Bulk Universality for Wigner Matrices

Benjamin Schlein, University of Bonn
Conference on Random Matrices, Paris

$$
\text { June 3, } 2010
$$

1. Wigner Matrices and the Local Semicircle Law

Hermitian Wigner Matrices: $N \times N$ matrices $H=\left(h_{k j}\right)_{1 \leq k, j \leq N}$ such that $H^{*}=H$ and

$$
\begin{array}{ll}
h_{k j}=\frac{1}{\sqrt{N}}\left(x_{k j}+i y_{k j}\right) & \text { for all } 1 \leq k<j \leq N \\
h_{k k}=\frac{2}{\sqrt{N}} x_{k k} & \text { for all } 1 \leq k \leq N
\end{array}
$$

where $x_{k j}, y_{k j}$ and $x_{k k}(1 \leq k \leq N)$ are iid with

$$
\mathbb{E} x_{j k}=0 \quad \text { and } \quad \mathbb{E} x_{j k}^{2}=\frac{1}{2} \quad\left(\Rightarrow \quad \mathbb{E}\left|h_{j k}\right|^{2}=\frac{1}{N}\right)
$$

Remark: scaling so that eigenvalues remain bounded as $N \rightarrow \infty$.

$$
\begin{gathered}
\mathbb{E} \sum_{\alpha=1}^{N} \lambda_{\alpha}^{2}=\mathbb{E} \operatorname{Tr} H^{2}=\mathbb{E} \sum_{j, k=1}^{N}\left|h_{j k}\right|^{2}=N^{2} \mathbb{E}\left|h_{j k}\right|^{2} \\
\Rightarrow \quad \mathbb{E}\left|h_{j k}\right|^{2}=O\left(N^{-1}\right)
\end{gathered}
$$

Gaussian Unitary Ensemble (GUE): simplest example of hermitian Wigner ensemble. Probability density given by

$$
P(H) \mathrm{d} H=\mathrm{const} \cdot e^{-\frac{N}{2} \operatorname{Tr}\left(H^{2}\right)} \mathrm{d} H
$$

Big advantage: joint eigenvalue distribution is explicit

$$
p\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\mathrm{const} \cdot \prod_{i<j}^{N}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{-\frac{N}{2} \sum_{j=1}^{N} \lambda_{j}^{2}}
$$

Dyson's sine-kernel distribution for GUE: using the explicit formula for density, local eigenvalue statistics can be computed in limit $N \rightarrow \infty$. Let

$$
p^{(k)}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\int \mathrm{d} \lambda_{k+1} \ldots \mathrm{~d} \lambda_{N} p\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

be the k-point correlation function. Then

$$
\frac{1}{\varrho_{s c}^{k}(E)} p^{(k)}\left(E+\frac{x_{1}}{N \varrho_{s c}(E)}, . ., E+\frac{x_{k}}{N \varrho_{s c}(E)}\right) \rightarrow \operatorname{det}\left(\frac{\sin \left(\pi\left(x_{i}-x_{j}\right)\right)}{\pi\left(x_{i}-x_{j}\right)}\right)_{i, j \leq k}
$$

Semicircle Law (Wigner, 1955): for any $\delta>0$,

$$
\lim _{\eta \rightarrow 0} \lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{\eta}{2} ; E+\frac{\eta}{2}\right]}{N \eta}-\rho_{\mathrm{sc}}(E)\right| \geq \delta\right)=0
$$

where

$$
\begin{aligned}
\mathcal{N}[I] & =\text { number of eigenvalues in interval } I \\
\rho_{\mathrm{sc}}(E) & =\frac{1}{2 \pi} \sqrt{1-E^{2} / 4}
\end{aligned}
$$

Remark 1: semicircle independent of distribution of entries.
Remark 2: Wigner result concerns the macroscopic density, that is the density in intervals containing order N eigenvalues.

What about density of states in smaller intervals?

