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: : Review

Tasep

The Totally Asymmetric Simple Exclusion Process (TASEP) non-reversible interacting

particle system:

Consider a configuration of particles ηt ∈ {0, 1}Z, t ≥ 0 with the following meaning

ηt(i) = 1 : there is a particle at site i at time t;

There is at most one particle at each site (simple).

Given ηo, the dynamics is defined as follows:

Particles can jump to the neighboring right site only (Asymmetric)

provided that the site is empty (exclusion).

Jumps are independent of each other and take place after an exponential waiting time

with mean 1, which is counted from the time instant when the right neighbor site is

empty.
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: : Review

Standard initial conditions

-step initial condition : ηo(i) = 0 if i > 0 and ηo(i) = 1 if i ≤ 0;
-flat initial condition : ηo(i) = 0 if i is odd and ηo(i) = 1 if i is even.

-Invariant measures:

• ηo(i), i ∈ Z i.i.d. Bernoulli with a given density ρ ∈ [0, 1] (translation invariant) known

as equilibrium Tasep

• blocking measure (all sites occupied to the right of some site i)

-two sided initial condition: Bernoulli independent random variables with density ρ− (resp.

ρ+) on Z− (resp. Z+).

What is the large time behavior ?
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: : Review

Some quantities of interest I

The height function

ht(j) =


2Nt +

∑j
i=1(1− 2ηi(t)), for j ≥ 1,

2Nt, for j = 0,

2Nt −
∑0
i=j+1(1− 2ηi(t)), for j ≤ −1,

.

where Nt is the number of particles which jumped from site 0 to site 1 during the

time-span [0, t].

Assign label 0 to the particle sitting at the smallest positive integer site initially. Then use

the ordering · · · < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · . Then xk(t) > xk+1(t)
for all t ≥ 0.

P(∩mk=1{htk(xk − yk) ≥ xk + yk}) = P(∩mk=1{xyk(tk) ≥ xk − yk}).
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: : Review

Some quantities of interest II
Current of particles past an observer moving at speed x

J(xt, t) := ] particles to the left of 0 at t = 0 and to the right of xt at time t

−] particles to the right of 0 at t = 0 and to the left of xt at time t .

Relationship to height function: ht(j) = 2J(j, t) + j.

One fundamental result: for step initial condition.

J(k, t) :=
∑
j>k

ηj(t) > m ≡ particle started at −m has made ≥ m+ k + 1 steps at t.

Theorem Rost (’81) Johansson (’98) For each u ∈ [0, 1),

lim
t→∞

P
(
J([ut], t) ≤ t(1− u2)

4
+

(1− u)2/3

(1 + u)1/3
xt1/3

)
= 1− FGUE(−x),

where FGUE(x) is the GUE Tracy-Widom distribution.
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: : Review

Equilibrium Tasep

For equilibrium Tasep : product (Bernoulli (ρ)) as initial condition

Theorem LLN and CLT (Ferrari-Fontes (94))

lim
t→∞

J(xt, t)
t

= ρ(1− ρ)− xρ;
J(xt, t)− EJ(xt, t)√

t

d→ N (0, ρ(1− ρ)|1− 2ρ− x|) .

A critical velocity: x = 1− 2ρ.

Coming soon: Ferrari-Spohn (2005)

If x = 1− 2ρ fluctuations are in the order of Or(t1/3).
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: :

Connections and translation to a Last

Passage Percolation problem
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: : Connections

Queues

Suppose that there are infinitely many servers with FIFO policy:

• the service time of customers at each server i.i.d. Exp(1).

• once a customer is served at the server i, she joins at the (i+ 1)th queue.

System in equilibrium with parameter ρ: the arrival process at each queue is independent

Poisson process of rate ρ. Then (Burke) the departure process at each queue is also

independent Poisson process of rate ρ.

Consider a fixed time t = 0 and arbitrary select one customer: assign label 0 to that

customer and the queue where she is the 0th queue. We assign labels to the other

customers so that the labels decreases for the customers ahead in the queues.
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: : Connections

Equilibrium Tasep and queues
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Figure 1: Queues in tandem in equilibrium. The black dots represents the customers and

at every white dots one changes to the next counter.

Let Qj(t) denote the label of the queue in which the jth customer is in at time t. Then

xj(t) = Qj(t)− j.

Call also Ej(i) be the time the jth customer exits the queue i, then we find that

P(∩mk=1{Eyk(xk − 1) ≤ tk}) = P(∩mk=1{Qyk(tk) ≥ xk}) = P(∩mk=1{xyk(tk) ≥ xk − yk}).
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: : Connections

Last passage percolation
At each site (i, j) ∈ N2, a random variable wij is attached. The wij’s are independent

(waiting time) not necessarily identically distributed.

