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for many illuminating discussions. Many other persons contributed in vari-
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Paul Gauthier, Alessia Marigo, Heinz Schättler, Ulysse Serres, Mario Sigalotti,
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VIII Preface

Basic Notation
Given a set A we indicate by ](A) its cardinality. If A is a topological

space and B a subset of A then we indicate by Int(B) the interior of B, by
Clos(B) the closure of B in A and by Fr(B) its topological frontier. A subset
B of A is said to be generic if it contains an open and dense set. Analogously
a property P is said generic if the set of points satisfying P is generic.

We indicate by R the set of real numbers and by R
n the vector space of

n–tuples of real numbers. B(x, r) indicates the open ball centered at x ∈ R
n

of radius r > 0.
For any function f : A→ B, A,B sets, the domain is indicated byDom(f),

while the support by Supp(f). A map γ : [a, b] → A is called a curve on A, we
indicate by In(γ) its initial point γ(a) and Term(γ) its terminal point γ(b).
If [a′, b′] ⊂ [a, b] we indicate by γ|[a′,b′] the restriction of γ to [a′, b′].

If M is a manifold then dim(M) indicates its dimension and if M has
boundary then we indicate by ∂M its boundary.

List of Symbols

• C∞ vector field on the plane, see Definition 15, p. 38.
• Det(A), determinant of the matrix A.
• [F,G], Lie bracket of the vector fields F and G. See Definition 4, p. 16.
• F ∧G := Det(F,G), see Section 2.1, p. 35,
• TT , SS: target and source, see Section 1.2, 1.2, p. 19.
• Y := F +G, X = F −G, see p. 38 and formula (2.9), p. 41.
• ∆A, ∆B , see Section 2.1 and Definition 19, p. 43.
• f(x) := −∆B(x)/∆A(x), see Definition 20, p. 44.
• θγ(t), see Definition 14, p. 37, and Section 2.7, p. 83.
• φ(t), switching function, see Definition 16, p. 40 and Section 2.7, p. 83.
• vγ(v0, t0; t), see Definition 14, p. 37.
• γ±, γ±op, t

±
op, see Section 2.6, p. 58.

• v±(t), θ±(t), t±f , see Section 2.8.2, p. 89.
• NTAE, Non Trivial Abnormal Extremal (i.e. abnormal extremal with at

least one switching). See Section 4.3, Definition 60, p. 171.
• X,Y, S,C,K, F, γ0, γA, γk, Frame Curves, see Section 2.6.1, p. 58.
• C̄, Frame Curve of the Extremal Synthesis, see Section 4.1.3, p. 158.
• (X,Y ), (Y,C)1,2,3, (Y, S), (Y,K)1,2,3, (C,C)1,2, (C,S)1,2, (C,K)1,2,

(S,K)1,2,3, (K,K), (Y, F )1, (Y, F )2, (S, F ), (C,F ), (K,F ), Frame Points,
of the Optimal Synthesis, See Section 2.6.2, p. 60 and Section 2.6.4, p. 62.

• (X,Y ), (Y,C)1,2,3, (Y,C)tg2 , (Y,C)tg3 , (Y, S), (C,C)1,2, (C,S)1,2, (Y, C̄)1,
(Y, C̄)tg1 , (Y, C̄)t−o1 , (C, C̄)1,2,3,4 (C̄, C̄)1 (C̄, S)1,2 (W,C,C) (W, C̄, C̄)
(W,C, C̄)1,2 (S, S), Frame Points, of the Extremal Synthesis, See Chapter
4.

• Optimal Strip, see Section 3.2.1, p. 132,
• Extremal Strip, see Section 4.2, p. 167.



Preface IX

• Rx0
(T ), reachable set from x0, within time T . See Definition 1.2, p. 16.

• R(T ), reachable set from the origin (or from a point x0), within time T ,
for the model problem ẋ = F (x) + uG(x). See formula (2.7), p. 39 and
formula (3.2), p. 128.

• R(∞), reachable set from the origin, See formula (3.3), p. 128.
• N , see the introduction to Chapter 4, p. 153 and Definition 54, p. 155.
• N0, see Section 4.1.4, p. 159.
• Q, N , N̄ , see the introduction to Chapter 5, and Figure 5.1, p. 198. For N

see also the introduction to Chapter 4 and Sections 4.1, 4.5, p. 189, 4.6.
• Normal, Fold, Cusp, Ribbon, Bifold, Projection Singularities, see Section

4.1.5, p. 162 and Chapter 5.
• etV (x̄), value at time t of the solution to the Cauchy problem: ẋ = V (x),

x(0) = x̄, see Definition 35, p. 88.
• (etV )∗, Jacobian matrix of the map: x 7→ etV (x), see Definition 35, p. 88.
• (P1),...,(P7), generic conditions, see Section 2.4, p. 48.
• (GA1),...,(GA8), generic conditions, see Section 2.8.2, p. 89.
• (GA9),...,(GAτ), generic conditions, see Section 4.1.1, p. 156.
• X–trajectory, Y –trajectory, Z–trajectory, see Definition 18, p. 41.

K: overlap frame curve (cut locus)

C: switching frame curve (curve of conjugate points)

X or Y frame curves (X or Y−trajectories)

S: singular frame curve (turnpike or Z−trajectory)
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Introduction

Control Theory deals with systems that can be controlled, i.e. whose evolution
can be influenced by some external agent. The birth of Control Theory can be
subject of discussion, however it was after the second world war that it had a
great development due to engineering applications and became a recognized
mathematical research field.

At the same time, probably the most important tool in Optimal Control
was proved, namely Pontryagin Maximum Principle. The goal of Optimal
Control is to design trajectories that minimize some given cost and it can be
viewed as a generalization of Calculus of Variations.

On the other side, another typical problem is the one of prescribing the
control automatically as function of the state variables, i.e. giving a feedback,
to avoid disturbances and ensure robustness of some prescribed behavior of the
system. For instance, one looks for a stabilizing feedback, that is a feedback
guaranteeing Lyapunov stability of a given equilibrium. Among many appli-
cations, this can be used in aerospace engineering to stabilize communications
satellites.

Starting from late 60s, the use of Differential Geometry for control prob-
lems gave birth to the so called Geometric Control Theory. The development
of strong mathematical tools permitted to attack problems of increasing dif-
ficulty and to suggest a systematic way towards the construction of optimal
feedbacks. These holy Grail of control furnish the solution to both kind of
problems: optimal trajectories implementation and feedback design. However,
even simple optimal feedbacks are discontinuous, and the solution of the cor-
responding differential equation could generate not optimal trajectories. Thus
optimal synthesis, i.e. collection of optimal trajectories, is the most appropri-
ate concept of solution for Optimal Control Problems. Still the construction of
optimal syntheses has been achieved only for some specific examples or class
of systems in low dimensions.

The aim of this book is to develop a complete synthesis theory for mini-
mum time on two dimensional manifolds. Beside the construction of optimal
synthesis for generic smooth single-input system, we are able to operate a
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topological classification of the resulting non smooth flows, in the spirit of the
work of Andronov-Pontryagin-Peixoto for two dimensional dynamical systems.
The research encompasses a comprehensive analysis of singularities, a detailed
study of the minimum time function and a deep description of the geometry
underlying Pontryagin Maximum Principle.

The rest of this chapter is written in a slightly informal way to let the
reader enter smoothly the subject. All details about the given concepts are
better illustrated in the following chapters.

Optimal Control Problems and Syntheses

We consider control systems that can be defined as a system of differential
equations depending on some parameters u ∈ U ⊆ R

m:

ẋ = f(x, u), (0.1)

where x belongs to some n–dimensional smooth manifold or, in particular, to
R
n. For each initial point x0 there are many trajectories depending on the

choice of the control parameters u.
One usually distinguishes two different ways of choosing the control:

• open loop. Choose u as function of time t,
• closed loop or Feedback. Choose u as function of space variable x.

The first problem one faces is the study of the set of points that can
be reached, from x0, using open loop controls. This is also known as the
controllability problem.

If controllability to a final point x1 is granted, one can try to reach x1

minimizing some cost, thus defining an Optimal Control Problem:

min

∫ T

0

L(x(t), u(t)) dt, x(0) = x0, x(T ) = x1, (0.2)

where L : R
n × U → R is the Lagrangian or running cost. To have a precise

definition of the Optimal Control Problem one should specify further: the time
T fixed or free, the set of admissible controls and admissible trajectories, etc.
Moreover one can fix an initial (and/or a final) set, instead than the point x0

(and x1).
Fixing the initial point x0 and letting the final condition x1 vary in some

domain of R
n, we get a family of Optimal Control Problems. Similarly we can

fix x1 and let x0 vary. One main issue is to introduce a concept of solution for
this family of problems and, in this book, we focus on the concept of optimal
synthesis. Roughly speaking, an optimal synthesis is a collection of optimal
trajectories starting from x0, one for each final condition x1. As explained in
next chapter, geometric techniques provide a systematic method to attack the
problem of building an optimal synthesis.
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For a discussion of other concepts of solution, such as feedback and value
function, we refer to the bibliographical note.

We start giving some examples, which are part of the general theory de-
veloped later.

Example A. Assume to have a point of unitary mass moving on a one di-
mensional line and to control an external bounded force. We get the control
system:

ẍ = u, x ∈ R, |u| ≤ C,

where x is the position of the point, u is the control and C is a given positive
constant. Setting x1 = x, x2 = ẋ and, for simplicity, C = 1, in the phase space
the system is written as:

{

ẋ1 = x2

ẋ2 = u.

One simple problem is to drive the point to the origin with zero velocity in
minimum time. From an initial position (x̄1, x̄2) it is quite easy to see that the
optimal strategy is to accelerate towards the origin with maximum force on
some interval [0, t] and then to decelerate with maximum force to reach the
origin at velocity zero. The set of optimal trajectories is depicted in Figure
0.1.A: this is the simplest example of optimal synthesis for two dimensional
systems. Notice that this set of trajectories can be obtained using the following
feedback, see Figure 0.1.B. Define the curves ζ± = {(x1, x2) : ∓x2 > 0, x1 =
±x2

2} and let ζ be defined as the union ζ± ∪ {0}. We define A+ to be the
region below ζ and A− the one above. Then the feedback is given by:

u(x) =







+1 if (x1, x2) ∈ A+ ∪ ζ+

−1 if (x1, x2) ∈ A− ∪ ζ−
0 if (x1, x2) = (0, 0).

Notice that the feedback u is discontinuous.

Example B. The simplest model for a car-like robot is the celebrated Dubins’
car. This car moves only forward at constant unitary velocity and its position
is determined by the coordinates (x1, x2) of the center of mass and the angle θ
formed by the car axis with the positive x1 axis (see Figure 0.2). If we assume
to control only the steering with a lower bound on the turning radius R, then
we get the control system on R

2 × S1:







ẋ1 = cos(θ)
ẋ2 = sin(θ)

θ̇ = u,

where |u| ≤ (1/R) and for simplicity we set R = 1. Consider the problem
of reaching the origin of R

2 with any orientation in minimum time, starting
outside B(0, 2), the ball centered at the origin of radius 2. We describe, in the
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x2

+

−

ζ

u(x)=−1

u(x)=+1

ζ (u=−1)

(u=+1)

x1x1

x2

A B

Fig. 0.1. Example A. The simplest example of optimal synthesis and corresponding
feedback.

following, the optimal feedback control. Given (x1, x2, θ), define θ̄ ∈ [−π, π]
to be the signed angle from the direction (cos(θ), sin(θ)) to the direction
(−x1,−x2), see Figure 0.2. Then, if θ̄ /∈ {0,±π},

u(x1, x2, θ) = sgn(θ̄). (0.3)

Now if θ̄ = 0 then we are already oriented towards the origin and we choose
u = 0. Finally, if θ̄ ∈ {±π} then we can choose either u = +1 or u = −1. The
set of points where u = 0 is a two dimensional helix in the (x1, x2, θ) space
and trajectories starting from a point of this helix run straight to the origin
lying on this set, see Figure 0.3. The set where u can be chosen to be 1 or
−1 is another helix in the (x1, x2, θ) space, translated by π in the θ direction.
The two regions between the two helices correspond one to control +1 and
the other to control −1. If the car starts in one of these regions, then it turns
until it enters the first helix and then it uses control u = 0 up to the origin.

Remark 1 For a complete synthesis (including initial data in B(0, 2)) see
[118].

Example C. Consider the problem of orienting in minimum time a satellite
with two orthogonal rotors. We assume to control the speed of one rotor (that
we assume to be bounded), while the second rotor has constant speed. This
problem can be modeled with a left invariant control system on SO(3):

ẋ = x(F + uG), x ∈ SO(3), |u| ≤ 1,



Introduction 5

2

θθ

x

x

1

2

Fig. 0.2. Example B. The Dubins’ Car.

Fig. 0.3. Example B. Optimal Synthesis for the Dubins’ car (minimum time, to the
origin, with any orientation). The ruled helix corresponds to points where u = 0.
The nonruled helix correspond to points where u can be chosen either +1 or −1.
Between the two helices u is determined by formula (0.3).
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where F and G are two matrices of so(3), the Lie algebra of SO(3). Using the
isomorphism of Lie algebras (SO(3), [ . , . ]) ∼ (R3,×), the condition that the
rotors are orthogonal reads:

Trace(F ·G) = 0.

The problem of finding the optimal trajectory between every initial and ter-
minal point is hardly non trivial and still open, but if we are interested to
orient only a fixed semiaxis then the problem projects on the sphere S2:

ẋ = x(F + uG), x ∈ S2, |u| ≤ 1.

and, with the theory developed in this book, can be determined. In this case
F +G and F −G are rotations around two fixed axes (see Figure 0.4), and it
turns out that, if the angle between these two axes is less than π/2, then every
optimal trajectory is a finite concatenation of arcs corresponding to constant
control +1 or −1. The Optimal Synthesis can be obtained by the feedback
shown in Figure 0.4.

The Model Problem

Even though geometric techniques are powerful, the construction of optimal
syntheses is quite challenging and results are bounded to low dimensions.

We focus on a class of bidimensional Optimal Control Problems that is,
at the same time, simple enough to permit the construction and complete
classification of optimal syntheses, but, on the other side, sufficiently general to
present a very rich variety of behaviors and to be used for several applications.

Geometric Problem: Minimum Time Motion on 2-D Manifolds
Given a smooth 2-D manifold M and two smooth vector fields X and Y on
M , we want to steer a point p ∈M to a point q ∈M in minimum time using
only integral curves of the two vector fields X and Y .

It may happen that the minimum time is obtained only by a trajectory γ
whose velocity γ̇(t) belongs to the segment joining X(γ(t)) and Y (γ(t)) (not
being an extremum of it). Thus, for existence purposes, we consider the set of
velocities {vX(x) + (1 − v)Y (x) : 0 ≤ v ≤ 1}, that does not change the value
of the infimum time.

The above geometric problem can be restated as the minimum time prob-
lem for the following control system. Defining F = Y+X

2 and G = Y−X
2 this

control system can be written in local coordinates as:

ẋ = F (x) + uG(x), x ∈M, |u| ≤ 1, (0.4)
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Fig. 0.4. Optimal feedback for Example C. The situation is more intricate in a
neighborhood of the south pole, see [34].

where F and G are C∞ vector fields on M . Our book is mainly devoted to
the study of this kind of systems and, from now on, we fix the initial point p,
letting q vary on M .

Therefore the problem we consider is of type (0.1)-(0.2) for the following
choice. The dynamics f(x, u) and the control set U are given by (0.4) and the
Lagrangian L is constantly equal to 1.

The Classification Program

The geometric control approach gives good results for our model problem:
one is able to prove the existence of an optimal synthesis for generic systems.
More precisely, let Ξ be the set of pairs (F,G) of smooth vector fields, with
the C∞ topology. We prove that there exists an open dense set in Ξ for which
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p

q

X
Y

  C      vector fields

M   smooth 2−D manifold

Fig. 0.5. Geometric problem.

it exists an optimal synthesis (on the set R(τ) of points that can be reached
from p within time τ).

Since the syntheses happen to be generated by discontinuous feedbacks
u(x), smooth on each stratum of a stratification of R(τ), the classification of
syntheses amounts to classify phase portraits of two dimensional flows, gener-
ated by a class of discontinuous vector fields. Therefore it embraces the same
spirit of the topological classification program for smooth two dimensional dy-
namical systems, obtained with contributions of Andronov, Pontryagin and
Peixoto. We can state the classification program in the following way.

Classification Program. Given τ > 0, find an open dense subset Πτ of Ξ, a
set G of algebraic or combinatorial structures and an equivalence relation ∼ on
optimal syntheses such that the following holds. For every couple (F,G) ∈ Πτ

there exists an optimal synthesis on R(τ). Moreover the set of equivalence
classes Πτ/ ∼ can be put in bijective correspondence with the elements of the
set G.

We recall that for two dimensional smooth dynamical systems, the set G con-
sists of topological graphs and the equivalence relation ∼ is an orbital equiv-
alence, see [18].

We are able to complete the classification program with the following
choices. The equivalence relation ∼ is an orbital equivalence on the flows of
the discontinuous feedbacks u(x), with the additional request that the singu-
larities of the synthesis are preserved. Thus a preliminary to the classification
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of syntheses is the classification of generic singularities. For planar systems,
the set G is a set of topological graphs with additional structure: names of
edges, signs of two dimensional zones and lines (details are given in Chap-
ter 2). We illustrate an example of synthesis, with relative singularities, and
corresponding graph in Figures 0.6, 0.7.

For the case of a general two dimensional manifold, we need to provide
more structure to graphs, giving a cyclic order to the set of edges incident at
a vertex. Thanks to a theorem of Heffter, dating back to 19th century, one
can individuate a minimal genus compact manifold, on which the graph can
be embedded.

A key ingredient to obtain a satisfying classification is structural stability.
We say that a pair (F,G) is structurally stable if a small perturbation does
not change the structure of the corresponding optimal synthesis. Structural
stability is guaranteed in our case by a detailed study of singularities and is
ensured under generic conditions. The analysis of systems of the type (0.4)
can be pushed much further as explained below.

1

u=-1

u=1u=-1

u=1

C

C

2

Fig. 0.6. Example of Synthesis.
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Fig. 0.7. Example of Graph.

Chapters of the Book

We give a brief outline of the chapter’s contents.
The construction of optimal syntheses is done in Chapter 2. Readers not

interested in a deeper analysis can skip the other chapters. Chapter 3 deals
with the minimum time function and depends on Chapter 2 for the classifi-
cation of synthesis singularities. Readers interested in singularities analysis in
the cotangent bundle and projection singularities can go directly from Chap-
ter 2 to Chapter 4. Anyway in Chapter 5, some results about regularity of the
minimum time front (developed in Chapter 3) are used. Figure 0.8 illustrates
the links between Chapters. We now describe each Chapter in more detail.

In Chapter 1 we provide an introduction to some basic facts of Geometric
Control Theory: controllability, optimal control, Pontryagin Maximum Prin-
ciple, high order conditions, etc.

Chapter 2 is dedicated to the construction of optimal synthesis for our
model problem. First, we provide a detailed study of the structure of optimal
trajectories. Using this, the existence of an optimal synthesis, under generic
assumptions, is proved. A complete classification of synthesis singularities is
also given, presenting explicit examples for each equivalence class. The classi-
fication program is then completed by proving structural stability of optimal
syntheses and associating to each of them a topological graph. Applications
are given in the last section.

In Chapter 3 we treat the problem of topological regularity of the minimum
time function. We say that a continuous function, not necessarily smooth, is
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1

geometric
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Fig. 0.8. Links between Chapters of the book

topologically a Morse function if its level sets are homeomorphic to the level
sets of a Morse function. This is very useful to characterize the topological
properties of reachable sets and is sufficient, for example, to derive Morse
inequalities, see [101].

The most important tool for the study of optimal trajectories is the well
known Pontryagin Maximum Principle (PMP), that is a first order necessary
condition for optimality. For each optimal trajectory, PMP provides a lift
to the cotangent bundle that is a solution to a suitable pseudo–Hamiltonian
system. Chapter 4 is dedicated to analyze the set of extremals, i.e. trajec-
tories satisfying PMP. The whole set of extremal in the cotangent bundle is
called the extremal synthesis. Even if this investigation is not necessary to
construct the optimal synthesis, however it permits a deeper understanding
of the relationships between synthesis singularities, minimum time function
and Hamiltonian singularities.

Most of the results obtained so far are key for the following Chap-
ter 5. There are four natural spaces where the mathematical objects pre-
viously defined live: the product T ∗M × R of triplets (state, costate, time),
the cotangent bundle T ∗M where extremals evolve, the product M × R of
couples (state, time), the base space M . The set of pairs (extremals, time) =
(state, costate, time) is a manifold in T ∗M × R, while the set of extremals in
T ∗M is only a Whitney stratified set (no more a manifold). All projection
singularities between these spaces are classified under generic conditions and
the links with synthesis singularities are explained. For example, we show that
curves reached optimally by two different trajectories, called overlaps, are gen-
erated at projection singularities (from T ∗M to M) of cusp type. On the other
side, these points correspond to swallowtails in M × R and to singularities of
the extremal time front on M . See Figure 0.9.
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Two appendices end the book. The first reports some technical proofs,
while the second generalizes all results to the case of a two dimensional source.
In particular, in the case M = R

2, under a local controllability assumption, we
can also prove the semiconcavity of the minimum time function. This property
(that fails with a pointwise source) is typically encountered in calculus of
variations problems or optimal control problems with set of velocities of the
same dimension as the state space.

Cusp 

overlap

Swallowtail

T  M *
(state,costate)

(state)
M

time front

nonoptimal
trajectories

(state,time)
M   R

Fig. 0.9. Example of a singularity of the optimal synthesis and related projection
singularities. For details see Chapter 5.
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Abnormal Extremals

In the construction of both optimal and extremal synthesis, a key role is played
by abnormal extremals (that are trajectories with vanishing PMP’s Hamilto-
nian). Properties of abnormal extremals are studied all along the book. For
instance we prove that they are finite concatenations of bang arc (i.e. cor-
responding to constant control ±1). Moreover, the switchings (discontinuity
points of the control) happen exactly when the abnormal extremal crosses
the set of zeroes of the function ∆A = F ∧ G that is when the two vector
fields F and G are collinear, see Propositions 2, p. 49 and Proposition 18, p.
172. Finally, the singularities of the synthesis involving abnormal extremals
have some special features (see Section 4.3, p. 171). The set of possible sin-
gularities along abnormal extremals is formed of 28 (equivalence classes of)
singular points, but not all sequences of singularities can be realized. In Sec-
tion 5.1.2, p. 202, we prove that all possible sequences can be classified by a
set of words recognizable by an automaton and, as a consequence, that all the
28 singularities can appear for some system.

Also, the minimum time front and the extremal front have some important
properties on points reached by abnormal extremals. It happens that they are
always tangent to the abnormal extremals (see Theorem 28, p. 132 and Section
5.2, p. 209).

Bibliographical Note

Many engineering oriented books have been dedicated to various aspects of
Control Theory. A complete list would be too long. We want to point out
some texts that are more mathematically oriented, as [69, 92, 117].

Pontryagin Maximum Principle was proved in the seminal book [112]. Var-
ious generalizations were given later, see [53, 120]. As we said, Optimal Control
Theory can be seen as a generalization of classical Calculus of Variations to
the case of constrained velocities. The connections between the two fields are
excellently illustrated in [50] and in [29, 78].

Our book focuses on a particular problem in the wide realm of Geometric
Control Theory. Despite its long history, there are not so many general books
dedicated specifically to Geometric Control Theory. We refer to the book of
Jurdjevic [78] and the forthcoming text of Agrachev and Sachkov [2] as general
references.

Synthesis theory can be dated back to the pioneering paper of Boltyan-
skii [27]. General results for analytic or special systems were obtained by
Brunovsky [45, 46] and Sussmann [119, 121]. In most cases a synthesis is gen-
erated by a feedback that is smooth on each stratum of a stratification. The
theory of stratified feedbacks were reported also in the monographs [50, 62].
For a review see also [111]. As mentioned above, discontinuous feedbacks face
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the problem of generating not optimal trajectories. The main issue is the def-
inition of solution to the corresponding discontinuous ODE. Various concepts
of solution are discussed in [97, 111].

The classification program for smooth two dimensional dynamical sys-
tems (to which our classification of syntheses is inspired) was developed by
Andronov, Pontryagin and Peixoto, see [18, 106, 107]. A more recent improve-
ment can be found in [104, 105].

It is well known that, under suitable assumptions, the value function, de-
fined as the minimum of the Optimal Control Problem for each fixed terminal
(initial) point, satisfies the Hamilton-Jacobi-Bellman partial differential equa-
tion in viscosity sense. There is a wide literature dedicated to the subject, see
for example [23, 62, 63]. For the semiconcavity property of the value function,
with set of velocities of the same dimension of the state space, see [48] and
references therein.

The Dubins’ Car, discussed in Example B, is one of the simplest model for
a car–like robot. This problem was originally introduced by Markov in [95]
and studied by Dubins in [59]. If we consider the possibility of non constant
speed and admit also backward motion, then we obtain the model proposed
by Reed and Shepp [113]. A family of time optimal trajectories, that is rich
enough to join optimally any two points, was given by Sussmann and Tang
in [128]. Then a time optimal synthesis was built by Soueres and Laumond in
[118].

The optimal control problem on SO(3) given in Example C, is also called
the left-invariant Dubins’ problem on the unit sphere. It is well know that
every time optimal trajectory is a finite concatenation of arcs corresponding
to constant control ±1 or 0. An upper bound on the number of such arcs is
given in [3], while the time optimal synthesis for the projected problem on the
sphere, is determined in [34].