Theorem [Erdős-S.-Yau, 2008]: Suppose $\mathbb{E} e^{\nu\left|x_{i j}\right|}<\infty$ for some $\nu>0$, and fix $|E|<2$. Then, for any $\delta>0$,

$$
\lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{K}{2 N} ; E+\frac{K}{2 N}\right]}{K}-\rho_{\mathrm{sc}}(E)\right| \geq \delta\right)=0
$$

More precisely, we show that

$$
\mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{K}{2 N} ; E+\frac{K}{2 N}\right]}{K}-\rho_{\mathrm{sc}}(E)\right| \geq \delta\right) \leq C e^{-c \delta \sqrt{K}}
$$

for all $K>0$, uniformly in $N>N_{0}(\delta)$.
Intermediate scales: if $\eta(N) \rightarrow 0$ such that $N \eta(N) \rightarrow \infty$, we have

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{\eta(N)}{2} ; E+\frac{\eta(N)}{2}\right]}{N \eta(N)}-\rho_{\mathrm{sc}}(E)\right| \geq \delta\right)=0
$$

Previous results by Khorunzhy, Bai-Miao-Tsay, and GuionnetZeitouni (up to scales $\eta(N) \simeq N^{-1 / 2}$).

Main ingredients of proof: upper bound on density and fixed point equation for Stieltjes transform.

Upper bound: observe that

$$
\begin{aligned}
\mathcal{N}[E-\eta / 2, E+\eta / 2] & =\sum_{\alpha} 1\left(\left|\lambda_{\alpha}-E\right| \leq \eta\right) \\
& \leq \sum_{\alpha} \frac{\eta^{2}}{\left(\lambda_{\alpha}-E\right)^{2}+\eta^{2}}=\eta \operatorname{Im} \sum_{\alpha} \frac{1}{\lambda_{\alpha}-E-i \eta}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\rho & =\frac{\mathcal{N}[E-\eta / 2, E+\eta / 2]}{N \eta} \\
& \leq \frac{1}{N} \operatorname{Im} \operatorname{Tr} \frac{1}{H-E-i \eta}=\frac{1}{N} \operatorname{Im} \sum_{j=1}^{N} \frac{1}{H-E-i \eta}(j, j)
\end{aligned}
$$

We bound, for example, the (1,1)-element of the diagonal.

Decomposing H as

$$
H=\left(\begin{array}{ll}
h_{11} & \mathbf{a}^{*} \\
\mathbf{a} & B
\end{array}\right)
$$

we find (Feshbach map)

$$
\frac{1}{H-z}(1,1)=\frac{1}{h_{11}-z-\mathbf{a} \cdot(B-z)^{-1} \mathbf{a}}=\frac{1}{h_{11}-z-\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}}{\lambda_{\alpha}-z}}
$$

with

$$
\xi_{\alpha}=N\left|\mathbf{a} \cdot \mathbf{u}_{\alpha}\right|^{2} \quad \Rightarrow \quad \mathbb{E} \xi_{\alpha}=1
$$

where λ_{α} and \mathbf{u}_{α} are eigenvalues and eigenvectors of B.

We conclude that
$\operatorname{Im} \frac{1}{H-E-i \eta}(1,1) \leq \frac{1}{\eta+\frac{1}{N} \sum_{\alpha} \frac{\eta}{\left(\lambda_{\alpha}-E\right)^{2}+\eta^{2}}} \leq \frac{N \eta}{\sum_{\alpha:\left|\lambda_{\alpha}-E\right| \leq \eta} \xi_{\alpha}} \leq \frac{C}{\rho}$

Fixed point equation: we consider the Stieltjes transform

$$
m_{N}(z)=\frac{1}{N} \operatorname{Tr} \frac{1}{H-z}, \quad m_{\mathrm{sc}}(z)=\int \mathrm{d} y \frac{\rho_{\mathrm{sc}}(y)}{y-z}
$$

Convergence of the density follows if we can prove that

$$
m_{N}(z) \rightarrow m_{\mathrm{sc}}(z), \quad \text { for } \operatorname{Im} z=\eta \geq K / N
$$

The Stieltjes transform $m_{s c}$ solves the fixed point equation

$$
m_{\mathrm{sc}}(z)+\frac{1}{z+m_{\mathrm{sc}}(z)}=0
$$

It is enough to show that, with high probability,

$$
\left|m_{N}(z)+\frac{1}{z+m_{N}(z)}\right| \leq \delta
$$

To this end, we use again

$$
m_{N}(z)=\frac{1}{N} \sum_{j} \frac{1}{h_{j j}-z-\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}^{(j)}}{\lambda_{\alpha}^{(j)}-z}}
$$

2. Delocalization of Eigenvectors

Let $\mathbf{v}=\left(v_{1}, \ldots, v_{N}\right)$ be an ℓ_{2}-normalized vector in \mathbb{C}^{N}. Distinguish two extreme cases:

Complete localization: one large component, for example

$$
\mathbf{v}=(1,0, \ldots, 0) \quad \Rightarrow \quad\|\mathbf{v}\|_{p}=1, \text { for all } 2<p \leq \infty
$$

