Phase transitions in the eigenvalues & eigenvectors of perturbed random matrices

Raj Rao Nadakuditi

Dept. of Electrical Engg. & Computer Science http://www.eecs.umich.edu/~rajnrao

Joint work with Florent Benaych-Georges

Numerical Experiment

- G = Gaussian random matrix
 G = randn(n,n) or G = sign(randn(n,n))
- $\bullet \ X_n = \frac{G + G'}{\sqrt{2n}}$
- $\bullet \ \widetilde{X}_n = X_n + P_n$
 - $-P_n=\theta u u'$
 - -u is a fixed, non-random unit norm vector

Question: Largest eigenvalue? Corresponding eigenvector? Variation with θ ?

Experiment: One realization

- $\theta = 4$, n = 500
- ullet Bulk obeys semi-circle law on [-2,2]
- \bullet Largest eig. pprox 4.2

Experiment: Eigenvalue phase transition

ullet Clear phase transition 0 $\theta=1$ with increasing n

Experiment: Eigenvector phase transition

- ullet Wannabe phase transition heta=1 with increasing n
- ullet Norm-square of projection of largest (perturbed) eigenvector onto v_n

Theory

Theorem: Consider $\widetilde{X}_n = X_n + \theta u u'$

$$\widetilde{\lambda}_1 \xrightarrow{\text{a.s.}} \begin{cases} \theta + \frac{1}{\theta}, & \theta > 1 \\ 2, & \text{otherwise} \end{cases}$$

$$|\langle \widetilde{u}_1, u \rangle|^2 \xrightarrow{\text{a.s.}} \begin{cases} \left(1 - \frac{1}{\theta^2}\right), & \theta > 1\\ 0, & \text{otherwise} \end{cases}$$

- Eigenvalue result first due to Peche (2006), Peche-Feral (2007)
- Eigenvector result new
- Eigenvalues and eigenvectors are biased

Experiment 2

- \bullet G = Gaussian random matrix
 - G = randn(n,m) or G = sign(randn(n,m))
- $\bullet \ X_n = \frac{GG'}{m}$
- $\bullet \ \widetilde{X}_n = \sqrt{I + P_n} X_n \sqrt{I + P_n}$
 - -u is arbitrary unit norm vector
 - $-P_n=\theta \ u \ u'$ is signal covariance matrix
 - X_n models a noise-only sample covariance matrix
 - Motivated by additive linear models in statistics

Question: Largest eigenvalue? Corresponding eigenvector? Variation with θ ?

Theory

Theorem: Consider $\widetilde{X}_n = \sqrt{I + P_n} X_n \sqrt{I + P_n}$

$$\widetilde{\lambda}_1 \xrightarrow{\text{a.s.}} \begin{cases} (\theta+1)\left(1+\frac{c}{\theta}\right), & \theta > \sqrt{c} \\ (1+\sqrt{c})^2, & \text{otherwise} \end{cases}$$

$$|\langle \widetilde{u}_1, u \rangle|^2 \xrightarrow{\text{a.s.}} \begin{cases} \frac{\theta^2 - c}{\theta^2 + c \, \theta}, & \theta > \sqrt{c} \\ 0, & \text{otherwise} \end{cases}$$

- Eigenvalue result due to Baik-Ben Arous-Peche (2005), Baik-Silverstein (2006)
- Eigenvector result first due to Paul (2007) and others since then
- Eigenvalues and eigenvectors are biased
- $\theta \sim \text{SNR}, c = \lim n/m$

Main message

Question that motivated this work:

• How does limit depend on the random matrix and perturbative model?

Answer we provide in this talk:

- Problem solved in great generality with very transparent proof
- Closed form expressions for location of phase transition
 - Limit = f(noise eigen-spectrum, perturbative model)
- "Spiked" free probability

Outline

- Why study the Phase transition?
- Analytical expressions for the phase transition
- Sketch of the proof
- Discussion

Why study the phase transition?

- Idea that signals lie in a low dimensional subspace relative to noise
- Eigen-analysis based dimensionality reduction exploit this fact
- Efficient algorithms exist (SVD and their fast variants)
- When PCA works well: (near)-optimality + strong performance guarantees

Engineering motivation: When will PCA fail? Can it made better?

