermitian Brownian motion with drift

diag (N − 1,N − 3, . . . ,3− N,1− N).
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The law of the partition function

By Plancherel theorem, the functions λ 7→ ψλ(x), x ∈ RN , are an ONB
for L2(ιRN , s(λ)dλ). This fact, combined with a Mellin-Barnes type
integral formula for ψλ due to Kharchev and Lebedev (1999) yields:

Corollary

The probability density of log Z N
t is given by

pt (a) =

∫
ιRN

∫
sN−1(γ)Q(γ,0)Q(γ, λ)ea(

P
λi−2

P
γi )e

P
λ2

i t/2sN(λ)dγdλ,

where second integral is along vertical lines with <γi < <λj for all i , j ,

sN(λ) =
1

(2πι)NN!

∏
j 6=k

Γ(λj − λk )−1, Q(γ, λ) =
∏
i,j

Γ(λi − γj).
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Hypergroup property

Corollary

For each x , y ∈ RN ,

ψλ(x)

ψ0(x)

ψλ(y)

ψ0(y)
=

∫
RN

ψλ(z)

ψ0(z)
γx ,y (dz)

where γx ,y is a probability measure on RN .

The probability measure γx ,y can be interpreted as the conditional law
of TW (s + t) given TW (s) = x , (T τsW )(t) = y , where 0 < s < t and
τsW (·) = W (s + ·)−W (s).

−→ ‘Tropical’ version of Bessel-Kingman hypergroup.

cf. Biane, Bougerol, O’C (2009).
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Hypergroup property

In the case N = 2 this is equivalent to:

Kν(z)Kν(w) =
1
2

∫ ∞
0

e−
1
2 [t+(z2+w2)/t]Kν

(zw
t

) dt
t
.

(Dixon and Ferrar 1933)
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The wider context

The map W 7→ (TW , . . .) is in fact a variation of the so-called RSK
correspondence, a combinatorial algorithm in the theory of Young
tableaux. It can be thought of as a ‘tropicalization’ of a certain
‘specialization’ of RSK introduced and studied in Bougerol-Jeulin (02),
O’C-Yor (02), Biane-Bougerol-O’C (05,09).

Alternatively, it can be regarded as a specialization of ‘tropical RSK’
(Kirillov ’00, Noumi-Yamada ’04, . . . )

Tropical RSK is closely related to Dodgson’s (who’s he?) condensation
method for computing determinants.
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The wider context

When β →∞ we recover the multidimensional version of Pitman’s
2M − X theorem obtained in Bougerol-Jeulin (02), O’C-Yor (02).

Biane-Bougerol-O’C (05,09): the definition of T extends naturally to the
setting of complex semisimple Lie algebras, but the probabilistic and
intertwining structure in the general case is not yet fully understood.

The quantum Toda lattice has a q-analogue which appears to have a
similar structure, and is an interesting direction for future research. In
the rank 1 case, the q-Hermite polynomials play a central role.
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