1

Geometric Control

This chapter provides some basic facts about Geometric Control Theory, Op-
timal Control and Synthesis Theory. This is a brief introduction to the theory
of Geometric Control and is far from being complete: we illustrate some of the
main available results of the theory, with few sketches of proofs. For a more
detailed treatment of the subject, we refer the reader to the monographs [2, 78]
and to the bibliographical note.

1.1 Control Systems

A control system can be viewed as a dynamical system whose dynamical laws
are not entirely fixed, but depend on parameters (called controls), that can
be determined by an outer agent, in order to obtain a temporal evolution
with some properties. It is natural to assume that the space of all possible
configurations of the system is a smooth n-dimensional manifold M . The
motion of the system at each point of M can follow a number of tangent
directions, depending on the choice of the control u:

ẋ = f(x, u), x ∈M, u ∈ U. (1.1)

Here the control space U can be any set. Along the book, to have simplified
statements and proofs, we assume more regularity on M and U :

(H0) M is a closed submanifold of R
N for some N . The set U is a measurable

subset of R
m and f is continuous, smooth with respect to x with Jacobian,

with respect to x, continuous in both variables on every chart of M .

A point of view, very useful in geometric control, is to think a control system
as a family of assigned vector fields on a manifold:

F = {Fu(·) = f(·, u)}u∈U .
We always consider smooth vector fields, on a smooth manifold M , i.e. smooth
mappings F : x ∈ M 7→ F (x) ∈ TxM , where TxM is the tangent space to



16 1 Geometric Control

M at x. A vector field can be seen as an operator from the set of smooth
functions on M to R. If x = (x1, ..., xn) is a local system of coordinates, we
have:

F (x) =

n
∑

i=1

F i
∂

∂xi
.

The first definition we need is of the concept of control and of trajectory of a
control system.

Definition 1 A control is a bounded measurable function u(·) : [a, b] → U . A
trajectory of (1.1) corresponding to u(·) is a map γ(·) : [a, b] → M , Lipschitz
continuous on every chart, such that (1.1) is satisfied for almost every t ∈
[a, b]. We write Dom(γ), Supp(γ) to indicate respectively the domain and the
support of γ(·). The initial point of γ is denoted by In(γ) = γ(a), while its
terminal point Term(γ) = γ(b)

Then we need the notion of reachable set from a point x0 ∈M .

Definition 2 We call reachable set within time T > 0 the following set:

Rx0
(T ) := {x ∈ M : there exists t ∈ [0, T ] and a trajectory

γ : [0, t] →M of (1.1) such that γ(0) = x0, γ(t) = x}. (1.2)

Computing the reachable set of a control system of the type (1.1) is one of
the main issues of control theory. In particular the problem of proving that
Rx0

(∞) coincide with the whole space is the so called controllability problem.
The corresponding local property is formulated as:

Definition 3 (Local Controllability) A control system is said to be locally
controllable at x0 if for every T > 0 the set Rx0

(T ) is a neighborhood of x0.

Various results were proved about controllability and local controllability. We
only recall some definitions and theorems used in the sequel.

Most of the information about controllability is contained in the structure
of the Lie algebra generated by the family of vector fields. We start giving the
definition of Lie bracket of two vector fields.

Definition 4 (Lie Bracket) Given two smooth vector fields X,Y on a
smooth manifold M , the Lie bracket is the vector field given by:

[X,Y ](f) := X(Y (f)) − Y (X(f)).

In local coordinates:

[X,Y ]j =
∑

i

(

∂Yj
∂xi

Xi −
∂Xj

∂xi
Yi

)

.

In matrix notation, defining ∇Y :=
(

∂Yj/∂xi

)

(j,i)
(j row, i column) and

thinking to a vector field as a column vector we have [X,Y ] = ∇Y ·X−∇X ·Y .
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Definition 5 (Lie Algebra of F) Let F be a family of smooth vector fields
on a smooth manifold M and denote by χ(M) the set of all C∞ vector fields
on M . The Lie algebra Lie(F) generated by F is the smallest Lie subalgebra
of χ(M) containing F . Moreover for every x ∈M we define:

Liex(F) := {X(x) : X ∈ Lie(F)}. (1.3)

Remark 2 In general Lie(F) is a infinite-dimensional subspace of χ(M). On
the other side since allX(x) ∈ TxM (in formula (1.3)) we have that Liex(F) ⊆
TxM and hence Liex(F) is finite dimensional.

Remark 3 Lie(F) is built in the following way. Define: D1 = Span{F}, D2 =
Span{D1 + [D1, D1]}, · · · Dk = Span{Dk−1 + [Dk−1, Dk−1]}. D1 is the so
called distribution generated by F and we have Lie(F) = ∪k≥1Dk. Notice
that Dk−1 ⊆ Dk. Moreover if [Dn, Dn] ⊆ Dn for some n, then Dk = Dn for
every k ≥ n.

A very important class of families of vector fields are the so called
Lie bracket generating (or completely nonholonomic) systems for which:

LiexF = TxM, ∀ x ∈M. (1.4)

For instance analytic systems (i.e. with M and F analytic) are always Lie
bracket generating on a suitable immersed analytic submanifold of M (the so
called orbit of F). This is the well know Hermann-Nagano Theorem (see for
instance [78], pag. 48).

As we show later, our model problem (0.4) is Lie bracket generating under
generic conditions.

If the system is symmetric, that is F = −F (i.e. f ∈ F ⇒ −f ∈ F), then
the controllability problem is more simple. For instance condition (1.4) withM
connected implies complete controllability i.e. for each x0 ∈M , Rx0

(∞) = M
(this is a corollary of the well know Chow Theorem, see for instance [2]).

On the other side, if the system is not symmetric (as for our model), the
controllability problem is more complicated and controllability is not guaran-
teed in general (by (1.4) or other simple conditions), neither locally. Anyway,
important properties of the reachable set for Lie bracket generating systems
are given by the following theorem (see [88] and [2]):

Theorem 1 (Krener) Let F be a family of smooth vector fields on a smooth
manifold M . If F is Lie bracket generating, then, for every T ∈]0,+∞],
Rx0

(T ) ⊆ Clos(Int(Rx0
(T )). Here Clos(·) and Int(·) are taken with respect

to the topology of M .

Krener Theorem implies that the reachable set for Lie bracket generating
systems has the following properties:

• It has nonempty interior: Int(Rx0
(T )) 6= ∅, ∀ T ∈]0,+∞].

• Typically it is a manifold with or without boundary of full dimension. The
boundary may be not smooth, e.g. have corners or cuspidal points.
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In particular it is prohibited that reachable sets are collections of sets of
different dimensions as in Figure 1.1 (cfr. with the concept of stratification in
Chapter 4). These phenomena happen for non Lie bracket generating systems,
and it is not know if reachable sets may fail to be stratified sets (for generic
smooth systems) see [72, 78, 94].

Fig. 1.1. A prohibited reachable set for a Lie bracket generating systems.

Local controllability can be detached by linearization as shown by the
following important result (see [92], p. 366):

Theorem 2 Consider the control system ẋ = f(x, u) where x belongs to a
smooth manifold M of dimension n and let u ∈ U where U is a subset of R

m

for some m, containing an open neighborhood of u0 ∈ R
m. Assume f of class

C1 with respect to x and u. If the following holds:

f(x0, u0) = 0,

rank[B,AB,A2B, ..., An−1B] = n, (1.5)

where A =
(

∂f/∂x)(x0, u0) and B =
(

∂f/∂u)(x0, u0),

then the system is locally controllable at x0.

Remark 4 Condition (1.5) is the well know Kalman condition that is a nec-
essary and sufficient condition for (global) controllability of linear systems:

ẋ = Ax+Bu, x ∈ R
n, A ∈ R

n×n, B ∈ R
n×m, u ∈ R

m.
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In the local controllable case we get this further property of reachable sets:

Lemma 1 Consider the control system ẋ = f(x, u) where x belongs to a
smooth manifold M of dimension n and let u ∈ U where U is a subset of
Rm for some m. Assume fof class C1 with respect to x and continuous with
respect to u. If the control system is locally controllable at x0 then for every
T , ε > 0 one has:

Rx0
(T ) ⊆ Int(Rx0

(T + ε)). (1.6)

Proof. Consider x ∈ Rx0
(T ) and let ux : [0, T ] → U be such that the cor-

responding trajectory starting from x0 reaches x at time T . Moreover, let
Φt be the flux associated to the time varying vector field f(·, u(t)) and no-
tice that Φt is a diffeomorphism. By local controllability at x0, Rx0

(ε) is a
neighborhood of x0. Thus ΦT (Rx0

(ε)) is a neighborhood of x and, using
ΦT (Rx0

(ε)) ⊂ Rx0
(T + ε), we conclude.

1.2 Optimal Control

An Optimal Control Problem for the system (1.1), is a problem of the following
type:







minimize
∫ T

0
L(x(t), u(t))dt+ ψ(x(T )),

x(0) = x0,
x(T ) ∈ TT ,

(1.7)

where L : M × U → R is the Lagrangian or running cost, ψ : M → R is
the final cost, x0 ∈ M is the initial condition and TT ⊂ M the target. The
minimization is taken on the set of all admissible trajectories of the control
system (1.1) (the admissibility conditions to be specified), that start at the
initial condition and end at the target in finite time T that can be fixed or
free, depending on the problem. Notice that this optimal control problem is
autonomous, hence we can always assume trajectories to be defined on some
interval of the form [0, T ].

Of great importance for applications are the so called control affine sys-
tems:

ẋ = F0 +

m
∑

i=1

uiFi, ui ∈ R, (1.8)

with quadratic cost:

minimize

∫ T

0

m
∑

i=1

u2
i dt, (1.9)
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or with cost equal to 1 (that is the minimum time problem) and bounded
controls |ui| ≤ 1. The term F0 in (1.8) is called drift term and, for the so
called distributional systems (or driftless), is equal to zero. Subriemannian
problems are distributional systems with quadratic cost. See also Exercise 3,
p. 30. Single–input systems are control affine systems with only one control,
i.e. m = 1.

Definition 6 We call Px1
, x1 ∈M , the optimal control problem given by the

dynamics (1.1) and the minimization (1.7) with TT = x1.

Beside (H0), (see p. 15) we make the following basic assumptions on (1.1) and
(1.7).

(H1) L is continuous, smooth with respect to x with Jacobian, with respect
to x, continuous in both variables on every chart of M ;

(H2) ψ is a C1 function.

We are interested in solving the family of control problems {Px1
}x1∈M and

for us a solution is given by an optimal synthesis that is

Definition 7 (Optimal Synthesis) Given Ω ⊂ M , an optimal synthesis
on Ω for the family of optimal control problems {Px1

}x1∈Ω is a collection
{(γx1

, ux1
) : x1 ∈ Ω} of trajectory–control pairs such that (γx1

, ux1
) provides

a solution to Px1
.

Remark 5 One can invert the role of x0 and x1 letting x1 be fixed and x0

vary. Moreover, we can consider a generalization fixing an initial manifold SS,
called source. In this case the initial condition reads x0 ∈ SS.

Remark 6 In many cases it happens that an optimal synthesis, defined on
R(T ), is generated by a piecewise smooth feedback u(x), that is a map from
R(T ) to U . This means that the optimal trajectories of the synthesis are
precisely the solutions to the differential equation

ẋ = f(x, u(x)).

For the problem of defining a solution to this equation, when u(x) is discon-
tinuous, see the bibliographical note of the Introduction.

1.2.1 Existence

In order to prove existence for Px1
, we first give the next:

Theorem 3 Assume f bounded, U compact and let the space of admissible
controls be the set of all measurable maps u(·) : [a, b] → U . If the set of veloc-
ities V (x) = {f(x, u)}u∈U is convex, then the reachable set R(T ) is compact.
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Remark 7 The fact that R(T ) is relatively compact is an immediate con-
sequence of the boundedness and continuity of f . One can also replace the
boundedness with a linear grows condition. The convexity of V (x) is the key
property to guarantee that R(T ) is closed. For a proof see [50].

From this theorem, we get immediately the following:

Theorem 4 Assume f bounded, U compact, and let the space of admissible
controls be the set of all measurable maps u(·) : [a, b] → U . Moreover assume
that the set {f(x, u), L(x, u)}u∈U is convex. If L ≥ C > 0 and x1 ∈ Rx0

(∞),
then the problem Px1

has a solution.

Sketch of the Proof. There exists T > 0 such that every trajectory ending
at x1 after T is not optimal. Consider the augmented system obtained adding
the extra variable y such that:

ẏ = L(x, u).

Since f is bounded, all trajectories defined on [0, T ] have bounded costs.
Thus applying the previous Theorem to the augmented system, we get that
R(x0,0)(T ), the reachable set for the augmented system of (x, y), is compact.
Therefore there exists a minimum for the function (x, y) → y + ψ(x) on the
set R(x0,0)(T )∩{(x, y) : x = x1}. The trajectory, reaching such a minimum,
is optimal.

1.2.2 Pontryagin Maximum Principle

The standard tool to determine optimal trajectories is the well known Pon-
tryagin Maximum Principle, see [78, 112], that gives a first order condition for
optimality: every optimal trajectory has a lift to the cotangent bundle, formed
by vector-covector pairs, satisfying a maximization condition of a suitable
Hamiltonian.

Pontryagin Maximum Principle can be seen as a generalization of Weier-
strass’s necessary conditions for a minimum and Euler–Lagrange equations to
systems with constrained velocities, called systems with nonholonomic con-
straints, as (1.1).

Remark 8 (Calculus of Variations) Notice that the classical case of Cal-
culus of Variations can be expressed as the problem (1.7) for the dynamics
ẋ = u, u ∈ TxM , fixed final time T and TT = x1 ∈M .

Pontryagin Maximum Principle can be stated in several forms depending
on the following:

i) the final time is fixed or free (for fixed final time see Exercise 4, p. 31),
ii) dimension and regularity of the source and of the target,
iii) the cost contains only the running part, only the final part, or both,
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iv) the source and/or the target depend on time.

Here we state a version (sufficient to treat our model problem) in which: i)
the final time is free, ii) the source is zero dimensional and the target TT is
a smooth submanifold of M of any dimension, iii) there are both running
and final cost, iv) the source and the target do not depend on time. Let us
introduce some notation.

For every (x, p, λ0, u) ∈ T ∗M × R × U we define:

H(x, p, λ0, u) = 〈p, f(x, u)〉 + λ0L(x, u), (1.10)

and
H(x, p, λ0) = max{H(x, p, λ0, u) : u ∈ U}.

Definition 8 (Extremal Trajectories) Consider the optimal control prob-
lem (1.1), (1.7) and assume (H0), (H1) and (H2). Let u : [0, T ] → U be a con-
trol and γ a corresponding trajectory. We say that γ is an extremal trajectory
if there exist a Lipschitz continuous map called covector λ : t ∈ [0, T ] 7→ λ(t) ∈
T ∗
γ(t)M and a constant λ0 ≤ 0, with (λ(t), λ0) 6= (0, 0) (for all t ∈ [0, T ]), that

satisfy:

(PMP1) for a.e. t ∈ [0, T ], in a local system of coordinates, we have λ̇ =
−∂H
∂x

(γ(t), λ(t), λ0, u(t));
(PMP2) for a.e. t ∈ [0, T ], we have H(γ(t), λ(t), λ0) = H(γ(t), λ(t), λ0, u(t)) =

0;
(PMP3) for every v ∈ Tγ(T )TT , we have 〈λ(T ), v〉 = λ0〈∇ψ(γ(T )), v〉

(transversality condition).

In this case we say that (γ, λ) is an extremal pair.

Pontryagin Maximum Principle (briefly PMP) states the following:

Theorem 5 (Pontryagin Maximum Principle) Consider the optimal
control problem (1.1), (1.7) and assume (H0), (H1) and (H2). If u(·) is a
control and γ a corresponding trajectory that is optimal, then γ is extremal.

Remark 9 Notice that the dynamic ẋ = f(x, u) and equation (PMP1) can be
written in the pseudo-Hamiltonian form:

ẋ(t) =
∂H
∂p

(x(t), p(t), λ0, u(t)),

ṗ(t) = −∂H
∂x

(x(t), p(t), λ0, u(t)).

Remark 10 Notice that the couple (λ, λ0) is defined up to a positive multi-
plicative factor, in the sense that if the triple (γ, λ, λ0) represents an extremal,
than the same happens for the triple (γ, αλ, αλ0), α > 0. If λ0 6= 0, usually
one normalizes (λ(·), λ0) by λ0 = −1/2 or λ0 = −1 .
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Remark 11 If the target TT is a point then the transversality condition
(PMP3) is empty.

Remark 12 In the case in which we have also a source: γ(0) ∈ SS, we have
also a transversality condition at the source:

(PMP3’) For every v ∈ Tγ(0)SS, 〈λ(0), v〉 = 0.

1.2.3 Abnormal Extremals and Endpoint Singular Extremals

Assume now that f is differentiable also with respect to u. The following sets
of trajectories have very special features:

Definition 9 (Endpoint Singular Trajectories and Endpoint Singu-
lar Extremals) We call endpoint singular trajectories, solutions to the fol-
lowing equations:

ẋ(t) =
∂H̄
∂p

(x(t), p(t), u(t)),

ṗ(t) = −∂H̄
∂x

(x(t), p(t), u(t)),

∂H̄
∂u

(x(t), p(t), u(t)) = 0,

where H̄(x, p, u) := 〈p, f(x, u)〉, p(t) 6= 0 and the constraint u ∈ U ∈ R
m is

changed in u ∈ Int(U). Endpoint singular trajectories that are also extremals
are called endpoint singular extremals.

Remark 13 Notice that, although endpoint singular trajectories do not de-
pend on the cost and on the constraints on the control set, endpoint singular
extremals (that for our minimization problem are the interesting ones) do
depend.

The name endpoint singular trajectories comes from the fact that they are
singularities of the end-point mapping that, fixed an initial point and a time
T , associates to a control function u(·), defined on [0, T ], the end point of the
corresponding trajectory γ:

Ex0,T : u(·) 7→ γ(T ).

By singularity of the end point mapping, we mean a control at which the
Fréchet derivative of Ex0,T is not surjective. For more details see [29]. Roughly
speaking, this means that the reachable set, locally, around the trajectory,
does not contain a neighborhood of the end point γ(T ).

In the case of a minimum time problem for a control affine system (1.8)
with |ui| ≤ 1, endpoint singular trajectories satisfy < p(t), Fi(γ(t)) >= 0.
Endpoint singular extremals, are just endpoint singular trajectories for which
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there exists λ0 ≤ 0 satisfying < p(t), F0 > +λ0 = 0 and corresponding to
admissible controls.

In the next chapters we consider control systems of the form ẋ = F (x) +
uG(x) where |u| ≤ 1. In this case, under generic conditions, endpoint singu-
lar extremals are arcs of extremal trajectories corresponding to controls not
constantly equal to +1 or −1.

Definition 10 (Abnormal Extremals) We call abnormal extremals ex-
tremal trajectories for which λ0 = 0.

Remark 14 Abnormal extremals do not depend on the cost, but depend on
the constraint u ∈ U .

Remark 15 In some problems, like in subriemannian geometry or in distri-
butional problems for the minimum time with bounded controls, endpoint
singular extremals and abnormal extremals coincide, see Exercise 7, p. 31.

In other problems (e.g. minimum time for control affine systems) the two
definitions are different, but coincide for some very special class of trajectories.
These trajectories are usually called singular exceptional (see [32]).

1.3 High Order Conditions

PMP is used in Synthesis Theory to attempt a finite dimensional reduction
of the minimization problem, as explained in Step 2 of Section 1.4, p. 27.
Of course high order conditions can be very useful for further restriction of
candidate optimal trajectories.

There are several possible higher order variations. Here we present only
some results used in next chapters for our model problem. We start illustrat-
ing the high order principle of Krener. Then we give a generalization proved
by Bressan, finally we treat in some details envelope theory developed by
Sussmann.

1.3.1 High Order Maximum Principle

In this section we consider a fixed reference trajectory γ : [0, T ] → M corre-
sponding to the control u, for the problem (1.7).

Definition 11 Let u1, ..., un be controls defined on [0, T ], q1, q2 and pi, i =
1, ..., n, be polynomials vanishing in zero with q2(ε) ≥ 0, pi(ε) ≥ 0 for ε ≥ 0
small and q1(ε) + q2(ε) +

∑n
i=1 pi(ε) = 0 . Consider the following family of

controls:

u(ε,s)(t) =



























u(t) if t ∈ [0, s+ q1(ε)]
u1(t) if t ∈ [s+ q1(ε), s+ q1(ε) + p1(ε)]
...

un(t) if t ∈ [s+ q1(ε) +
∑n−1
i=1 pi(ε), s+ q1(ε) +

∑n
i=1 pi(ε)]

u(t) if t ∈ [s+ q1(ε) +
∑n
i=1 pi(ε), T ],
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and let γ(ε,s) be the corresponding trajectories, starting at γ(0). A variation

of order h at t̃ ∈]0, T [, where t̃ is a Lebesgue point for f(γ(t), u(t)) and
L(γ(t), u(t)), is a family of trajectories γ(ε,s), ε ∈ [0, ε̄], such that:

dj

dεj
γ(ε,s)(s)

∣

∣

∣

∣

ε=0

= 0,

for j = 1, ..., h− 1 and s in a neighborhood of t̃.

We can now state the high order principle:

Theorem 6 (Krener High Order Maximum Principle) Let γ be an
extremal trajectory and γ(ε,s) a variation of order h at t̃. Then there exists a
covector λ such that (γ, λ) is extremal and:

λ(t̃)
dh

dεh
γ(ε,t̃)(t̃)

∣

∣

∣

∣

ε=0

+ λ0
dh

dεh

∫ t̃

0

L(γ(ε,t̃), u(ε,t̃))(s) ds

∣

∣

∣

∣

∣

ε=0

≤ 0.

Using the high order maximum principle, it is possible to prove a generalized
Legendre–Clebsch condition for the case of single–input systems.

Theorem 7 Consider the minimum time problem for the system:

ẋ = F (x) + uG(x), |u| ≤ 1,

where F and G are smooth. Assume γ optimal and endpoint singular extremal.
Then there exists a covector λ such that (γ, λ) is extremal and for every t:

〈λ(t), G(γ(t))〉 = 0, 〈λ(t), F (γ(t))〉 ≥ 0,

and
〈λ(t), [G, [F,G]](γ(t))〉 ≥ 0.

Remark 16 The first two conditions of Theorem 7 are easily derived, as shown
in the next chapter, while the third is the so called Legendre–Clebsch condi-
tion.

In some cases, it is useful to perform variations not based at a unique time t̃,
but more generally perturbing the reference control u in L1.

Definition 12 A one–parameter variational family, generating a vector v, is
a continuous map ε 7→ uε from an interval [0, ε̄], ε̄ > 0, to L1([0, T ], U) such
that: i) uε are uniformly bounded, ii) u0 = u, iii) if γε indicates the trajectory
corresponding to uε and starting at γ(0), it holds:

lim
ε→0

γε(T ) − γ(T )

ε
= v.

For these more general variations, we have,

Theorem 8 Consider a minimum time problem for an affine control system
ẋ = F0(x) +

∑m
i=1 uiFi(x). If γ is optimal and uε is a one–parameter varia-

tional family, generating a vector v, then there exists a covector λ such that
(γ, λ) is extremal and:

λ(T ) · v ≤ 0.
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1.3.2 Envelope Theory

l1
   γ

l
   γ

γ(    )T

δ(  )

l

γ=γ
2l γ(  )T

l

Fig. 1.2. Envelope Theory

Envelope theory is another high order technique to exclude extremal trajecto-
ries that are not locally optimal. For instance for the minimum time problem
of a single input system ẋ = F (x) + uG(x), |u| ≤ 1, many optimal trajecto-
ries are concatenation of arcs corresponding to constant control ±1. Using
envelope theory, one can bound the number of arcs, on which u = ±1, that
can form an optimal trajectory.

Recall (H0), (H1), (H2) and, for simplicity, M = R
n and the final cost

ψ = 0. Let γ be an extremal trajectory defined in [0, T ] corresponding to
control u(·). Consider a one-parameter family of extremals Λ = {γl : [0, Tl] →
M, l ∈ [l1, l2]} starting at In(γ) at time 0 with γl2 = γ, Tl2 = T . Assume
that γl(·) corresponds to the control ul(·) and is associated to the covector
(λl(·), λ0

l ). Define the curve δ on [l1, l2] by δ(l) = Term(γl) (see figure 1.2).

Definition 13 We say that the curve δ(·), defined above, is an envelope for
γ, if the following conditions are satisfied:

1. The family γl is differentiable, that is:
i) the maps l → Tl and (l, t) → γl(t) are continuous on their domains of

definition;
ii) the controls ul(·) are uniformly bounded. If we set T̄ = maxl Tl and, for

some fixed ω ∈ U , prolong ul on [0, T̄ ] by setting ul(t) = ω for t ≥ Tl,
then the map l → ul(·) is continuous from [l1, l2] to L1([0, T̄ ], U);

iii) for every l̄ ∈ [l1, l2] and every continuous function ϕ : [0, T̄ ] → R
n the

map:

l 7→
∫ Tl

0

ϕ(t) · f(γl̄(t), ul(t))dt,

(where we set γl̄(t) = γl̄(Tl̄) for t ≥ Tl̄), is differentiable at l̄ (i.e.
l → f(γl̄(·), ul(·)) is weakly differentiable at l̄ as map into the space of
Borel measures.)
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2. The map l 7→
∫ Tl

0
L(γl(t), ul(t))dt is Lipschitz continuous.

3. δ : [l1, l2] → M is an admissible trajectory of the system, corresponding to
a control v(·) : [l1, l2] → U .

