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Numerical Experiment

e (G = Gaussian random matrix

— G = randn(n,n) or G = sign(randn(n,n))
G+ G
V2n

- P, =0uv

o X, =

— w is a fixed, non-random unit norm vector

Question: Largest eigenvalue? Corresponding eigenvector? Variation with 67




0.3
0.25
0.2
0.15
0.1
0.05

o 0

Experiment: One realization

w
S R
Y S S S

=4, n = 500

e Bulk obeys semi-circle law on [—2, 2]

e lLargest eig. =~ 4.2




Experiment: Eigenvalue phase transition
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Clear phase transition @ & = 1 with increasing n
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Experiment: Eigenvector phase transition
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e \Wannabe phase transition & = 1 with increasing n
e Norm-square of projection of largest (perturbed) eigenvector onto v,




Theory
Theorem: Consider )?n = X, + Ouu’

1
-~ a.s. 9 _, 9 ].

2, otherwise

1
a.s 1 —-— ’ 9>1
’<ﬂ17u>|2 —> < 92)

0, otherwise

e FEigenvalue result first due to Peche (2006), Peche-Feral (2007)
e Eigenvector result new

e FEigenvalues and eigenvectors are biased




Experiment 2

e (G = Gaussian random matrix

— G = randn(n,m) or G = sign(randn(n,m))

xeles
- m

e X, =+VI+ P, X, J/T+P,

— w is arbitrary unit norm vector

o X,

— P, = 0w is signal covariance matrix
— X,, models a noise-only sample covariance matrix
— Motivated by additive linear models in statistics

Question: Largest eigenvalue? Corresponding eigenvector? Variation with 67




Theory
Theorem: Consider X, = /I + P, X, /I + P,

< s (9+1)<1+§>, 0> \/c

)\1 —
(1 + /¢)?, otherwise
6> — ¢
~ a.s. P —— 0 >
[ (T, w)|* == € 0%+ 6 Ve
0, otherwise

e Eigenvalue result due to Baik-Ben Arous-Peche (2005), Baik-Silverstein (2006)
e Eigenvector result first due to Paul (2007) and others since then

e FEigenvalues and eigenvectors are biased
e O ~SNR, c =limn/m




Main message

Question that motivated this work:

e How does limit depend on the random matrix and perturbative model?

Answer we provide in this talk:

e Problem solved in great generality with very transparent proof

e Closed form expressions for location of phase transition
— Limit = f(noise eigen-spectrum, perturbative model)

e "Spiked” free probability
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Why study the phase transition?

Idea that signals lie in a low dimensional subspace relative to noise
Eigen-analysis based dimensionality reduction exploit this fact
Efficient algorithms exist (SVD and their fast variants)

When PCA works well: (near)-optimality + strong performance guarantees

Engineering motivation: When will PCA fail? Can it made better?

Massive data sets, “large p small n" type problems make this important
Phase transitions provide basis for comparing within-class and out-of-class algorithms

Analogous to breakdown-point work in sparse approximation theory (Donoho,
Stodden, Tanner)
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Definitions and assumptions

Spectral measure: Eigenvalues of X, are A1, ..., An:

1"
'LLX”:;;(S/\i

Assumptions:

L. M Xy ﬁ) 12%.¢
2. supp px compactly supported on |a, b]
3. max(eig) = to b
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Perturbative model |

o~

Xn — Zf:l quzu; + Xn

Assumptions:

e X, is symmetric, unitarily invariant random matrix with n real eigenvalues
01,...,0, >0
X, = QAQ' where Q is a Haar distributed unitary (or orthogonal) matrix

U is a non-random orthogonal or unitary matrix (independent of Q)

Ui, ..., ur are the k columns of U




Phase transition of largest eigenvalues

Theorem [Benaych-Georges and N.]: As n — oo,

G, (1/6;) if1/0; < Gu(bT),

b otherwise,

(X)) =2 {

e Critical threshold depends explicitly on spectral measure of “noise”

Cauchy transform of u:

1
G.(z) = /Edu(y) for z € supp pux.
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Phase transition of eigenvectors

Theorem [Benaych-Georges and N.]: As n — oo, for 6 > 6.

