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1. Wigner Matrices and the Local Semicircle Law

Hermitian Wigner Matrices: N x N matrices H = (hy;)1<k j<N
such that H* = H and

1
hkj:\/—ﬁ<:ckj—|—iykj) forall1<k<j<N
2
hkk:\/—ﬁxkk forall 1< k<N
where ., yr; and zp, (1 <k < N) are iid with
5> 1 5 1

Remark: scaling so that eigenvalues remain bounded as N — oo.

N N
EN M=ETrH?*=E Y |hj|* =N?E|h;|°
a=1 7,k=1

= E|hjk|2 =O(N 1)



Gaussian Unitary Ensemble (GUE): simplest example of her-
mitian Wignher ensemble. Probability density given by

N
P(H)dH = const - e~ 2 T (H)qg

Big advantage: joint eigenvalue distribution is explicit

p(A1, .., An) = const - [T —A)%e 2 2j=17j
1<J

Dyson’s sine-kernel distribution for GUE: using the explicit
formula for density, local eigenvalue statistics can be computed
in limit N — co. Let

p I (g, A = /dAk+1---d>\Np(>\1,---,>\N)

be the k-point correlation function. Then

NG T \ sin(m(x; — x;))
<E + NQsc(E) R NQSC(E)> aet < m(z; — x;)

Qsc(l?)
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>i¢r<k



Semicircle Law (Wigner, 1955): for any § > 0,

NIE -3 E+J]
Nn

lim |im P
n—0 N—oo

— PSC(E)‘ > 5) =0

where

NIl = number of eigenvalues in interval I

psc(E) = %\/1 — E?/4.

Remark 1: semicircle independent of distribution of entries.

Remark 2: Wigner result concerns the macroscopic density, that
IS the density in intervals containing order N eigenvalues.

What about density of states in smaller intervals?



Theorem [Erd6s-S.-Yau, 2008]: Suppose Ee’lil <« oo for
some v > 0, and fix |F| < 2. Then, for any § > 0,
> 5) o

NI|E-2L.:F
im  lim P ( =2y Bty — psc(E)
2 5) S Ce—CCS\/E

K

K—oo N—oo

More precisely, we show that
P (N [ 2N’ B+ QN}

7% — psc(E)

for all K > 0, uniformly in N > Ng(6).

Intermediate scales: if n(IN) — 0 such that Nn(N) — oo, we have

N [E o U(N); E _|_ U(N)]
lim P 2 2
Nosoo Nn(N)

—psc(E)|>6] =0

Previous results by Khorunzhy, Bai-Miao-Tsay, and Guionnet-
Zeitouni (up to scales n(N) ~ N—1/2),



Main ingredients of proof: upper bound on density and fixed
point equation for Stieltjes transform.

Upper bound: observe that
NIE—-n/2,E4+n/2] =) 1(|]Aa — E| <7)
(8%

2
n 1
< = nIm
—Za OQa—E)2 412 Za o — E — in

and hence

— Nn

I

Im Tr = Im
H— F

1 1 N 1
H—E—in N —

—(7,7)
j=1 —

We bound, for example, the (1, 1)-element of the diagonal.



Decomposing H as

_ [ h11 &
=5 )

we find (Feshbach map)

1 (1.1) = 1 . 1
H—z"" hll—z—a-(B—z)_la hll_z_%zja)\a&iz
with
£a = Nla - uq|? = Eén=1

where Ao and u, are eigenvalues and eigenvectors of B.
We conclude that

1 1 N C
Im —(1,1) < < L <=

H—FE —1n n+ %Za (Aa—En)Q—I—nQ Za:\)\a—E|§n€O€ P



Fixed point equation: we consider the Stieltjes transform

1 1 psc(y)
my(z) = NTrH — msc(z) = /d

Convergence of the density follows if we can prove that

mpy(z) — msc(z), forIm z=n> K/N.

