The Potts model on random lattices revisited

P. Zinn-Justin
Laboratoire de Physique Théorique des Hautes Energies
UPMC Université Paris 6 and CNRS
Cris
June 3, 2010

Let $\Gamma=(V, E)$ be an arbitrary graph and Q a positive integer. Configurations $=$ maps σ from V to $\{1, \ldots, Q\}$

$$
\text { Hamiltonian }=-K \sum_{\{i, j\} \in E} \delta_{\sigma_{i}, \sigma_{j}}
$$

The partition function is

$$
\begin{aligned}
Z_{\Gamma} & =\sum_{\sigma: V \rightarrow\{1, \ldots, Q\}} \exp \left(K \sum_{\{i, j\} \in E} \delta_{\sigma_{i}, \sigma_{j}}\right) \\
& =\sum_{\sigma: V \rightarrow\{1, \ldots, Q\}} \prod_{\{i, j\} \in E}\left(1+v \delta_{\sigma_{i}, \sigma_{j}}\right) \\
& =\sum_{E^{\prime} \subset E} \sum_{\sigma: V \rightarrow\{1, \ldots, Q\}} \prod_{\{i, j\} \in E^{\prime}} v \delta_{\sigma_{i}, \sigma_{j}} \\
& =\sum_{E^{\prime} \subset E} v^{\# \text { bonds }} Q^{\# \text { clusters }}
\end{aligned}
$$

bonds $=$ edges in E^{\prime}, clusters $=$ connected components of the subgraph $\left(V, E^{\prime}\right)$

$$
\longrightarrow \quad v^{4} Q^{3}
$$

Assume Γ is embedded into the sphere ("planar map"). In particular, Γ is promoted to $\Gamma=(V, E, F)$.
There is a dual planar map $\tilde{\Gamma}=(\tilde{V}, \tilde{E}, \tilde{F}), \tilde{V} \cong F, \tilde{E} \cong E, \tilde{F} \cong V$.

Then

$$
Z_{\tilde{r}}(Q, v) \propto Z_{\Gamma}(Q, Q / v)
$$

Assume Γ is embedded into the sphere ("planar map"). In particular, Γ is promoted to $\Gamma=(V, E, F)$.
There is a dual planar map $\tilde{\Gamma}=(\tilde{V}, \tilde{E}, \tilde{F}), \tilde{V} \cong F, \tilde{E} \cong E, \tilde{F} \cong V$.

Then

$$
Z_{\tilde{\Gamma}}(Q, v) \propto Z_{\Gamma}(Q, Q / v)
$$

There is also a medial planar map $\Gamma_{m}=\left(V_{m}, E_{m}, F_{m}\right)$ with $V_{m} \cong E, F_{m}=V \sqcup F$:

Splitting a vertex:

There is also a medial planar map $\Gamma_{m}=\left(V_{m}, E_{m}, F_{m}\right)$ with $V_{m} \cong E, F_{m}=V \sqcup F$:

Splitting a vertex:

Each cluster is surrounded by ($2+\#$ bonds $-\#$ vertices) loops. Therefore,

$$
\# \text { loops }=2 \# \text { clusters }+\# \text { bonds }-\# V
$$

and finally

(loop configuration=splitting of each vertex)
The Q-state Potts model is equivalent to a model of loops with fugacity $n:=\sqrt{Q}$.

Each cluster is surrounded by ($2+\#$ bonds $-\#$ vertices) loops. Therefore,

$$
\# \text { loops }=2 \# \text { clusters }+\# \text { bonds }-\# V
$$

and finally

$$
Z_{\Gamma} \propto \sum_{\substack{\text { loop } \\ \text { configs } \\ \text { on } \Gamma_{m}}} \sqrt{Q}{ }^{\# \text { loops }}\left(\frac{v}{\sqrt{Q}}\right)^{\# \text { bonds }}
$$

(loop configuration=splitting of each vertex)
The Q-state Potts model is equivalent to a model of loops with fugacity $n:=\sqrt{Q}$

Each cluster is surrounded by ($2+\#$ bonds $-\#$ vertices) loops. Therefore,

$$
\# \text { loops }=2 \# \text { clusters }+\# \text { bonds }-\# V
$$

and finally

$$
Z_{\Gamma} \propto \sum_{\substack{\text { loop } \\ \text { configs } \\ \text { on } \Gamma_{m}}} \sqrt{Q} \text { \# loops }\left(\frac{v}{\sqrt{Q}}\right)^{\# \text { bonds }}
$$

(loop configuration=splitting of each vertex)
The Q-state Potts model is equivalent to a model of loops with fugacity $n:=\sqrt{Q}$.

