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Let Γ = (V ,E ) be an arbitrary graph and Q a positive integer.

Configurations = maps σ from V to {1, . . . ,Q}

Hamiltonian = −K
∑
{i ,j}∈E

δσi ,σj
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The partition function is

ZΓ =
∑

σ:V→{1,...,Q}

exp(K
∑
{i ,j}∈E

δσi ,σj )

=
∑

σ:V→{1,...,Q}

∏
{i ,j}∈E

(1 + vδσi ,σj ) v := exp(K )− 1

=
∑
E ′⊂E

∑
σ:V→{1,...,Q}

∏
{i ,j}∈E ′

vδσi ,σj

=
∑
E ′⊂E

v# bonds Q# clusters

bonds=edges in E ′, clusters=connected components of the subgraph (V , E ′)

−→ v4 Q3
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Assume Γ is embedded into the sphere (“planar map”).
In particular, Γ is promoted to Γ = (V ,E ,F ).
There is a dual planar map Γ̃ = (Ṽ , Ẽ , F̃ ), Ṽ ∼= F , Ẽ ∼= E , F̃ ∼= V .

Then
ZΓ̃(Q, v) ∝ ZΓ(Q,Q/v)
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There is also a medial planar map Γm = (Vm,Em,Fm) with
Vm
∼= E , Fm = V t F :

Splitting a vertex:
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Each cluster is surrounded by (2 + # bonds−# vertices) loops.
Therefore,

# loops = 2# clusters + # bonds−#V

and finally

ZΓ ∝
∑
loop

configs
on Γm

√
Q

# loops
( v√

Q

)#bonds

(loop configuration=splitting of each vertex)

The Q-state Potts model is equivalent to a model of loops with
fugacity n :=

√
Q.
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The square lattice is self-dual and has a phase transition at the
self-dual point v =

√
Q between low-temperature phase with

spontaneous polarization and a high-temperature phase with
unbroken symmetry. (similar behavior occurs for other lattices)

The phase transition is continuous (second order) for Q ≤ 4 and
discontinuous (first order) for Q > 4.
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We consider dynamical random lattices, that is

Z (x , y ,Q, v) =
∑

Γ=(V ,E ,F )

x#Ey#V

symmetry factor
ZΓ(Q, v)

The summation is over arbitrary connected planar maps.

x and y are new parameters that control the typical size of the
map; in what follows we only use x . (in the language of quantum

gravity, it is the cosmological constant)

The duality Γ↔ Γ̃ of the Potts model now becomes a symmetry of
the model (at v =

√
Q)!
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The equivalence to the loop model allows to state that

Z =
∑
Γm

1

symmetry factor

∑
loop

configs

n# loopsα
#

β
#

where the summation is restricted to 4-valent planar maps, and

n =
√

Q
α

β
=

v√
Q

β = x
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Consider the following formal matrix integral:

IN =

∫ n∏
a=1

dMadM†a exp
[
N tr

(
− 1

2

n∑
a=1

MaM
†
a

+
α

2

n∑
a,b=1

MaM
†
aMbM

†
b +

β

2

n∑
a,b=1

M†aMaM
†
bMb

)]
over N × N complex matrices.

Note the U(n) symmetry Ma →
∑

b UabMb.

The duality is now simply α↔ β, Ma ↔ M†a .
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It can be expanded in Feynman diagrams:〈
(Ma)ij(Mb)†kl

〉
0

= δabδilδjk =
j

i

k

l

tr(MaM
†
aMbM

†
b) =

tr(M†aMaM
†
bMb) =
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The only use of the orientation of the edges is to distinguish Γ
from Γ̃ in the original Potts language. For α 6= β this is
important! For α = β one can remove the orientation and get
back to the so-called O(n) matrix model.

If one tried to introduce crossing vertices, i.e. , then
the corresponding terms tr(MaM

†
bMaM

†
b) would break the

U(n) symmetry (only the O(n) symmetry would survive).

The power of N of a diagram is its Euler–Poincaré
characteristic, and taking the log corresponds to keeping
connected diagrams, so that

Z = lim
N→∞

log IN
N2
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IN =

∫ n∏
a=1

dMadM†ae
N tr

(
− 1

2

Pn
a=1 MaM

†
a +α

2
(
Pn

a=1 MaM
†
a )2+β

2
(
Pn

a=1 M†
a Ma)2

)

=

∫
dA

∫
dB

∫ n∏
a=1

dMadM†ae
N tr

(
− 1

2

Pn
a=1 MaM

†
a− 1

2α
A2− 1

2β
B2

+A
Pn

a=1 MaM
†
a +B

Pn
a=1 M†

a Ma

)
=

∫
dA

∫
dBeN tr

(
− 1

2α
A2− 1

2β
B2
)

det(1⊗ 1− 1⊗ A− B ⊗ 1)−n
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Diagonalize the Hermitean matrices A and B → {ai}, {1− bi}

IN =

∫ N∏
i=1

daidbi

∏
1≤i<j≤N(aj − ai )

2(bj − bi )
2∏N

i ,j=1(ai − bj)n
eN

PN
i=1(− 1

2α
a2
i −

1
2β

(1−bi )
2)

Particles of two kinds, trapped in harmonic potentials, repelling
particles of same kind and attracted (n > 0) to particles of
different kind.