The Stieltjes transform msgc solves the fixed point equation

1
msc(z) + z+msc(z) 0

It is enough to show that, with high probability,

1
mN(Z)-I-Z_I_mN(Z) <6

To this end, we use again

mn(z) = Z 1 @

1 §
7 hij =2 N 2a G




2. Delocalization of Eigenvectors

Let v = (vy,...,v5) be an ¢o-normalized vector in C&. Distin-
guish two extreme cases:

Complete localization: one large component, for example

v=(1,0,...,0) = |vllp=1, forall 2 <p<

Complete delocalization: all components have same size,

v=WN"1Y2_ . N2 = v|,=N12F1/P <1

Theorem [Erdds-S.-Yau, 2008]:
Suppose Ee’l%il < oo for some v > 0. Fix Kk >0, 2 < p < co.
Then

141
IP(EIV Hv=ypv,pe[-24+k,2—kl|vl]o=1,||vl]p>MN 2—|-p)
< Ce_cm
for all M, N large enough.



Idea of proof: we write v = (v1,w). Hence Hv = uv implies

(2 ) - e

By normalization

1
(foz — Nla'ua|2)7
1 + NZO{ (,u >\ )2

where Ao and u, are the eigenvalues and the eigenvectors of B.
1

Nn? Zail/\a—ulén Sa

1 =v4w? = |u]?=

1|2 <

Choosing n = K/N, for a sufficiently large K > 0, we find

2 _ K? 1 K
1] <c—

- N >, I Aa— M|<K/N£oz N

with high probability, because, by the local semicircle law, there

must be order K eigenvalues \q with |A\q — | < K/N. L]
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3. Level Repulsion

Theorem [Erd6s-S.-Yau, 2008]: Suppose Ee’l%il < oo for
some v > 0, fix |E| < 2.

Fix k> 1, and assume that the probability density h(z) = e~ 9(z)
of the matrix entries satisfies the bound
1

~ 1
h(p)| < (1 Cp2yo/2”

Z > 2,
(p)| S 1 0p2)er? for o > 5+k

hg'

Then there exists a constant ., > 0 such that

P(N[E—i E4 -5 ] >k) < 0 &k
2N 2N
for all N large enough, and all € > 0.

2

Remark: for GUE, we have

P, AN = [Jw =A% = PV > k) ~&F
i<j

2
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4. Universality for Wigner Matrices

Universality: local eigenvalue statistics in the Iimit N — oo is
expected to depend only on symmetry, but to be independent of
probability law of matrix entries.

Remark: universality at the edges of the spectrum was estab-
lished by Soshnikov in 1999 using the moment method. Here 1
will consider universality in the bulk of the spectrum.

In 2001, Johansson established the validity of bulk universal-

ity for ensembles of hermitian Wigner matrices with a Gaussian
component (result was later extended by Ben Arous-Péché).

12



Johansson’s approach: consider matrices of the form
1
H=Hy+1t2V

where V' is a GUE-matrix, and Hg is an arbitrary Wigner matrix.

The matrix H can be obtained by letting every entry of Hg evolve
under a Brownian motion up to time ¢ (more prec. t/N).

T he distribution of the eigenvalues of the matrix evolves then
according to Dyson’s Brownian motion

dBn | 1 1
=+ = > dt, 1<a<N

VN N 7 Aa—Ag -

where {By, : 1 < a < N} is a collection of independent Brownian
motion.

d)\a —
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The joint probability distribution of the eigenvalues x = (x1,...,xN)
of H is

p() = [ dy ai(x;y) po(y)

where pg is the distribution of the eigenvalues y = (y1,...,yn)
of Hp and

N/2
NUEANGD ot (o~ Naymud?/2)N
(2nt)N/2 An(y) jk=1
with the Vandermonde determinant

u(x;y) =

N 1 1 ... 1
A(x) =[] (z; — z;) = det o2 e N
=~ N oo N

This can be proven using the Harish-Chandra/Itzykson-Zuber
formula

/ 6_% TF(U*R(X)U—HO(Y))QdU =
U(N)

det (e_%(xj_yi)Q)

A(x)A(y) 1<4,j<N
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The k-point correlation function of p is therefore given by

PP, = [P, o y) po(y)dy

where

(k)(fbl,---,wk;}f) = /Qt(X;y) drgyq...doy
(N — k).
o |

det (Kt,N(fL’z’» T y)>1<7j i<k
with
N
(2mi)? (v — u)t
x [ dz | dw (e Nw—w(w=-r)/t _4
/7 /l’ ( )JH1 ° T y]

1 t Yy — T ) N (w?—2vw—2z242uz) /2t
X —r4+z—u——
. <w r+z—u Z (w =) C =) e

Kt)N(’U,, v, Y) —

where ~ is the union of two horizontal lines and I is a vertical
line in the C-plane, and r € R is arbitrary.