The square lattice is self-dual and has a phase transition at the self-dual point $v=\sqrt{Q}$ between low-temperature phase with spontaneous polarization and a high-temperature phase with unbroken symmetry. similar behavior occurs for other lattices)

The phase transition is continuous (second order) for $Q \leq 4$ and discontinuous (first order) for $Q>4$

The square lattice is self-dual and has a phase transition at the self-dual point $v=\sqrt{Q}$ between low-temperature phase with spontaneous polarization and a high-temperature phase with unbroken symmetry. (similar behavior occurs for other lattices)

The phase transition is continuous (second order) for $Q \leq 4$ and discontinuous (first order) for $Q>4$.

The square lattice is self-dual and has a phase transition at the self-dual point $v=\sqrt{Q}$ between low-temperature phase with spontaneous polarization and a high-temperature phase with unbroken symmetry. (similar behavior occurs for other lattices)

The phase transition is continuous (second order) for $Q \leq 4$ and discontinuous (first order) for $Q>4$.

We consider dynamical random lattices, that is

$$
Z(x, y, Q, v)=\sum_{\Gamma=(V, E, F)} \frac{x^{\# E} y^{\# V}}{\text { symmetry factor }} Z_{\Gamma}(Q, v)
$$

The summation is over arbitrary connected planar maps.
x and y are new parameters that control the typical size of the map; in what follows we only use x. (in the language of quantum gravity, it is the cosmological constant)

The duality $\Gamma \leftrightarrow \tilde{\Gamma}$ of the Potts model now becomes a symmetry of the model $($ at $v=\sqrt{Q})$!

We consider dynamical random lattices, that is

$$
Z(x, y, Q, v)=\sum_{\Gamma=(V, E, F)} \frac{x^{\# E} E^{\# V}}{\text { symmetry factor }} Z_{\Gamma}(Q, v)
$$

The summation is over arbitrary connected planar maps.
x and y are new parameters that control the typical size of the map; in what follows we only use x. (in the language of quantum gravity, it is the cosmological constant)

The duality $\Gamma \leftrightarrow \tilde{\Gamma}$ of the Potts model now becomes a symmetry of the model (at $v=\sqrt{Q}$)!

We consider dynamical random lattices, that is

$$
Z(x, y, Q, v)=\sum_{\Gamma=(V, E, F)} \frac{x^{\# E} y^{\# V}}{\text { symmetry factor }} Z_{\Gamma}(Q, v)
$$

The summation is over arbitrary connected planar maps.
x and y are new parameters that control the typical size of the map; in what follows we only use x. (in the language of quantum gravity, it is the cosmological constant)

The duality $\Gamma \leftrightarrow \tilde{\Gamma}$ of the Potts model now becomes a symmetry of the model (at $v=\sqrt{Q}$)!

The equivalence to the loop model allows to state that

$$
Z=\sum_{\Gamma_{m}} \frac{1}{\text { symmetry factor }} \sum_{\substack{\text { loop } \\ \text { configs }}} n^{\# \text { loops }} \alpha *<\beta^{\#}
$$

where the summation is restricted to 4-valent planar maps, and

$$
n=\sqrt{Q} \quad \frac{\alpha}{\beta}=\frac{v}{\sqrt{Q}} \quad \beta=x
$$

Consider the following formal matrix integral:

$$
\begin{aligned}
& I_{N}=\int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} \exp \left[N \operatorname { t r } \left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}\right.\right. \\
&\left.\left.+\frac{\alpha}{2} \sum_{a, b=1}^{n} M_{a} M_{a}^{\dagger} M_{b} M_{b}^{\dagger}+\frac{\beta}{2} \sum_{a, b=1}^{n} M_{a}^{\dagger} M_{a} M_{b}^{\dagger} M_{b}\right)\right]
\end{aligned}
$$

over $N \times N$ complex matrices.
Note the $U(n)$ symmetry $M_{a} \rightarrow \sum_{b} U_{a b} M_{b}$.
The duality is now simply $\alpha \leftrightarrow \beta, M_{a} \leftrightarrow M_{a}^{\dagger}$