An up-right path π from (0, 0) to (x, y) ∈ N2 is a sequence of points

(πk ∈ Z2, k = 0, . . . , x+ y), with π0 = (0, 0) and πx+y = (x, y), and satisfying

πk+1 − πk ∈ {(1, 0), (0, 1)}.
Set L(π) =

∑
(i,j)∈π wi,j. Then, the last passage time is defined by

G(x, y) = max
π:(0,0)→(x,y)

L(π).
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Figure 2: An upright path.
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: : Connections

Equilibrium Tasep and LPP

Let wi,j, i, j ≥ 0, i, j ∈ Z, be independent random variables with

w0,0 = 0,
w0,j ∼ exponential with mean 1/ρ, j ≥ 1,
wi,0 ∼ exponential with mean 1/(1− ρ), i ≥ 1,
wi,j ∼ exponential with mean 1, i, j ≥ 1.
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Exp (1/  )

Associated last passage time : G(x, y) = maxπ:(0,0)→(x,y)L(π).

Equilibrium Tasep: initial configuration ηo is the Bernoulli ρ product measure.

If xk, yk →∞,

lim P(∩mk=1{xyk(tk) ≥ xk − yk}) = lim P(∩mk=1{G(xk, yk) ≤ tk}).
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: : Connections

Explanation: two sided boundary condition

Assume that ηo is the product measure of Bernoulli with parameter ρ± on Z±.
Theorem Praehofer-Spohn (2001)

Let ζ+ (resp. ζ−) be geometric random variables with parameter 1− ρ+ (resp. ρ−). The

{w(i, j), (i, j) ∈ N2} are independent:

w(i, j) is exponential with mean 1,∀i, j ≥ 1, w(0, 0) = 0,
w(j, 0) = 0, ∀0 ≤ j ≤ ζ+, w(0, j) = 0, ∀0 ≤ j ≤ ζ−,
w(j, 0) is exponential with mean (1− ρ+)−1, j > ζ+,

w(0, j) is exponential with mean (ρ−)−1, j > ζ−.

Define Ĝ(x, y) to be the last passage time to (x, y) in this LPP model. Then,

P(∩mk=1{xyk(tk) ≥ xk − yk}) = P(∩mk=1{Ĝ(xk, yk) ≤ tk}).
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: :

Multipoint fluctuation results for LPP and

then Tasep
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: : Fluctuations

LPP Away from the critical direction

A crucial role is played by the critical direction (which corresponds to the characteristic

line of TASEP),
y

x
= γc =

ρ2

(1− ρ)2
.

Along a direction other than the critical direction, the fluctuations of G(x, y) are Gaussian

on the N1/2 scale: “competition” of two one source models.

Define Q(a, b) = G((a, b), (x, y)) to be the passage time from (a, b) to (x, y). Then

G(x, y) = max{Q(0, 1), Q(1, 0)}.

Q(0, 1) cannot “see” the first line thus one source model: LPP with exponential r.v. with

mean 1 except on the first column only.

Q(0, 1) has the same distribution as the largest eigenvalue of a well-chosen Wishart

random matrix.
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: : Fluctuations

Gaussian fluctuations

Assume that γ > γc and set x =
γ

1 + γ
N, y =

1
1 + γ

N, and

c1 =
γ

1 + γ
(
1
ρ

+
1

γ(1− ρ)
), c′1 =

γ

1 + γ
(1 +

1√
γ

)2.

Theorem Baik-GBA-Peche (2005) If γ > γc, there exist constants c2, c
′
2 such that

lim
N→∞

P(Q(1, 0) ≤ c1N + c2sN
1/2) =

1√
2π

∫ s

−∞
dx e−x

2/2 ≡ Φ(s),

lim
N→∞

P(Q(0, 1) ≤ c′1N + c′2sN
2/3) = FGUE(s), Tracy-Widom.

As c′1 < c1 we get that
lim
N→∞

P(G(x, y) ≤ c1N + c2sN
1/2) = Φ(s).
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: : Fluctuations

Away from the critical direction
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: : Fluctuations

Multipoint limiting distribution at equilibrium
Theorem Ferrari-Spohn (2005) Baik-Ferrari-Peche (2010). Set χ := ρ(1− ρ).

x(τ) =

⌊
(1− ρ)2T + τ

2T
2
3χ

4
3

1− 2χ

⌋
y(τ) =

⌊
ρ2T − τ 2T

2
3χ

4
3

1− 2χ

⌋
,

`(τ, s) = T − τ 2(1− 2ρ)χ
1
3

1− 2χ
T

2
3 + s

T
1
3

χ
1
3

.