4. the identity:
H(δ(l), λl(Tl), λ

0
l , v(l)) = 0

holds for almost every l ∈ [l1, l2].

We have the following,

Theorem 9 (Envelope Theorem) If δ is an envelope for γ, then the cost
of γ is the same as the sum of the costs of γl1 and the envelope δ, i.e.:

∫ T

0

L(γ(t), u(t)) dt =

∫ Tl1

0

L(γl1(t), ul1(t)) dt+

∫ l2

l1

L(δ(t), v(t)) dt.

Envelope Theorem is then applied in this way: if one can prove that δ(·) is
not extremal (a condition often easily checked), and so not optimal, then γ
cannot be optimal having the same cost of a trajectory (concatenation of γl1
and δ) that is not even extremal.

1.4 Geometric Control Approach to Synthesis

Geometric control provides a standard method toward the construction of an
optimal synthesis for the family of problems {Px1

}x1∈M , of Definition 6, p.
20.

The approach is illustrated for systems with a compact control set as for
our model problem. The following scheme, consisting of four steps, elucidates
the procedure for building an optimal synthesis.

Step 1. Use PMP and high order conditions to study the properties of optimal
trajectories.

Step 2. Use Step 1. to obtain a finite dimensional family of candidate optimal
trajectories.

Step 3. Construct a synthesis, formed of extremal trajectories, with some reg-
ularity properties.

Step 4. Prove that the regular extremal synthesis is indeed optimal.

Let us describe in more detail each Step.

Step 1.
We stated the PMP that in some cases gives many information on optimal

trajectories. Beside high order maximum principle and envelopes, there are
various higher order conditions that can be used to discard some extremal tra-
jectories that are not locally optimal. These conditions come from: symplectic
geometric methods, conjugate points, degree theory, etc.
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Step 2. (finite dimensional reduction)
The family of trajectories and controls, on which the minimization is taken,

is clearly an infinite dimensional space. Thanks to the analysis of Step 1, in
some cases it is possible to narrow the class of candidate optimal trajectories to
a finite dimensional family. This clearly reduces drastically the difficulty of the
problem and allows a deeper analysis. More precisely, one individuates a finite
number of smooth controls ui(x), such that every optimal trajectory is a finite
concatenation of trajectories corresponding to the vector fields f(x, ui(x)).

Step 3.
Once a finite dimensional reduction is obtained, one may construct a syn-

thesis in the following way. Assume that on the compact set R(τ), there is a
bound on the number of arcs (corresponding to controls ui) that may form, by
concatenation, an optimal trajectory. Then one can construct, by induction
on n, trajectories that are concatenations of n arcs and cut the not optimal
ones. The latter operation produces some special sets, usually called cut loci
or overlaps, reached optimally by more than one trajectory.

The above procedure is done on the base space M , however extremals
admit lifts to T ∗M . Thus another possibility is to construct the set of ex-
tremals in the cotangent bundle and project it on the base space. In this case,
projection singularities are responsible for singularities in the synthesis.

Step 4.
Even if a finite dimensional reduction is not obtained, one can still fix a

finite dimensional family of extremal trajectories and construct a synthesis on
some part of the state space. If the synthesis is regular enough then there are
sufficiency theorems ensuring the optimality of the synthesis.

These sufficiency theorems fit well also inside the framework of viscosity
solution to the corresponding Hamilton–Jacobi–Bellman equation.

The above approach is quite powerful, but in many cases it is not known
how to reach the end, namely to produce an optimal synthesis. For our model
problem, we are able not only to construct an optimal synthesis under generic
assumptions, but also to give a topological classification of singularities of the
syntheses and of the syntheses themselves, as explained in the Introduction.

Remark 17 For general problems (not necessarily with bound on the control,
e.g. with quadratic cost), Steps 1 and 4 are still used, while Step 3 is not based
on a finite dimensional reduction.
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Bibliographical Note

For the problem of controllability, classical results are found in the papers
by Krener [88], and Lobry [93]. For the problem of controllability on Lie
groups see the papers by Jurdjevic-Kupka [80, 81], Jurdjevic-Sussmann [82],
Gauthier-Bornard [66], and Sachkov [114], while for controllability along a
trajectory see [25].

The issue of existence for Optimal Control as well as for Calculus of Varia-
tions is a long standing research field. For a review of classical available results
we refer to [50].

The terms Abnormal Extremals and Singular Extremals (in our case called
Endpoint Singular Extremals) are used with several different meanings. For
some results see [9, 10, 29, 30, 32, 102, 103].

The high order principle of Krener was developed in [89], while the gen-
eralization for affine control system given in Theorem 8, due to Bressan, was
published in [41]. The generalization of Envelope Theory from Calculus of
Variation to Optimal Control, is due to Sussmann [122, 124]. Applications
of Envelope Theory can be found in [33, 90, 115, 116]. There are several
other high order conditions based on different techniques: symplectic geomet-
ric methods [4, 9, 12, 13], conjugate points [49, 100], Generalized Index Theory
[9] (for an application see [11]).

Geometric tools and high order conditions have been applied to various
optimal control problems, for example: subriemannian geometry [1, 5, 6, 7,
24, 30, 51, 67, 76, 102, 103], analytic systems [127], systems on Lie groups
[14, 15, 28, 31, 79, 131], mechanical systems [26, 77, 85], robotic applications
[21, 118], etc. (The list of applications would be too long so we limit ourselves
to these few examples.)

Regarding finite dimensional reductions, there is a well known single–input
example with |u| ≤ 1, due to Fuller [64], for which optimal trajectories are not
concatenations of a finite number of arcs and change the control from +1 to
−1 an infinite number of times reaching the target in finite time. This behav-
ior is known as Fuller phenomenon. However, also for the system considered
in [64] there is an optimal synthesis. Results about genericity of the Fuller
phenomenon can be found in [91, 96, 132].

Fuller phenomenon is also encountered for Dubins’ car with control on the
steering acceleration (not on the steering velocity), see [86, 87, 123]. The con-
struction of an optimal synthesis, for this system, is a difficult open problem.

Extremal Syntheses were considered, for example, in [38, 43, 90, 109, 118,
127]. For analytic systems, analytic stratification provides a powerful tool
[119, 127], that faced some limitation, see [94].

The first sufficiency theorem, for extremal synthesis, was given by Boltyan-
skii in [27]. Then various generalization appeared, [45, 46, 111]. In particular
the result of [111], differently from the previous ones, can be applied to sys-
tems presenting Fuller phenomena.
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In Step 3 of Section 1.4, an alternative method for the construction of
the optimal synthesis is indicated. Namely, to construct all extremals in the
cotangent bundle. This second method is more involved, but induces a more
clear understanding of the fact that projection singularities are responsible
for singularities in the optimal synthesis. This approach was used in [38, 39,
83, 84].

For sufficiency theorems, in the framework of viscosity solutions to Hamilton–
Jacobi–Bellman equation (mentioned in Step 4 of Section 1.4), see [23, 65].

Exercises

Exercise 1 Consider the control system on the plane:

(

ẋ
ẏ

)

=

(

sin(x)
0

)

+ u

(

G1(x, y)
G2(x, y)

)

, u ∈ R, (1.11)

where G1, G2 ∈ C1(R2,R) and G1(x, y), G2(x, y) > 0 for every (x, y) ∈ R
2.

Find the set of points where Theorem 2, p. 18 permits to conclude that there
is local controllability. Is it true that in all other points the system is not
locally controllable?

Exercise 2 Consider the control system ẋ = F (x) + uG(x), u ∈ R where:

x =





x1

x2

x3



 , x2
1 + x2

2 + x2
3 = 1,

F (x) =





x2 cos(α)
−x1 cos(α)

0



 , G(x) =





0
x3 sin(α)
−x2 sin(α)



 , α ∈]0, π/2[.

Find where the system is locally controllable and prove that it is (globally)
controllable.
[Hint: to prove global controllability, find a trajectory connecting each couple
of points.]

Exercise 3 Prove that, if the controls take values in the whole R
m, then there

exists no minimum for the minimum time problem of system (1.8). Moreover,
show that, for a distributional problem with quadratic cost (the so called
subriemannian problem), if we do not fix the final time, then there exists no
minimum.
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Exercise 4 Prove that if we fix the final time in the PMP, then condition
(PMP2) becomes

(PMP2bis) For a.e. t ∈ [0, T ], H(γ(t), λ(t), λ0) = H(γ(t), λ(t), λ0, u(t)) =
const ≥ 0;

and find the value of the constant for a given γ.

Exercise 5 Consider the distributional system ẋ = u1F1(x) + u2F2(x), x ∈
M , u1, u2 ∈ R, with quadratic cost (1.9) and fixed final time T . Prove that
(λ, λ0) can be chosen up to a multiplicative positive constant and if λ0 = − 1

2
and H(γ(t), λ(t), λ0, u(t)) = 1

2 (see (PMP2bis) of the previous Exercise), then
the extremal is parametrized by arclength (i.e. u2

1(t) + u2
2(t) = 1).

[Hint: Use the condition ∂H
∂u

= 0 implied by the condition (PMP2bis).]

Exercise 6 Consider the control system ẋ = f(x, u), x ∈ M and u ∈ U =
R
m, and the problem (1.7) with TT = {x1}, x1 ∈ M . Prove that if γ is an

endpoint singular trajectory and, for every t ∈ Dom(γ), the function u →
〈p(t), f(γ(t), u)〉 is strictly convex, then γ is an abnormal extremal.

Exercise 7 Consider a distributional system ẋ =
∑

i uiFi(x). Prove that for
the problem (1.7), with ψ ≡ 0, TT = {x1} and the quadratic cost L =

∑

i u
2
i ,

every endpoint singular extremal is an abnormal extremal and viceversa (what
happens if x0 = x1?). Prove the same for minimum time with bounded control.

Exercise 8 Consider the problem (1.7) with L = L(x) > 0. Take an
extremal trajectory γ and an envelope δ of γ. Assume that the equality
γ̇l(Tl) = f(γl(Tl), ul(Tl)) holds for almost every l. Prove that γl and δ are
tangent at γl(Tl) for almost every l.
[Hint: from L(x) > 0 we get that λ(t) 6= 0 for every t, then use the definition
of envelope.]

Exercise 9 Consider the system ẋ = F (x) + uG(x), u ∈ R, x = (x1, x2) ∈
R

2 and the optimal control problem with Lagrangian L(x) = x2
2, ψ = 0,

initial point (0, 0) and terminal point (c, 0). Assume that, for every x, we
have F1(x) > 0, G2(x) > 0, ∆A(x) := F1(x)G2(x) − F2(x)G1(x) > 0. Prove
that there exists a monotone function φ(t), such that γ(t) = (φ(t), 0) is the
unique optimal trajectory and show that it is extremal for every covector
λ ≡ 0 and λ0 < 0.
[Hint: find a control such that the corresponding trajectory has zero cost.]





2

Time Optimal Synthesis for 2–D Systems

In this Chapter we focus on our model problem, that is on the system:

ẋ = F (x) + uG(x), x ∈M, |u| ≤ 1, (2.1)

where M is a smooth two dimensional manifold, F (x0) = 0, and consider the
problem of reaching every point of M in minimum time from x0.

The hypothesis F (x0) = 0, i.e. x0 is a stable point for F , is very natural. In
fact, under generic assumptions, it guarantees local controllability. Moreover
if we reverse the time, we obtain the problem of stabilizing in minimum time
all the points of M to x0. For this time-reversed problem, the stability of x0

guarantees that once reached the origin, it is possible to stay there. The case
F (x0) 6= 0 is treated in Section 2.10.4, p. 122.

For simplicity, we discuss first the case M = R
2, hence we can assume

x0 = 0. The necessary modification to cover the general case are treated in
Section 2.9.

The PMP takes a particularly simple form for (2.1) and one can easily see
that controls are always bang-bang, that is corresponding to constant control
u = +1 or u = −1, unless the vector field G and the Lie bracket [F,G] are
parallel. Generically, this happens on a regular one dimensional submanifold
and there exist extremal trajectories running this manifold with a feedback
ϕ(x) explicitly computed in terms of F , G and the Lie bracket [F,G]. These
extremals are endpoint singular extremals in the sense of Section 1.2.3, p. 23,
Chapter 1.

To obtain a finite dimensional reduction of the set of candidate optimal
trajectories, some additional generic conditions have to be assumed (see con-
ditions (P1)-(P7) of Section 2.4, p. 48), using which we can prove the exis-
tence of an optimal synthesis. Generic singularities of the synthesis are then
described: the one dimensional singularities are called Frame Curves and the
zero dimensional ones are called Frame Points. Frame Curves are of five types
and are called, respectively, of type Y1,2, S, C,K. The first two correspond to
trajectories starting at the origin with control ±1. These trajectories play an
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important role because the other optimal trajectories bifurcate from them.
The third type S corresponds to endpoint singular extremals, i.e. trajectories
of the feedback ϕ(x). The curves of type C are formed by switching points,
that are points at which optimal trajectories change the control from +1 to
−1 or viceversa. Finally, K curves are overlaps, formed by points reached
optimally by two different trajectories. In Figure 2.1 we show the optimal
synthesis near Frame Curves.

1Y S

K

Y 2

C

Fig. 2.1. Synthesis at Frame Curves.

Then Frame Points are described as intersections of Frame Curves. Each point
is generically intersection of two curves and a detailed analysis provides 18
equivalence classes of singular points (plus 5 due to the boundary of R(τ)).
For a picture of the synthesis near these points, see Figure 2.9, p. 61.

We then provide a detailed algorithm, with additional generic conditions,
that ensures structural stability of optimal syntheses. The classification pro-
gram, see the introduction, is eventually completed assigning to each optimal
synthesis a topological graph with additional structure.

In Sections 2.1, 2.2, and 2.3 we introduce the basic tools of optimal synthe-
sis theory on the plane. In Section 2.4 we prove that, under generic conditions,



2.1 Introduction 35

every trajectory has a finite number of switchings in finite time, obtaining the
finite dimensional reduction of Step 2 of the geometric control approach de-
scribed in Section 1.4. In Section 2.5, using a suitable algorithm (that is refined
in Section 2.8) we prove the existence of an optimal synthesis under generic
conditions, while in Section 2.6 we classify its singularities. In Section 2.8 we
study the structural stability of syntheses and classify them by means of topo-
logical graphs. Finally in Section 2.9 we generalize our results to the case of
an arbitrary two dimensional manifold, while in Section 2.10 we provide some
applications and generalizations.

2.1 Introduction

The detailed analysis of the optimal synthesis requires various definitions and
tools. In order to introduce them in a natural way, we first proceed giving
minimal basic definitions and doing a careful description of the generic sit-
uation near the origin (we are considering the case M = R

2 and x0 = 0).
This amounts to a not hard exercise, but should convince the reader of the
necessity of these definitions and tools, which are better described in next
sections. We hope to be excused for skipping some technical detail for sake of
simplicity: details which are given with abundance in the rest of the chapter.
The Pontryagin Maximum Principle (see Section 1.2.2, p. 21) in this special
case states the following.

Remark 18 (Notation in the following version of the PMP)

• T ∗
xR

2 = (R2)∗ denotes the set of row vectors.
• the duality product < . , . > is now simply the matrix product and it is

indicated by “ · ”.
• the Hamiltonian does not include the cost factor λ0L, (that in this case is

just λ0). The condition H = 0 become then H + λ0 = 0. With this new
definition of Hamiltonian, abnormal extremals are the zero levels of the
H.

Theorem 10 (Pontryagin Maximum Principle for the model prob-
lem) Define for every (x, p, u) ∈ R

2 × (R2)∗ × [−1, 1]:

H(x, p, u) = p · F (x) + u p ·G(x)

and:

H(x, p) = max{p · F (x) + u p ·G(x) : u ∈ [−1, 1]}. (2.2)
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If γ : [0, a] → R
2 is a (time) optimal trajectory corresponding to a control

u : [0, a] → [−1, 1], then there exist a nontrivial field of covectors along γ,

that is a function λ : [0, a] → (R2)∗ never vanishing, and a constant λ0 ≤ 0
such that for a.e. t ∈ Dom(γ):

i) λ̇(t) = −λ(t) · (∇F + u(t)∇G)(γ(t)),
ii) H(γ(t), λ(t), u(t)) + λ0 = 0,
iii)H(γ(t), λ(t), u(t)) = H(γ(t), λ(t)).

Remark 19 Notice that, since the Lagrangian cost is constantly equal to 1,
the condition (λ(t), λ0) 6= (0, 0), for all t ∈ [0, T ], given in Definition 8, p. 22,
now becomes λ(t) 6= 0 for all t. In fact λ(t) ≡ 0 with the condition (PMP2) of
Definition 8 implies λ0 = 0. To see what happens for vanishing Lagrangians
cfr. Exercise 9, p. 31).

For a given pair (F,G) we want to construct a synthesis in a small neighbor-
hood of the origin. For each extremal pair (γ, λ) : [0, T ] → R

2 × (R2)∗ let
φ(t) = λ(t) · G(γ(t)) be the switching function (as in Definition 16 below).
Assume that γ corresponds to a control u that is not ±1 on some interval
I of positive measure. Then, from the maximization condition of the PMP:
0 = min|u|≤1(λ · F + uλ ·G), we have φ = 0 on I and thus φ̇ = 0 on I. Now

φ̇ =
d

dt
(φ) = (−λ · ∇(F + uG)) ·G+ λ · (∇G · (F + uG)) =

= λ · (∇G · (F + uG) −∇(F + uG)) ·G) = λ · [F,G].

Hence 0 = φ = φ̇ results in 0 = λ ·G = λ · [F,G]. Since λ 6= 0 we get that G
and [F,G] are parallel. To avoid this situation, it is enough to assume that G
and [F,G] are not parallel in a neighborhood Ω of the origin. This is generic
and guaranteed by the assumption:

(P1) Det
(

G(0), [F,G](0)
)

= G1(0) [F,G]2(0) −G2(0) [F,G]1(0) 6= 0.

Thus γ is bang-bang, i.e. the corresponding control satisfies |u(t)| = 1 for
every t, as long as γ is in Ω. It is then natural to define the function ∆B =
Det

(

G, [F,G]
)

and the condition (P1) reads simply ∆B(0) 6= 0.
Assume now, for example, that γ corresponds to control +1 on [0, t1] and

then to control −1. Can it change again the control back to +1 remaining in
Ω?

To answer to this question we need to exploit more the PMP. From the
fact that γ corresponds to control +1 on [0, t1], we get

φ(t) = λ(t) ·G(γ(t)) ≥ 0 ∀t ∈ [0, t1].

Consider the adjoint equation to i) of PMP, that is v̇ = ∇(F + uG) · v, then
λ(t) · v(t) is constant and the above condition can be rewritten as:

φ(t) = λ(0) · v(G(γ(t)), t; 0) = λ(t) ·G(γ(t)) ≥ 0, (2.3)
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where v(G(γ(t)), t; 0) is the solution at time 0 to v̇ = ∇(F +uG) · v satisfying
v(t) = G(γ(t)). Observe that if at t1 we change control to −1, then it follows
λ(t1) ·G(γ(t1)) = 0 = φ(t1). In general, to check when we can change control
it is enough to check if φ happens to be zero. Looking at (2.3) and thinking to
v(G(γ(t)), t; 0) as a vector rotating in time, then the zeroes of φ are determined
by the position of v with respect to G(0). In another way, if we define θγ to
be the angle between G(0) and v(G(γ(t), t; 0)), then we should check when θγ

happens to be equal to a multiple of π (notice that θγ(0) = 0 by definition).
It is thus natural to give the following definition illustrated in figure 2.2.

Definition 14 Given an extremal trajectory γ : [0, T ] → R
2, let us define

vγ(v0, t0; t) to be the solution to the Cauchy problem:

{

v̇γ(v0, t0; t) = (∇F + u(t)∇G)(γ(t)) · vγ(v0, t0; t)
vγ(v0, t0; t0) = v0,

(2.4)

where u(·) is the control corresponding to γ. Denote now v̄γ(t) := vγ(G(γ(t)), t; 0)
and define the function:

θγ : Dom(γ) → [−π, π], θγ(t) := arg(v̄γ(0), v̄γ(t)), (2.5)

where arg is the angle measured counterclockwise (see figure 2.2).

γ γ

γθ

v  (0) v  (t)

 (t)

Fig. 2.2. Definition 14

Later it is proved that sgn(θ̇γ) = sgn(∆B). Therefore if U is small enough,
(P1) implies that θγ rotates always in the same direction and then t1 is the
only change of sign of u ! (To change sign again we have to rotate of another
π, but this is avoided choosing U small enough.)

Finally, from the use of the PMP we obtained that all trajectories corre-
spond to a control u that is bang-bang and changes sign only one time. The
optimal synthesis near the origin is represented Figure 2.3.
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+1

−1

Fig. 2.3. The optimal synthesis in a neighborhood of the origin. Every point is
reached starting from the origin with control ±1 and switching at most one time.

To be more precise, the above synthesis occurs if the two vectors X :=
F −G and Y := F +G do not have the same integral trajectory through the
origin. Introducing the function

∆A := F ∧G := Det
(

F,G
)

= F1G2 − F2G1,

this amounts to prove that ∇∆A(0) · Y (0) = ∇∆A(0) · X(0) 6= 0. Using the
notation F ∧G := Det(F,G), we have:

(∇∆A · Y )(0) = (∇(F ∧G) · Y )(0) = (∇(F ∧G) ·G)(0) =

= (∇F ·G ∧G+ F ∧∇G ·G)(0) = (∇F ·G ∧G)(0).

Now

∆B(0) = ([F,G] ∧G)(0) = (∇G · F ∧G−∇F ·G ∧G)(0) =

= (−∇F ·G ∧G)(0).

Hence condition (P1) gives the desired conclusion.

2.2 Basic Definitions

In this section we introduce the set of systems we consider, and some proper-
ties of the reachable sets.

Definition 15 (C∞ vector fields) We say that a vector field is C∞ if its
components admit partial derivatives of any order that are bounded on the
whole plane.
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Let Ξ be the set of all couples of C∞ vector fields Σ = (F,G) such that
F (0) = 0. From now on we endow Ξ with the C3 topology, that is the topology
induced by the norm:

‖(F,G)‖ = sup
{

∣

∣

∣

∣

∂α1+α2Fi(x)

∂xα1

1 ∂xα2

2

∣
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∣

,

∣

∣

∣

∣

∂α1+α2Gi(x)

∂xα1

1 ∂xα2

2

∣

∣

∣

∣

: x ∈ R
2;

i = 1, 2; α1, α2 ∈ N ∪ {0};α1 + α2 ≤ 3
}

. (2.6)

We refer to Σ ∈ Ξ as a control system with the meaning that we consider
the corresponding control system (2.1). If Ω ⊂ R

2 is an open set then Σ|Ω
indicates the restriction of Σ to the set Ω.

We are interested in the reachable set within time T > 0 from the origin,
that is:

R(T ) := {x ∈ R
2 : there exist t ∈ [0, T ] and a trajectory

γ : [0, t] → R
2 of (2.1) such that γ(0) = 0, γ(t) = x}. (2.7)

Remark 20 We restrict our analysis to vector fields with bounded derivatives
on the whole plane. However, if (F,G) admits not bounded derivatives, then
our analysis is still valid under the condition that the reachable set is compact.

Fix T > 0, the minimum time function T( . ) : R(T ) → R
+ is by definition:

T(x) := min{t ≥ 0 : there exists a trajectory γ(·)
of (2.1) s.t. γ(0) = 0, γ(t) = x}. (2.8)

The convexity of the set {F (x) + uG(x) : |u| ≤ 1} and the bound on the
derivatives of F and G imply the following (cfr. Theorem 3 of Chapter 1):

Lemma 2 Let Σ ∈ Ξ and fix T > 0, then the corresponding reachable set
R(T ) is compact.

Moreover, we have:

Lemma 3 If Σ ∈ Ξ and G, [F,G] are linearly independent at the origin, that
is if (P1) holds, then Σ is locally controllable (see Definition 3 of Chapter 1)
and the minimum time function T is continuous.

Proof. Using the notation of Theorem 2, p. 18, B = G(0) and A = ∇F (0)
thus rank[B,AB] = rank[G(0), ∇F (0) ·G(0)] = rank[G(0), [F,G](0)]. So the
first statement is proved.

Now, for every sequence xn → x, we want to prove T(xn) → T(x). By
Lemma 1, p. 19, fixed ε > 0 there exists δ > 0 such that B(x, δ) ⊂ R(T(x)+ε).
Hence, for n sufficiently big, we get T(xn) ≤ T(x) + ε. Passing to the limit:
lim supT(xn) ≤ T(x).
Assume, now, by contradiction, that lim inf T(xn) < T < T(x). Then, up to a
subsequence, xn ∈ R(T ) and, by Lemma 2, x ∈ R(T ), a contradiction. Thus
we conclude.
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2.3 Special Curves

The aim of this section is to show the properties of optimal trajectories, fol-
lowing the geometric control approach illustrated in the introduction, more
precisely Step 1. The use of PMP and the function θγ , introduced above,
leads to a good characterization of the structure of optimal trajectories. This
analysis permits to prove a finite dimensional reduction in next section.

Definition 16 (Switching Function) Let (γ, λ) : [0, τ ] → R
2 × (R2)∗ be

an extremal pair. The corresponding switching function is defined as φ(t) :=
λ(t) ·G(γ(t)). Notice that φ(·) is absolutely continuous.

From the PMP it immediately follows:

Lemma 4 Let (γ, λ) : [0, τ ] → R
2 × (R2)∗ be an extremal pair and φ(·) the

corresponding switching function. If φ(t) 6= 0 for some t ∈]0, τ [, then there
exists ε > 0 such that γ corresponds to a constant control u = sgn(φ) on
]t− ε, t+ ε[.