Consider the following formal matrix integral:

$$
\begin{aligned}
& I_{N}=\int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} \exp \left[N \operatorname { t r } \left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}\right.\right. \\
&\left.\left.+\frac{\alpha}{2} \sum_{a, b=1}^{n} M_{a} M_{a}^{\dagger} M_{b} M_{b}^{\dagger}+\frac{\beta}{2} \sum_{a, b=1}^{n} M_{a}^{\dagger} M_{a} M_{b}^{\dagger} M_{b}\right)\right]
\end{aligned}
$$

over $N \times N$ complex matrices.
Note the $U(n)$ symmetry $M_{a} \rightarrow \sum_{b} U_{a b} M_{b}$.
The duality is now simply $\alpha \leftrightarrow \beta, M_{a} \leftrightarrow M_{a}^{\dagger}$

Consider the following formal matrix integral:

$$
\begin{aligned}
& I_{N}=\int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} \exp \left[N \operatorname { t r } \left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}\right.\right. \\
&\left.\left.+\frac{\alpha}{2} \sum_{a, b=1}^{n} M_{a} M_{a}^{\dagger} M_{b} M_{b}^{\dagger}+\frac{\beta}{2} \sum_{a, b=1}^{n} M_{a}^{\dagger} M_{a} M_{b}^{\dagger} M_{b}\right)\right]
\end{aligned}
$$

over $N \times N$ complex matrices.
Note the $U(n)$ symmetry $M_{a} \rightarrow \sum_{b} U_{a b} M_{b}$.
The duality is now simply $\alpha \leftrightarrow \beta, M_{a} \leftrightarrow M_{a}^{\dagger}$.

It can be expanded in Feynman diagrams:

$$
\begin{aligned}
& \left\langle\left(M_{a}\right)_{i j}\left(M_{b}\right)_{k l}^{\dagger}\right\rangle_{0}=\delta_{a b} \delta_{i l} \delta_{j k}={ }_{i}^{j} \\
& \operatorname{tr}\left(M_{a} M_{a}^{\dagger} M_{b} M_{b}^{\dagger}\right)=\underset{\underset{\sim}{\|}}{\stackrel{\Downarrow}{\Longrightarrow}} \\
& \operatorname{tr}\left(M_{a}^{\dagger} M_{a} M_{b}^{\dagger} M_{b}\right)=\underset{\sim}{*}
\end{aligned}
$$

It can be expanded in Feynman diagrams:

$$
\left\langle\left(M_{a}\right)_{i j}\left(M_{b}\right)_{k l}^{\dagger}\right\rangle_{0}=\delta_{a b} \delta_{i l} \delta_{j k}=\stackrel{j}{\Longrightarrow \quad \underline{l}}
$$

$$
\operatorname{tr}\left(M_{a} M_{a}^{\dagger} M_{b} M_{b}^{\dagger}\right)=\xlongequal{c}
$$

- The only use of the orientation of the edges is to distinguish Γ from $\tilde{\Gamma}$ in the original Potts language. For $\alpha \neq \beta$ this is important! For $\alpha=\beta$ one can remove the orientation and get back to the so-called $O(n)$ matrix model.
- If one tried to introduce crossing vertices, i.e. \mathbb{N}, then the corresponding terms $\operatorname{tr}\left(M_{a} M_{b}^{\dagger} M_{a} M_{b}^{\dagger}\right)$ would break the $U(n)$ symmetry (only the $O(n)$ symmetry would survive)
- The power of N of a diagram is its Euler-Poincaré characteristic, and taking the log corresponds to keeping connected diagrams, so that