15



Convergence of k-point correlation follows from

1
No(uw) (“ +

for a.e. y

-t 5 ) sinm(zp — 1)
NQ(U) No(u) m(z2 — 71)

To prove convergence of Kt,N to sine-kernel Johansson uses

1
Ky _
No(u) ( Ut ,Y)
/QWz/I‘—hN(w)gN(Z w)eN(fN(’w)—fN(Z))

with
_ 12 SN0t I
fn(z) = 275( 2uz) + ~ Ej log(z — y;)

gn(z,w) = . [w—r+2z—u] - L yj —r

t(w—r) N(w—r)z(w y;i)(z — y;)
hv(w) = %(e—T(w—T)/tQ _ 1)

and performs a detailed asymptotic saddle analysis.
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Beyond Johansson: what happens if t = ¢(N) — 07 Consider

t = N—1—|—€

Similar integral representation but asymptotic analysis is more
delicate and requires microscopic convergence to the semicircle.

Theorem [Erdds-Péché-Ramirez-S.-Yau]: Let p](\]f) be the
k-point eigenvalue correlation function for the ensemble H =
Hg + t1/2V, where Hgp is an arbitrary Wigner matrix, V is an
independent GUE matrix, and t > N~ 1+¢ Then

, 1 (k) 1 Tl
N pk(B) N <E * Npsc(E)" b NPSC(E)>
1 [ . k
— et (Sln(w(azz :1:]))>
i) )iy
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Time reversal to remove Gaussian part: let h(x) be the den-
sity of the matrix elements of Hg.

1
The matrix elements of H = Hg + t2V have density

2
h(x) = (etLh)(z),  with L= %;?
Then
|he(2) — h(2)|?
h(x)

Letting F = h®N? and F, = (etLh)®N? we find

dr < Ct?

Fy— F|?
/' = ey .. deys < ON2E2

It is only small for t < N~ 1.
Hence t = N—17¢ js still not enough.

18



We would like to write

h = etl on with v = e tlp,

But the heat equation cannot be reversed.

= approximate inversion of heat semigroup

Define vy = (1 — tL)h. Then
hy = etloyy ~ b+ t2L2h (while etlh ~ h + tLh)

T herefore

hy — h|?
/| th | da:SCt4

Hence, if F = h®N? and F; = h?N°, we find

F,— F|?
/' tF | dry...dzys <CN?t* <1 fort= N"17¢
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Theorem [Erdds-Péché-Ramirez-S.-Yau]: Suppose H is a
hermitian Wigner matrix, whose entries have law g = e_h, for
h € C°(R). Then,

(2) T1 ) _ sin(w(zy —22))
(E T NPSC(E)’E T NPSC(E)) (m(z1 —x2))

lim
N—00 Psc( )

Shortly after we posted our result, Tao-Vu submitted a paper
with same results. Combining two approaches, one can remove
all conditions, at least after averaging over the variable w.

Theorem [Erdds-Ramirez-S.-Tao-Vu-Yau, 2009]: Fix € >0
and |ug| <2 —e€. Fix k> 1, then

1 [uote 1 T
1 (/@( k )
]\}Too 2e /uo—a du [psc(u)]k P Ut Npsc(U) T Npsc(u)

et (Sin(w(a:i - xj))>’f
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5. Universality for Non-Hermitian Ensembles

The local relaxation flow: Dyson Brownian Motion describes
evolution of eigenvalues. Equilibrium measure is GUE measure

e~ H(x) N 2

2
,LL(X)dX — dX, H(X) =N Z A Z l0g |£E] — ZCZ|
Z =2 NZ

The evolution of an initial probability density function fu w.r.t
DBM is described by the heat equation

Otft = L ft,
with the generator
N N
1 1 1 1
L= L2401+ L 9
.;QNZ_l_ 2( 4"+2NZ.93@- az)z
1= 1= JF1 J

Relaxation time of Dyson’'s Brownian motion given by
1
ﬁVQH > 0(1) = relaxation on times O(1)

21



Idea: introduce new flow with shorter relaxation time. Define

N (2
ﬁ(x)=NLZ (2‘7+222( 7]))_Z|Og|$] 4|

—H(x)+ Z( ) — ;)

where Vg IS position of the 7-th eigenvalue w.r.t. semicircle law,
and R=N"°¢ K 1.

Introduce new equilibrium measure w(x) = e_H(X)/Z and new
evolution

Orgr = Lgy with L=L—-— > (z; —5) -

Observe that

V2H
(%) > CR 2 > N%>1 = relaxation on short times




Hence, if G;n(x) = G(N(:ci — Zig )5 N(@igp_1 — xi+n)), we
find

1 | 1 | Do (\/g)R?\1/2
|/N§]927nd“—/ﬁgg@mgd”'SC”( V)

with the Dirichlet form

N

Do (h) :% 3 /|8xjh‘2 dw
j=1

On other hand, if difference between generators is small, we
expect fiu ~ w = vu. In fact, for ¢t > R?, we find that

Dy,(\/ ft/v) < CNA where A=E;> |z;— 7j|2.
J

From microscopic semicircle law, we find A < N—¢.
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This implies universality for ensembles of the form Hgy + t1/2v,
if t > N—¢, for arbitrary symmetry.

