Optimal control techniques based on infection age for the study of the COVID-19 epidemic May 7, 2020

J. Frédéric Bonnans (1) and Justina Gianatti (2)

(1) CMAP & Inria Saclay, France; (2) CIFASIS, Rosario, Argentina

Confinement control in the SIR setting:

$$\begin{aligned} \dot{S}(t) &= -\delta(1-u(t))S(t)I(t) \\ \dot{I}(t) &= \delta(1-u(t))S(t)I(t) - (\eta+\mu)I(t) \\ \dot{R}(t) &= \mu I(t) \end{aligned} \tag{1}$$

with $u(t) \in [0,1]$ confinement control, and $\delta > 0$ infection coefficient, $\eta > 0$ death rate, $\mu > 0$ recovery rate.

Infection age; related differential calculs

For non hospitalized z(t,a,b) and hospitalized population h(t,a,b)a class of population (strong/weak) $b \in [0,B]$ infection age; For $\varepsilon > 0$ small:

$$z(t+\varepsilon,a,b+\varepsilon) \approx z(t,a,b) - \varepsilon v(a,b) z(t,a,b)$$
(2)

Corresponding differential equation

$$z_t(t,a,b) + z_b(t,a,b) = -v(a,b)z(t,a,b)$$
 (3)

Full model

States: y susceptible, z infected non hospitalized, h hospitalized, \bar{y} recovered.

$$\dot{y}(t,a) = -\delta(a)(1 - u(t,a))Z(t)y(t,a) (z_t + z_b)(t,a,b) = -v(a,b)z(t,a,b) z(t,a,0) = \delta(a)(1 - u(t))Z(t)y(t,a) (h_t + h_b)(t,a,b) = v(a,b)z(t,a,b) - (\eta(a,b) + \gamma(a,b)E(t))h(t,a,b) h(t,a,0) = 0 \dot{y}(t,a) = z(t,a,B) + h(t,a,B)$$
(4)

Details of dynamics

$$Z(t) = \int_0^A \int_0^B e(a,b) z(t,a,b) \mathrm{d}a \mathrm{d}b,$$
(5)

with e(a,b) transmission factor hospitalized patients do not contribute to the transmission v(a,b) hospitalization coefficient, $E(t) \in [0,1]$ is the hospital saturation estimate, given by

$$E(t) := \frac{(H(t) - C)_{+}}{H(t) + C}; \quad H(t) := \int_{0}^{A} \int_{0}^{B} h(t, a, b) da db,$$
(6)

where C > 0 nominal capacity.

Only hospitalized patients die, with death rate

$$d(t,a,b) := \eta(a,b) + \gamma(a,b)E(t), \tag{7}$$

where $\eta(a,b) \ge 0$ is the minimal death rate and $\gamma(a,b)$ sensitivity of the death rate w.r.t. the hospital saturation estimate.

Cost function

$$J(M, u, D_T) := p_M M + p_u c(u) + p_D D_T,$$
(8)

where the penalty coefficients p_M , p_u and p_D are nonnegative. D_T , death toll; M hospital peak value, subject to

$$H(t) \le M, \quad \forall t \in [0, T]. \tag{9}$$

In addition, in our model we include confinement duration constraints for each class, more precisely:

$$\int_0^T u(t,a) \mathrm{d}t \le M(a), \quad \text{for a.a. } a \in (0,A).$$
(10)

6

Figure 1: Minimal hospital peak value: $p_M = 10$, $p_u = 0.005$, $p_D = 1_7$ C = 0.01, T = 260.