- Massive data sets, "large p small n" type problems make this important
- Phase transitions provide basis for comparing within-class and out-of-class algorithms
- Analogous to breakdown-point work in sparse approximation theory (Donoho, Stodden, Tanner)

Outline

- Why study the Phase transition?
- Analytical expressions for the Phase transition <=
- Sketch of the proof
- Discussion

Definitions and assumptions

Spectral measure: Eigenvalues of X_n are $\lambda_1, \ldots, \lambda_n$:

$$\mu_{X_n} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$$

Assumptions:

- 1. $\mu_{X_n} \xrightarrow{\text{a.s.}} \mu_X$
- 2. $\operatorname{supp} \mu_X$ compactly supported on [a,b]
- 3. $\max(\text{eig}) \xrightarrow{\text{a.s.}} \text{to } b$

Perturbative model I

$$\widetilde{X}_n = \sum_{i=1}^k \theta_i u_i u_i' + X_n$$

Assumptions:

- ullet X_n is symmetric, unitarily invariant random matrix with n real eigenvalues
- $\theta_1, \ldots, \theta_k > 0$
- ullet $X_n = Q\Lambda Q'$ where Q is a Haar distributed unitary (or orthogonal) matrix
- \bullet U is a non-random orthogonal or unitary matrix (independent of Q)
- u_1, \ldots, u_k are the k columns of U

Phase transition of largest eigenvalues

<u>Theorem</u> [Benaych-Georges and N.]: As $n \longrightarrow \infty$,

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} \begin{cases} G_{\mu}^{-1}(1/\theta_i) & \text{if } 1/\theta_i < G_{\mu}(b^+), \\ b & \text{otherwise,} \end{cases}$$

• Critical threshold depends explicitly on spectral measure of "noise"

Cauchy transform of μ :

$$G_{\mu}(z) = \int \frac{1}{z - y} d\mu(y) \quad \text{for } z \notin \text{supp } \mu_X.$$

Phase transition of eigenvectors

<u>Theorem</u> [Benaych-Georges and N.]: As $n \longrightarrow \infty$, for $\theta > \theta_c$:

$$\left\langle \widetilde{u}_i, \ker(\theta_i I_n - P_n) \right\rangle \xrightarrow{\text{a.s.}} -\frac{1}{\theta_i^2 G'_{\mu}(\rho)}$$

$$\langle \widetilde{u}_i, \oplus_{j \neq i} \ker(\theta_j I_n - P_n) \rangle \xrightarrow{\text{a.s.}} 0,$$

ullet $ho = G_{\mu}^{-1}(1/ heta_i)$ is the corresponding eigenvalue limit

Theorem: As $n \longrightarrow \infty$, for $\theta \le \theta_c$:

$$\langle \widetilde{u}_i, \ker(\theta_i I_n - P_n) \rangle \xrightarrow{\text{a.s.}} 0$$

Assumption of eigenvalue repulsion required

The result graphically

(a) Eigenvalue: $\theta > \theta_C$

(b) Eigenvector: $\theta > \theta_C$

The result graphically

(c) Eigenvalue: $\theta \leq \theta_C$

(d) Eigenvector: $\theta \leq \theta_{C}$

Perturbative model II

$$\widetilde{X}_n = (\sum_{i=1}^k \theta_i u_i u_i' + I) X_n$$

Equivalently (via a similarity transformation)

$$\widetilde{X}_n = \sqrt{\sum_{i=1}^k \theta_i u_i u_i' + I} X_n \sqrt{\sum_{i=1}^k \theta_i u_i u_i' + I}$$

Assumptions:

- ullet X_n is symmetric, unitarily invariant random matrix with n real eigenvalues
- \bullet $\theta_1,\ldots,\theta_k>0$
- $X_n = Q\Lambda Q'$ where Q is a Haar distributed unitary (or orthogonal) matrix
- ullet U is a non-random orthogonal or unitary matrix (independent of X)
- ullet u_1,\ldots,u_k are the k columns of U

Phase transition of largest eigenvalues

<u>Theorem</u> [Benaych-Georges and N.]: As $n \longrightarrow \infty$,

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} \begin{cases} T_{\mu}^{-1}(1/\theta_i) & \text{if } 1/\theta_i < T_{\mu}(b^+), \\ b & \text{otherwise,} \end{cases}$$

Critical threshold depends explicitly on spectral measure of "noise"

T-transform of μ :

$$T_{\mu}(z) = \int \frac{t}{z-t} d\mu_X(t)$$
 for $z \notin \operatorname{supp} \mu_X$,