- The only use of the orientation of the edges is to distinguish Γ from $\tilde{\Gamma}$ in the original Potts language. For $\alpha \neq \beta$ this is important! For $\alpha=\beta$ one can remove the orientation and get back to the so-called $O(n)$ matrix model.
- If one tried to introduce crossing vertices, i.e.
 then the corresponding terms $\operatorname{tr}\left(M_{a} M_{b}^{\dagger} M_{a} M_{b}^{\dagger}\right)$ would break the $U(n)$ symmetry (only the $O(n)$ symmetry would survive).
- The power of N of a diagram is its Euler-Poincaré characteristic, and taking the log corresponds to keeping connected diagrams, so that

- The only use of the orientation of the edges is to distinguish Γ from $\tilde{\Gamma}$ in the original Potts language. For $\alpha \neq \beta$ this is important! For $\alpha=\beta$ one can remove the orientation and get back to the so-called $O(n)$ matrix model.
- If one tried to introduce crossing vertices, i.e.
 then the corresponding terms $\operatorname{tr}\left(M_{a} M_{b}^{\dagger} M_{a} M_{b}^{\dagger}\right)$ would break the $U(n)$ symmetry (only the $O(n)$ symmetry would survive).
- The power of N of a diagram is its Euler-Poincaré characteristic, and taking the log corresponds to keeping connected diagrams, so that

$$
Z=\lim _{N \rightarrow \infty} \frac{\log I_{N}}{N^{2}}
$$

$$
I_{N}=\int_{a=1}^{n} d M_{a}^{n} d M_{a}^{n} \prod_{a}^{n} N \operatorname{tr}\left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}+\frac{\alpha}{2}\left(\sum_{a=1}^{n} M_{a} M_{a}^{\dagger}\right)^{2}+\frac{\beta}{2}\left(\sum_{a=1}^{n} M_{a}^{\dagger} M_{a}\right)^{2}\right)
$$

$$
\begin{gathered}
I_{N}=\int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} e^{N \operatorname{tr}\left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}+\frac{\alpha}{2}\left(\sum_{a=1}^{n} M_{a} M_{a}^{\dagger}\right)^{2}+\frac{\beta}{2}\left(\sum_{a=1}^{n} M_{a}^{\dagger} M_{a}\right)^{2}\right)} \\
=\int d A \int d B \int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} e^{N \operatorname{tr}\left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}-\frac{1}{2 \alpha} A^{2}-\frac{1}{2 \beta} B^{2}\right.} \\
\left.+A \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}+B \sum_{a=1}^{n} M_{a}^{\dagger} M_{a}\right)
\end{gathered}
$$

$$
\begin{aligned}
I_{N} & =\int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} e^{N \operatorname{tr}\left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}+\frac{\alpha}{2}\left(\sum_{a=1}^{n} M_{a} M_{a}^{\dagger}\right)^{2}+\frac{\beta}{2}\left(\sum_{a=1}^{n} M_{a}^{\dagger} M_{a}\right)^{2}\right)} \\
& =\int d A \int d B \int \prod_{a=1}^{n} d M_{a} d M_{a}^{\dagger} e^{N \operatorname{tr}\left(-\frac{1}{2} \sum_{a=1}^{n} M_{a} M_{a}^{\dagger}-\frac{1}{2 \alpha} A^{2}-\frac{1}{2 \beta} B^{2}\right.} \\
& \left.=\int d A \int d B e^{N \operatorname{tr}\left(-\frac{1}{2 \alpha} A^{2}-\frac{1}{2 \beta} B^{2}\right)} \operatorname{det}(1 \otimes 1-1 \otimes A-B \otimes 1)_{a=1}^{n} M_{a} M_{a}^{\dagger}+B \sum_{a=1}^{n} M_{a}^{\dagger} M_{a}\right)
\end{aligned}
$$

Diagonalize the Hermitean matrices A and $B \rightarrow\left\{a_{i}\right\},\left\{1-b_{i}\right\}$
$I_{N}=\int \prod_{i=1}^{N} d a_{i} d b_{i} \frac{\prod_{1 \leq i<j \leq N}\left(a_{j}-a_{i}\right)^{2}\left(b_{j}-b_{i}\right)^{2}}{\prod_{i, j=1}^{N}\left(a_{i}-b_{j}\right)^{n}} e^{N \sum_{i=1}^{N}\left(-\frac{1}{2 \alpha} a_{i}^{2}-\frac{1}{2 \beta}\left(1-b_{i}\right)^{2}\right)}$
Particles of two kinds, trapped in harmonic potentials, repelling particles of same kind and attracted $(n>0)$ to particles of different kind.