Proof. There exists ε > 0 such that φ does not vanish on ]t − ε, t + ε[. Then
from condition iii) of PMP we get u = sgn(φ).

It is then natural to give the following definition:

Definition 17 (Regular Time) Let (γ, λ) : [0, τ ] → R
2 × (R2)∗ be an ex-

tremal pair and φ(·) the corresponding switching function. If φ(t) 6= 0 for some
t ∈]0, τ [, we say that t is a regular time for γ.

Reasoning as in Lemma 4 one immediately has:

Lemma 5 Assume that φ has a zero at t, φ̇(t) is strictly greater than zero
(resp. smaller than zero) then there exists ε > 0 such that γ corresponds to
constant control u = +1 on ]t − ε, t[ and to constant control u = −1 on
]t, t+ε[ (resp. to constant control u = −1 on ]t−ε, t[ and to constant control
u = +1 on ]t, t+ ε[).

We are then interested in differentiating φ:

Lemma 6 Let (γ, λ) : [0, τ ] → R
2 × (R2)∗ be an extremal pair and φ the

corresponding switching function. Then φ(·) is continuously differentiable and
it holds:

φ̇(t) = λ(t) · [F,G](γ(t)).

Proof. Using the PMP we have for a.e. t:

φ̇(t) =
d

dt
(λ(t) ·G(γ(t))) = λ̇(t) ·G(γ(t)) + λ · Ġ(γ(t))

= −λ(t)(∇F + u(t)∇G)(γ(t)) ·G(γ(t)) + λ · ∇G(γ(t))(F + u(t)G)(γ(t))

= λ(t) · [F,G](γ(t)).
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Since φ(·) is absolutely continuous and λ(t) · [F,G](γ(t)) is continuous, we
deduce that φ is C1.

Notice that if φ(·) has no zeros then u is a.e. constantly equal to +1 or −1.
Hence we are interested in determining when the control may change sign
or may assume values in ] − 1,+1[. For this purpose we give the following
definition:

Definition 18 • If u1 : [a, b] → [−1, 1] and u2 : [b, c] → [−1, 1] are controls,
their concatenation u2 ∗ u1 is the control:

(u2 ∗ u1)(t) :=

{

u1(t) for t ∈ [a, b]
u2(t) for t ∈]b, c].

If γ1 : [a, b] → R
2 and γ2 : [b, c] → R

2 are trajectories of Σ ∈ Ξ, cor-
responding respectively to u1 and u2, such that γ1(b) = γ2(b), then the
concatenation γ2 ∗ γ1 is the trajectory:

(γ2 ∗ γ1)(t) :=

{

γ1(t) for t ∈ [a, b]
γ2(t) for t ∈ [b, c].

• Define the vector fields:

X := F −G, Y := F +G. (2.9)

We say that γ is a X–trajectory on the interval [a, b] if on [a, b] it corre-
sponds to constant control -1. Similarly we define Y –trajectories.

• If a trajectory γ is a concatenation of an X–trajectory and a Y –trajectory,
then we say that γ is a Y ∗X–trajectory (The X–trajectory comes first).
Similarly we define trajectories of kind X ∗ Y , X ∗ Y ∗ X and so on. A
bang trajectory is a trajectory corresponding to constant control +1 or
to constant control −1. A bang–bang trajectory is a trajectory obtained
as a finite concatenation of X– and Y –trajectories. The times at which
the control changes sign are called switching times. Switching times are
particular cases of non regular times.

• An extremal trajectory γ defined on [c, d] is said to be singular or a
Z-trajectory if the switching function φ vanishes on [c, d].

Remark 21 A singular extremal in the sense above is also an endpoint singular
extremal in the sense of Section 1.2.3, p. 23. In fact for these trajectories the
Hamiltonian is independent from the control. In the following we use the term
singular trajectories with the same meaning of endpoint singular extremal.

Remark 22 On any interval where φ has no zeroes (respectively finitely many
zeroes) the corresponding control is bang (respectively bang-bang).

Singular trajectories are studied in details below. Notice that if an extremal
trajectory γ is a singular trajectory on [c, d], then every t ∈ [c, d] is not a
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regular time. In Figure 2.4 we give an example to illustrate the relationship
between an extremal trajectory and the corresponding switching function. The
control ϕ, corresponding to the singular arc, is computed below, see Lemma
10, p. 46.

φ( t)

t

bang(u=−1)bang (u=+1) ϕsingular (u=   ) bang (u=+1)

Fig. 2.4. The switching function

Recall Definition 14, p. 37. We have the following:

Lemma 7 For fixed t0, t, the map ft0,t : v0 7→ vγ(v0, t0; t) is linear and
injective. If γ : [a, b] → R

2 is an extremal trajectory of (2.1), correspond-
ing to a constant control ū, then for every t, t0 ∈ [a, b] it holds: vγ((F +
ūG)(γ(t0)), t0; t) = (F + ūG)(γ(t)). Moreover, if (γ, λ) is an extremal pair
then λ(t) · vγ(v0, t0; t) is constant.

Proof. The first assertion follows from the fact that vγ is the solution to a
linear ODE. The second claim is consequence of:

d

dt
(F + ūG)(γ(t)) = ∇(F + ūG)(γ(t)) · (F + ūG)(γ(t)),

ensuring that F + ūG solves the same equation as vγ . Finally for a.e. t:

d

dt
(λ(t) · vγ(v0, t0; t)) =

−λ(t) ·∇(F + ūG)(γ(t)) ·vγ(v0, t0; t)+λ(t) ·∇(F + ūG)(γ(t)) ·vγ(v0, t0; t) = 0,

moreover λ, vγ are absolutely continuous, hence the last claim holds true.
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In the following a key role is played by the functions:

Definition 19 For each x ∈ R
2, define:

∆A(x) = Det
(

F (x), G(x)
)

= F1(x)G2(x) − F2(x)G1(x),

∆B(x) = Det
(

G(x), [F,G](x)
)

= G1(x)[F,G]2(x) −G2(x)[F,G]1(x).

The first function is useful for studying abnormal extremals while the second
for detecting singular trajectories. Next Lemma shows the relation between
θγ , ∆B and the switching times of an extremal trajectory.

Lemma 8 Let γ : [0, T ] → R
2 be an extremal trajectory, t ∈ Dom(γ) such

that G(γ(t)) is different from zero, and consider the corresponding function
θγ of Definition 14, p. 37. Then θγ is C1 in a neighborhood of t and:

sgn(θ̇γ(t)) = sgn(∆B(γ(t))).

Moreover if t1, t2 ∈ Dom(γ) are such that G(γ(ti)) 6= 0, d
dt
θγ(ti) 6= 0, t1

switching time, then t2 is a switching time if and only if θγ(t1) = θγ(t2) +απ
where α ∈ {0,±1}.

Proof. Using the notation F ∧G := Det(F,G), one has:

d

dt
θγ(t) =

v̄γ(t) ∧ ˙̄v
γ
(t)

‖v̄γ(t)‖2
. (2.10)

Let M(t) be the fundamental matrix solution to the system (2.4) for t0 = 0.
Then for almost every t at which G(γ(t)) does not vanish, one has

d

dt
vγ
(

G(γ(t)), t; 0
)

= lim
ε→0

vγ
(

G(γ(t+ ε)), t+ ε; 0
)

− vγ
(

G(γ(t)), t; 0
)

ε

= M(t) · lim
ε→0

vγ
(

G(γ(t+ ε), t+ ε; t
)

−G(γ(t))

ε

= M(t) ·
[

F + u(t)G, G
]

(γ(t)) = M(t) · [F,G](γ(t)).

Since M(t) preserves orientation, by (2.10) we have

sgn
(

θ̇γ(t)
)

= sgn
(

M(t)G(γ(t)) ∧ M(t)[F,G](γ(t))
)

= sgn
(

G(γ(t)) ∧ [F,G](γ(t))
)

= sgn(∆B(γ(t))), (2.11)

proving the first statement.
Now t2 is a switching time if and only if λ(γ(t2)) ·G(γ(t2)) = 0. By Lemma

7, p. 42, this happens only when vγ(G(γ(t1), t1; 0) and vγ(G(γ(t2), t2; 0) are
parallel. By definition of θγ we conclude.



44 2 Time Optimal Synthesis for 2–D Systems

Definition 20 A point x ∈ R
2 is called an ordinary point if x /∈ ∆−1

A (0) ∪
∆−1
B (0). If x is an ordinary point, then F (x), G(x) form a basis of R

2 and we
define the scalar functions f, g to be the coefficients of the linear combination:
[F,G](x) = f(x)F (x) + g(x)G(x).

The relation between f , ∆A and ∆B is given by:

Lemma 9 Let x an ordinary point then:

f(x) = −∆B(x)

∆A(x)
. (2.12)

Proof. We have:

∆B(x) = G(x) ∧ [F,G](x) = G(x) ∧ (f(x)F (x) + g(x)G(x))

= f(x)G(x) ∧ F (x) = −f(x)∆A(x).

On a set of ordinary points the structure of optimal trajectories is partic-
ularly simple:

Theorem 11 Let Ω ∈ R
2 be an open set such that every x ∈ Ω is an ordinary

point. Then all extremal trajectories γ of Σ|Ω are bang-bang with at most one
switching. Moreover if f > 0 throughout Ω then γ is a X, Y or Y ∗ X–
trajectory. If f < 0 throughout Ω then γ is an X, Y or X ∗ Y –trajectory.

Proof. Assume f > 0 in Ω, the opposite case being similar. Let (γ, λ) be an
extremal pair such that γ is contained in Ω. Let t̄ be such that λ(t̄) ·G(γ(t̄)) =
0, then:

φ̇(t̄) = λ(t̄) · [F,G](γ(t̄)) = λ(t̄) · (fF + gG)(γ(t̄)) = f(γ(t̄)) λ(t̄) · F (γ(t̄)).

Now from PMP, we have H(γ(t̄), λ(t̄)) = λ(t̄) · F (γ(t̄)) ≥ 0. Hence φ̇ > 0,
since F (γ(t̄)), and G(γ(t̄)) are independent. This proves that φ has at most
one zero with positive derivative at the switching time and gives the desired
conclusion.

We are now interested in understanding what happens at points that are
not ordinary.

Definition 21 A point x ∈ R
2 is called an non ordinary point if x ∈ ∆−1

A (0)∪
∆−1
B (0).

The following proposition describes some basic properties of abnormal ex-
tremals in relation to the set ∆−1

A (0).
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Proposition 1 Let γ : [0, τ ] → R
2 be an extremal trajectory for the control

problem (2.1), λ : [0, τ ] → (R2)∗ the corresponding covector and t0 ∈]0, τ [ a
non regular time with G(γ(t0)) 6= 0. Then the following conditions are equiv-
alent:

(a) γ is an abnormal extremal;
(b) γ(t0) ∈ ∆−1

A (0);
(c) γ(t) ∈ ∆−1

A (0) for every non regular time t ∈]0, τ [.

Proof. Proof that (a) implies (c). For each non regular time t ∈]0, τ [ we have

λ(t) ·G(γ(t)) = 0 and there exists a sequence t′m ↗ t such that

H(γ(t′m), λ(t′m), u(t′m)) = λ(t′m) · (F + u(t′m)G)(γ(t′m)) = 0.

Hence λ(t′m) · F (γ(t′m)) → 0 and λ(t) · F (γ(t)) = 0. If G(γ(t)) 6= 0, then we
can conclude that F (γ(t)) and G(γ(t)) are parallel (possibly F (γ(t)) = 0),
λ(t) being not equal to 0. It follows (c)
Proof that (b) implies (a). Assume now that ∆A(γ(t0)) = 0. We have λ(t0) ·
G(γ(t0)) = 0 and from ∆A(γ(t0)) = 0 we get λ(t0) · F (γ(t0)) = 0. If λ0 is the
constant of the PMP, there exists a sequence t′m ↗ t0 such that:

−λ0 = H(γ(t′m), λ(t′m), u(t′m)) = λ(t′m) · (F + u(t′m)G)(γ(t′m)) → 0.

Hence we can conclude that H(γ(t), λ(t), u(t)) = 0 almost everywhere.
(c)⇒(b) is obvious. This concludes the proof.

In the following we study some properties of singular trajectories in relation
to non ordinary points on which ∆B = 0.

Definition 22 • An non ordinary arc is a C2 one-dimensional connected em-

bedded submanifold S of R
2 with the property that every x ∈ S is a non ordi-

nary point.

• A non ordinary arc is said isolated if there exists a set Ω satisfying the
following conditions:

(C1) Ω is an open connected subset of R
2.

(C2) S is a relatively closed subset of Ω.
(C3) If x ∈ Ω \ S then x is an ordinary point.
(C4) The set Ω \ S has exactly two connected components.

• A turnpike (resp. anti-turnpike) is an isolated non ordinary arc that satisfies
the following conditions:

(S1) For every x ∈ S the vectors X(x) and Y (x) are not tangent to S and
point to opposite sides of S.

(S2) For every x ∈ S one has ∆B(x) = 0 and ∆A(x) 6= 0.
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(S3) Let Ω be an open set which satisfies (C1)–(C4) above and ∆A 6= 0 on
Ω. If ΩX and ΩY are the connected components of Ω \ S labeled in such
a way X(x) points into ΩX and Y (x) points into ΩY , then the function
f satisfies

f(x) > 0 (resp. f(x) < 0) on ΩY

f(x) < 0 (resp. f(x) > 0) on ΩX

The following Lemmas describes the relation between turnpikes, anti-turnpikes
and singular trajectories. In Lemma 10 we compute the control corresponding
to a trajectory whose support is a turnpike or an anti-turnpike. In Lemma 11
we prove that if this control is admissible (that is the turnpike or the anti-
turnpike is regular, see Definition 23) then the corresponding trajectory is
extremal and singular. In Lemma 12 we show that anti-turnpike are locally
not optimal.

Lemma 10 Let S be a turnpike or an anti-turnpike and γ : [c, d] → R
2 a

trajectory of Σ ∈ Ξ such that γ(c) = x0 ∈ S. Then γ(t) ∈ S for every
t ∈ [c, d] iff γ corresponds to the feedback control (called singular):

ϕ(x) = −∇∆B(x) · F (x)

∇∆B(x) ·G(x)
, (2.13)

Proof. Assume that γ([c, d])) ⊂ S and let u be the corresponding control, that
is γ̇(t) = F (γ(t)) + u(t)G(γ(t)), for almost every t. From ∆B(γ(t)) = 0, for
a.e. t we have:

0 =
d

dt
∆B(γ(t)) = ∇∆B · (F (γ(t)) + u(t)G(γ(t))).

This means that at the point x = γ(t) we have to use control ϕ(x) given by
(2.13).

Definition 23 (regular turnpike or anti-turnpike) We say that a turn-
pike or anti-turnpike S is regular if |ϕ(x)| < 1 for every x ∈ S.

Lemma 11 Let (γ, λ) : [0, t̄] → R
2 be an extremal pair that verifies γ(t̄) = x,

x ∈ S where S is a turnpike or an anti-turnpike, and λ(t̄) · G(γ(t̄)) = 0.
Moreover let γ′ : [0, t′] → R

2 (t′ > t̄) be a trajectory such that:

• γ′|[0,t̄] = γ,
• γ′([t̄, t′]) ⊂ S.

Then γ′ is extremal. Moreover if φ′ is the switching function corresponding to
γ′ then φ′|[t̄,t′] ≡ 0.
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Proof. Define λ′ to be the covector along γ′ that coincide with λ on [0, t̄] and φ′

the corresponding switching function. Define γ̃(t) = γ ′(t− t̄) for every t ∈ [t̄, t′]
and θ̃ = θγ̃ (see Definition 14). From Lemma 8 we get that d

dt
θ̃(t) = 0 for

every t ∈ [t̄, t′]. Since θ̃(0) = 0, we conclude θ̃ ≡ 0. It follows, from Lemma 7,
that for every t ∈ [t̄, t′]:

φ′(t) = λ′(t) ·G(γ̃(t− t̄)) = λ′(t̄) · vγ̃(G(γ̃(t− t̄)), t− t̄; 0) = 0.

Hence γ′ is extremal and φ′ ≡ 0 on [t̄, t′].

Lemma 12 Let S be an anti-turnpike and γ : [c, d] → R
2 be an extremal

trajectory such that γ([c, d]) ⊂ S. Then γ is not optimal.

This Lemma can be proved using the generalized Legendre–Clebsch condition
given in Theorem 7, see Exercise 14. Here we give a nice alternative proof, see
[126], that uses Stokes’ theorem.

Proof. Choose an open set Ω containing γ([c, d]) such that ∆A 6= 0 on Ω and
define the differential form ω on Ω by ω(F ) = 1, ω(G) = 0. Let γ1 : [c, d1] →
Ω be any trajectory such that γ1(c) = γ(c), γ1(d1) = γ(d), γ1(t) /∈ S for
every t ∈]c, d1[. Notice that d − c =

∫

γ
ω, d1 − c =

∫

γ1
ω. Hence d − d1 =

∫

γ−1

1
∗γ ω where γ−1

1 is γ1 run backward. Assume that γ−1
1 ∗ γ is oriented

counterclockwise, being similar the opposite case. Then by Stokes’ Theorem,
d − d1 =

∫

A
dω where A is the region enclosed by γ−1

1 ∗ γ. Now dω(F,G) =
F ·∇ω(G)−G ·∇ω(F )−ω([F,G]) = −f , by definition of ω. Since dω(F,G) =
∆Adω(∂x, ∂y), we get

d− d1 =

∫

A

(

− f

∆A

)

dx dy.

If ∆A is positive (resp. negative) then Y (resp. X) points to the side of S
where γ1 is contained and, by definition of anti-turnpike, f is negative (resp.
positive) on A. We conclude that d > d1 and γ is non optimal.

One finally gets:

Theorem 12 Let γ : [0, t̄] → R
2 be an optimal trajectory that it is singular

on some interval [c, d] ⊂ [0, t̄]. Then, under generic conditions, Supp(γ|[c,d])
is contained in a regular turnpike S.

Proof. From φ ≡ 0 on [c, d] it follows φ̇ ≡ 0 on [c, d]. By Lemma 6,
Supp(γ|[c,d]) ⊂ ∆−1

B (0). Under generic conditions, ∆−1
B (0) ∩ R(t̄) is formed

by a finite number of turnpikes, anti-turnpikes and isolated points (at inter-
sections with ∆−1

A (0)). By Lemma 12 we conclude.
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2.4 Bound on the Number of Arcs

The aim of this section is to prove, given τ > 0, the existence of generic
conditions on F,G ensuring that every time optimal trajectory in R(τ) is a
finite concatenation of X−, Y− and Z−trajectories; more precisely for each
Σ in a generic subset of Ξ there exists N(Σ) that bounds the number of these
trajectories.

First we focus on the concept of genericity.

Definition 24 (Generic) A subset of Ξ is said to be generic if it contains
an open and dense subset of Ξ. A condition for Σ = (F,G) ∈ Ξ is a logic
proposition involving the components of the vector fields (F,G), their deriva-
tives or set and functions that can be defined using them. Given a condition
P for Σ ∈ Ξ we write P (Σ) if the system satisfies the condition P . A condi-
tion P is said to be generic if {Σ ∈ Ξ : P (Σ)} is generic. If P1, . . . , Pn are
generic conditions then it is easy to verify that {Σ ∈ Ξ : P1(Σ), . . . , Pn(Σ)}
is generic.

We now give a finite number of generic conditions P1, . . . , Pn that ensure the
genericity of the set for which there exist an optimal synthesis. These condition
are essential to prove that every optimal trajectory is a finite concatenation
of bang and singular arcs.

(P1) The vectors G(0) and [F,G](0) are linearly independent, i.e. ∆B(0) 6= 0.
(P2) Zero is a regular value for ∆A and ∆B i.e. ∆A(x) = 0 implies
∇∆A(x) 6= 0 and similarly for ∆B .
(P3) The set ∆−1

A (0) ∩∆−1
B (0) is locally finite.

Let TanA be the set of points x ∈ ∆−1
A (0) such that X(x) or Y (x) is tangent

to ∆−1
A (0). Define TanB in the same way using ∆B rather than ∆A.

(P4) TanA and TanB are locally finite sets.

Let Bad := (∆−1
A (0) ∩∆−1

B (0)) ∪ TanA ∪ TanB .

(P5) Bad is locally finite.

Notice that (P5) is a consequence of (P3) and (P4).

(P6) If x ∈ Bad, G(x) = 0 then F (x) · ∇(∆A)(x) 6= 0.
(P7) If x ∈ Bad, G(x) 6= 0, x ∈ (∆−1

A (0)∩∆−1
B (0))∩ TanA, then x /∈ TanB ,

∂y(X · ∇∆A)|y=x 6= 0, X(x) 6= 0, Y (x) 6= 0.

Remark 23 Notice that (P6) follows from (P3) if ∆−1
A (0) and ∆−1

B (0) are
transversal, see Lemma 13 C.
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Fig. 2.5. Generic Conditions.

The generic conditions (P6), (P7) are showed in Figure 2.5.

From Lemma 5, Proposition 1 we get that, under generic conditions, abnormal
extremals are bang-bang trajectories with switchings happening on the set of
zeroes of the function ∆A (that is where the two vector fields F and G are
collinear):

Proposition 2 Let γ : [0, τ ] → R
2 be an optimal abnormal extremal for the

control problem (2.1), then the generic conditions (P3), (P6), (P7), imply
the following:

• γ is bang–bang,
• if t0 ∈]0, τ [ is a switching time then γ(t0) ∈ ∆−1

A (0).

Proof. Assume by contradiction that γ is not bang–bang. Then there exists
a set I ⊂ [0, τ ] with an accumulation point such that the switching function
φ vanishes on I. Then reasoning as in Proposition 1, λ · F (γ) ≡ 0 on I and
∆A ≡ 0 on I. Let t̄ be an accumulation point of I so that there exists a
monotone sequence ti ∈ I with ti → t̄ for i → ∞. We get 0 = φ̇(t̄) =
λ(t̄) · [F,G](γ(t̄)), thus ∆B(γ(t̄)) = 0. By optimality γ(ti) 6= γ(t̄), thus from
(P3) for i sufficiently big G(γ(ti)) 6= 0 and ∆B(γ(ti)) 6= 0. Then ti are
switching times and X(γ(t̄)) and Y (γ(t̄)) are tangent to ∆−1

A (0). From (P6) it
follows G(γ(t0)) 6= 0 thus we are in the situation of the picture of (P7). Define
bi := |γ(ti)−γ(t̄)|, then we easily obtain the estimate bi+1 ≥ bi−Cb2i . for some

C > 0. Then the series bi diverges by comparison with the series
(

i(C+1)
)−1

.
Since |ti+1 − ti| > C ′bi, for some C ′ > 0, we obtain a contradiction.

The second claim is proved as in Proposition 1.
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In Proposition 18, p. 172 it is proved also the viceversa i.e. for an abnor-
mal extremal, under generic conditions, γ(t0) ∈ ∆−1

A (0) implies that t0 is a
switching time for γ.

Definition 25 Given a trajectory γ, we denote by n(γ) the smallest integer,
if any, such that there exist X,Y or Z trajectories γi i = 1, . . . , n(γ) verifying:

γ = γn(γ) ∗ · · · ∗ γ1.

We call n(γ) the number of arcs of γ and by abuse of notation a switching
time is a time at which two arcs concatenate, cfr. Definition 18.

Given τ > 0 let us define Πτ to be the class of systems having an a priori
bound on the number of arcs of optimal trajectories:

Πτ = {Σ ∈ Ξ : ∃N(Σ) s.t. ∀γ optimal , Supp(γ) ⊂ R(τ), n(γ) ≤ N(Σ)}.

From Theorem 11 we have a bound on the number of arcs of time optimal
trajectories in a neighborhood of an ordinary point. In the following Section
we prove:

Theorem 13 Under generic conditions on F,G ∈ C3, for every x there exist
Ωx, neighborhood of x, and Nx ∈ N such that if γ is optimal and Supp(γ) ⊂ Ωx
then:

n(γ) ≤ Nx.

It follows:

Corollary 1 For every τ > 0 the set Πτ is a generic subset of Ξ.

Proof. Using Theorem 13, for each x ∈ R(τ) we can select an neighborhood
Ωx such that every optimal trajectory remaining in Ωx is the concatenation
of at most Nx bang or singular arcs. Choose εx > 0 such that B(x, 2εx) ⊂ Ωx.
Since R(τ) ⊂ ∪x∈R(τ) B(x, εx), by compactness of R(τ) (see Lemma 2, p. 39),
we can extract a finite subcover B(xi, εi), i = 1, . . . ,m, εi = εxi

. Consider an
optimal trajectory γ : [0, τ ] 7→ R

2, γ(0) = 0. Define:

ε = min
i=1,...,m

εi, N = max
i=1,...,m

Nxi
.

Choose i1 such that 0 ∈ B(xi1 , εi1). Let t1 be either the first time such that
γ(t1) 6∈ B(xi1 , 2εi1) or t1 = τ if γ remains in B(xi1 , 2εi1). In the former case,
there exists i2 6= i1 such that γ(t1) ∈ B(xi2 , εi2). Let t2 be either the first time
for which γ(t2) 6∈ B(xi2 , 2εi2) or t2 = τ if γ remains inB(xi2 , 2εi2). We proceed
in the same way defining a set of increasing times {t0 = 0, t1, . . . , tν = τ}.
If M = max{|F (x)| + |G(x)| : x ∈ R(τ)} denotes the maximum speed of
trajectories inside R(τ), it is clear that tj − tj−1 ≥ ε/M . Therefore:

ν ≤ M τ

ε
. (2.14)
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By definition, for each tj , j = 1, . . . , ν, we have that {γ(t) : t ∈ [tj−1, tj [} is
contained in B(xij , 2εij ), hence n(γ|[tj−1,tj [) ≤ N . From (2.14) we obtain:

n(γ) ≤ N(Σ) = N
M τ

ε
.