Complete delocalization: all components have same size,

$$
\mathbf{v}=\left(N^{-1 / 2}, \ldots, N^{-1 / 2}\right) \quad \Rightarrow \quad\|\mathbf{v}\|_{p}=N^{-1 / 2+1 / p} \ll 1
$$

Theorem [Erdős-S.-Yau, 2008]:
Suppose $\mathbb{E} e^{\nu\left|x_{i j}\right|}<\infty$ for some $\nu>0$. Fix $\kappa>0,2<p \leq \infty$. Then
$\mathbb{P}\left(\exists \mathbf{v}: H \mathbf{v}=\mu \mathbf{v}, \mu \in[-2+\kappa, 2-\kappa],\|\mathbf{v}\|_{2}=1,\|\mathbf{v}\|_{p} \geq M N^{-\frac{1}{2}+\frac{1}{p}}\right)$

$$
\leq C e^{-c \sqrt{M}}
$$

for all M, N large enough.

Idea of proof: we write $\mathbf{v}=\left(v_{1}, \mathbf{w}\right)$. Hence $H \mathbf{v}=\mu \mathbf{v}$ implies

$$
\left(\begin{array}{cc}
h-\mu & \mathbf{a}^{*} \\
\mathbf{a} & B-\mu
\end{array}\right)\binom{v_{1}}{\mathbf{w}}=\binom{0}{0} \quad \Rightarrow \quad \mathbf{w}=v_{1}(\mu-B)^{-1} \mathbf{a}
$$

By normalization

$$
1=v_{1}^{2}+\mathrm{w}^{2} \quad \Rightarrow \quad\left|v_{1}\right|^{2}=\frac{1}{1+\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}}{\left(\mu-\lambda_{\alpha}\right)^{2}}} \quad\left(\xi_{\alpha}=N\left|\mathbf{a} \cdot \mathbf{u}_{\alpha}\right|^{2}\right)
$$

where λ_{α} and \mathbf{u}_{α} are the eigenvalues and the eigenvectors of B.

$$
\left|v_{1}\right|^{2} \leq \frac{1}{\frac{1}{N \eta^{2}} \sum_{\alpha:\left|\lambda_{\alpha}-\mu\right| \leq \eta} \xi_{\alpha}}
$$

Choosing $\eta=K / N$, for a sufficiently large $K>0$, we find

$$
\left|v_{1}\right|^{2} \leq \frac{K^{2}}{N} \frac{1}{\sum_{\alpha:\left|\lambda_{\alpha}-\mu\right| \leq K / N} \xi_{\alpha}} \leq c \frac{K}{N}
$$

with high probability, because, by the local semicircle law, there must be order K eigenvalues λ_{α} with $\left|\lambda_{\alpha}-\mu\right| \leq K / N$.

3. Level Repulsion

Theorem [Erdős-S.-Yau, 2008]: Suppose $\mathbb{E} e^{\nu\left|x_{i j}\right|}<\infty$ for some $\nu>0$, fix $|E|<2$.

Fix $k \geq 1$, and assume that the probability density $h(x)=e^{-g(x)}$ of the matrix entries satisfies the bound

$$
|\widehat{h}(p)| \leq \frac{1}{\left(1+C p^{2}\right)^{\sigma / 2}}, \quad\left|\widehat{h g^{\prime \prime}}(p)\right| \leq \frac{1}{\left(1+C p^{2}\right)^{\sigma / 2}} \quad \text { for } \sigma \geq 5+k^{2}
$$

Then there exists a constant $C_{k}>0$ such that

$$
\mathbb{P}\left(\mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right] \geq k\right) \leq C_{k} \varepsilon^{k^{2}}
$$

for all N large enough, and all $\varepsilon>0$.
Remark: for GUE, we have

$$
p\left(\lambda_{1}, \ldots, \lambda_{N}\right) \simeq \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} \Rightarrow \mathbb{P}\left(\mathcal{N}_{\varepsilon} \geq k\right) \simeq \varepsilon^{k^{2}}
$$

4. Universality for Wigner Matrices

Universality: local eigenvalue statistics in the limit $N \rightarrow \infty$ is expected to depend only on symmetry, but to be independent of probability law of matrix entries.

Remark: universality at the edges of the spectrum was established by Soshnikov in 1999 using the moment method. Here I will consider universality in the bulk of the spectrum.