For sufficiently small α and β, the range of integration of the a_{i} and b_{j} can be restricted to intervals around 0 and 1 respectively, without changing the perturbative expansion, and such that the denominator never vanishes. The integral is then well-defined analytically.

Diagonalize the Hermitean matrices A and $B \rightarrow\left\{a_{i}\right\},\left\{1-b_{i}\right\}$
$I_{N}=\int \prod_{i=1}^{N} d a_{i} d b_{i} \frac{\prod_{1 \leq i<j \leq N}\left(a_{j}-a_{i}\right)^{2}\left(b_{j}-b_{i}\right)^{2}}{\prod_{i, j=1}^{N}\left(a_{i}-b_{j}\right)^{n}} e^{N \sum_{i=1}^{N}\left(-\frac{1}{2 \alpha} a_{i}^{2}-\frac{1}{2 \beta}\left(1-b_{i}\right)^{2}\right)}$
Particles of two kinds, trapped in harmonic potentials, repelling particles of same kind and attracted $(n>0)$ to particles of different kind.

For sufficiently small α and β, the range of integration of the a_{i} and b_{j} can be restricted to intervals around 0 and 1 respectively, without changing the perturbative expansion, and such that the denominator never vanishes. The integral is then well-defined analytically.

Diagonalize the Hermitean matrices A and $B \rightarrow\left\{a_{i}\right\},\left\{1-b_{i}\right\}$
$I_{N}=\int \prod_{i=1}^{N} d a_{i} d b_{i} \frac{\prod_{1 \leq i<j \leq N}\left(a_{j}-a_{i}\right)^{2}\left(b_{j}-b_{i}\right)^{2}}{\prod_{i, j=1}^{N}\left(a_{i}-b_{j}\right)^{n}} e^{N \sum_{i=1}^{N}\left(-\frac{1}{2 \alpha} a_{i}^{2}-\frac{1}{2 \beta}\left(1-b_{i}\right)^{2}\right)}$
Particles of two kinds, trapped in harmonic potentials, repelling particles of same kind and attracted $(n>0)$ to particles of different kind.

For sufficiently small α and β, the range of integration of the a_{i} and b_{j} can be restricted to intervals around 0 and 1 respectively, without changing the perturbative expansion, and such that the denominator never vanishes. The integral is then well-defined analytically.

Define the resolvents of A and B :

$$
\begin{aligned}
& G_{A}(a)=\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{tr} \frac{1}{a-A}\right\rangle \\
& G_{B}(b)=\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{tr} \frac{1}{1-b-B}\right\rangle
\end{aligned}
$$

They are generating series for diagrams with the topology of the disk and certain prescribed boundary conditions.

In the large N limit, the integral over the eigenvalues a_{i} and b_{i} is
dominated by a saddle point configuration characterized by limiting measures $d \mu_{A}$ and $d \mu_{B}$ with supports $\left[a_{1}, a_{2}\right]$ and $\left[b_{1}, b_{2}\right]$

Define the resolvents of A and B :

$$
\begin{aligned}
G_{A}(a) & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{tr} \frac{1}{a-A}\right\rangle \\
G_{B}(b) & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{tr} \frac{1}{1-b-B}\right\rangle
\end{aligned}
$$

They are generating series for diagrams with the topology of the disk and certain prescribed boundary conditions.