2.4.1 Proof of Theorem 13

To prove Theorem 13, p. 50 we need two Lemmas.

Lemma 13 Let x ∈Bad(τ) then:

A G(x) 6= 0, x ∈ (∆−1
A (0) ∩∆−1

B (0)) ⇒ x ∈ TanA;
B x ∈ TanA, X(x) or Y (x) 6= 0 ⇒ x ∈ (∆−1

A (0) ∩∆−1
B (0)).

C G(x) = 0 ⇒ F (x) · ∇∆B(x) = 0.

Proof. The proof of A is as follows: being G(x) 6= 0 we can choose a local
system of coordinates such that G ≡ (1, 0), then from x ∈ ∆−1

A (0) we have
αF (x) = G(x) (α ∈ R) and:

∇(∆A)(x) = ∇(F1G2 −G1F2)(x) = −∇F2(x)

[F,G] = −∇F ·G.
From ∆B(x) = 0 we have [F,G](x), G(x) are collinear and then:

0 = (∂1F2)(x) G1(x) + (∂2F2)(x) G2(x) = (∂1F2)(x)

finally:
∇(∆A)(x) ·G(x) = 0.

We conclude that x ∈ TanA.
Let us prove B. From (P6), we have G(x) 6= 0 and we can choose a local
system of coordinates such that G ≡ (1, 0). From x ∈ TanA it follows x ∈
∆−1
A (0), hence F (x) = αG (α ∈ R). Similarly to above, we have:

∆B(x) = −∂1F2(x). (2.15)

Assume X(x) 6= 0 being the other case similar. Since X(x) is tangent to
∆−1
A (0), ∇∆A(x) ·X(x) = (α − 1)∇∆A(x) · G = 0. From X(x) 6= 0 we have

that α 6= 1, hence ∇∆A · G = 0. This implies ∂1F2 = 0 and using (2.15) we
obtain ∆B(x) = 0, i.e. x ∈ ∆−1

B (0).
Let us prove C. If F (x) = 0 there is nothing to prove, otherwise choose a
local system of coordinates such that F ≡ (1, 0). Then [F,G] = ∇G · F =
(∂1G1, ∂1G2). Then ∆B = G1∂1G2 − G2∂1G1, hence F · ∇∆B = G1∂

2
1G2 −

G2∂
2
1G1. From G(x) = 0 we conclude.

We now use envelope theory to prove a bound on the number of arcs in a
neighborhood of anti-turnpikes.
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Lemma 14 Let S be an anti-turnpike and x ∈ S. Then, under the generic
condition (P2), there exists a neighborhood Ω of x such that every optimal
trajectory γ contained in Ω satisfies n(γ) ≤ 2.

Proof. From Lemma 12, p. 47, we already know that taking Ω sufficiently
small, γ has no singular arc. We prove that Y ∗ X ∗ Y trajectories are not
optimal, in a small neighborhood of x, being similar the proof of nonoptimalty
of X ∗ Y ∗X.

Take a local system of coordinates such that x = (0, 0), X ≡ (1, 0),
∆−1
B (0) = {(x, y) : x = 0} and let Y = (α, β). By definition of anti-turnpike

α < 0 and without loss of generality we can assume β > 0 on Ω.
Recalling Lemma 8, p. 43, if γy is the X–trajectory passing through (0, y)

at time 0, then for ε sufficiently small, we can define ψ : [−ε, 0]× [−ε, ε] → R
+

such that

θγy (G(γy(x)), x; 0) = θγy (G(γy(ψ(x, y))), ψ(x, y); 0). (2.16)

We have that given (x, y) ∈]−ε, 0]×[−ε, ε], ψ(x, y) is the unique positive num-
ber with this property. Moreover, by (P2), ψ is smooth, ∂xψ < 0, ψ(0, y) = 0
hence ∂yψ(0, 0) = 0. Possibly restricting Ω, we can assume that:

|∂yψ(x, y)β(x, y)| < min
Ω

∂xψ(x, y)α(x, y). (2.17)

We also define Ψ(x, y) = (ψ(x, y), y). Assume γ = γ1 ∗ γ2 ∗ γ3 where γ1 and
γ3 are Y –trajectories and γ2 is a X–trajectory. If γ2 does not cross ∆−1

B (0)
then γ is not optimal by Theorem 11. We thus assume the opposite and refer
to Figure 2.6. Let z12 = γ1(t12) = γ2(t12) and z23 = γ2(t23) = γ3(t23) be
the switching points of γ and define γ̄(t) = Ψ(γ3(t23 + t)), for t in a left
neighborhood of 0. We want to prove that γ̄ is an envelope for γ2 ∗ γ3.
For this, define, for σ < 0 sufficiently close to 0, the extremal trajectory γσ in
the following way. We start from the initial point of γ3 and reach γ3(t23 + σ)
with control +1, then we switch to control −1 and reach the point Ψ(γ3(t23 +
σ)). Denote also by Tσ the final time of γσ and γ3(t23 + σ) = zσ = (xσ, yσ),
thus γσ(Tσ) = Ψ(zσ). We have to verify the conditions of envelope given in
Definition 13. Condition 1-i) is immediately verified. Let uσ be the control
associated to γσ, thus uσ is bang–bang with one switching and assumption
1-ii) is promptly checked. Now, for every continuous function ϕ : [0, T̄ ] → R

2,
we have (see Exercise 15):

lim
ε→0

1

ε

(

∫ Tσ+ε

0

ϕ(t) · f(γσ(t), uσ+ε(t))dt−
∫ Tσ

0

ϕ(t)f(γσ(t), uσ(t))dt

)

=

= 2G(zσ) + [1 + (∇ψ · Y )(zσ) − α(zσ)] (F −G)(Ψ(zσ)), (2.18)

thus condition 1-iii) is verified. Since L ≡ 1, condition 2) follows from the
continuity of ψ.
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To verify condition 3) we compute:

d

dt
γ̄(t) = DΨ · d

dt
γ3(t23 + t) =

(

∂xψ ∂yψ
0 1

)(

α
β

)

=

(

∂xψ α+ ∂yψ β
β

)

.

Now, β > 0 and from (2.17), ∂xψ α+∂yψ β > 0, hence, up to a reparametriza-
tion of γ̄, d

dt
γ̄(t) is a strict convex combination of Y = (α, β) and X = (1, 0).

Therefore we may assume that γ̄ is a trajectory. Now, to verify condition 4),
denote by λσ the covector associated to γσ. From (2.16), we have that Tσ is
a switching point of γσ, thus λσ(Tσ) ·G(Ψ(zσ)) = 0. Using the maximization
condition of PMP for γσ we thus conclude.
Therefore, Theorem 9 ensures that γ and γ̄ ∗ γσ steers the same initial point
to z12 taking the same amount of time. But γ̄ is not bang-bang and hence not
optimal because of Theorem 11. We conclude that γ is not optimal as well.

γ

γ

γ

γ

2

3

1

z z1223
X

Y

−

23t
3

Ψ(γ  (     +σ))γ  (     +σ)23t
3

Fig. 2.6. Proof of Lemma 14

Proof of Theorem 13. We assume the generic conditions (P1)−(P7). If x is
an ordinary point, the conclusion is given by Theorem 11, p. 44. From now
on we assume that x is a nonordinary point.

In case of x ∈ Bad(τ), using (P5), we always assume that x is the only
bad point in Ωx.

Assume first ∆B(x) 6= 0 and let γ be an optimal trajectory contained in
a open neighborhood Ωx of x such that ∆B(y) 6= 0 for every y ∈ Ωx. From
Lemma 8, p. 43 we have that θγ is monotonic. Since F,G are smooth, choosing
Ωx sufficiently small, we can assume that TV (θγ) < π where TV is the total
variation. From the second statement of Lemma 8, p. 43 we get n(γ) ≤ 2.
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From now on we assume ∆B(x) = 0 and distinguish two cases:

a) ∆A(x) 6= 0,
b) ∆A(x) = 0.

Let us first treat case a).
Assume x /∈ TanB . If X, and Y point to the same side of ∆−1

B (0) then
every optimal trajectory moves from one side of ∆−1

B (0) to the other side.
Since f = −∆A/∆B does not vanish outside ∆−1

B (0), from Theorem 11, p. 44
we get Nx = 3. Assume now that X,Y point to opposite side. If ∆−1

B (0) is
locally a turnpike then, from Theorem 11, p. 44 we get Nx ≤ 3. If ∆−1

B (0) is
locally a anti-turnpike then, from Lemma 14, p. 52 we get Nx = 2.

Consider now x ∈ TanB . We refer to Figure 2.7. Since ∆A(x) 6= 0, X(x)
and Y (x) do not vanish and are not parallel. Without loss of generality we
assume X(x) · ∇∆B(x) = 0, Y (x) · ∇∆B(x) 6= 0, hence F (x) · ∇∆B(x) 6= 0.
Let ` be the line through x orthogonal to F (x) and Ω1, Ω2 the connected
components of Ωx \`. Taking Ω sufficiently small, we may assume that X and
Y point to the same side of ` on all Ω. In the not generic case in which X
points to the same side of ∆−1

B (0) both in Ω1 and Ω2, then we are back to
the previous case and Nx ≤ 3. If the opposite happens, then either n(γ) ≤ 2
for γ contained in Ω1 and n(γ) ≤ 3 for γ contained in Ω2 or viceversa. We
conclude Nx ≤ 5.

Ω
Ω1

2

l

X

Y

F

∆ =0
B

Fig. 2.7. Proof of Theorem 13

Let us now treat case b). Assume first G(x) = 0, then by (P6), F is not
tangent to ∆−1

A (0), while by C of Lemma 13 F is tangent to ∆−1
B (0). Let ` be
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the line through x orthogonal to F (x) and Ω1, Ω2 the connected components
of Ωx \ `. Since G(x) = 0, taking Ωx sufficiently small, we have that X and
Y point to the same side of ∆−1

A (0) on all Ωx. Then n(γ) ≤ 3 for γ contained
in Ω1 and for γ contained in Ω2. We conclude Nx ≤ 6.

Assume now that G(x) 6= 0, hence, possibly shrinking Ωx, G does not
vanish on Ωx. If X(x) and Y (x) have the same versus then we conclude as in
the previous cases, hence we assume the opposite. From Lemma 13, p. 51 A
and assumption (P7), we are in the situation of figure 2.5 (case P7). We can
assume that X and Y do not vanish on Ωx. Let γ be an optimal trajectory
contained in Ωx. If γ switches at x then by Proposition 1, p. 45, γ has no
more switchings.

Assume now that γ switches at a point y 6= x, y ∈ ∆−1
A (0). then by

Proposition 1, p. 45, γ switches at every crossing of ∆−1
A (0). Assume that γ

has at least two switchings then we can apply the same reasoning of Lemma 14,
p. 52 obtaining the non optimality of γ. Indeed let x1, x2 be two consecutive
switching points of γ and Ωi, i = 1, ..., 4, be the connected components of
Ωx \ (∆−1

A (0) ∪∆−1
B (0)), labeled as in Figure 2.8.

∆  (0)−1
B

∆  (0)Α
−1x1x2

ΩΩ

Ω Ω1

3 4

2

Fig. 2.8. Proof of Theorem 13
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Let x1 = γ(t1) and consider the trajectory γε switching at point γ(t1 − ε),
then γε switches at a point yε ∈ Ω2. It is easy to check that:

d

dε
yε

∣

∣

∣

∣

ε=0

belongs to the positive cone generated by X(x2) and Y (x2). Hence up to a
reparametrization, ε→ yε is a trajectory and we can reason as in Lemma 14,
p. 52 to construct an envelope for γ.

Assume now that γ has two switchings on Ωx outside ∆−1
A (0) ∪ ∆−1

B (0).
From (P2), referring to figure 2.8, γ switches either on Ω1∪Ω3 or on Ω2∪Ω4.
Then again we can reason as in Lemma 14 to construct an envelope for γ.

If γ contains a singular arc, then reasoning on θγ as for the case∆B(x) 6= 0,
we easily get n(γ) ≤ 3. We thus conclude.

2.5 Existence of an Optimal Synthesis

In this section we complete the construction of an optimal synthesis according
to Step 3. and 4. of the geometric control approach illustrated in Section 1.4,
p. 27.

We introduce the definition of stratification of R(τ), τ > 0, and of optimal
synthesis on R(τ).

Definition 26 (stratification) A stratification of R(τ), τ > 0, is a finite
collection {Mi} of connected embedded C1 submanifolds of R

2, called strata,
such that the following holds. If Mj ∩ Clos(Mk) 6= ∅ with j 6= k then Mj ⊂
Clos(Mk) and dim(Mj) < dim(Mk).

Remark 24 The given definition of stratification is quite rough, indeed the
optimal synthesis is more regular as showed below. More refined definitions
of stratification are introduced in next chapters.

Definition 27 (regular optimal synthesis) A regular optimal synthesis
for Σ ∈ Ξ on R(τ) is a collection of trajectory-control pairs {(γx, ux) : x ∈
R(τ)} satisfying the following properties:

1. For every x ∈ R(τ), γx : [0, tx] → R
2 steers the origin to x in minimum

time.
2. If y = γx(t) for some t ∈ Dom(γx) then γy is the restriction to [0, t] of

γx.
3. There exists a stratification of R(τ) such that u(x) = ux(tx) is smooth on

each stratum (assuming each ux left continuous).
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Given a system Σ ∈ Πτ , since there is a finite dimensional reduction of
the space of optimal trajectories, it is possible to construct a synthesis Γ
for Σ following the classical idea of constructing extremal trajectories and
deleting those trajectories that are not optimal. By construction this synthesis
is optimal.

We describe an algorithm A by induction. At step N , we construct pre-
cisely those trajectories which are concatenation of N bang or singular arcs
and satisfy the PMP. The end points of the arcs forming these trajectories,
corresponding to the switching times of the control, are determined by certain
nonlinear equations. Under generic conditions, such equations can be solved
by the implicit function theorem, thus determining a smooth switching locus.
Eventually the algorithm will partition the reachable set R(τ) into finitely
many open regions (where the optimal feedback is either u = +1 or u = −1),
separated by boundary curves and points, called Frame Curves (in the fol-
lowing FCs) and Frame Points (in the following FPs), respectively. At each
step it may happen that distinct extremal trajectories reach the same point
at different times. It is therefore necessary to delete from the synthesis those
trajectories which are not globally optimal. This procedure usually produces
new “overlap curves”, consisting of points reached in minimum time by two
distinct trajectories: one ending with the control value u = +1, the other with
u = −1.

If at step N the algorithm A does not construct any new trajectory, then
we say that A stops at step N (for Σ at time τ) or that A succeeds for Σ.
From Theorem 13 it is clear that, under generic assumptions, there exists
N(Σ) such that A stops before step N(Σ) and every γ constructed by A is
optimal. By definition Fr(R(τ)), the topological frontier of R(τ), is a frame
curve and its intersections with other frame curves are frame points.

If A stops, then for each x ∈ R(τ) there exists a set of constructed trajec-
tories that reach x. Define Γx := {γ : γ is constructed by A, Term(γ) = x}.
We want to select for each x ∈ R(τ), a trajectory from Γx to form a synthesis.
Define Kk to be the set of points x ∈ R(τ) reached at least by one constructed
trajectory γ, satisfying n(γ) ≤ k. Note that Kk is compact for every k and
KN(Σ) = R(τ). We proceed by induction on k. Given x ∈ Kk \ Kk−1, we
consider the optimal trajectories γ ∈ Γx formed by k arcs, for which the fol-
lowing holds. If y = γ(t) is the initial point of the last arc of γ, then γ|[0,t]
has been selected from Γy by induction. Finally if there is more than one such
trajectory, then we select one, say, according to the preference order X,Y, Z
on the type of the last arc.

In this way, at step N(Σ) we have constructed a synthesis for Σ at time τ .
We use the symbol ΓA(Σ, τ) to denote this synthesis and call it the synthesis
generated by the algorithm A. If τ is fixed we also use the symbol ΓA(Σ).

Theorem 14 Consider Σ ∈ Ξ and τ > 0. If A stops for Σ at time τ then
ΓA(Σ, τ) is an optimal synthesis
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Remark 25 A more detailed algorithm is described in Section 2.8.2, p. 89.
The latter provides generic conditions under which the structural stability of
the synthesis is guaranteed.

2.6 Classification of Synthesis Singularities

The aim of this Section is to provide a generic classification of all Frame Curves
and Frame Points that appear in optimal syntheses built by the algorithm
described in the previous Section.

Let us introduce some more notation. We call γ± : [0, τ ] → R(τ) the
trajectories exiting the origin with constant control ±1. We let t±op the last
times at which γ± are optimal and define γ±op = γ±|[0,t±op].

Definition 28 (conjugate times) Let t0, t belong to the domain of an ex-
tremal trajectory. If vγ(G(γ(t), t; t0) and G(γ(t0)) are linearly dependent (i.e.
either if at least one vanish or if θγ(t) = θγ(t0)±a, a ∈ {0,±π}), we say that
t0 and t1 are conjugate along γ.

From the proof of Lemma 8, p. 43 we get

Lemma 15 Let (γ, λ) : [0, τ ] → R
2 be an extremal pair and t1, t2 consequent

switching times. Then t1 and t2 are conjugate along γ.

Definition 29 Let D1, D2 be two connected C2 embedded submanifolds of R
2.

We say that they are conjugate along the X-trajectories, if there exists a dif-
feomorphism ψ : D1 → D2 satisfying the following. For every y ∈ D1 let
γy be the X–trajectory trough y at time 0. Then there exists t(y) depending
continuously on y such that γy(t(y)) = ψ(y) ∈ D2 and 0, t(y) are conjugate
along γy. Conjugate curves along Y − trajectories are defined similarly.

2.6.1 Frame Curves

Definition 30 Given x ∈ R(τ) we denote by γx, ux the trajectory of ΓA(Σ, τ)
and the corresponding control such that γx(tx) = x. Also, we denote by uA
the feedback control ux(tx).

Definition 31 (Frame Curves and Points) A one-dimensional connected
embedded C2 submanifold with boundary D of R(τ) is called a Frame Curve
if uA is discontinuous at each point of of D and D is maximal. Frame Points
are defined as intersection of Frame Curves.

Under generic conditions, the Algorithm constructs only six types of frame
curves:

1. the trajectory γ−op starting from zero and corresponding to constant con-

trol −1. We say that this curve is of kind X;
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2. the trajectory γ+
op starting from zero and corresponding to constant con-

trol +1. We say that this curve is of kind Y ;
3. singular trajectories that are trajectories corresponding to the singular

control ϕ. We say that these are FCs of kind S;
4. conjugate curves to other FCs. These curves are called C frame curves or

switching curves, since the optimal control changes sign crossing them;
5. overlap curves, formed by points reached optimally by two distinct tra-

jectories. We call these curves K frame curves;
6. the topological frontier of the reachable set. We call this curve a F frame

curve.

Our aim is to topologically classify all frame curves in the following sense.

Definition 32 (Local Topological Equivalence of Syntheses) Consider
two systems Σ1, Σ2, a time τ > 0 and two open sets U1 ⊂ R1(τ) and U2 ⊂
R2(τ); here R1 and R2 denote the reachable sets of Σ1 and Σ2 respectively.
Assume that A succeeds for Σ1 and for Σ2 at time τ . We say that Γ1 =
ΓA(Σ1, τ)|U1 (the restriction of ΓA(Σ1, τ) to U1) and Γ2 = ΓA(Σ2, τ)|U2 are
equivalent if there exists an homeomorphism ϕ : U1 7→ U2 such that:

(E1) ϕ induces a bijection on Γi: {ϕ(γx(t)) : t ∈ Dom(γx)}∩U1 = {γϕ(x)(t) :
t ∈ Dom(γϕ(x))} ∩ U2 for every x ∈ U1; if the two sets are oriented for
increasing t then ϕ preserves the orientation;

(E2) ϕ induces a bijection on frame curves, i.e. for each FC D1 of Γ1 we
have that ϕ(D1) is a FC of Γ2 of the same type and viceversa, assuming
that the types X–, Y – are equivalent.

In this case we write Γ1|U1 ≡ Γ2|U2.

Remark 26 Note that in the definition of equivalence there is no request about
the time evolution along γx, in fact there is no condition of the type ϕ(γx(t)) =
γϕ(x)(t). It is necessary to give a not too strict definition of equivalence to
have a discrete set of equivalence classes. The same problem occurs in the
definition of equivalence for a singular point of a dynamical system. In this
case the orbital equivalence was introduced, see [18].

Definition 33 (Topological Equivalence of FCs and FPs) Given x1, x2

we say that Γ1 at x1 and Γ2 at x2 are equivalent, or we write Γ1|x1 ≡ Γ2|x2,
if there exist U1, U2 neighborhoods of x1, x2, respectively, such that Γ1|U1 ≡
Γ2|U2. We say that two FC’s Di of Γi, i = 1, 2, are equivalent if for each
y1 ∈ D1 \ ∂D1, y2 ∈ D2 \ ∂D2 we have that Γ1|y1 ≡ Γ2|y2. Similarly two
Frame Points xi of Γi, i = 1, 2, are equivalent if Γ1|x1 ≡ Γ2|x2.

Definition 34 A Frame Curve D is simple if D \ ∂D does not contain any
frame point.

It is clear that a classification of FPs and simple FCs, immediately provides a
classification of all FCs. Recall Figure 2.1, p. 34, where the optimal synthesis
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near each simple Frame Curve is shown (except the F curve for which the
synthesis is trivial: only one side is covered by trajectories corresponding to
the same bang control). Explicit examples of FCs are given in Section 2.6.4.
We have the following Theorem, proved in Appendix A.

Theorem 15 Consider Σ ∈ Ξ and τ > 0. If A succeeds for Σ at time τ and
D is a simple FC of ΓA(Σ, τ), then, under generic conditions, D is of one of
the following six types Y1, Y2, S, C, K, F .

2.6.2 Frame Points

In this section we give a description of the local structure of ΓA in a neigh-
borhood of a Frame point. More precisely, only generic frame points are
considered. Therefore, all frame points are intersections of no more than two
FCs. Indeed an intersection of three or more FCs can be destroyed by an
arbitrary small perturbation of the system.

Consider a frame point x and two FCsD1 andD2 such that {x} = D1∩D2.
Then there are four possible cases:

(FP0) x ∈ D1 \ ∂D1, x ∈ D2 \ ∂D2.
(FP1) x ∈ D1 \ ∂D1, x ∈ ∂D2.
(FP2) x ∈ ∂D1, x ∈ D2 \ ∂D2.
(FP3) x ∈ ∂D1, x ∈ ∂D2.

It is easy to check that, using Theorem 15, (FP0) can never occur generically.
Thus we have to examine the other three possibilities. The classification of
generic Frame Points is based on the types of the two intersecting curves,
hence if x = D1 ∩D2, we say that x is a (D1, D2) Frame Point.

The shape of the optimal synthesis near each Frame Point is shown in
Figure 2.9, except for FPs belonging to ∂R(τ). Explicit examples of FPs are
given in Section 2.6.4. Next Theorem is proved in Appendix A.

Theorem 16 Consider Σ ∈ Ξ and τ > 0. If A succeeds at time τ for Σ and
x is a frame point, then, under generic conditions, x is one of the following
23 types (X,Y ), (Y,C)1,2,3, (Y, S), (Y,K)1,2,3, (C,C)1,2, (C,S)1,2, (C,K)1,2,
(S,K)1,2,3, (K,K), (Y, F )1, (Y, F )2, (S, F ), (C,F ), (K,F ).
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Fig. 2.9. The FPs of the Optimal Synthesis.



62 2 Time Optimal Synthesis for 2–D Systems

2.6.3 Other Special Curves

For future use, we need to give a name to trajectories that start at FPs
and are not FCs. These trajectories “transport” special information and we
distinguish three kinds:

• curves of kind γA that are abnormal extremals,
• curves of kind γk that are curves starting at the terminal point of an over-

lap (i.e. that start at the FPs of kind (Y,K)3 (S,K)2, (C,K)1, see below)
• curves of kind γ0 that are the other arcs of optimal trajectories that start

at FPs.

Remark 27 Notice that these special curves are not Frame Curves, indeed
the control uA has no discontinuity along them.

2.6.4 Examples of Frame Curves and Frame Points

The aim of this Section is to give explicit examples (some local) of syntheses
that present all possible generic types of FCs and FPs.
Example 1: (X,Y ), (Y,K)1, (Y, S) Frame Points.
Let τ > 2 and consider the control system:

{

ẋ1 = u
ẋ2 = x1 + 1

2x
2
1

.