In 2001, Johansson established the validity of bulk universality for ensembles of hermitian Wigner matrices with a Gaussian component (result was later extended by Ben Arous-Péché).

Johansson's approach: consider matrices of the form

$$
H=H_{0}+t^{\frac{1}{2}} V
$$

where V is a GUE-matrix, and H_{0} is an arbitrary Wigner matrix.

The matrix H can be obtained by letting every entry of H_{0} evolve under a Brownian motion up to time t (more prec. t / N).

The distribution of the eigenvalues of the matrix evolves then according to Dyson's Brownian motion

$$
\mathrm{d} \lambda_{\alpha}=\frac{\mathrm{d} B_{\alpha}}{\sqrt{N}}+\frac{1}{N} \sum_{\beta \neq \alpha} \frac{1}{\lambda_{\alpha}-\lambda_{\beta}} \mathrm{d} t, \quad 1 \leq \alpha \leq N
$$

where $\left\{B_{\alpha}: 1 \leq \alpha \leq N\right\}$ is a collection of independent Brownian motion.

The joint probability distribution of the eigenvalues $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ of H is

$$
p(\mathrm{x})=\int \mathrm{d} \mathbf{y} q_{t}(\mathrm{x} ; \mathbf{y}) p_{0}(\mathrm{y})
$$

where p_{0} is the distribution of the eigenvalues $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ of H_{0} and

$$
q_{t}(\mathbf{x} ; \mathbf{y})=\frac{N^{N / 2}}{(2 \pi t)^{N / 2}} \frac{\Delta_{N}(\mathbf{x})}{\Delta_{N}(\mathbf{y})} \operatorname{det}\left(e^{-N\left(x_{j}-y_{k}\right)^{2} / 2 t}\right)_{j, k=1}^{N}
$$

with the Vandermonde determinant

$$
\Delta(\mathrm{x})=\prod_{i<j}^{N}\left(x_{i}-x_{j}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{N} \\
\ldots & \ldots & \ldots & \ldots \\
x_{1}^{N} & x_{2}^{N} & \ldots & x_{N}^{N}
\end{array}\right)
$$

This can be proven using the Harish-Chandra/Itzykson-Zuber formula
$\int_{U(N)} e^{-\frac{N}{2 t} \operatorname{Tr}\left(U^{*} R(\mathbf{x}) U-H_{0}(\mathbf{y})\right)^{2}} \mathrm{~d} U=\frac{1}{\Delta(\mathbf{x}) \Delta(\mathbf{y})} \operatorname{det}\left(e^{-\frac{N}{2 t}\left(x_{j}-y_{i}\right)^{2}}\right)_{1 \leq i, j \leq N}$

The k-point correlation function of p is therefore given by

$$
p^{(k)}\left(x_{1}, \ldots, x_{k}\right)=\int q_{t}^{(k)}\left(x_{1}, \ldots, x_{k} ; \mathbf{y}\right) p_{0}(\mathbf{y}) \mathrm{d} \mathbf{y}
$$

where

$$
\begin{aligned}
q_{t}^{(k)}\left(x_{1}, \ldots, x_{k} ; \mathbf{y}\right) & =\int q_{t}(\mathbf{x} ; \mathbf{y}) \mathrm{d} x_{k+1} \ldots \mathrm{~d} x_{N} \\
& =\frac{(N-k)!}{N!} \operatorname{det}\left(K_{t, N}\left(x_{i}, x_{j} ; \mathbf{y}\right)\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

with

$$
\begin{aligned}
& K_{t, N}(u, v ; \mathbf{y})=\frac{N}{(2 \pi i)^{2}(v-u) t} \\
& \times \int_{\gamma} \mathrm{d} z \int_{\Gamma} \mathrm{d} w\left(e^{-N(v-u)(w-r) / t}-1\right) \prod_{j=1}^{N} \frac{w-y_{j}}{z-y_{j}} \\
& \times \frac{1}{w-r}\left(w-r+z-u-\frac{t}{N} \sum_{j} \frac{y_{j}-r}{\left(w-y_{j}\right)\left(z-y_{j}\right)}\right) e^{N\left(w^{2}-2 v w-z^{2}+2 u z\right) / 2 t}
\end{aligned}
$$

where γ is the union of two horizontal lines and Γ is a vertical line in the \mathbb{C}-plane, and $r \in \mathbb{R}$ is arbitrary.