1
0:G,(p)

(Wi, ker(6;1, — P,)) ==

(ﬂi, @j;&i ker(HjIn — Pn)> i) 0,

o p= G;l(l/Qi) is the corresponding eigenvalue limit

Theorem: As n — oo, for 6 < 6.:

(Wi, ker(0;I, — P,)) == 0

e Assumption of eigenvalue repulsion required
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The result graphically

b

(a) Eigenvalue: 8 > 0

(b) Eigenvector: 6 > 0O¢
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The result graphically

(c) Eigenvalue: 6 < 6¢
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(d) Eigenvector: 0 < O¢
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Perturbative model 11l

Xn = (Zf:l Oiuiu; + 1) X,

Equivalently (via a similarity transformation)

Assumptions:

X, is symmetric, unitarily invariant random matrix with n real eigenvalues
01,...,0, >0

X, = QAQ' where Q is a Haar distributed unitary (or orthogonal) matrix
U is a non-random orthogonal or unitary matrix (independent of X))

Ui, ..., ur are the k columns of U
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Phase transition of largest eigenvalues

Theorem [Benaych-Georges and N.]: As n — oo,

T,'(1/6;) if1/6; < T,(b"),

b otherwise,

i (X)) =2 {

e Critical threshold depends explicitly on spectral measure of “noise”

T-transform of u:

t
T,(2) = [ —dux(®)  forz ¢ supp .
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Phase transition of eigenvectors

Theorem [Benaych-Georges and N.]: As n — oo, for 8 > 6.:

~ . . 2 a.s. 1

a.s.

<’l7,z', EBJ;gz ker(QjIn — Pn)> — 0,

e p— Tgl(l/Qi) is the corresponding eigenvalue limit

Theorem: As n — oo, for 6 < 6.:

(Wi, ker(0;1, — P,)) == 0

e Assumption of eigenvalue repulsion required
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Perturbative model 111

k

1=1

Assumptions:

X, is n X m bi-unitarily invariant random matrix (n < m) with n singular values
01,...,0, >0

X, = QAW' where Q and W are Haar distributed unitary (or orthogonal) matrices
U and V are non-random unitary matrices (independent of Q and W)

U1, ..., ur and vy, ..., v are k columns of U and V'
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Phase transition of largest singular values

Theorem [Benaych-Georges and N.]: As n — oo,

D, (c,1/67) it 1/67 < Dyy(c,b"),

b otherwise,

oi(Xn) =2 {

e Critical threshold depends explicitly on spectral measure of “noise”

D-transform of u:

Dyy(ers) = | [ oppan®]:|e [ opdu + 22| for= ¢ supp s,
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Phase transition of singular vectors

Theorem: As n,m — oo, n/m — ¢, for 6 < 0.

(w;, ker (21, — P, P*))2 2% _—2Pux(0)

4

02282DMX (C,p) ’

(vi, ker (071, — P*P,))? ==

—2¢ (P)
2 )
002Dy x (c,p)

e Here p = D, (c,1/6}) is the limit of 6;

o ix =cux + (1 —c)dpand p,(z) = fﬁd,u(t)

Theorem: As n, m — oo, for 0 < 0..:

(s, ker(0;1, — P,P)) == 0

(v, ker(0;1,, — P/ P,)) —> 0
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Phase transition of eigenvalues

~

Theorem: As n — 0o, X,, = Zle O;uiu; + X

Ai(Xn) =5 {bGﬂl(l/@i) if 1/0, < G.(b"),

otherwise,

e Critical threshold depends explicitly on spectral measure of “noise”

Cauchy transform of u:

1
G.(z) = /Ed,u(y) for z € supp pux.
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Eigenvalue Proof Step 1 - Master Equation derivation
Consider X = X + Ouu’.

Fact: z £ A(X) is an eigenvalue of X if and only if:

e 1 is an eigenvalue of (zI — X) *uu/’
e This is equivalent to requiring u'(2] — X) 'uf =1
o Assuming X = QAQ’ and letting v = Q’u gives us

Master (Secular) equation: Eigenvalues z of X satisfy
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Proof Step 1 - Master Equation derivation

Consider X = X + OQuu’.