The X– and Y –trajectories can be described giving x2 as a function of x1 and
are, respectively, cubic polynomials of the following type:

x2 = −x
3
1

6
− x2

1

2
+ α α ∈ R

x2 =
x3

1

6
+
x2

1

2
+ α α ∈ R. (2.19)

With a straightforward computation we obtain:

[F,G] =

(

0
−1 − x1

)

then the system is locally controllable and:

∆B(x) = det

(

1 0
0 −1 − x1

)

= −1 − x1. (2.20)

From equation (2.20) it follows that every turnpike is subset of {(x1, x2) ∈
R

2 : x1 = −1}. Indeed, at the second step the algorithm A constructs the
turnpike:

S =

{

(x1, x2) : x1 = −1, x2 ≤ −1

3

}

.
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Given b, consider the trajectories γ1 : [0, b] 7→ R
2 for which there exists

t0 ∈ [0, b] such that γ1|[0, t0] is a Y –trajectory and γ1|[t0, b] is an X–trajectory,
and the trajectories γ2 : [0, b] 7→ R

2, b > 2, for which there exists t1 ∈ [2, b]
such that γ2|[0, t1] is anX–trajectory and γ2|[t1, b] is a Y –trajectory. For every
b > 2, these trajectories cross each other in the region of the plane above the
cubic (2.19) with α = 0 and determine an overlap curve K that originates
from the point (−2,− 2

3 ). We use the symbols x+−(b, t0) and x−+(b, t1) to
indicate, respectively, the terminal points of γ1 and γ2 above. Explicitly we
have:

x+−
1 = 2t0 − b x+−

2 = − (2t0 − b)3

6
− (2t0 − b)2

2
+ t20 +

t30
3

(2.21)

x−+
1 = b− 2t1 x−+

2 =
(b− 2t1)

3

6
+

(b− 2t1)
2

2
− t21 +

t31
3
. (2.22)

Now the equation:

x+−(b, t0) = x−+(b, t1), (2.23)

as b varies in [2,+∞[, describes the set K. From (2.21), (2.22) and (2.23) it
follows:

t0 = b− t1 t1

(

− 2t21 + (2 + 3b)t1 + (−b2 − 2b)
)

= 0.

Solving for t1 we obtain three solutions:

t1 = 0, t1 = b, t1 = 1 +
b

2
. (2.24)

The first two of (2.24) are trivial, while the third determines a point of K, so
that:

K =

{

(x1, x2) : x1 = −2, x2 ≥ −2

3

}

.

The set R(τ) is portrayed in Fig. 2.10

Example 2: (C,C)2, (Y,C)3 Frame Points.
Consider τ > π and the control system:

{

ẋ1 = x2

ẋ2 = −x1 + u
.

This example, called the forced pendulum is accurately described also in [92],
pp.11–14 and in [69], p.80.
The X– and Y –trajectories are circles centered at (−1, 0) and at (1, 0), re-
spectively. The algorithm A constructs γ± only up to time π, indeed after
this time they are not extremal.
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K

S A=(−1,−1/3)
B=(−2,−2/3)

B

A

Y

X

Fig. 2.10. Example 1, (X, Y ), (Y, K)1, (Y, S) Frame Points

At step n+1 the following switching curves originate:

(a) All the semicircles of radius 1 centered at (2n+1, 0) and contained in the
half plane {(x1, x2) : x2 ≥ 0}.

(b) All the semicircles of radius 1 centered at (−2n − 1, 0) and contained in
the half plane {(x1, x2) : x2 ≤ 0}.

Along the switching curves described in a) the constructed trajectories arrive
as Y –trajectories and leave as X–trajectories, i.e. the controls switch from +1
to −1. The opposite happens along the switching curves described in b). The
set R(3π) is represented in Figure 2.11.

Remark 28 Notice that in this example if T ≥ π then ∂R(T ) is smooth. In
Chapter 3 the smoothness properties of ∂R(T ) are studied in details.

Example 3: (Y,C)1 (Y,C)2 Frame Points.
Consider τ > 1

3 ln(4) and the system Σ:

{

ẋ1 = 3x1 + u
ẋ2 = x2

1 + x1
. (2.25)

Since Σ ∈ Ξ and

[F,G] =

(

−3
−2x1 − 1

)

,

the system is locally controllable.
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(2,0) (4,0)

(−2,0)(−4,0)

Fig. 2.11. Example 2, (C, C)2, (Y, C)3 Frame Points.

The X–trajectory passing through the point (x0
1, x

0
2) at time 0 is:

x1(t) =

(

x0
1 −

1

3

)

e3t +
1

3

x2(t) =
1

6

(

x0
1 −

1

3

)2

e6t +
5

9

(

x0
1 −

1

3

)

e3t +
4

9
t+ x0

2

− 1

6

(

x0
1 −

1

3

)2

− 5

9

(

x0
1 −

1

3

)

.

While the Y –trajectory passing through the point (x0
1, x

0
2) at time 0 is:

x1(t) =

(

x0
1 +

1

3

)

e3t − 1

3

x2(t) =
1

6

(

x0
1 +

1

3

)2

e6t +
1

9

(

x0
1 +

1

3

)

e3t − 2

9
t+ x0

2

− 1

6

(

x0
1 +

1

3

)2

− 1

9

(

x0
1 +

1

3

)

.

The equation for turnpikes is:

0 = ∆B(x1, x2) = −(2x1 + 1), (2.26)

hence every turnpike is subset of S = {(x1, x2) : x1 = − 1
2}.
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The control ϕ to stay on S, cfr. (2.13), is:

ϕ(x1, x2) =
3

2

then there is no regular turnpike.
Now consider the pairs trajectory-control (γs, us) with In(γs) = 0,Dom(γs) =

[0, s + εs] (εs ≥ 0), such that γs originates as X–trajectory and switches at
time s going on as Y –trajectory up to the time s+εs. Let (γ∗, u∗) = (γs∗ , us∗)
be the pair that verifies:

γ∗(s∗) =

(

−1

2
,−13

72
+

4

9
ln

(

3

√

5

2

))

. (2.27)

Define ε∗ = εs∗ and assume that γ∗ satisfies the PMP with adjoint variable
λ∗. We know that:

λ∗(s∗) ·G
(

γ∗(s∗)
)

= 0, ∆B

(

γ∗(s∗)
)

= 0 (2.28)

then:

d

dt

(

λ∗(t) ·G
(

γ∗(t)
)

)∣

∣

∣

t=s∗
= λ∗(s∗) · [F,G]

(

γ∗(s∗)
)

= 0. (2.29)

From (2.28) and (2.29) and straightforward calculations we have at γ∗(s∗) the
situation of Fig. 2.12.

G [F,G]

λ

Fig. 2.12. Example 3

Now from (2.26) it follows:

∀t ∈ [s∗, s∗ + ε∗] ∆B

(

γ∗(t)
)

> 0 (2.30)

thus, for each t ∈ [s∗, s∗ + ε∗], the couple of vectors (G(t), [F,G](t)) is a
positive oriented basis of R

2. Since u∗(t)|[s∗, s∗ + ε∗] ≡ 1, it follows that the
two functions λ∗(t) · G(γ∗(t)) and λ∗(t) · [F,G](γ∗(t)) are positive in a right
neighborhood of s∗. Therefore G and [F,G] lie in the darkened region of Fig.
2.12. But this is prohibited by (2.30), hence it follows that ε∗ = 0.
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Similarly, if the trajectories γs, s ∈ [ln( 3
√

2), s∗],satisfy the PMP, then εs
is small. More precisely the algorithm A constructs trajectories that have a
second switching point and these switching points form a switching curve C1

originating at (2.27).
The above geometric reasoning is very general, however in this case we can

compute explicit calculations. Suppose that γs satisfies the PMP with adjoint
variable λs. The equation for λs is:

λ̇s(t) = −λs(t) ·
(

∇F
(

γs(t)
)

+ us(t) ∇G
(

γs(t)
))

= −λs(t) ·
(

∇F
(

γs(t)
))

.(2.31)

Let xs1 be the first component of γs. For time t ≥ s, the explicit form of (2.31)
is:

(λ̇s1, λ̇
s
2)(t) =

(

−3λs1(t) − λs2(t)

[

2

(

xs1(s) +
1

3

)

e3(t−s) +
1

3

]

, 0

)

. (2.32)

Denote by φs the switching function along (γs, us, λ
s). The solution to (2.32)

with initial condition:
λs(s) ·G

(

γs(s)
)

= 0

is:
λs2(t) ≡ λs2(0)

φs(t) = λs1(t) = λs2(t)

[

1

3

(

xs1(s) +
2

3

)

e−3(t−s) − 1

3

(

xs1(s) +
1

3

)

e3(t−s) − 1

9

]

.

Now, the equation φs(t) = 0 has two solutions:

ts1 = s ts2 = s+ ln

(

3

√

−3xs1(s) − 2

3xs1(s) + 1

)

thus
xs1(t

s
2) = −xs1(s) − 1

gives the first component of switching points belonging to C1.
The point γ−(ln 3

√
4) is conjugate to the origin along γ−. Consider the

trajectories γr, In(γr) = 0, Dom(γr) = [0, br] (br ≥ r), that originate as Y –
trajectories and have a switching at time r going on as X–trajectories. Again
we can make direct calculations and obtain the existence of a second switching
time (if r < ln 3

√
2):

tr = r + ln

(

3

√

−1 − 10

6 ar

)

(2.33)

where ar =
(

xr1(r)− 1
3

)

and xr1 is first component of γr. These switching points

form another switching curve C2 that intersects γ− at γ−(ln 3
√

4). Then from
(2.33) it follows:

xr1(tr) = −xr1(r) − 1.
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C2

C1

Fig. 2.13. Example 3, (Y, C)1, (Y, C)2 Frame Points

In Fig. 2.13, the reachable set R(τ) is represented.

Example 4: (Y,K)2 Frame Point.
Consider ε, 0 < ε < 1, τ > π√

1−ε and the system Σ:

{

ẋ1 = εx2 + ux2

ẋ2 = u(1 − x1)
. (2.34)

It is easy to check that:

[F,G] =

(

−ε(1 − x1)
−εx2

)

. (2.35)

From (2.35) and Lemma 3, p. 39 we have that the system is locally control-
lable.
The X–trajectory passing through the point (x0

1, x
0
2) at time 0 is:

x1(t) = (x0
1 − 1) cos(

√
1 − ε t) + x0

2

√
1 − ε sin(

√
1 − ε t) + 1 (2.36)

x2(t) =
(x0

1 − 1)√
1 − ε

sin(
√

1 − ε t) − x0
2 cos(

√
1 − ε t). (2.37)

The Y –trajectory passing through the point (x0
1, x

0
2) at time 0 is:

x1(t) = (x0
1 − 1) cos(

√
1 + ε t) + x0

2

√
1 + ε sin(

√
1 + ε t) + 1, (2.38)
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x2(t) = − (x0
1 − 1)√
1 + ε

sin(
√

1 + ε t) + x0
2 cos(

√
1 + ε t). (2.39)

The equation for turnpikes is:

0 = ∆B(x1, x2) = −εx2
2 + ε(1 − x1)

2. (2.40)

Hence every turnpike is a subset of S = {(x1, x2) : x2 = ±(1−x1)}. Using
(2.38)-(2.40) it is easy to verify that the trajectory γ+ intersects the set S in a
point (x+

1 , x
+
2 ) of the first quadrant. The algorithm A constructs the turnpike

S1 = {(x1, x2) : x2 = 1−x1, x
+
1 ≤ x1 < 1}. The singular control ϕ1

S along the
turnpike S1, cfr. (2.13), is:

ϕ1
S(x1, x2) = − εx2

1 − x1 + x2
> −1. (2.41)

From (2.41) we have:

ẋ1(ϕ
1
S) =

ε

2
(1 − x1)

hence the point (1, 0) is not reached in finite time by a singular trajectory.
Similarly using (2.36), (2.37) it is easy to verify that the trajectory γ− inter-
sects the set S in a point of the fourth quadrant:

(x−1 , x
−
2 )

.
= γ−

(

1√
1 − ε

arccos

(

√

1

2 − ε

))

.

Hence the algorithm A constructs the turnpike S2 = {(x1, x2) : x2 = x1 −
1, x1 ≤ x−1 }. Indeed, the control ϕ2

S , cfr. (2.13), is:

ϕ2
S(x1, x2) =

εx2

1 − x1 − x2
.

The trajectories γ± are very close to the circle A of center (1, 0) and
radius 1; γ+ runs clockwise and γ− counterclockwise. From (2.36)-(2.39) we
have that γ+ lies inside A, γ− outside, and:

γ+ ∩ γ− ∩A = {(0, 0), (2, 0)}.

However the two trajectories γ± do not meet each other at (2, 0), indeed:

(2, 0) = γ+(
π√

1 + ε
) = γ−(

π√
1 − ε

).

But the X ∗ Y and Y ∗X trajectories constructed by the algorithm give rise
to an overlap curve K and γ± end on it. In Fig. 2.14, R(τ) is represented.



70 2 Time Optimal Synthesis for 2–D Systems

S1

S2

u=+1

u=−1

Y

K

Fig. 2.14. Example 4, (Y, K)2 Frame Point

Example 5: (Y,K)3 Frame Point.
Consider the system (cfr. Example 1):

{

ẋ1 = u
ẋ2 = 1

2x
2
1 + x1

(2.42)

and the two embedded submanifold:

M1 =

{

(x1, x2) : x1 = 0,−2

3
≤ x2 ≤ 0

}

M2 =

{

(x1, x2) : x1 =
√

2,−2

3
≤ x2 ≤ 2

3

}

.

We assume that for each y ∈M1 there exists a Y –trajectory γ1(y) that verifies
γ1(y)(0) = y. Moreover, for each x ∈ M2 there exists an X–trajectory γ2(x)
that arises from x at time 0. Finally, an X–trajectory originates from each
point of the Y –trajectory γ1(0), i.e. γ1(0) is the trajectory γ+ of a given
system.
At the point (1, 2

3 ) the trajectories γ1(0), γ2

(

(
√

2, 0)
)

meet each other.
After this point γ1(0) is not constructed by A because the trajectories
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γ2

(

(
√

2, c)
)

, c ≥ 0, achieve a better performance. The trajectories γ1

(

(0,−c)
)

and γ2

(

(
√

2,−c)
)

meeting each other give raise to an overlap curve:

K =

{

(x1, x2) : x1 = −1, 0 ≤ x2 ≤ 2

3

}

.

In Fig. 2.15, this local example is portrayed.

M M
1 2

K

Y

Fig. 2.15. Example 5, (Y, K)3 Frame Point

Example 6: (C,C)1 Frame Point.
Consider the system (2.25) of Example 3 and the manifold:

M = {(x1, x2) : x1 = 0, |x2| ≤ 1}.

We assume that from every point (0, x2) ∈ M an X–trajectory γ(x2) arises,
with initial time 0, and with adjoint variable satisfying:

[λ1(x2)](0) = − 9

36
− 1

36
sgn(x2) x2 [λ2(x2)](0) = −1.

With simple calculations we obtain the solutions to the equation [φ(x2)](t) =
0, where φ(x2) is the switching function along (γ(x2),−1, λ(x2)):

t±(x2) = ln

(

3

√

5

2
± 1

2

√

9 + 36 [λ1(x2)](0)

)

.
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Hence, the trajectories γ(x2), x2 ≤ 0, have a switching at time t−(x2), while
the trajectories γ(x2), x2 > 0, do not switch. These switching points form a
switching curve C1 having the point (2.27) as endpoint.
Now the equation φ(x2) = 0 has another solution after the time t−(x2),
namely:

t′(x2) = t−(x2) + ln

(

3

√

−3 p1(x2) − 2

3 p1(x2) + 1

)

where p1(x2) is the first coordinate of the first switching point of γ(x2). These
switching points form another switching curve C2 that meet C1 at the point
(2.27). This local example is portrayed in Fig. 2.16.

M

C

C

2

1

Fig. 2.16. Example 6, (C, C)1 Frame Point

Example 7: (C,S)1 Frame Point.
Consider the system (2.42) of Example 5 and the manifold:

M =

{

(x1, x2) : x1 = 0,−1

3
≤ x2 ≤ 1

3

}

.

We assume that from each (x1, x2) ∈ M there arises, with initial time 0, an
X–trajectory γ(x1, x2) = γ(x2) with adjoint variable λ(x2) that satisfies:

[λ1(x2)](0) =
−1 − 4 sgn(x2) x

2
2

2
[λ2(x2)](0) = −1,
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where sgn(x) = x | x |−1 if x 6= 0 and sgn(0) = 0. Now, the switching function
along (γ(x2),−1, λ(x2)) is:

[φ(x2)](t) = λ1(t) = − t
2

2
+ t− 1 + 4 sgn(x2) x

2
2

2
.

If x2 ≤ 0 the equation [φ(x2)](t) = 0 has the following solutions:

t1(x2) = 1 + 2 | x2 | t2(x2) = 1 − 2 | x2 |

otherwise there is no solution. Then every trajectory γ(x2), x2 ≤ 0, switches
at the point:

[γ(x2)](t2) =

(

2 | x2 | −1,− (2 | x2 | −1)3

6
− (2 | x2 | −1)2

2
+ x2

)

.

These switching points form a switching curve C.
The trajectory γ(0) crosses the set {(x1, x2) : ∆B(x1, x2) = 0} = {(x1, x2) :
x1 = −1} at a switching point, hence the algorithm A constructs the turnpike:

S =

{

(x1, x2) : x1 = −1, x2 ≤ −1

3

}

.

This local example is represented in Fig. 2.17.

MC

S

Fig. 2.17. Example 7, (C, S)1 Frame Point
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Example 8: (C,S)2 Frame Point.
Let τ > 7

3 + 3
√

4 and consider the system:

{

ẋ1 = u

ẋ2 =
(

x1 + ψ(x2)
)

+ 1
2

(

x1 + ψ(x2)
)2 (2.43)

where:

ψ(x2) =

{

0 x2 > −1
(x2 + 1)4 x2 ≤ −1.

Observe that for x2 > −1 the system is the same as the first example. There
is a turnpike S that lies on the line x1 = −1 between the points (−1,− 1

3 ) and
(−1,−1). Moreover, for x2 ≤ −1, S is represented by the equations:

x1 + (x2 + 1)4 + 1 = 0 x2 ≤ −1. (2.44)

Recalling (2.13), from (2.43)-(2.44) we have that the control ϕ is:

ϕ(x1, x2) = 0, if x2 ≥ −1,
ϕ(x1, x2) = 2(x2 + 1)3, if x2 ≤ −1.

(2.45)

By (2.45), the turnpike S is regular up to the point:

(x̄1, x̄2) =

(

−1 − 1

2 3
√

2
,−1 − 1

3
√

2

)

(2.46)

indeed:
ϕ(x̄1, x̄2) = −1.

Hence, the algorithm A constructs a turnpike that ends at the the point (2.46).
The set R(τ) near the point (2.46) is represented in Fig. 2.18.

Example 9: (C,K)1 Frame Point.
Consider the system (cfr. Example 2):

{

ẋ1 = x2

ẋ2 = −x1 + u
(2.47)

and the two manifolds:

M1 = {(x1, x2) : x1 = 0, 1 ≤ x2 ≤ 2}

M2 = {(x1, x2) : 1 ≤ x1 ≤ 2, x2 = 3} .
The algorithm A succeeds for the system (2.47) at time 4. A Y –trajectory
γ′(x) ∈ ΓA(Σ, 4), with an associate adjoint variable λ′(x), passes through
each point x ∈ M1. We suppose that from each x ∈ M1 a Y –trajectory γ(x)
with adjoint variable λ(x) arises at time 0. Moreover, (γ(x), λ(x)) is obtained
from (γ′(x), λ′(x)) shifting the time.
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S

C

Fig. 2.18. Example 8, (C, S)2 Frame Point

Consider the line given by the equation:

x2 = (
√

2 − 3) x1 + 8 −
√

8. (2.48)

For each s ∈ [1, 2
3

√
6] the trajectory γs = γ

(

(0, s)
)

intersects the line (2.48)
in a point, say (xs1, x

s
2).

Let r(s) ∈ [1, 2] be such that the X–trajectory passing through (r(s), 3) in-
tersects the line (2.48) in (xs1, x

s
2). We assume that an X–trajectory γr with

initial time t(r) originates from each (r, 3) ∈ M2. If r = r(s) for some s let
define, denoting by d the Euclidean distance:

ts
.
= t
(

r(s)
)

= 2 arcsin

(

d
(

(0, s), (xs1, x
s
2)
)

2
√

1 + s2

)

− 2 arcsin

(

d
(

(r(s), 3), (xs1, x
s
2)
)

2
√

(r(s) + 1)2 + 9

)

(2.49)

otherwise:
t(r)=̇ max {ts : s ∈ [1, 2]}.

We associate to every γr an adjoint variable λr verifying:

λr1
(

t(r)
)

= −1 λr2
(

t(r)
)

= 0. (2.50)

The equation (2.50) implies that λr
(

t(r)
)

· G
(

(r, 3)
)

= 0 then to satisfy the
PMP the trajectory γr is an X–trajectory for a time interval of length π.
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The trajectories γs, s ∈ [1, 2
3

√
6], form a switching curve:

C =

{

(x1, x2) : x2 =
√

1 − (x1 − 3)2, 2 ≤ x1 ≤ 8

3

}

.

By direct calculations, one can verify that (2.49) ensures that the trajectories
γs and γr(s), s ∈ [ 23

√
6, 2], meet each other giving rise to an overlap curve:

K =

{

(x1, x2) : (x1, x2) satisfies (2.48) , 2 ≤ x1 ≤ 8

3

}

.

The curves K and C meet each other at the point:

(
8

3
,

√
8

3
).

In Fig. 2.19, this local example is portrayed.

K

C

Fig. 2.19. Example 9, (C, K)1 Frame Point

Example 10: (C,K)2 Frame Point, with ∆B = 0.
Consider the system:

{

ẋ1 = 3 x1 − u
ẋ2 = x2

1 + x1
(2.51)

that is obtained from the system (2.25) replacing G with −G, and the mani-
fold:

M = {(x1, x2) : x1 = 0, |x2| < ε}.
We assume that from every point (0, x2) ∈ M a Y –trajectory γ(x2) with
initial time t0(x2) arises.
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Moreover, γ(x2) admits an adjoint variable satisfying:

[λ1(x2)](0) = − 9

36
+ 25 sgn(x2) x2 [λ2(x2)](0) = −1.

With simple calculations we obtain the solutions to the equation [φ(x2)](t) =
0, where φ(x2) is the switching function along (γ(x2),+1, λ(x2)):

t±(x2) = t0(x2) + ln

(

3

√

5

2
± 1

2

√

9 + 36 [λ1(x2)](0)

)

. (2.52)

Hence the trajectories γ(x2), x2 ≥ 0, have a switching at time t−(x2), while
the trajectories γ(x2), x2 < 0, do not switch. Let x−(x2)

.
= [γ(x2)](t

−(x2)),
x2 ≥ 0. From (2.52) we have:

x−1 = −1

2
+ 5 x2

2 (2.53)

and these switching points form a switching curve C1 originating from (2.27).
As for Example 6, the equation φ(x2) = 0, where φ(x2) denotes again the

switching function along γ(x2), after the time t−(x2) has another solution:

t′(x2) = t−(x2) + ln

(

3

√

−3 x−1 (x2) − 2

3 x−1 (x2) + 1

)

. (2.54)

These switching points give raise to another switching curve C2 that meets
C1 at the point (2.27).
It is easy to verify that the X–trajectories leaving from C1 cross the trajectory
γ0

.
= γ(0) before reaching the switching curve C2. Hence, we can define P (x2),

x2 ≥ 0, to be the point at which γ(x2) meets γ0.
Let r(x2), x2 ≥ 0, be such that the trajectory γ(r(x2)) meets γ(x2) at the
point Q(x2)

.
= [γ(x2)](t

′(x2)), i.e. they meet each other on C2.
Now let t1(x2), t2(x2) be the time in which, respectively, γ(x2), γ0 reaches
P (x2) and let t3(x2), t4(x2) be the time in which, respectively, γ(x2), γ(r(x2))
reaches Q(x2). If x2 is sufficiently small, from (2.53), (2.54) we have that:

t4 − t3 < t2 − t1,

then, taking ε sufficiently small, we can define:

{

t0(x2) = 0 if x2 < 0,

t0(x2) = (t2−t1)+(t4−t3)
2 if x2 ≥ 0.

With this choice, the trajectories γ(x2), x2 ≥ 0, and γ(x2), x2 < 0, meet each
other forming an overlap curve K that meets C1 at (2.27). The curve C2 is
deleted by the algorithm.
In Fig. 2.20, this local example is portrayed.
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M

C

K

1

Fig. 2.20. Example 10: (C, K)2 Frame Point, with ∆B = 0

Example 11: (C,K)2 Frame Point, with ∆B 6= 0.
Consider the system:

{

ẋ1 = x1+1
2 + u x1−1

2
ẋ2 = x2

2 + u x2

2

(2.55)

and the manifold:

M = {(x1, x2) : x1 = 0, 0 < x2 < 1}.

Assume that from every point (0, x2) ∈ M , with initial time 0, an X–
trajectory γ(x2) originates with adjoint variable satisfying:

[λ1(x2)](0) =
x2

1 −
√

1 − x2
2

[λ2(x2)](0) = −1. (2.56)

It is easy to verify, from (2.55), (2.56), that every γ(x2) switches at time:

t(x2) = 2 −
√

1 − x2
2,

and the corresponding switching points form a switching curve:

C = {(x1, ψ(x1)) : 1 < x1 < 2}, ψ(x1)
.
=
√

1 − (2 − x1)2,

that is an arc of circle.
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Observe that for ε small, Y (ε, ψ(ε)) points to the right of C and Y (2 −
ε, ψ(2 − ε)) points to the left of C. Then there exists (x̄1, x̄2) ∈ C such that
Y (x̄1, x̄2) is tangent to C. Define C ′ .

= {(x1, ψ(x1)) ∈ C : x1 ≥ x̄1}. The
trajectories γ(x2) that reach C ′ meet other trajectories γ(x2) giving rise to
an overlap curve K. It is possible to move along C ′ with a trajectory of the
system, hence we can construct an envelope for the curves γ(x2)|[0, t(x2)] that
reach C ′; see Section 1.3.2, p. 26 for envelope theory. Hence the subset C ′ of
C is removed by the algorithm.
In Fig. 2.21 this local example is represented.