Convergence of k-point correlation follows from

$$
\frac{1}{N \varrho(u)} K_{t, N}\left(u+\frac{x_{1}}{N \varrho(u)}, u+\frac{x_{2}}{N \varrho(u)} ; \mathbf{y}\right) \rightarrow \frac{\sin \pi\left(x_{2}-x_{1}\right)}{\pi\left(x_{2}-x_{1}\right)} \quad \text { for a.e. } \mathbf{y}
$$

To prove convergence of $K_{t, N}$ to sine-kernel Johansson uses

$$
\begin{aligned}
& \frac{1}{N \varrho(u)} K_{t, N}\left(u, u+\frac{\tau}{N \varrho} ; \mathbf{y}\right) \\
& \quad=N \int_{\gamma} \frac{\mathrm{d} z}{2 \pi i} \int_{\Gamma} \frac{\mathrm{d} w}{2 \pi i} h_{N}(w) g_{N}(z, w) e^{N\left(f_{N}(w)-f_{N}(z)\right)}
\end{aligned}
$$

with

$$
\begin{aligned}
f_{N}(z) & =\frac{1}{2 t}\left(z^{2}-2 u z\right)+\frac{1}{N} \sum_{j} \log \left(z-y_{j}\right) \\
g_{N}(z, w) & =\frac{1}{t(w-r)}[w-r+z-u]-\frac{1}{N(w-r)} \sum_{j} \frac{y_{j}-r}{\left(w-y_{j}\right)\left(z-y_{j}\right)} \\
h_{N}(w) & =\frac{1}{\tau}\left(e^{-\tau(w-r) / t \varrho}-1\right)
\end{aligned}
$$

and performs a detailed asymptotic saddle analysis.

Beyond Johansson: what happens if $t=t(N) \rightarrow 0$? Consider

$$
t=N^{-1+\varepsilon}
$$

Similar integral representation but asymptotic analysis is more delicate and requires microscopic convergence to the semicircle.

Theorem [Erdős-Péché-Ramirez-S.-Yau]: Let $p_{N}^{(k)}$ be the k-point eigenvalue correlation function for the ensemble $H=$ $H_{0}+t^{1 / 2} V$, where H_{0} is an arbitrary Wigner matrix, V is an independent GUE matrix, and $t \geq N^{-1+\varepsilon}$. Then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{\rho_{\mathrm{SC}}^{k}(E)} p_{N}^{(k)}\left(E+\frac{x_{1}}{N \rho_{\mathrm{SC}}(E)}\right. & \left., \ldots, E+\frac{x_{k}}{N \rho_{\mathrm{SC}}(E)}\right) \\
& =\operatorname{det}\left(\frac{\sin \left(\pi\left(x_{i}-x_{j}\right)\right)}{\left(\pi\left(x_{i}-x_{j}\right)\right)}\right)_{i, j=1}^{k}
\end{aligned}
$$

Time reversal to remove Gaussian part: let $h(x)$ be the density of the matrix elements of H_{0}.

The matrix elements of $H=H_{0}+t^{\frac{1}{2}} V$ have density

$$
h_{t}(x)=\left(e^{t L} h\right)(x), \quad \text { with } \quad L=\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
$$

Then

$$
\int \frac{\left|h_{t}(x)-h(x)\right|^{2}}{h(x)} d x \leq C t^{2}
$$

Letting $F=h^{\otimes N^{2}}$ and $F_{t}=\left(e^{t L} h\right)^{\otimes N^{2}}$ we find

$$
\int \frac{\left|F_{t}-F\right|^{2}}{F} d x_{1} \ldots d x_{N^{2}} \leq C N^{2} t^{2}
$$

It is only small for $t \ll N^{-1}$.

Hence $t=N^{-1+\varepsilon}$ is still not enough.

We would like to write

$$
h=e^{t L} v_{t} \quad \text { with } \quad v_{t}=e^{-t L} h
$$

But the heat equation cannot be reversed.
$\Rightarrow \quad$ approximate inversion of heat semigroup
Define $v_{t}=(1-t L) h$. Then

$$
h_{t}=e^{t L} v_{t} \simeq h+t^{2} L^{2} h \quad\left(\text { while } \quad e^{t L} h \simeq h+t L h\right)
$$

Therefore

$$
\int \frac{\left|h_{t}-h\right|^{2}}{h} d x \leq C t^{4}
$$

Hence, if $F=h^{\otimes N^{2}}$ and $F_{t}=h_{t}^{\otimes N^{2}}$, we find

$$
\int \frac{\left|F_{t}-F\right|^{2}}{F} d x_{1} \ldots d x_{N^{2}} \leq C N^{2} t^{4} \ll 1 \quad \text { for } t=N^{-1+\varepsilon}
$$