In the large N limit, the integral over the eigenvalues a_{i} and b_{i} is dominated by a saddle point configuration characterized by limiting measures $d \mu_{A}$ and $d \mu_{B}$ with supports $\left[a_{1}, a_{2}\right]$ and $\left[b_{1}, b_{2}\right]$:

$$
\begin{aligned}
& G_{A}(a)=\int_{a_{1}}^{a_{2}} \frac{d \mu_{A}\left(a^{\prime}\right)}{a-a^{\prime}} \\
& G_{B}(b)=\int_{b_{1}}^{b_{2}} \frac{d \mu_{B}\left(b^{\prime}\right)}{b-b^{\prime}}
\end{aligned}
$$

These functions satisfy the following saddle point equations:

$$
\begin{array}{ll}
G_{A}(z+i 0)+G_{A}(z-i 0)=P(z)+n G_{B}(z) & z \in\left[a_{1}, a_{2}\right] \\
G_{B}(z+i 0)+G_{B}(z-i 0)=Q(z)+n G_{A}(z) & z \in\left[b_{1}, b_{2}\right]
\end{array}
$$

with $P(z)=z / \alpha, Q(z)=(1-z) / \beta$.

Analytically continuing these equations shows that G_{A} and G_{B} live on an infinite cover of the Riemann sphere:

Alternatively, they live on an infinite cover of the elliptic curve $y^{2}=\sqrt{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-b_{1}\right)\left(z-b_{2}\right)}:$

We therefore introduce the parameterization

where u lives on the torus $\mathbb{C} /\left(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\right)$.

Alternatively, they live on an infinite cover of the elliptic curve $y^{2}=\sqrt{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-b_{1}\right)\left(z-b_{2}\right)}:$

We therefore introduce the parameterization

$$
u(z)=\int_{b_{2}}^{z} \frac{d z}{\sqrt{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-b_{1}\right)\left(z-b_{2}\right)}}
$$

where u lives on the torus $\mathbb{C} /\left(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\right)$.

More precisely, appropriate linear combinations of G_{A} and G_{B} :

$$
G_{ \pm}(u)=q^{ \pm 1} G_{A}(u)-G_{B}(u) \pm \frac{1}{q-1 / q}\left(P(u)+q^{ \pm 1} Q(u)\right)
$$

are sections of certain line bundles over this elliptic curve:

$$
\begin{aligned}
& G_{ \pm}\left(u+\omega_{1}\right)=G_{ \pm}(u) \\
& G_{ \pm}\left(u+\omega_{2}\right)=q^{ \pm 2} G_{ \pm}(u)
\end{aligned}
$$

Here, $n=q+q^{-1},|n| \neq 2$.
G_{+}is meromorphic with only poles at $\pm u_{\infty}$, the two images of $z=\infty$. It can be expressed in terms of the theta function:

$$
\Theta(u)=2 \sum_{k=0}^{\infty} e^{i \pi \frac{\omega_{2}}{\omega_{1}}(k+1 / 2)^{2}} \sin (2 k+1) \frac{\pi u}{\omega_{1}}
$$

Theorem

where $q=\exp (i \pi \nu)$, and

G_{+}is meromorphic with only poles at $\pm u_{\infty}$, the two images of $z=\infty$. It can be expressed in terms of the theta function:

$$
\Theta(u)=2 \sum_{k=0}^{\infty} e^{i \pi \frac{\omega_{2}}{\omega_{1}}(k+1 / 2)^{2}} \sin (2 k+1) \frac{\pi u}{\omega_{1}}
$$

Theorem

$$
G_{+}(u)=c_{+} \frac{\Theta\left(u-u_{\infty}-\nu \omega_{1}\right)}{\Theta\left(u-u_{\infty}\right)}+c_{-} \frac{\Theta\left(u+u_{\infty}-\nu \omega_{1}\right)}{\Theta\left(u+u_{\infty}\right)}
$$

where $q=\exp (i \pi \nu)$, and

$$
c_{ \pm}= \pm \frac{\Theta^{\prime}(0)}{\Theta\left(\nu \omega_{1}\right)} \frac{1}{q-1 / q}\left(\alpha^{-1}+q^{ \pm 1} \beta^{-1}\right)
$$

Assume $q^{2 p}=1$. An important case is $q=\exp (i \pi / p)$ (recall that $Q=\left(q+q^{-1}\right)^{2}$; for example, $Q=0,1,2,3$ corresponds to $p=2,3,4,6)$.