Phase transition of eigenvectors

Theorem [Benaych-Georges and N.]: As $n \longrightarrow \infty$, for $\theta > \theta_c$:

$$\langle \widetilde{u}_i, \ker(\theta_i I_n - P_n) \rangle^2 \xrightarrow{\text{a.s.}} \frac{-1}{\theta_i^2 \rho T'_{\mu_X}(\rho) + \theta_i},$$

$$\langle \widetilde{u}_i, \bigoplus_{j \neq i} \ker(\theta_j I_n - P_n) \rangle \xrightarrow{\text{a.s.}} 0,$$

ullet $ho = T_{\mu}^{-1}(1/ heta_i)$ is the corresponding eigenvalue limit

Theorem: As $n \longrightarrow \infty$, for $\theta \le \theta_c$:

$$\langle \widetilde{u}_i, \ker(\theta_i I_n - P_n) \rangle \xrightarrow{\text{a.s.}} 0$$

• Assumption of eigenvalue repulsion required

Perturbative model III

$$\widetilde{X}_n = \sum_{i=1}^k \theta_i u_i v_i' + X_n$$

Assumptions:

- X_n is $n \times m$ bi-unitarily invariant random matrix $(n \leq m)$ with n singular values
- \bullet $\theta_1,\ldots,\theta_k>0$
- ullet $X_n = Q\Lambda W'$ where Q and W are Haar distributed unitary (or orthogonal) matrices
- ullet U and V are non-random unitary matrices (independent of Q and W)
- ullet u_1,\ldots,u_k and v_1,\ldots,v_k are k columns of U and V

Phase transition of largest singular values

<u>Theorem</u> [Benaych-Georges and N.]: As $n \longrightarrow \infty$,

$$\sigma_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} \begin{cases} D_{\mu_X}^{-1}(c, 1/\theta_i^2) & \text{if } 1/\theta_i^2 < D_{\mu_X}(c, b^+), \\ b & \text{otherwise,} \end{cases}$$

Critical threshold depends explicitly on spectral measure of "noise"

D-transform of μ :

$$D_{\mu_X}(c,z) = \left[\int \frac{z}{z^2 - t^2} d\mu(t) \right] \cdot \left[c \int \frac{z}{z^2 - t^2} d\mu(t) + \frac{1 - c}{z} \right] \quad \text{for } z \notin \text{supp } \mu_X,$$

Phase transition of singular vectors

<u>Theorem</u>: As $n, m \longrightarrow \infty$, $n/m \to c$, for $\theta \le \theta_c$:

$$\langle u_i, \ker(\theta_i^2 I_n - P_n P_n^*) \rangle^2 \xrightarrow{\text{a.s.}} \frac{-2\varphi_{\mu_X}(\rho)}{\theta_i^2 \partial_z D_{\mu_X}(c,\rho)},$$

$$\langle v_i, \ker(\theta_i^2 I_m - P_n^* P_n) \rangle^2 \xrightarrow{\text{a.s.}} \frac{-2\varphi_{\tilde{\mu}_X}(\rho)}{\theta_i^2 \partial_z D_{\mu_X}(c,\rho)},$$

- Here $\rho = D_{\mu_X}^{-1}(c, 1/\theta_i^2)$ is the limit of θ_i
- $\tilde{\mu}_X = c\mu_X + (1-c)\delta_0$ and $\varphi_{\mu}(z) = \int \frac{z}{z^2-t^2} d\mu(t)$

<u>Theorem</u>: As $n, m \longrightarrow \infty$, for $\theta \leq \theta_c$:

$$\langle \widetilde{u}_i, \ker(\theta_i I_n - P_n P_n') \rangle \xrightarrow{\text{a.s.}} 0 \qquad \langle \widetilde{v}_i, \ker(\theta_i I_m - P_n' P_n) \rangle \xrightarrow{\text{a.s.}} 0$$

$$\langle \widetilde{v}_i, \ker(\theta_i I_m - P'_n P_n) \rangle \xrightarrow{\text{a.s.}} 0$$

Outline

- Why study the Phase transition?
- Analytical expressions for the Phase transition
- Sketch of the proof ←
- Discussion

Phase transition of eigenvalues

Theorem: As $n \longrightarrow \infty$, $\widetilde{X}_n = \sum_{i=1}^k \theta_i u_i u_i' + X$

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} \begin{cases} G_{\mu}^{-1}(1/\theta_i) & \text{if } 1/\theta_i < G_{\mu}(b^+), \\ b & \text{otherwise,} \end{cases}$$

• Critical threshold depends explicitly on spectral measure of "noise"

Cauchy transform of μ :

$$G_{\mu}(z) = \int \frac{1}{z - y} d\mu(y) \quad \text{for } z \notin \text{supp } \mu_X.$$

Eigenvalue Proof Step 1 - Master Equation derivation

Consider $\widetilde{X} = X + \theta u u'$.