Theorem [Erdős-Péché-Ramirez-S.-Yau]: Suppose H is a hermitian Wigner matrix, whose entries have law $g=e^{-h}$, for $h \in C^{6}(\mathbb{R})$. Then,
$\lim _{N \rightarrow \infty} \frac{1}{\rho_{\mathrm{SC}}^{2}(E)} p_{N}^{(2)}\left(E+\frac{x_{1}}{N \rho_{\mathrm{sC}}(E)}, E+\frac{x_{2}}{N \rho_{\mathrm{SC}}(E)}\right)=\frac{\sin \left(\pi\left(x_{1}-x_{2}\right)\right)}{\left(\pi\left(x_{1}-x_{2}\right)\right)}$
Shortly after we posted our result, Tao-Vu submitted a paper with same results. Combining two approaches, one can remove all conditions, at least after averaging over the variable u.

Theorem [Erdős-Ramirez-S.-Tao-Vu-Yau, 2009]: Fix $\varepsilon>0$ and $\left|u_{0}\right|<2-\varepsilon$. Fix $k \geq 1$, then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{2 \varepsilon} \int_{u_{0}-\varepsilon}^{u_{0}+\varepsilon} d u \frac{1}{\left[\rho_{s c}(u)\right]^{k}} p^{(k)}(u & \left.+\frac{x_{1}}{N \rho_{s c}(u)}, \ldots, u+\frac{x_{k}}{N \rho_{s c}(u)}\right) \\
& =\operatorname{det}\left(\frac{\sin \left(\pi\left(x_{i}-x_{j}\right)\right)}{\pi\left(x_{i}-x_{j}\right)}\right)_{i, j=1}^{k}
\end{aligned}
$$

5. Universality for Non-Hermitian Ensembles

The local relaxation flow: Dyson Brownian Motion describes evolution of eigenvalues. Equilibrium measure is GUE measure

$$
\mu(\mathrm{x}) \mathrm{d} \mathbf{x}=\frac{e^{-\mathcal{H}(\mathrm{x})}}{Z} \mathrm{~d} \mathbf{x}, \quad \mathcal{H}(\mathrm{x})=N\left[\sum_{j=1}^{N} \frac{x_{j}^{2}}{2}-\frac{2}{N} \sum_{i<j} \log \left|x_{j}-x_{i}\right|\right]
$$

The evolution of an initial probability density function $f \mu$ w.r.t DBM is described by the heat equation

$$
\partial_{t} f_{t}=L f_{t}
$$

with the generator

$$
L=\sum_{i=1}^{N} \frac{1}{2 N} \partial_{i}^{2}+2 \sum_{i=1}^{N}\left(-\frac{1}{4} x_{i}+\frac{1}{2 N} \sum_{j \neq i} \frac{1}{x_{i}-x_{j}}\right) \partial_{i}
$$

Relaxation time of Dyson's Brownian motion given by

$$
\frac{1}{2 N} \nabla^{2} \mathcal{H} \geq O(1) \quad \Rightarrow \quad \text { relaxation on times } O(1)
$$

Idea: introduce new flow with shorter relaxation time. Define

$$
\begin{aligned}
\widetilde{\mathcal{H}}(\mathrm{x}) & =N\left[\sum_{j=1}^{N}\left(\frac{x_{j}^{2}}{2}+\frac{1}{2 R^{2}}\left(x_{j}-\gamma_{j}\right)^{2}\right)-\frac{2}{N} \sum_{i<j} \log \left|x_{j}-x_{i}\right|\right] \\
& =\mathcal{H}(\mathrm{x})+\frac{N}{2 R^{2}} \sum_{j=1}^{N}\left(x_{j}-\gamma_{j}\right)^{2}
\end{aligned}
$$

where γ_{j} is position of the j-th eigenvalue w.r.t. semicircle law, and $R=N^{-\varepsilon} \ll 1$.