Then $G_{ \pm}$satisfy:

i.e. they are elliptic functions with periods $\omega_{1}, p \omega_{2}$.

We conclude that $G_{A}(u)$ (resp. $G_{B}(u)$) and $z(u)$, being both elliptic with same periods, satisfy an algebraic equation:

$$
P_{A}\left(G_{A}, z\right)=0 \quad P_{B}\left(G_{B}, z\right)=0
$$

cf recent work of Bousquet-Melou et al.

Assume $q^{2 p}=1$. An important case is $q=\exp (i \pi / p)$ (recall that $Q=\left(q+q^{-1}\right)^{2}$; for example, $Q=0,1,2,3$ corresponds to $p=2,3,4,6)$.

Then $G_{ \pm}$satisfy:

$$
\begin{aligned}
G_{ \pm}\left(u+\omega_{1}\right) & =G_{ \pm}(u) \\
G_{ \pm}\left(u+p \omega_{2}\right) & =G_{ \pm}(u)
\end{aligned}
$$

i.e. they are elliptic functions with periods $\omega_{1}, p \omega_{2}$.

We conclude that $G_{A}(u)$ (resp. $G_{B}(u)$) and $z(u)$, being both elliptic with same periods, satisfy an algebraic equation:

$$
P_{A}\left(G_{A}, z\right)=0 \quad P_{B}\left(G_{B}, z\right)=0
$$

Assume $q^{2 p}=1$. An important case is $q=\exp (i \pi / p)$ (recall that $Q=\left(q+q^{-1}\right)^{2}$; for example, $Q=0,1,2,3$ corresponds to $p=2,3,4,6)$.

Then $G_{ \pm}$satisfy:

$$
\begin{aligned}
G_{ \pm}\left(u+\omega_{1}\right) & =G_{ \pm}(u) \\
G_{ \pm}\left(u+p \omega_{2}\right) & =G_{ \pm}(u)
\end{aligned}
$$

i.e. they are elliptic functions with periods $\omega_{1}, p \omega_{2}$.

We conclude that $G_{A}(u)$ (resp. $\left.G_{B}(u)\right)$ and $z(u)$, being both elliptic with same periods, satisfy an algebraic equation:

$$
P_{A}\left(G_{A}, z\right)=0 \quad P_{B}\left(G_{B}, z\right)=0
$$

cf recent work of Bousquet-Melou et al.
(1) As one increases α and β the system becomes more and more unstable because of the attraction $(n>0)$ of particles of opposite kinds. \rightarrow singularity.

- the singularity develops before the two types of particles meet:
- The singularity only occurs when the densities of the two types of particles touch:

$=$ critical statistical model
(2) Baxter, based on numerical work, conjectured a spontaneous symmetry hreaking of the $\mathbb{T} / 2 \mathbb{T}$. symmetry of the model
(1) As one increases α and β the system becomes more and more unstable because of the attraction $(n>0)$ of particles of opposite kinds. \rightarrow singularity.
- the singularity develops before the two types of particles meet:

- The singularity only occurs when the densities of the two types of particles touch:

(2) Baxter, based on numerical work, conjectured a spontaneous svmmetry breaking of the $\mathbb{Z}_{\mathbb{A}} / 2 \mathbb{Z}$ svmmetry of the model
(1) As one increases α and β the system becomes more and more unstable because of the attraction $(n>0)$ of particles of opposite kinds. \rightarrow singularity.
- the singularity develops before the two types of particles meet:

- The singularity only occurs when the densities of the two types of particles touch:

$=$ critical statistical model
(2) Baxter, based on numerical work, conjectured a spontaneous symmetry breaking of the $\mathbb{Z} / 2 \mathbb{Z}$ symmetry of the model.
(1) As one increases α and β the system becomes more and more unstable because of the attraction $(n>0)$ of particles of opposite kinds. \rightarrow singularity.
- the singularity develops before the two types of particles meet:

- The singularity only occurs when the densities of the two types of particles touch:

(2) Baxter, based on numerical work, conjectured a spontaneous symmetry breaking of the $\mathbb{Z} / 2 \mathbb{Z}$ symmetry of the model.

Criticality