C

K

Fig. 2.21. Example 11, (C, K)2 Frame Point with ∆B 6= 0

Example 12: (S,K)1 Frame Point.
Consider the same system and the same manifold of Example 7 and define
S in the same way. We assume that from each (0, x2) ∈ M an X–trajectory
γ(x2) arises with initial time:

t0(x2) = −2

3
x2

and with adjoint variable satisfying:

[λ1(x2)](0) =
−1 − α sgn(x2) x

2
2

2
[λ2(x2)](0) = −1,
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where α > 0 and sgn is defined as in Example 7. There is again a switching
curve C.
The X–trajectories starting from (0, x2), x2 ≤ 0, reach (−1,− 1

3 − x2) ∈ S at
time:

1 +
2

3
|x2|.

On the other hand the Z ∗X–trajectories, concatenations of an X- and a Z-
trajectory, starting from 0 reach the same point at time:

1 +
|x2|
2
.

Therefore the Y ∗ Z ∗ X–trajectories, concatenations of an X-, a Z- and a
Y –trajectory, starting from the origin and the X–trajectories starting from
(0, x2), x2 ≤ 0, give rise to an overlap curve K having (−1,− 1

3 ) as endpoint.
Let (s, k(s)) be a parametrization of K in a neighborhood of (−1,− 1

3 ) and
define:

β
.
=
dk(s)

ds

∣

∣

∣

∣

s=−1+

.

Now let (c1(x2), c2(x2)) be a parametrization of the switching curve C. After
straightforward calculations we have:

dc2
dc1

∣

∣

∣

∣

c1=−1+

= −3

2
− 1

α
.

Thus if α is sufficiently small:

β ≥ −3

2
− 1

α

and the overlap curve K arises. Therefore the curve C is deleted by the algo-
rithm.
This local example is portrayed in Fig. 2.22.

Example 13: (S,K)2, (K,K) Frame Points.
Consider 0 < ε << 1, τ > 1 and the system Σ:

{

ẋ1 = u
ẋ2 = x3

1 − εx1
. (2.57)

We have that:

[F,G] =

(

0
ε− 3x2

1

)

hence the system is locally controllable. The X–, Y –trajectories are quartic
polynomials of the following types, respectively:

x2 = −x
4
1

4
+ ε

x2
1

2
+ α α ∈ R
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M

S K

Fig. 2.22. Example 12, (S, K)1 Frame Point

x2 =
x4

1

4
− ε

x2
1

2
+ α α ∈ R.

The equation for turnpikes is:

0 = ∆B(x1, x2) = ε− 3x2
1

whose set of solutions is:
{

(x1, x2) : x1 = ±
√

ε

3

}

. (2.58)

Every turnpike is subset of (2.58). The algorithm constructs the turnpikes:

S′
1 =

{

(x1, x2) : x1 =

√

ε

3
, x2 ≤ − 5

36
ε2
}

∩R(τ)

S′
2 =

{

(x1, x2) : x1 = −
√

ε

3
, x2 ≥ 5

36
ε2
}

∩R(τ).

The points (±√
ε,∓ ε2

4 ) are conjugate to the origin along γ±. Two overlap
curves K2,K1, respectively, originate at these points. The algorithm deletes
partially the turnpikes S′

1, S
′
2 determining two new turnpikes S1 ⊂ S′

1, S2 ⊂
S′

2. The new turnpikes S1, S2 end on K1,K2 respectively.
In Fig. 2.23, R(τ) is represented.
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Fig. 2.23. Example 13, (S, K)2, (K, K) Frame Points

Example 14: (S,K)3 Frame Point.
Consider the system Σ with

F ≡
(

0
1

)

, G(x) =

(

x1 − x2

x1

)

.

Then [F,G] ≡ (−1, 0), ∆A(x) = x2 − x1 and ∆B(x) = x1. Assume that a
singular trajectory γS runs the turnpike S = {x : x1 = 0} starting from a
point (0, a) for some a < 0. Let γy,± be the extremal trajectory leaving the
turnpike from (0, y), with control ±1, and let λy,± the corresponding covector.

The trajectories γy,±, y < 0, can not switch before crossing the line∆−1
A (0)

by Theorem 11. To fix the ideas let us consider first γy,+. Then the correspond-
ing switching function φy,+ satisfies:

φy,+(t) = λy,+1 (t)(γy,+1 (t) − γy,+2 (t)) + λy,+2 (t)γy,+1 (t),

where γy,+i , respectively λy,+i , are the components of γy,+, respectively λy,+.
One easily gets, for y < 0 and t > 0 sufficiently small, λy,+1 (t) < 0 and
λy,+2 (t) > 0, thus γy,+ can not switch on the region over ∆−1

A (0). Hence the
trajectories γy,+, and similarly γy,−, never switch in a neighborhood of the
origin.
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Consider now a point (0, b), b > 0. There are three trajectories reaching
this point: γS and γy,± for some y < 0. Along the first trajectory, the equation
for the second component is ẋ2 = 1, while along the others is ẋ2 = 1 ± x1,
hence we easily conclude that γS is not optimal after crossing the origin. A K
curve starts at the origin formed by points reached optimally by γy,±, y < 0.
This curve is a straight line but any second order perturbation of the system
Σ renders it curved keeping the tangency with S at the origin, thus we obtain
the situation of figure 2.24.

x
1

S

2
x

K

Fig. 2.24. Example 14, (S, K)3 Frame Point

2.7 On the Relation Between the Switching Strategy

and the Functions φ and θγ

The switching strategy of an extremal trajectory γ can be studied in two
different ways: either by means of the switching function φ or using the func-
tion θγ . In this paragraph we summarize their properties. We fix an extremal
trajectory γ starting from the origin, with never vanishing covector λ(t).

The relation between the definitions of these two functions can be well
understood by the following formula (cfr. Section 2.1, p. 35):

φ(t) := λ(t) ·G(γ(t)) = λ(0) · vγ(G(γ(t), t; 0).

The function θγ gives the angle of rotation of the adjoint vector vγ with
respect to its initial position vγ(G(γ(0)), 0; 0) = G(γ(0)) (cfr. Definition 14,
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p. 37). In other words, θγ is the angle between G(0) and G(γ(t)) pulled back
to the origin via the adjoint equation along γ. Notice that θγ(0) = 0. We recall
that switchings between bang arcs happen when φ changes sign, while along
singular arcs we have φ ≡ 0. How the switching strategy is described in terms
of the function θγ is explained in the following and can be easily understood
also by means of Figure 2.2, p. 37. Assume that the extremal trajectory γ
starts from the origin with constant control +1 and let t̄ > 0 be the first time
at which φ = 0. If G(γ(t̄)) 6= 0, then the vectors λ(0) and vγ(G(γ(t̄)), t̄; 0)
are orthogonal. Let θ̄ ∈ [−π/2,+π/2] be the value of θγ at time t̄: θ̄ := θγ(t̄).
If G(γ(t)) is always different from zero, then we have situation illustrated in
Figure 2.25:

v (G(   ( t )),  t ; 0 )γ
γ(0))G( γ(0))G(θ <0 θ  >0

φ>0

φ<0

φ>0

φ<0

Fig. 2.25. φ and θγ for G(γ(0)) = (0, 1).

• at time t we have φ(t) = 0 if and only if θγ(t) = θ̄ ± nπ, n ∈ N;
• φ(t) > 0 (resp. φ(t) < 0) for every t on some interval ]a, b[ if for every

t ∈]a, b[ (modulo 2π):

{

θγ(t) ∈]θ̄, θ̄ + π[ if θ̄ < 0
θγ(t) ∈]θ̄ − π, θ̄[ if θ̄ > 0,

(

resp.

{

θγ(t) ∈]θ̄ + π, θ̄ + 2π[ if θ̄ < 0
θγ(t) ∈]θ̄, θ̄ + π[ if θ̄ > 0.

)

.

The situation for a trajectory starting with constant control −1 is similar.
To conclude we have the following:

• for a bang-bang trajectory switchings happen when:
-) φ change sign;
-) θγ crosses the values θ̄±nπ, n ∈ N. Moreover for an abnormal extremal

θ̄ = 0 (cfr. Section 4.3, p. 171, Proposition 20, p. 174).
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• If γ is a singular arc on [a, b], then for every t in this interval we have:
-) φ(t) = φ̇(t) = 0
-) θγ(t) = θ̄ ± nπ, θ̇γ(t) = 0.

Remark 29 The regularity of φ and θγ are given respectively by Lemma 6
and Lemma 8. That is φ is C1, while θγ is C1 where it is defined (i.e. at times
when G does not vanish). Notice that in general, φ(·) and θγ are not C2 at
switching points.

The main advantage in using the θγ function is the possibility of easily
checking its monotonicity using the relation sgn(θ̇γ(t)) = sgn(∆B(γ(t)))
(see Lemma 8, p. 43). Hence, if θ̇γ is defined in t0 we have θ̇γ(t0) = 0 iff
γ(t0) ∈ ∆−1

B (0). In figure 2.26, an example of extremal trajectory with the
corresponding functions φ and θγ is drawn.

2.7.1 The θγ Function on Singularities of the Synthesis

It is very interesting and instructive to read the singularities of the time
optimal synthesis in terms of the θγ function.

Here, as an example, we focus on the (C,S)1 singularity. We refer to Fig-
ure 2.27 case A. Let γs be a trajectory of the optimal synthesis entering a
(C,S)1 singularity, and let γr, γl be two optimal trajectories close to γs lying
respectively to the right and to the left of γs. The trajectory γs may be pro-
longed after the (C,S)1 singularity in an infinite number of ways: it may run
on ∆−1

B (0) for an arbitrary small positive time and then bifurcate to the left
or right using either control +1 or −1.

To fix the ideas, assume ∆B > 0 (resp. ∆B < 0) on the left (resp. right) of
∆−1
B (0). Figure 2.27, cases B,C,D, shows the shape of θγs , θγr , θγl , respectively.

The function θγr has a maximum, since it crosses the set ∆−1
B (0). Moreover

it does not cross the lines θ̄r ± nπ, n ∈ N, in the (t, θγ) plane, on which
switchings occur.

The function θγl is always increasing since γl never crosses the set ∆−1
B (0).

Moreover θγl crosses one of the lines θ̄l ± nπ, since it switches.
The function θγs reaches the critical value θ̄s exactly at∆−1

B (0) that implies

θ̇γs = 0. At the (C,S)1 Frame Point γs bifurcates to:

a. the trajectory switching to opposite control and continuing with θ̇γ > 0
(∆B does not change sign).

b. the trajectory continuing with the same constant control having a maxi-
mum of the corresponding θγ function.

c. the trajectory entering the turnpike continuing with θ̇γ = 0. In turn, this
trajectory bifurcates to constant control +1 or −1 at each subsequent
time.
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θ (t)γ

θ

−1
−1

u=−1

u=+1

+1

(t)Φ

π

π

∆−1
B(0)

Singular

t

t

Extremal trajectory

u=+1

u=−1

u=+1

Fig. 2.26. An example of extremal trajectory with the corresponding φ and θγ

functions.

2.8 Structural Stability and Classification of Optimal

Feedbacks

The aim of this Section is to introduce a more detailed inductive algorithm,
generating optimal synthesis, in order to ensure the structural stability. The
latter property plays a key role in the classification program, guaranteeing per-
sistence, under small perturbations, of syntheses main features. The problem
of structural stability for two dimensional control systems was also studied in
[58].

Remark 30 Notice that the optimal synthesis is essentially unique in the fol-
lowing sense. Generically there exists a finite number of embedded connected
one dimensional manifolds such that, on the complement, the optimal trajec-
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Fig. 2.27. The θγ functions on a (C, S)1 Frame Point

tories are uniquely determined. This happens exactly on overlap curves and
on γk curves. For instance, consider the point x̄ = K1 ∩ S1 of Example 13,
Section 2.6.4. Then every point on the Y –trajectory starting from x̄ can be
reached optimally in two ways: either by a Y ∗X–trajectory or by a Y ∗S ∗Y –
trajectory.

Denote by uF,G the optimal feedback corresponding to (F,G) ∈ Ξ. We in-
troduce an equivalence relation between couples of vector fields: (F,G) ∼
(F ′, G′), determined by the topological equivalence of the corresponding flows:

ẋ = F (x) + uF,G(x)G(x), (2.59)
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and:

ẋ = F ′(x) + uF ′,G′(x)G′(x). (2.60)

Roughly speaking, this equivalence asks for the existence of a homeomor-
phism, defined on a suitable subset of the plane, which maps oriented arcs of
trajectories of (2.59) onto oriented arcs of trajectories of (2.60).

The new algorithm is similar to that of Section 2.5, that constructs an
optimal synthesis for a generic system Σ ∈ Ξ. The new one can be successfully
applied to a class of systems somewhat smaller than the previous, but ensures
the structural stability. In other words, given a couple of generic smooth vector
fields F,G, the relation (F ′, G′) ∼ (F,G) holds whenever F ′ is sufficiently
close to F and G′ is sufficiently close to G, in the C3 norm. Therefore, a small
perturbation of the fields F,G does not change the global structure of the
optimal feedback flow.

Definition 35 Given a vector field V , we use the notation etV (x̄) to denote
the value at time t of the solution to the Cauchy problem: ẋ = V (x), x(0) = x̄,
while (etV )∗ denotes the Jacobian matrix of the map: x 7→ etV (x).

2.8.1 Feedback Equivalence

We now introduce an equivalence relation between systems, expressing the
fact that their time-optimal feedback flows have similar structure. Consider
two systems Σ1, Σ2 ∈ Ξ∗. For i = 1, 2 let Ri be the reachable set for Σi at
time τ . Define

Ki =
{

x | x ∈ K \ ∂K, K is an overlap curve of ΓA(Σi)
}

,

and set R′
i = Ri \ Ki, i = 1, 2. In the following, for each x ∈ Ri, we denote

by t 7→ γix(t) a trajectory of Σi which reaches x from the origin in minimum
time.

Definition 36 (Equivalence of Feedback Flows). We say that the time-
optimal feedback flows for Σ1 on R1 and Σ2 on R2 are equivalent, or simply
that Σ1 ∼ Σ2, if there exists a homeomorphism Ψ : R′

1 7→ R′
2 such that:

(E1) Ψ maps arcs of optimal trajectories for Σ1 onto arcs of optimal trajec-
tories for Σ2. More precisely, for every x ∈ R′

1 one has {Ψ(γ1
x(t)) : t ∈

Dom(γ1
x)} = {γ2

Ψ(x)(t) : t ∈ Dom(γ2
Ψ(x))}.

(E2) Ψ induces a bijection on frame curves that are not overlap curves, i.e.
for each frame curve D1, which occurs in the construction of the optimal
feedback for Σ1 and is not a K-curve, we have that ϕ(D1) is a frame curve
of the same type corresponding to Σ2, and viceversa.

(E3) If A is an open region of R′
1 enclosed by frame curves and entirely cov-

ered by Y - or X-trajectories, then Ψ(A) is enclosed by the corresponding
frame curves and is covered by Y - or X-trajectories, respectively.
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Remark 31 The exclusion of overlap curves is operated to have not too small
equivalence classes and hence not too many of them. Consider Example 4 of
Section 2.6.4 and let γ1 and γ2 be the X, resp. Y , trajectory starting from the
(X,S) point of the first, resp. fourth, orthant. If we include the overlap curves
in the definition of equivalence, then the relative position of the endpoints of
γ1 and γ2 on the K curve is an invariant of the equivalence class and the same
for all relative positions of points that can be obtained similarly from them
concatenating arcs of X and Y trajectories (see the Definition of equivalence
of Frame Points at the end of this Section).

Remark 32 As mentioned in Section , optimal synthesis is the correct concept
of solution to a family of optimal control problems parameterized by initial
data, while discontinuous feedbacks may generate not optimal trajectories.
However, for our model problem, under generic conditions, Caratheodory so-
lutions to discontinuous optimal feedbacks are optimal, see [97], thus we refer
to synthesis or feedbacks in the same way.

Definition 37 (Structural Stability) We say that a system Σ ∈ Ξ∗ is
structurally stable if there exists a neighborhood N of Σ in the space Ξ (en-

dowed with the C3 norm, see formula (2.6), Section 2.2), such that the feedback
flows for Σ and Σ′ are equivalent, for every Σ ′ ∈ N .

2.8.2 An Algorithm for the Synthesis

In the description of the inductive algorithm we make various generic assump-
tions. Some of these, indicated by (GA), are given in the first step. Others
are given at a generic step N , finally some are determined at the end of the
algorithm.

In the first step, the algorithm constructs the two trajectories γ±(t) =
et(F±G)(0) and marks some special points along these curves, from which ad-
ditional frame curves bifurcate. At step N , the algorithm constructs precisely
those trajectories which are concatenation of N bang- or singular arcs and
satisfy Pontryagin Maximum Principle.

In the following, we fix a locally controllable system Σ = (F,G) ∈ Ξ,
τ > 0 and we assume that Σ verifies the generic properties (P1),...,(P7). By
Theorem 13, these assumptions imply that, for some integer N0, every optimal
trajectory γ starting from the origin, with Dom(γ) ⊆ [0, 1], is a concatenation
of at most N0 bang- or singular arcs. In the description of the algorithm we
give additional conditions implying that at every step only a finite number of
frame curves and frame points are constructed by the algorithm, and these
curves and points are structural stable.

In the following, if a trajectory γ with Dom(γ) = [0, b] is constructed
as part of the synthesis, we then regard all trajectories γ|[0,a] with a < b
as constructed trajectories. Similarly, we regard as frame curve every con-
nected subset of a frame curve, having frame points as endpoints. To every
constructed trajectory we associate a covector field.
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Remark 33 Some proofs of this section are collected in Appendix A. These
proofs can be missed at first reading.

Algorithm A, STEP 1.
We define:

θ±(t) := θγ
±

(t)

v± := vγ
±

.

From Lemma 7, p. 42 we have: v±((F±G)(γ±(t)), t; 0) = (F±G)(0) = ±G(0).
Moreover set:

t±f := min
{

t ∈ [0, τ ]; |θ±(s1) − θ±(s2)| = π

for some s1, s2 ∈ [0, t]
}

, (2.61)

with the understanding that t±f = τ if |θ±(s1) − θ±(s2)| < π for all s1, s2 ∈
[0, τ ].

Remark 34 Notice that t±f is the last time at which γ± is extremal so we have

t±op ≤ t±f (cfr. Proposition 3, p. 92, below). Notice that t±op is known only at
the end of the algorithm.

Next, we single out times t+i , t
′+
i ∈ [0, t+f ] where the function θ+ assumes

increasingly large local maxima, and increasingly small local minima, respec-
tively, see Figure 2.28. By induction, define:

Definition 38

t+0 = t′+0 = 0

t+1 = inf{t > 0 : θ+ has a local max. at t, θ+(t) > 0}
t+i = inf{t > t+i−1 : θ+ has a local max. at t, θ+(t) > θ+(t+i−1)}
t′+1 = inf{t > 0 : θ+ has a local min. at t, θ+(t) < 0}
t′+i = inf{t > t′+i−1 : θ+ has a local min. at t, θ+(t) < θ+(t+i−1)}

s+i =

{

max{t ∈ [t+i−1, t
+
i ] : θ+(t) = θ+(t+i−1)} if t+i is defined,

max{t ∈ [t+i−1, t
+
f ] : θ+(t) = θ+(t+i−1)} otherwise

s′+i =

{

max{t ∈ [t′+i−1, t
′+
i ] : θ+(t) = θ+(t′+i−1)} if t′+i is defined,

max{t ∈ [t′+i−1, t
′+
f ] : θ+(t) = θ+(t′+i−1)} otherwise.

Similarly the times t−i , t
′−
i , s

−
i , s

′−
i , were defined.

Remark 35 We can have three situations (cfr. Figure 2.29):

1) |θ±(a)−θ±(b)| < π for every a, b ∈ [0, τ ]. In this case t±f = τ and |θ±(t±f )| <
π;
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Fig. 2.28. An example of function θ+(t) in the case t+f < τ .

2) |θ±(a)− θ±(b)| = π for some a, b ∈]0, τ ]. In this case |θ±(t±f )| < π, θ± has

a maximum or a minimum in ]0, t±f [ and either s±1 6= 0 or s′±1 6= 0

3) |θ±(t±f )| = π. In this case, s±1 and s′±1 are not defined and generically we

get t±f < τ .
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In the first step of the algorithm, we construct the trajectory γ+ : [0, t+f ] 7→
R

2 and regard it also as frame curve. On γ+ we define as frame points: the
origin, γ+(t+f ), and all points γ+(si), γ

+(t+i ), γ+(s′i), γ
+(t′+i ).

The following stability assumptions on the function θ+ imply that the se-
quences {t+i }, {t′+i } are finite, strictly increasing, and also stable with respect
to small perturbations of the vector fields F,G.

(GA1) For every t ∈ [0, t+f ], G(γ+(t)) 6= 0.

(GA2) θ̇+(0) 6= 0, θ̇+(t+f ) 6= 0.

(GA3) If θ̇+(t) = 0, then θ+(t) 6= 0, θ̈+(t) 6= 0.
(GA4) If t 6= s and θ̇+(s) = θ̇+(t) = 0, then θ+(s) 6= θ+(t).
(GA5) (∇∆B · V )(γ+(t)) 6= 0, V = X,Y at all points t ∈ {t+i , t′+i ; i ≥ 1}.
(GA6) If t+f = τ , then max

{

|θ+(t) − θ+(τ)|; t ∈ [0, τ ]
}

< π.

Observe that t+f is the first time which is negatively conjugate along γ+ to
some previous time, while si, s

′
i are positively conjugate to ti−1, t

′
i−1, respec-

tively. Moreover, θ+ is monotonically increasing on each interval [s+i , t
+
i ] and

decreasing on [s′i, t
′
i].

We then perform exactly the same construction for the trajectory γ−,
replacing G with −G and interchanging X with Y throughout. Moreover we
ask similar generic conditions.

The following results (Propositions 3,4,5) motivate our construction.

Proposition 3 Under the stability assumption (GA1)−−(GA6) we have:

(I) the trajectory γ+ : t 7→ etY (0) is extremal up to time t+f .

(II) if t∗ lies in one of the open intervals ]s+i , t
+
i [ or ]s′+i , t

′+
i [ then there exists

an extremal control of the form:

u(t) =

{

1 if t ∈ [0, t∗[,
−1 if t ∈ [t∗, t∗ + ε[,

(2.62)

for some ε > 0. In the first case the trajectory bifurcates to the right of γ+

(clockwise), in the second case to the left (counterclockwise). On the other
hand, no extremal control of the form (2.62) exists if t∗ is not contained
in any one of the closed intervals [s+i , t

+
i ] or [s′+i , t

′+
i ];

(III) to the right of each point γ+(t+i ) (t+i > 0) and to the left of each point
γ+(t′+i ) (t′+i > 0) it originates either a turnpike, when the inner products
∇∆B · X and ∇∆B · Y have opposite signs, that is when the two vector
fields X,Y points to opposite sides of the set of zeros of ∆B, or a switching
curve when the signs are equal;

(IV) if t+f < τ then a switching curve originates from γ+(t+f ). Such curve

bifurcates to the left of γ+ when θ̇+(t+f ) > 0, and to the right of γ+ when

θ̇+(t+f ) < 0;
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A similar result holds for γ− under similar generic assumptions.

Proof. See Appendix A.
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Fig. 2.30. An example of optimal synthesis corresponding to the function θ+(t) of
Figure 2.28.

In order to study the behavior of optimal trajectories in a neighborhood
of the points qi := γ+(s+i ), q′i := γ+(s′+i ), and complete our description of
the time optimal feedback in a neighborhood of the curve γ+, additional
stability conditions are needed. As a preliminary, observe that, for each i, a
curve of conjugate points (i.e. a switching curve) starting at qi can be defined
as follows.

Let i ≥ 2 and assume first that at pi−1 := γ+(ti−1) a turnpike originates.
For ε ≥ 0, define the time t(ε) by requiring that the point

Γi(ε) := et(ε)Y eε(F+ϕG)eti−1Y (0) (2.63)

be conjugate to eε(F+ϕG)eti−1Y (0) along the integral curve of Y . On the other
hand, if at pi−1 it originates a curve of conjugate points (i.e. a switching
curve):

eψ(ε)Xe(t
+

i
−ε)Y (0),

where ψ is defined in (A.19) of Appendix A, then define t(ε) by requiring that
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Γi(ε) := et(ε)Y eψ(ε)Xe(ti−1−ε)Y (0) (2.64)

is conjugate to eψ(ε)Xe(ti−1−ε)Y (0) along the integral curve of Y . Finally, if
i = 1, s1 > 0, we define t(ε) by requiring that

Γ1(ε) := et(ε)Y eεX(0) (2.65)

is conjugate to eεX(0) along the integral curve of Y . The conjugate curves Γ ′
i ,

originating from the points s′+i , can be defined in an entirely similar manner.
Observe that, in all three of these cases, one has t(0) = s+i − ti−1, and that

the local existence of the function t(·) is provided by the implicit function
theorem. Indeed, from (GA3) and (GA4) it follows θ̇+(s+i ) 6= 0, and hence
∇∆B(qi) 6= 0, because of Lemma 8, p. 43.

By Envelope Theory (see Theorem 9) the trajectories that undergo a
switching along a curve Γi can afterwards remain optimal only if the curve Γi
itself is not a trajectory of the control system, i.e., if X and Y do not point to
opposite sides of Γi. This motivates the following stability assumptions, which
ensure that X is not tangent to Γi at points close to qi. Here Γ̇i = dΓi/dε
provides a tangent vector to Γi.

(GA7) At every point qi := γ+(s+i ), the conjugate curve Γi satisfies Γ̇i(0) ∧
X(qi) 6= 0 ∀i ≥ 2. The same holds for the conjugate curves Γ ′

i , at the
points q′i := γ+(s′+i ).