Then given m ∈ N and real numbers τ1 < τ2 < . . . < τm and s1, . . . , sm,

lim
T→∞

P

(
m⋂
k=1

{G(x(τk), y(τk)) ≤ `(τk, sk)}
)

=
m∑
k=1

∂

∂sk

(
gm(τ, s) det

(
1− PsK̂AiPs

)
L2({1,...,m}×R)

)
,

where L2({1, . . . ,m} × R) is equipped with the standard measure ν ⊗ dx where ν is the
counting measure on {1, . . . .m}. Ps denotes the projection operator Ps(k, x) = 1[x>sk],
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: : Fluctuations

and K̂Ai is the so-called extended Airy kernel with shifted entries defined by the kernel

bKAi((i, x), (j, y)) := [ bKAi]i,j(x, y) =

8>><>>:
Z ∞
0

dλAi(x+ λ+ τ
2
i )Ai(y + λ+ τ

2
j )e
−λ(τj−τi), if τi ≤ τj,

−
Z 0

−∞
dλAi(x+ λ+ τ

2
i )Ai(y + λ+ τ

2
j )e
−λ(τj−τi), if τi > τj.

The function gm(τ, s) is defined by

gm(τ, s) = R+ 〈ρPsΦ, PsΨ〉 = R+
mX
i=1

mX
j=1

Z ∞
si

dx

Z ∞
sj

dyΨj(y)ρj,i(y, x)Φi(x), where

R = s1 + e
−2

3τ
3
1

Z ∞
s1

dx

Z ∞
0

dy Ai(x+ y + τ
2
1 )e
−τ1(x+y)

,

Ψj(y) = e
2
3τ

3
j+τjy −

Z ∞
0

dxAi(x+ y + τ
2
j )e
−τjx,

Φi(x) = e
−2

3τ
3
1

Z ∞
0

dλ

Z ∞
s1

dy e
−λ(τ1−τi)e−τ1yAi(x+ τ

2
i + λ)Ai(y + τ

2
1 + λ)

+ 1[i≥2]
e
−2

3τ
3
i −τixp

4π(τi − τ1)

Z s1−x

−∞
dy e
− y2

4(τi−τ1) −
Z ∞
0

dy Ai(y + x+ τ
2
i )e

τiy.

for i, j = 1, 2, . . . ,m, where Ai denotes the Airy function and ρ := (1− Ps bKAiPs)
−1, ρj,i(y, x) := ρ((j, y), (i, x)),
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: : Fluctuations

Translation to Tasep

Consider the scaling

J(τ) = b(1− 2ρ)T + 2τχ1/3T 2/3c,
H(τ) = b(1− 2χ)T + 2τ(1− 2ρ)χ1/3T 2/3 − 2sχ2/3T 1/3c.

Fix m ∈ N. For real numbers τ1 < τ2 < . . . < τm and s1, . . . , sm. Then,

lim
T→∞

P

(
m⋂
k=1

{hT (J(τk)) ≥ H(τk)}
)

=
m∑
k=1

∂

∂sk

(
gm(τ, s) det

(
1− PsK̂AiPs

))
.

SP - 02/06/10 - 19 -



: : Proof

Some ideas of the proof

We first consider a slightly different directed percolation model.

w̃0,0 ∼ Exp(1/(a+ b)),
w̃i,0 ∼ Exp(1/(1/2 + b)), i ≥ 1,
w̃0,j ∼ Exp(1/(1/2 + a)), j ≥ 1,
w̃i,j ∼ Exp(1), i, j ≥ 1,

(1)

where the parameters a and b satisfy

a, b ∈ (−1/2, 1/2), a+ b > 0. (2)

We call G+(a, b) the associated last passage time.

We would like to choose a = ρ− 1/2 and b = 1/2− ρ. Problem at the the origin!

But the process is determinantal...
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: : Proof

Ideas of the proof II

More general version of directed percolation model: wij independent exponential random

variables with mean
1

πi + π̃j
.

There are two “cuts” along which we obtain determinantal random point processes:

-the cut x+ y = N (the one used in the proof, initial idea of Praehofer-Spohn),

-the cut x constant: Consider an infinite array

A(N) = (Aij), 1 ≤ i ≤ N, j ≥ 1

where the Aij are independent complex Gaussian random variables which are centered

and of variance :

1/(πi + π̃j).

Define A(N,n) to be the matrix obtained by considering the first n columns from A.