Fact: z # A(X) is an eigenvalue of X if and only if:

o Jul® 1
Zz—)\z_g

1=1

Define weighted measure p,, = Y., |v5|*8, then:

Gun(z) = 1/6

Cauchy transform of u:

Gu(z) = /ﬁdu(y) for z € CT \ R.
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Eigenvalues of X: Graphically

e Eigenvalues of X satisfy G, (2) =1/6
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Proof Step 2: “Smoothing” due to randomization

Master (Secular) equation: Eigenvalues z of X satisfy

Gpn(z) = 1/0

e Weighted measure p, = > ., |vi|25,\k
Argument:

e Recall that Q is isotropically random and v = Q'
e —> v is uniformly distributed on the sphere
e = |vi|? & 1/n with high probability for large n
o iy 2 wand G, (2) =2 Gu(z)

~ -1
e =z~ G, (1/0)
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Origin of Phase transition: Largest eigenvalue when 6 > 6.

When 1/6 < Gy (b), M(X) = p = G, L ($).

31



Origin of Phase transition: Largest eigenvalue when 6 < 6.

QN e m— o —

When 1/0 > G, (b), A\i(X) — b.
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Eigenvector Proof Step 1 - Master Equation derivation

Consider X = X + Ouu/.

Fact: If z # A(X) is an eigenvalue of X then:

e (X + Ouu’)u = zu for eigenvector u

e This is equivalent to requiring (21 — X)u = 6(u'u)u

e Note that u'% is a scalar so above is exact expression for eigenvector!

o Assuming X = QAQ’ and letting v = Q’u gives us

Master (Secular) equation: Eigenvector w with eigenvalue z % A(X) given by

Q(zI — AN) v
VU'(zI — A)~2v

~

u =

33



Proof Step 1 - Master equation derivation

Consider X = X + Quu’.

Fact: Eigenvector w with eigenvalue z £ A(X) given by:

Q(zI — AN) v
VU'(zI — A)~2v

~

u =

Projection of eigenvector: (Recall v = Q'u)

(@, u)|”

C(W(I-A)TW)? G (2)

vzl — A2 G, (z)
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Proof Step 2 - “Smoothing” due to randomization

Projection of eigenvector:

(@ = WEL=N YT GL()
’ v'(zl — N)~2v G, (z)

Argument:

e Recall that @ is isotropically random and v = Q'u
e —> v is uniformly distributed on the sphere

o = |v;|? & 1/n with high probability for large n
o tp — pwand G, (2) = G(z)

o = (T, u)|]* = Gi(z)/G;(z)




Origin of Phase transition: Largest eigenvalue when 6 > 6.

o = [(T,u)|* =

When 1/6 < G,y (b), M(X) = p = G, L ($).

G2 (p)
Gl (p)

1

02@G

1.(p)
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Origin of Phase transition: Largest eigenvalue when 6 < 6.

When 1/6 > G, (b), A\i(X) — b.

G2 (p)
G, (p)

o = (T, u)|? = — o — 0, if G (b7) — oo

602G/, (b)
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Connection with free probability theory
Recall for X, = X + P

Theorem: As n — oo,

G,H1/0;) if1/6; < Gu(bT),

b otherwise,

(X)) =2 {

° G;l(-) related to the non-commutative analogue of the log-Fourier transform

Cauchy transform of u:

Gu(z) = /ﬁdu(y) for z € CT\ R.




Extensions

max(eig(X+P)) v/
max(eig(X(I4+P))) v
max(svd(X+P)) v/

min(.) v/

bulk(.) v/

Randomized compressions v
Haar-like perturbations v/

“Concentrated” random perturbations (any application?)
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Main message

e Closed form expressions for the phase transition
— Limit explicitly dependent on:
* Noise eigen-spectrum
x Perturbative model via appropriate integral transform

e Broad generality of result

— Well-beyond Wigner, Wishart, Jacobi models in literature
— Permits unified treatment

e "Spiked” free probability

http://arxiv.org/abs/0910.2120
Joint work with Florent Benaych-Georges
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