Introduce new equilibrium measure $\omega(\mathrm{x})=e^{-\widetilde{H}(\mathrm{x})} / \tilde{Z}$ and new evolution

$$
\partial_{t} g_{t}=\tilde{L} g_{t} \quad \text { with } \quad \tilde{L}=L-\frac{1}{R^{2}} \sum_{j=1}^{N}\left(x_{j}-\gamma_{j}\right)
$$

Observe that

$$
\frac{\nabla^{2} \widetilde{\mathcal{H}}(\mathrm{x})}{N} \geq C R^{-2} \geq N^{2 \varepsilon} \gg 1 \quad \Rightarrow \quad \text { relaxation on short times }
$$

Hence, if $\mathcal{G}_{i, n}(\mathrm{x})=G\left(N\left(x_{i}-x_{i+1}\right), \ldots, N\left(x_{i+n-1}-x_{i+n}\right)\right)$, we find

$$
\left|\int \frac{1}{N} \sum_{i \in J} \mathcal{G}_{i, n} \mathrm{~d} \omega-\int \frac{1}{N} \sum_{i \in J} \mathcal{G}_{i, n} g \mathrm{~d} \omega\right| \leq C_{n}\left(\frac{D_{\omega}(\sqrt{g}) R^{2}}{N}\right)^{1 / 2}
$$

with the Dirichlet form

$$
D_{\omega}(h)=\frac{1}{N} \sum_{j=1}^{N} \int\left|\partial_{x_{j}} h\right|^{2} \mathrm{~d} \omega
$$

On other hand, if difference between generators is small, we expect $f_{t} \mu \simeq \omega=\psi \mu$. In fact, for $t \gg R^{2}$, we find that

$$
D_{\omega}\left(\sqrt{f_{t} / \psi}\right) \leq C N \wedge \quad \text { where } \quad \wedge=\mathbb{E}_{t} \sum_{j}\left|x_{j}-\gamma_{j}\right|^{2} .
$$

From microscopic semicircle law, we find $\Lambda \leq N^{-\varepsilon}$.

This implies universality for ensembles of the form $H_{0}+t^{1 / 2} V$, if $t \geq N^{-\varepsilon}$, for arbitrary symmetry.

Time-reversal argument implies universality for all matrices whose entries have enough regularity.

Combining with the result of Tao-Vu, we find universality for arbitrary ensembles.

Theorem [Erdős, S., Yau, 2009]: For arbitrary hermitian, symmetric or symplectic Wigner matrices with subexponentially fast decaying entries, the weak limit as $N \rightarrow \infty$ of the averaged k-particle correlation function

$$
\frac{1}{2 \varepsilon} \int_{E-\varepsilon}^{E+\varepsilon} \mathrm{d} u \frac{1}{\rho_{\mathrm{SC}}^{k}(u)} p_{N}^{(k)}\left(u+\frac{x_{1}}{\rho_{\mathrm{SC}}(u) N}, \ldots, u+\frac{x_{k}}{\rho_{\mathrm{SC}}(u) N}\right)
$$

coincides with that of the corresponding Gaussian ensemble (GUE, GOE, or GSE) for all $|E|<2$ and $\varepsilon>0$.

6. Open Problems

Random Band Matrices: consider $N \times N$ hermitian matrices H with independent entries $h_{i j}$ with

$$
\mathbb{E} h_{i j}=0, \quad \mathbb{E}\left|h_{i j}\right|^{2}= \begin{cases}1 / W & \text { if }|i-j| \leq W \\ 0 & \text { if }|i-j|>W\end{cases}
$$

$W \ll \sqrt{N}$: localization, Poisson statistics.
$W \gg \sqrt{N}$: delocalization, Wigner-Dyson's statistics.

Anderson Model: consider the Hamiltonian

$$
H=\Delta+\lambda V_{\omega}(x) \quad \text { acting on } \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

where $\left\{V_{\omega}(x): x \in \mathbb{Z}^{d}\right\}$ is a collection of iid real random variables.
$d \geq 3, \lambda$ small enough: delocalized eigenvectors (extended states), Wigner-Dyson's sine-kernel statistics.

7. Appendices

Why is local semicircle important for asymptotic analysis?
Recall that

$$
\begin{aligned}
\frac{1}{N \varrho(u)} K_{t, N}(u, u & \left.+\frac{\tau}{N \varrho(u)} ; \mathbf{y}\right) \\
& =N \int_{\gamma} \frac{\mathrm{d} z}{2 \pi i} \int_{\Gamma} \frac{\mathrm{d} w}{2 \pi i} h_{N}(w) g_{N}(z, w) e^{N\left(f_{N}(w)-f_{N}(z)\right)}
\end{aligned}
$$

with

$$
f_{N}(z)=\frac{1}{2 t}\left(z^{2}-2 u z\right)+\frac{1}{N} \sum_{j} \log \left(z-y_{j}\right)
$$

Saddles are determined by the equation

$$
f_{N}^{\prime}(z)=\frac{1}{t}(z-u)+\frac{1}{N} \sum_{j} \frac{1}{z-y_{j}}=0
$$

There are two complex conjugated solutions $z=q_{N}^{ \pm}$.