Theorem Borodin-Peche (2008) DiekerWarren (2009)

The largest eigenvalue process induced by M(n) := A(N,n)A(N,n)∗ and the process of

last passage times G(N,n), n ≥ 1 in the LPP model have the same distribution.
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: : Proof

Ideas of the proof III

Let G+
a,b(x, y) (resp. Ga,b(x, y)) be the last passage time from (0, 0) to (x, y) for the

modified (resp. initial) model. Note that the original model corresponds to the case

where a+ b = 0 and w̃0,0 = 0.

(1) Shift argument: for a, b ∈ (−1/2, 1/2) with a+ b > 0, we have that

P

(
m⋂
k=1

{Ga,b(xk, yk) ≤ uk}
)

=

(
1 +

1
a+ b

m∑
k=1

∂

∂uk

)
P

(
m⋂
k=1

{G+
a,b(xk, yk) ≤ uk}

)
.

(2) Analytic continuation: find an expression for Ga,b which can be analytically

continued in all a, b ∈ (−1/2, 1/2).

(3) Choice of parameter: finally we set a = ρ− 1/2 and b = 1/2− ρ.

(4) Asymptotic analysis : saddle point.
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: : Proof

Extension to points not aligned

The points (x(τ), y(τ)) are on the line x+ y = (1− 2χ)T . We can extend to results to

points which are not necessarily on the same line. This is a difficulty in principle: we have

determinantal formulae only for points “really aligned”.

We use slow-decorrelation: let ν ∈ [0, 1). If we compare the last passage time G at two

points (x, y) and (x′, y′) with (x′− x, y′− y) = θT ν · ((1− ρ)2, ρ2), their fluctuation will

be θT ν + Or(T ν/3).

Then the multipoint fluctuation theorem is unchanged with

x(τ, θ) =

⌊
(1− ρ)2(T + θT ν) + τ

2T
2
3χ

4
3

1− 2χ

⌋
y(τ, θ) =

⌊
ρ2(T + θT ν)− τ 2T

2
3χ

4
3

1− 2χ

⌋
,

`(τ, s, θ) = T + θT ν − τ 2(1− 2ρ)χ
1
3

1− 2χ
T

2
3 + s

T
1
3

χ
1
3

.
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: : Proof

Slow decorrelation

Theorem Ferrari-Spohn (2005)

Let A = (c1T, c2T ) for some c1, c2 > 0. Let then B = A+ r((1− ρ)2, ρ2) with r ∼ T ν

with 0 < ν < 1. Then, for any β ∈ (ν/3, 1
3), limT→∞ P

(|G(B)−G(A)− r| ≤ T β) = 1.

In other words:

L
N

T

x

y

Critical line

ν

Figure 3: The black dots are Or(T ν) for some ν < 1 away from the line LN . Then,

fluctuations of the passage time at the locations of the black dots are, on the T 1/3 scale,

the same as the one of their projection to LN along the critical direction, the white dots.
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: : Extensions

Extension to two-sided boundary conditions

Tasep Initial condition: Bernoulli ρ± on Z± or equivalently LPP with 2 sources.

Theorem Corwin-GBA(2009): limiting one point fluctuation for the LPP with two sources

(and corresponding result for Tasep).

G

G

G
2

F
1

F
1 1

F
0

1− ρ
+

ρ −

Figure 4: Limiting distribution for G(x, y) when y/x→ 1.

Multipoint limiting fluctuation in Corwin-Ferrari-Peche (2010)
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: : Extensions

Fluctuations for Tasep

(a) (b)

ξ

ξξ

ξ

̺(ξ, 1)̺(ξ, 1)

ρ−

ρ− ρ+

ρ+

hma(ξ) hma(ξ)

ξ−

ξ−

ξ+

ξ+

ξs

ξs

B
B B′

B′

A2

ABM→2 A2→BM

The asymptotic density ̺ and the limit shape in the cases (a) ρ− > ρ+

and (b) ρ− < ρ+. Transitions happen at ξ± = 1 − 2ρ± and shockwave at
ξs = 1− (ρ− + ρ+).

(a) ρ− > ρ+. The asymptotic density decreases linearly from 1 − ρ− to 1 − ρ+ over the region from

(1− 2ρ−)t to (1− 2ρ+)t (rarefaction fan). In this region the height fluctuations live on a t1/3 scale and

are governed by the Airy2 process. Around positions (1 − 2ρ±)t there is a transition process from Airy2

to Brownian Motion. To the left and right of the rarefaction fan, they are governed by Brownian Motion.

(b) ρ− < ρ+. For large t there is a macroscopic shock with density jump from ρ− to ρ+ around the

position (1− ρ− − ρ+)t The fluctuations on the left and on the right of the shock are independent.
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