For sufficiently small α and β, the range of integration of the ai

and bj can be restricted to intervals around 0 and 1 respectively,
without changing the perturbative expansion, and such that the
denominator never vanishes. The integral is then well-defined
analytically.
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Define the resolvents of A and B:

GA(a) = lim
N→∞

1

N

〈
tr

1

a− A

〉
GB(b) = lim

N→∞

1

N

〈
tr

1

1− b − B

〉
They are generating series for diagrams with the topology of the
disk and certain prescribed boundary conditions.

In the large N limit, the integral over the eigenvalues ai and bi is
dominated by a saddle point configuration characterized by limiting
measures dµA and dµB with supports [a1, a2] and [b1, b2]:

GA(a) =

∫ a2

a1

dµA(a′)

a− a′

GB(b) =

∫ b2

b1

dµB(b′)

b − b′
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These functions satisfy the following saddle point equations:

GA(z + i0) + GA(z − i0) = P(z) + nGB(z) z ∈ [a1, a2]

GB(z + i0) + GB(z − i0) = Q(z) + nGA(z) z ∈ [b1, b2]

with P(z) = z/α, Q(z) = (1− z)/β.
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Analytically continuing these equations shows that GA and GB live
on an infinite cover of the Riemann sphere:

a1 a2

b1 b2
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Alternatively, they live on an infinite cover of the elliptic curve
y2 =

√
(z − a1)(z − a2)(z − b1)(z − b2):

a1 a2 b1 b2

We therefore introduce the parameterization

u(z) =

∫ z

b2

dz√
(z − a1)(z − a2)(z − b1)(z − b2)

where u lives on the torus C/(ω1Z + ω2Z).
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More precisely, appropriate linear combinations of GA and GB :

G±(u) = q±1GA(u)− GB(u)± 1

q − 1/q
(P(u) + q±1Q(u))

are sections of certain line bundles over this elliptic curve:

G±(u + ω1) = G±(u)

G±(u + ω2) = q±2G±(u)

Here, n = q + q−1, |n| 6= 2.
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G+ is meromorphic with only poles at ±u∞, the two images of
z =∞. It can be expressed in terms of the theta function:

Θ(u) = 2
∞∑

k=0

e
iπ
ω2
ω1

(k+1/2)2

sin(2k + 1)
πu

ω1

Theorem

G+(u) = c+
Θ(u − u∞ − νω1)

Θ(u − u∞)
+ c−

Θ(u + u∞ − νω1)

Θ(u + u∞)

where q = exp(iπν), and

c± = ± Θ′(0)

Θ(νω1)

1

q − 1/q
(α−1 + q±1β−1)
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Assume q2p = 1. An important case is q = exp(iπ/p) (recall that
Q = (q + q−1)2; for example, Q = 0, 1, 2, 3 corresponds to
p = 2, 3, 4, 6).

Then G± satisfy:

G±(u + ω1) = G±(u)

G±(u + pω2) = G±(u)

i.e. they are elliptic functions with periods ω1, pω2.

We conclude that GA(u) (resp. GB(u)) and z(u), being both
elliptic with same periods, satisfy an algebraic equation:

PA(GA, z) = 0 PB(GB , z) = 0

cf recent work of Bousquet–Melou et al.
P. Zinn-Justin Potts model on random lattices
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Q = (q + q−1)2; for example, Q = 0, 1, 2, 3 corresponds to
p = 2, 3, 4, 6).

Then G± satisfy:

G±(u + ω1) = G±(u)

G±(u + pω2) = G±(u)

i.e. they are elliptic functions with periods ω1, pω2.

We conclude that GA(u) (resp. GB(u)) and z(u), being both
elliptic with same periods, satisfy an algebraic equation:

PA(GA, z) = 0 PB(GB , z) = 0

cf recent work of Bousquet–Melou et al.
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1 As one increases α and β the system becomes more and more
unstable because of the attraction (n > 0) of particles of
opposite kinds. → singularity.

the singularity develops before the two types of particles meet:

= pure gravity

The singularity only occurs when the densities of the two types
of particles touch:

= critical statistical model

2 Baxter, based on numerical work, conjectured a spontaneous
symmetry breaking of the Z/2Z symmetry of the model.
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