Fact: $z \neq \lambda(X)$ is an eigenvalue of \widetilde{X} if and only if:

- ullet 1 is an eigenvalue of $(zI-X)^{-1} \theta u u'$
- ullet This is equivalent to requiring $u'(zI-X)^{-1}u heta=1$
- $\bullet \;$ Assuming $X=Q\Lambda Q'$ and letting v=Q'u gives us

Master (Secular) equation: Eigenvalues z of \widetilde{X} satisfy

$$\sum_{i=1}^{n} \frac{|v_i|^2}{z - \lambda_i} = \frac{1}{\theta}$$

Proof Step 1 - Master Equation derivation

Consider $\widetilde{X} = X + \theta u u'$.

Fact: $z \neq \lambda(X)$ is an eigenvalue of \widetilde{X} if and only if:

$$\sum_{i=1}^{n} \frac{|v_i|^2}{z - \lambda_i} = \frac{1}{\theta}$$

Define weighted measure $\mu_n = \sum_{i=1}^n |v_i|^2 \delta_{\lambda_i}$ then:

$$G_{\mu n}(z) = 1/\theta$$

Cauchy transform of μ :

$$G_{\mu}(z) = \int \frac{1}{z - y} d\mu(y) \quad \text{for } z \in \mathbb{C}^+ \setminus \mathbb{R}.$$

Eigenvalues of \widetilde{X} : Graphically

ullet Eigenvalues of \widetilde{X} satisfy $G_{\mu n}(z)=1/ heta$

Proof Step 2: "Smoothing" due to randomization

Master (Secular) equation: Eigenvalues z of \widetilde{X} satisfy

$$G_{\mu_n}(z) = 1/\theta$$

ullet Weighted measure $\mu_n = \sum_{i=1}^n |v_i|^2 \delta_{\lambda_k}$

Argument:

- ullet Recall that Q is isotropically random and $v=Q^\prime u$
- ullet \Rightarrow v is uniformly distributed on the sphere
- ullet $\Rightarrow |v_k|^2 pprox 1/n$ with high probability for large n
- $\bullet \quad \mu_n \xrightarrow{\mathrm{a.s.}} \mu \text{ and } G_{\mu_n}(z) \xrightarrow{\mathrm{a.s.}} G_{\mu}(z)$
- $\bullet \Rightarrow z \approx G_{\mu}^{-1}(1/\theta)$

Origin of Phase transition: Largest eigenvalue when $\theta>\theta_c$

When
$$1/\theta < G_{\mu_X}(b)$$
, $\lambda_1(\widetilde{X}) \to \rho = G_{\mu_X}^{-1}(\frac{1}{\theta})$.

Origin of Phase transition: Largest eigenvalue when $\theta \leq \theta_c$

When
$$1/\theta > G_{\mu_X}(b)$$
, $\lambda_1(\widetilde{X}) \to b$.

Eigenvector Proof Step 1 - Master Equation derivation

Consider $\widetilde{X} = X + \theta u u'$.

Fact: If $z \neq \lambda(X)$ is an eigenvalue of \widetilde{X} then:

- $(X + \theta uu')\widetilde{u} = z\widetilde{u}$ for eigenvector \widetilde{u}
- This is equivalent to requiring $(zI X)\widetilde{u} = \theta(u'\widetilde{u})u$
- ullet Note that $u'\widetilde{u}$ is a scalar so above is exact expression for eigenvector!
- ullet Assuming $X=Q\Lambda Q'$ and letting v=Q'u gives us

Master (Secular) equation: Eigenvector \widetilde{u} with eigenvalue $z \neq \lambda(X)$ given by

$$\widetilde{u} = \frac{Q(zI - \Lambda)^{-1}v}{\sqrt{v'(zI - \Lambda)^{-2}v}}$$

Proof Step 1 - Master equation derivation

Consider $\widetilde{X} = X + \theta u u'$.