Time-reversal argument implies universality for all matrices whose
entries have enough regularity.

Combining with the result of Tao-Vu, we find universality for
arbitrary ensembles.

Theorem [Erdds, S., Yau, 2009]: For arbitrary hermitian,
symmetric or symplectic Wigner matrices with subexponentially
fast decaying entries, the weak |limit as N — oo of the averaged
k-particle correlation function

1 [bte 1 (k) ( T Tk )
L d e
2¢e /E—e v pE_(w) PN\ uF psc(u) N v psc(u) N

coincides with that of the corresponding Gaussian ensemble (GUE,
GOE, or GSE) for all |[E| <2 and € > 0.

23



6. Open Problems

Random Band Matrices: consider N x N hermitian matrices H
with independent entries hij with

1/W if i —j| <W

— 2
Hhij =0, IBW”Z’J’"{O it |i—j] > W

W <« v/ N: localization, Poisson statistics.

W > +N: delocalization, Wigner-Dyson's statistics.

Anderson Model: consider the Hamiltonian

H=A 4+ \V,(z) acting on ¢£2(Z%

where {V,(z) : = € Z%} is a collection of iid real random variables.

d > 3, A small enough: delocalized eigenvectors (extended states),
Wigner-Dyson’s sine-kernel statistics.
24



7. Appendices

Why is local semicircle important for asymptotic analysis?

Recall that

1 T
K :
No(u) LN (u, u—|— No(uw)' Y>
/ mel——hN(wMN(z w)elN N (W) =fn(2))
with
fn(z) = i(z2 — 2uz) + lz 09(z — ;)
2t N ; j

Saddles are determined by the equation

fn(z) = —(z —u) + < Z

There are two complex conjugated solutions z = q]:\t[.

25



Saddles are determined by the equation

fn(z) = —(z —u) + = Z

There are two complex conjugated solutions z = q]j\:[.

By the convergence to the semicircle on scales of order N—14¢
we have, with high probability,

a5 = ¢t + O(tN~¢/?)
where

= (1 —2t) £ 2ti\/1 — u? + O(tN—/?)

are the two solutions of

1, 4 0sc(y) .
Ja Wt [ 2 dy =0
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The integration paths can be shifted to pass through the saddles.
Only important contribution arises from z,w both close to gy .

Contribution from saddles can be computed through local change
of variable which makes the exponent quadratic (Laplace method).

As N — oo, saddle contribution leads to sine-kernel.
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Tao-Vu approach: let H and H' be two Wigner matrices whose
entries have distribution z,y; assume that typical distance be-
tween eigenvalues is order one (z,y ~ vV N).
Assume that
Ez™ =Eqy™ for 1<m<4

Fix k> 1 and consider a nice function G : R — R. Then

EGQay(H), -, Aoy (H)) = EG(hay (H), .., Mgy (H))| — 0
as N — oo.

Idea of proof: change one entry at the time.

H(z) = matrix obtained from H replacing (i, j)-entry with z
F(z) =GW\a(H(2))) (we take k= 1)

x5
F(z) = F(0) + zF'(0) + --- + aF<’“><0> + ..

5
F(y) = F(0) +yF'(0) + - + %F@)(m + ..

28



T herefore
EF(z) — EF(y)| < E|z[2F(*)(0)
Observe
E|z|® ~ N>/2 put FU(Q) ~ N

In fact

O

F'(0) = G'(Ma(H)) - o= G’ Oa(H)) - va(i)va(j) ~ N1

4]
Hence

EF(z) — EF(y)| < CN~5/2

Repeating this argument N2 times, we can replace all entries of
H; the total error is O(N—1/2).
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Universality (Tao-Vu): for given H, find Johansson matrix
Hy=e "?Ho+ (1 — e H1/2y

such that H and H; have four matching moments.
This is only possible if entries are supported on at least 3 points.

Universality (Erdés-Ramirez-S.-Tao-Vu-Yau): compare H with
the evolved matrix

Hy=e Y20+ (1 e HY2v
with t = N=1%9,

Moments do not match, but they are very close.
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