Saddles are determined by the equation

$$
f_{N}^{\prime}(z)=\frac{1}{t}(z-u)+\frac{1}{N} \sum_{j} \frac{1}{z-y_{j}}=0
$$

There are two complex conjugated solutions $z=q_{N}^{ \pm}$.
By the convergence to the semicircle on scales of order $N^{-1+\varepsilon}$, we have, with high probability,

$$
q_{N}^{ \pm}=q^{ \pm}+O\left(t N^{-\varepsilon / 2}\right)
$$

where

$$
q^{ \pm}=u(1-2 t) \pm 2 t i \sqrt{1-u^{2}}+O\left(t N^{-\varepsilon / 2}\right)
$$

are the two solutions of

$$
\frac{1}{t}\left(q^{ \pm}-u\right)+\int \frac{\varrho_{s c}(y)}{q^{ \pm}-y} \mathrm{~d} y=0
$$

The integration paths can be shifted to pass through the saddles.

Only important contribution arises from z, w both close to $q_{N, \pm}$.

Contribution from saddles can be computed through local change of variable which makes the exponent quadratic (Laplace method).

As $N \rightarrow \infty$, saddle contribution leads to sine-kernel.

Tao-Vu approach: let H and H^{\prime} be two Wigner matrices whose entries have distribution x, y; assume that typical distance between eigenvalues is order one $(x, y \simeq \sqrt{N})$.

Assume that

$$
\mathbb{E} x^{m}=\mathbb{E} y^{m} \quad \text { for } \quad 1 \leq m \leq 4
$$

Fix $k \geq 1$ and consider a nice function $G: \mathbb{R}^{k} \rightarrow \mathbb{R}$. Then

$$
\left|\mathbb{E} G\left(\lambda_{\alpha_{1}}(H), \ldots, \lambda_{\alpha_{k}}(H)\right)-\mathbb{E} G\left(\lambda_{\alpha_{1}}(H), \ldots, \lambda_{\alpha_{k}}(H)\right)\right| \rightarrow 0
$$

as $N \rightarrow \infty$.
Idea of proof: change one entry at the time.

$$
\begin{aligned}
& H(z)=\text { matrix obtained from } H \text { replacing }(i, j) \text {-entry with } z \\
& \left.F(z)=G\left(\lambda_{\alpha}(H(z))\right) \quad \text { (we take } k=1\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(x)=F(0)+x F^{\prime}(0)+\cdots+\frac{x^{5}}{5!} F^{(v)}(0)+. . \\
& F(y)=F(0)+y F^{\prime}(0)+\cdots+\frac{y^{5}}{5!} F^{(v)}(0)+. .
\end{aligned}
$$

Therefore

$$
|\mathbb{E} F(x)-\mathbb{E} F(y)| \leq \mathbb{E}|x|^{5} F^{(v)}(0)
$$

Observe

$$
\mathbb{E}|x|^{5} \simeq N^{5 / 2} \quad \text { but } \quad F^{(m)}(0) \simeq N^{-m}
$$

In fact

$$
F^{\prime}(0)=G^{\prime}\left(\lambda_{\alpha}(H)\right) \cdot \frac{\partial \lambda_{\alpha}}{\partial h_{i j}}=G^{\prime}\left(\lambda_{\alpha}(H)\right) \cdot \mathbf{v}_{\alpha}(i) \mathbf{v}_{\alpha}(j) \simeq N^{-1}
$$

Hence

$$
|\mathbb{E} F(x)-\mathbb{E} F(y)| \leq C N^{-5 / 2}
$$

Repeating this argument N^{2} times, we can replace all entries of H; the total error is $O\left(N^{-1 / 2}\right)$.

Universality (Tao-Vu): for given H, find Johansson matrix

$$
H_{t}=e^{-t / 2} H_{0}+\left(1-e^{-t}\right)^{1 / 2} V
$$

such that H and H_{t} have four matching moments.

This is only possible if entries are supported on at least 3 points.

Universality (Erdős-Ramirez-S.-Tao-Vu-Yau): compare H with the evolved matrix

$$
H_{t}=e^{-t / 2} H+\left(1-e^{-t}\right)^{1 / 2} V
$$

with $t=N^{-1+\delta}$.

Moments do not match, but they are very close.