Fact: Eigenvector \widetilde{u} with eigenvalue $z \neq \lambda(X)$ given by:

$$\widetilde{u} = rac{Q(zI - \Lambda)^{-1}v}{\sqrt{v'(zI - \Lambda)^{-2}v}}$$

Projection of eigenvector: (Recall v = Q'u)

$$|\langle \widetilde{u}, u \rangle|^2 = \frac{(v'(zI - \Lambda)^{-1}v)^2}{v'(zI - \Lambda)^{-2}v} = \frac{G_{\mu n}^2(z)}{G'_{\mu n}(z)}$$

Proof Step 2 - "Smoothing" due to randomization

Projection of eigenvector:

$$|\langle \widetilde{u}, u \rangle|^2 = \frac{(v'(zI - \Lambda)^{-1}v)^2}{v'(zI - \Lambda)^{-2}v} = \frac{G_{\mu n}^2(z)}{G'_{\mu n}(z)}$$

Argument:

- ullet Recall that Q is isotropically random and v=Q'u
- ullet $\Rightarrow v$ is uniformly distributed on the sphere
- ullet $\Rightarrow |v_k|^2 pprox 1/n$ with high probability for large n
- $\bullet \ \mu_n \xrightarrow{\mathrm{a.s.}} \mu \ \mathrm{and} \ G_{\mu_n}(z) \xrightarrow{\mathrm{a.s.}} G_{\mu}(z)$
- $\bullet \Rightarrow |\langle \widetilde{u}, u \rangle|^2 \approx G_{\mu}^2(z) / G_{\mu}'(z)$

Origin of Phase transition: Largest eigenvalue when $\theta > \theta_c$

When
$$1/\theta < G_{\mu_X}(b)$$
, $\lambda_1(\widetilde{X}) \to \rho = G_{\mu_X}^{-1}(\frac{1}{\theta})$.

•
$$\Rightarrow |\langle \widetilde{u}, u \rangle|^2 = \frac{G_{\mu}^2(\rho)}{G_{\mu}'(\rho)} \to \frac{1}{\theta^2 G_{\mu}'(\rho)}$$

Origin of Phase transition: Largest eigenvalue when $\theta \leq \theta_c$

When
$$1/\theta > G_{\mu_X}(b)$$
, $\lambda_1(\widetilde{X}) \to b$.

•
$$\Rightarrow |\langle \widetilde{u}, u \rangle|^2 = \frac{G_{\mu}^2(\rho)}{G_{\mu}'(\rho)} \to \frac{1}{\theta^2 G_{\mu}'(b)} \to 0$$
, if $G_{\mu}'(b^+) \to \infty$

Outline

- Why study the Phase transition?
- Analytical expressions for the Phase transition
- Sketch of the proof
- Discussion ←

Connection with free probability theory

Recall for $\widetilde{X}_n = X + P$

Theorem: As $n \longrightarrow \infty$,

$$\lambda_i(\widetilde{X}_n) \xrightarrow{\text{a.s.}} \begin{cases} G_{\mu}^{-1}(1/\theta_i) & \text{if } 1/\theta_i < G_{\mu}(b^+), \\ b & \text{otherwise,} \end{cases}$$

ullet $G_{\mu}^{-1}(\cdot)$ related to the non-commutative analogue of the log-Fourier transform

Cauchy transform of μ :

$$G_{\mu}(z) = \int \frac{1}{z - y} d\mu(y) \quad \text{for } z \in \mathbb{C}^+ \setminus \mathbb{R}.$$

Extensions

- max(eig(X+P)) √
- max(eig(X(I+P))) √
- max(svd(X+P)) √
- min(.) ✓
- bulk(.) ✓
- Randomized compressions √
- Haar-like perturbations √
- "Concentrated" random perturbations (any application?)

Main message

- Closed form expressions for the phase transition
 - Limit explicitly dependent on:
 - * Noise eigen-spectrum
 - * Perturbative model via appropriate integral transform
- Broad generality of result
 - Well-beyond Wigner, Wishart, Jacobi models in literature
 - Permits unified treatment
- "Spiked" free probability

http://arxiv.org/abs/0910.2120
Joint work with Florent Benaych-Georges