Proposition 4 In addition to the assumptions of Proposition 3, let (GA7)
hold. Then, to the right of every point qi := γ+(s+i ) with i ≥ 2, the time opti-
mal synthesis contains either the curve of conjugate points Γi defined at (2.63),
(2.64), or an overlap curve, starting at qi. The first case occurs precisely when
the vector fields X,Y point to the same side of Γi, in a neighborhood of qi.
The analogous results hold for the points q′i := γ+(s′+i ).

Proof. See Appendix A.

It remains to consider the points q1 = γ+(s+1 ), q′1 = γ+(s′+1 ). From the defini-
tion, we have that only one of the two numbers s+1 , s

′+
1 is different from zero.

Assume that s+1 6= 0. The case s′+1 6= 0 can be treated in an entirely similar
manner. We introduce a new system of coordinates in such a way that:

Y ≡
(

1
0

)

X(x) =

(

−1 + a1x1 + a2x2 +O(|x|2)
b1x1 + b2x2 +O(|x|2)

)

, b1 > 0, (2.66)

X(x) =

(

c0 + c1(x1 − s+1 ) + c2x2 +O(|x− (s+1 , 0)|2)
d1(x1 − s+1 ) + d2x2 +O(|x− (s+1 , 0)|2)

)

,

{

c0 < 1,
d1 < 0.

(2.67)

The expression for X in formula (2.66) is useful in a neighborhood of (0, 0),
while the expression (2.67) gives information in a neighborhood I of (s+

1 , 0).
The signs of b1, d1 and condition c0 < 1 follow from the stability conditions
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(GA2),(GA3). Indeed, since ∆B(0) = −b1/2, from s+1 > 0, we get ∆B(0) <
0, thus b1 > 0. Also ∆B(s+1 , 0) = d1(c0 − 1)/4 > 0, hence d1 6= 0 and c0 6= 1.
Finally at xε := (s+1 + ε, 0), ε > 0 there are trajectories switching from
Y to X, then by Theorem 11, f(xε) < 0. Then from ∆B(xε) > 0 we get
0 < ∆A(xε) = −d1/2, finally we conclude d1 < 0 and c0 < 1. If c0 6= 0, then
the trajectories:

σ2 7→ eσ2Xe(s
+

1
+σ1)Y (0), τ2 7→ eτ2Y eτ1X(0),

for σ1, τ1 sufficiently small, cross each other near the point (s+1 , 0). An overlap
curve at (s+1 , 0) is determined by a system of three equations of the form







s+1 + σ1 + σ2 = τ1 + τ2
s+1 + σ1 + c0σ2 +O(1)(σ2

1 + σ1σ2 + σ2
2) = −τ1 + τ2 +O(1)τ2

1

− b1
2 τ

2
1 +O(1)τ3

1 = d1σ1σ2 + c0d1
2 σ2

2 +O(1)(σ3
2 + σ2

1σ2 + σ1σ
2
2).

(2.68)

Here with the Landau symbol O(1) we indicate some function which is uni-
formly bounded, together with its derivatives. The first equation yields

τ2 = s+1 + σ1 + σ2 − τ1.

Hence:
{

(c0 − 1)σ2 + 2τ1 = O(1)(σ2
1 + σ1σ2 + σ2

2 + τ2
1 )

d1σ1σ2 + c0d1
2 σ2

2 + b1
2 τ

2
1 = O(1)(σ3

2 + σ2
1σ2 + σ1σ

2
2).

A trivial branch of solutions is given by τ1 = σ2 = 0. When σ1, σ2, τ1 are suf-
ficiently small, one can solve the first equation for τ1 as a function of (σ1, σ2).
This yields:

∂τ1
σ2

(0, 0) =
1 − c0

2
,

∂τ1
σ1

(0, 0) = 0.

Then the second equation, for σ1, σ2, τ1 sufficiently small, is equivalent, up to
higher order terms, to:

[

d1σ1 +
1

2

(

c0d1 + b1

(

1 − c0
2

)2
)

σ2

]

σ2 = 0. (2.69)

We have a nontrivial branch of solutions if the following stability condition
holds:

(GA8) c0 6= 0, δ=̇c0d1 − b1
(

1−c0
2

)2 6= 0.

Proposition 5 In addition to the assumptions of Proposition 3, assume s+1 >
0 and let (GA8) hold. Then, to the right of q1 := γ+(s+1 ), the time optimal
synthesis contains either the curve of conjugate points Γ1 defined at (2.65),
or an overlap curve, starting at q1. The first case occurs precisely when δ < 0.
The analogous results hold for the point q′1 := γ+(s′+1 ).



96 2 Time Optimal Synthesis for 2–D Systems

Proof. To determine the switching curve Γ1 of (2.65), let (γ̄, λ̄) be an extremal
trajectory of our system, corresponding to constant control −1 on the interval
[0, τ1[ and to constant control +1 on the interval [τ1, τ2]. We have:

γ̄(τ1) =

(

−τ1 +O(τ2
1 )

− 1
2b1τ

2
1 +O(τ3

1 )

)

, γ̄(τ2) =

(

−τ1 + τ2 +O(τ2
1 )

− 1
2b1τ

2
1 +O(τ3

1 )

)

.

Now if τ1, τ2 are switching times for γ̄ we must have:

λ̄(τ1) ·G(γ̄(τ1)) = 0, (2.70)

λ̄(τ2) ·G(γ̄(τ2)) = 0. (2.71)

Moreover, from equation i) of the PMP, it follows λ̄(τ1) = λ̄(τ2) =: λ̄. Set

λ̄ = (λ̄1, λ̄2) and normalize λ̄ in such a way that λ̄2 =
√

1 − λ̄1. Equations
(2.70), (2.71) become:

f1(λ1, τ1, τ2) := λ̄1(1 + a1τ1) +
√

1 − λ̄1(
1

2
b1τ1) +O(τ2

1 ) = 0,

f2(λ1, τ1, τ2) :=
1

2
λ̄1((1 − c0) − c1(−τ1 + τ2 − s+1 ))

+
√

1 − λ̄1(−
1

2
d1(−τ1 + τ2 − s+1 )) +O(τ2

1 ) = 0.

These are two equations for the variable (λ̄1, τ1, τ2) and (0, 0, s+1 ) is a solution.
The 2 × 2 Jacobian matrix of partial derivatives of f1 and f2 with respect to
(λ̄1, τ2) has determinant, at the point (0, 0, s+1 ), equal to −d1/2. Since d1 6= 0,
we can solve the system in a neighborhood of (0, 0, s+1 ) expressing (λ̄1, τ2) as
a function of τ1. This yields:

∂τ2
∂τ1

∣

∣

∣

∣

(0,0,s+
1

)

= − (b1(1 − c0) − 2d1)

2d1
=: m, (2.72)

hence τ2 = s+1 +mτ1 +O(τ2
1 ) and the parametric expression for the switching

curve starting at (s+1 , 0) is:

x1(τ1) = s+1 + (m− 1)τ1 +O(τ2
1 ),

x2(τ1) = −1

2
b1τ

2
1 +O(τ3

1 ).

From b1 > 0, d1 < 0 and c0 < 1 we get m 6= 1. Thus we can express x2 as a
function of x1:

x2(x1) = − 2d2
1

b1(1 − c0)2
(x1 − s+1 )2 +O((x1 − s+1 )3). (2.73)

From (2.69), being δ 6= 0, we can express σ+
1 as a function of σ2.
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After straightforward calculations one obtains for the overlap curve K:

x2(x1) = − 4 b1 (−1 + c0)
2
d1

2

(

b1 (−1 + c0)
2 − 4 c0 d1

)2 (x1 − s+1 )2 +O(|x1 − s+1 |3).

On the other hand, the support of the X−trajectory γ through (s+1 , 0) is given
by:

x2(x1) =
d1

2c0
(x1 − s+1 )2 + o(|x1 − s+1 |2).

Therefore Γ1,K and γ have a first order tangency at (s+1 , 0). Notice that
the condition δ 6= 0 means precisely that γ does not have a second order
tangency with Γ1. Now, if δ < 0 then c0 > 0, σ+

1 and σ2 have opposite
signs and the system (2.68) does not describe an admissible overlap curve. On
the other side the curve γ lies between γ+ and Γ1. Therefore the trajectories
t2 → et2Y et1X(0) switch along Γ1 before crossing γ. By a sufficiency argument,
see [111], these trajectories are optimal. If δ > 0 then σ+

1 , σ
+
2 have the same

sign, hence the trajectories:

σ2 7→ eσ2Xe(s
+

1
+σ1)Y (0)

that reachK, switch after s+1 and thus are extremal. The curve Γ1 lies between
γ and γ+. We can conclude again by a sufficiency argument.

Remark 36 Therefore the switching curve starting at the first switching time
is tangent to Supp(γ). Notice that the curve bifurcating from (0, s+1 ) is an
abnormal extremal whose expression can be obtained from (2.66):

γA(t) =

(

x1(t)
x2(t)

)

=

(

s+1 + c0t+O(t2)
d1(

1
2c0t

2) +O(t3)

)

. (2.74)

Of course, entirely similar results hold for the curve γ−. This completes the
analysis of STEP 1 of the algorithm. We now define by induction the step N ,
where N > 1.

STEP N. At step N the algorithm prolongs the trajectories constructed at
step N-1, by joining an arc that is an X,Y or Z–trajectory. In such a way it
constructs all extremal trajectories consisting of ≤N arcs.

Consider all frame curves generated by the previous step which are not
overlap curves. Let D be such a frame curve. Consider the constructed tra-
jectories γ, γ : [0, t0] 7→ R

2, γ(0) = 0, such that γ(t0) = x ∈ D. For each
one of these trajectories, calling u the corresponding control, we construct
two new trajectories γ1, γ2 : [0, 1] 7→ R

2, γ1(0) = γ2(0) = 0, corresponding,
respectively, to the following controls u1 and u2:

u1(t) = u2(t) = u(t) ∀t ∈ [0, t0],
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u1(t) = +1 u2(t) = −1 ∀t ∈ [t0, τ ].

If there exists a conjugate point γ1(t1) (t1 > t0) to γ1(t0) along (u1, γ1) then we
construct only γ1|[0,t1], and do the same for γ2. Indicate with λ̄ : [0, t0] 7→ (R2)∗
the covector field associated by induction to γ1|[0,t0]. Then γ1 is constructed
only if there exists a covector field λ along (u1, γ1) such that:

λ|[0,t0] = λ̄ λ(t0) ·G(γ1(t0)) = 0 (2.75)

and, if γ1(t1) is a conjugate point to γ1(t0) (t1 > t0) along (u1, γ1), then:

λ(t) ·G(γ1(t)) > 0 ∀t ∈]t0, t1[ λ(t1) ·G(γ1(t1) = 0 (2.76)

otherwise:
λ(t) ·G(γ1(t)) > 0 ∀t ∈]t0, τ ]. (2.77)

If there exists such a covector field then associate it to γ1. Proceed similarly
for the other case defined above (γ2) changing signs in (2.75), (2.76), (2.77).
Notice that, under generic conditions, we construct all extremal trajectories
with N arcs.

Consider the connected components of {x : ∆B(x) = 0, |ϕ(x)| ≤ 1} (ϕ is
defined in (2.13)) that intersect some constructed trajectories. Assume that
S is such a component, γ is a constructed trajectory with associated covector
field λ and t0 is the first time of intersection of γ with S. If λ(t0)·G(γ(t0)) = 0,
then we consider the maximal trajectory γ1 that satisfies:

γ1|[0,t0] ≡ γ, γ1(t) ∈ S ∀t > t0.

We construct the trajectory γ1|([0, τ ] ∩ Dom(γ1)). If u is the control corre-
sponding to γ, we have that γ1 corresponds to the control u1 given by:

u1|[0,t0[ ≡ u, u1(t) = ϕ(γ1(t)) ∀t ≥ t0.

We associate to γ1 the covector field λ1 that verifies λ1 ≡ λ on [0, t0].

Now, it may happen that a point x ∈ R
2 is reached by more than one ex-

tremal trajectory. In this case, trajectories that are not globally optimal are
removed from the synthesis constructed up to step N. When certain trajec-
tories are deleted, each corresponding frame point and frame curve (or part
of it) are also deleted. More precisely, let x ∈ R

2 be a point reached by some
trajectories constructed in this step. There are a finite number of constructed
trajectories (not necessarily constructed in this step) γ1, . . . , γn that reach x
at certain times t+i ∈ Dom(γi), i = 1, . . . , n. Let t̄ = mini t

+
i . If t+i > t̄ then

we cut the trajectory γi after the time t+i , i.e. consider only γi|[0,t+
i

]. It can

happen that t̄ = t+i for more than one i (generically at most two), in this case
the algorithm constructs an overlap curve.
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Define the following new frame curves:

a) Maximal regular turnpikes S for which there exists a trajectory γ, con-
structed in this step, that verifies γ(I) = S for some I ⊂ Dom(γ),

b) Overlap curves constructed in this step,
c) Conjugate curves to frame curves, constructed in the previous step, along

X− or Y−trajectories.

We give generic stability conditions for frame curves.
Consider a turnpike S, and γ, I = [t0, t1] as in a). Let ϕ be the control defined
in (2.13). As stability condition we then assume:

| ϕ(γ(t)) |< 1 ∀t ∈ [t0, t1[. (2.78)

Consider an overlap curve K. In general it is defined by a system of equa-
tions of the following type:

{

(exp tX) x1(s) = (exp t′Y ) x2(s
′)

s+ t = s′ + t′
(2.79)

where x1(s) and x2(s
′), are parameterizations of two frame curves defined in

the previous steps. As stability condition, we assume that the system (2.79)
has rank 3 on K, except for the possible intersections with γ±. It is easy to
verify that (2.79) may have rank 2 on K ∩γ±, see Example 1 of Section 2.6.4,
p. 62.

Next consider stability conditions for a conjugate curve to D. Let D be a
frame curve, D′ the conjugate curve along the Y−trajectories. In other words,
for each x ∈ D there exist a trajectory γx : [0, σx] 7→ R

2 and tx ∈]0, σx[ such
that γx(tx) = x, γx|[tx,σx] is a Y−trajectory and γx(σx) ∈ D′ (γx(σx) is
conjugate to x). Denote by ux the control corresponding to γx and by vx the
vector fields along (ux, γx), i.e. the solutions to (2.4) for γ = γx. The stability
conditions are the following:

det
[

vx

(

G(x), tx; t
)

, G
(

γx(t)
)]

6= 0 ∀x ∈ D ∀t ∈]tx, σx[ (2.80)

∂

∂t
det
[

vx

(

G(x), tx; t
)

, G
(

γx(t)
)]∣

∣

∣

t=σx

6= 0 ∀x ∈ D. (2.81)

Otherwise stated, these conditions read: θγx(t) 6= θγx(tx) for t ∈]tx, σx[,
(d/dt)θγx(σx) 6= 0. We use the same stability conditions for a conjugate curve
along the X−trajectories.

By definition, the intersections between frame curves are frame points. Now,
we give stability conditions for frame points. We assume that all frame points
are generic, hence we have to consider only the cases listed in Section 2.6.2,
p. 60. Stability conditions for frame points that belong to γ± are given in the
first step. Those on the frontier of the reachable set are considered at the end
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of the algorithm, thus we remain with ten cases.

Let x be a frame point, γ : [0, b] → R
2 be one constructed trajectory that

satisfies γ(b) = x and λ the associated covector field. Let t0 be the last switch-
ing time of γ before b and let D be the frame curve to which γ(t0) belongs.
We assume that γ(t0) ∈ D \ ∂D. For each y ∈ D there exists a constructed
trajectory γy, with associated covector field λy, that switches at y.

Consider first the case of a frame point of type (C,C)1. We have∆B(x) = 0
(see Appendix A) and ∇∆B(x) 6= 0 (from condition (P2) of Section 2.4).
From the stability condition (2.78) we have:

X(γ(b)) · ∇∆B(γ(b)) 6= 0, Y (γ(b)) · ∇∆B(γ(b)) 6= 0,

then by the implicit function theorem, for each y in a neighborhood of γ(t0) in
D, there exists a time σy such that∆B(γy(σy)) = 0. Let y(s) be a parametriza-
tion of a neighborhood in D of γ(t0) = y(s0). Define:

ψ(y(s))=̇λy(σy) ·G
(

γy(σy)
)

, (2.82)

we assume the stability condition:

∂ψ

∂s

∣

∣

∣

∣

s=s0

6= 0. (2.83)

Consider the switching curve C2 as in the description of the (C,C)1 frame
points given in Example 6 of Section 2.6.4, p. 62. Let C2(x) be a tangent
vector to C2 at x. The last stability condition is:

Y (x) ∧ C2(x) 6= 0, X(x) ∧ C2(x) 6= 0. (2.84)

If x is of type (C,S)1, resp. (S,K)1, then we have the same stability condi-
tions, replacing in (2.84) the vector C2(x) with C(x), resp. K(x), tangent to
C, resp. to K, at x.

If x is of type (C,K)2 and ∆B(x) = 0 then we assume that C and K
are not tangent at x and we have the same stability conditions, replacing the
vector C2(x) with K(x) in (2.84).

Notice that for (C,C)1, (C,S)1, (S,K)1 and (C,K)2 frame points, the con-
dition (2.84) plays the role of condition (GA7) for the points qi.

If x is of type (C,C)2, (S,K)3 or (K,K) then no stability condition is needed,
since stability is guaranteed by other assumptions.
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If x is of type (C,S)2 let ϕ(y) be the control defined in (2.13) for every
y ∈ S, and let y(s) be a parametrization of a neighborhood of x = y(s0) in S.
We assume:

∂ϕ

∂s

∣

∣

∣

∣

s=s0

6= 0. (2.85)

If x is of (C,K)1 type then, as above, let C(x), resp. K(x), be the vector
tangent to C, resp. K, at x. The stability condition is:

C(x) ∧K(x) 6= 0. (2.86)

If x is of type (C,K)2 and ∆B(x) 6= 0, let C(y) be the vector tangent to C at
y, where y ranges in a neighborhood of x in C. The stability condition is:

∂

∂y
(Y (y) ∧ C(y))

∣

∣

∣

∣

y=x

6= 0,
∂

∂y
(X(y) ∧ C(y))

∣

∣

∣

∣

y=x

6= 0. (2.87)

Finally let x be of type (S,K)2. If ϕ is the control of (2.13) then the stability
condition is:

|ϕ(x)| < 1. (2.88)

End of step N.

If at step N the algorithm A does not construct any new frame curve, then
at step N + 1 the algorithm A does no operation. Therefore, in this case, we
say that the algorithm A stops at step N.

The conclusions of Section 2.4, p. 48 ensure the existence of N ∈ N such
that A stops at step N . Consider the set RA of points reached by constructed
trajectories of A. By definition Fr(RA) is a frame curve and its intersec-
tions with other frame curves are frame points. As first stability condition we
assume:

(F1) The inequality (2.77), or the corresponding condition with > replaced
by <, holds for every trajectory reaching a point of Fr(RA), except the
intersections with turnpikes and switching curves.

We now give the stability conditions for these new frame points. We have to
exclude that for every ε > 0 the synthesis constructed for time τ + ε has a
new frame point. Indeed, in this case the synthesis can not be structurally
stable. Hence, we give conditions to exclude that a frame point on Fr(RA)
can evolve in a frame point of different type immediately after time τ . For
example we have to exclude that x = γ+ ∩ Fr(RA) verifies x = γ+(t+i ) for
some i (see Definition 38, p. 90). Otherwise, x evolves in a (X,S) or (X,C)
frame point after time τ .
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(F2) Let x be a frame point of Fr(RA). We assume ∆A(x) 6= 0 and if x is
not of type (F, S) then we also assume that ∆B(x) 6= 0. If x is of type
(X,F )1,2 then x = γ±(τ) and we assume that τ /∈ {t+i , t′+i , s+i , s′+i } (see
Definition 38, p. 90). If x is of type (F,C) then we assume that X(x), Y (x)
are not tangent to C at x and x is not reached by two different optimal
trajectories. If x is of type (F, S) then we assume |ϕ(x)| < 1, where ϕ is
defined in (2.13). Finally, if x is of type (F,K) then we assume that x is
not a switching point for the constructed trajectories arriving at x (this
condition is yet ensured by (F1).

We define an equivalence relation ∼ on the set of frame points.

Definition 39 (Equivalence of Frame Points). If x1, x2 are two frame
points, that are not of type (C,C)2, (K,K), we let x1 ∼ x2 if and only if
there exist some points y0 = x1, y2, . . . , yn = x2 such that the following holds.
Each yi belongs to a frame curve Di. If yi is a frame point then it is not of
(K,K) type; if yi is not a frame point then Di is not of K type. For every yi,
i = 1, . . . , n − 1, there exist a constructed trajectory γi and ai, bi ∈ Dom(γi)
verifying γi(ai) = yi, γi(bi) = yi+1, γi|[ai,bi] is an X or Y trajectory and

γi(]ai, bi[)∩γ±([0, t±f ]) = ∅. That is there exists a curve, connecting x1 with x2,
formed by X and Y arcs of constructed trajectories and that does not intersect
the frame curves γ±, the relative interior of overlap curves and (K,K) frame
points.

Remark 37 Notice that if we let γi intersect γ±, then the origin is obviously in
relation with every frame point reached by a bang-bang constructed trajectory.
We have to exclude the points (C,C)2, (K,K) in the definition of ∼. In fact,
it is not a generic situation for two frame points to be in relation unless one
of them is of types (C,C)2 or (K,K), which are constructed by A exactly
because they are in relation with other frame points. But locally, at these
points, the synthesis generated by A does not present a singularity.

If A stops at step N and:

(A1) All frame curves and points satisfy the stability conditions,
(A2) If x1, x2 are two frame points and x1 ∼ x2 then x1 = x2,

then we say that the algorithm A succeeds for Σ.
Proceeding as in Section 2.5, p. 56, we construct the synthesis ΓA(Σ)

generated by the algorithm A at time τ . It is easy to see that conditions
(A1), (A2) are generic. Thus by Corollary 1, p. 50, A succeeds for a generic set
of systems. Finally, by Theorem 14, ΓA(Σ) is an optimal synthesis. Therefore
we have the following:

Theorem 17 Given τ > 0, there exists a generic set Πτ ⊂ Ξ such that for
every Σ ∈ Π the algorithm A succeeds for Σ at time τ and ΓA(Σ) is an
optimal synthesis.



2.8 Structural Stability and Classification of Optimal Feedbacks 103

2.8.3 Structural Stability

In this section we prove the structural stability of systems for which A suc-
ceeds. It follows that these systems are observable, that is a small perturbation
does not change the topological structure of the optimal synthesis.

Theorem 18 If A succeeds for Σ then Σ is structurally stable.

Proof. We recall that Σ is locally controllable and satisfies (P1),...,(P7) of
Section 2.4, p. 48. Let Σ′ be a system in a small neighborhood of Σ. More
precisely, assume that:

‖F − F ′‖C3 + ‖G−G′‖C3 < ε

where Σ′ = (F ′, G′). From Lemma 3, p. 39 Σ′ is locally controllable if:

F ′(0) ∧ [F ′, G′](0) 6= 0.

From (P1) (of Section 2.4, p. 48):

F (0) ∧ [F,G](0) 6= 0

and:

|F ′(0) ∧ [F ′, G′](0) − F (0) ∧ [F,G](0)| ≤ Cε(‖F‖C3 + ‖G‖C3),

for some C > 0, hence for ε sufficiently small Σ ′ is locally controllable.

The conditions (P1),...(P7) involve the components of the vector fields F,G
and their derivatives, hence they can be established for Σ ′, if ε is sufficiently
small, in the same way. Now, we can apply the algorithm A to Σ ′. The condi-
tions (GA1)–(GA8) and the stability conditions for frame points and curves
are generic and hold for Σ, therefore they hold also for Σ ′ for ε small. More-
over, an iterative application of the inverse function theorem guarantees that,
for ε sufficiently small, A produces the same frame curves, except for K-
curves, and the same frame points, except (K,K) points, for Σ ′ and these
frame curves and points satisfy the stability conditions as well. To prove this
we proceed by induction as in the description of the algorithm A. Firstly, we
choose ε in such a way that the Y –trajectory through the origin γ̃+ of Σ′

is near in the C0 norm to γ+ (of Σ) and it has the same sequence of frame
points. Using Propositions 3, p. 92, 4, p. 94 and 5, p. 95, we obtain that the
synthesis near γ̃+ is the same as the synthesis near γ+. Then, it is possible to
continue following the same procedure of the algorithm A.
As an example, let us check that if ΓA(Σ) has a stable (C,S)1 frame point x
then the same holds for Σ′. From the condition (P2) (of Section 2.4, p. 48)),
we know that zero is a regular value for the functions ∆A,∆B of Σ. This is a
structurally stable condition, hence for ε sufficiently small the same holds for
Σ′. Moreover, the sets {x : ∆B(x) = 0} for Σ and Σ′ are close to each other.
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From condition (2.78), it follows that there exists a regular turnpike for Σ ′.
Recall now the terminology used in the definition of stability conditions for
(C,S)1 points. We can construct the function ψ for Σ ′ as in (2.82). Moreover,
by (2.83) we have that ψ has a unique zero near x. Therefore there is a point
y′ near y(s0) such that the trajectory γy′ that intersect S at time σy′ satisfies
λy′(σy′) · G(γy′(σy′)) = 0. The algorithm A constructs a turnpike as frame
curve also for Σ′, starting from a point x′ near x. Finally, the condition (2.84)
ensures that the trajectories γy, with y ∈ D on one side of y′, switch before
crossing the X– or the Y – trajectory starting from x′. Therefore x′ is a (C,S)1
point (the other possible case is a (S,K) point). At the end, the conditions
(F1), (F2) are fulfilled for Σ′ as well.

For each frame curve D ∈ ΓA(Σ) of type C or S, we have an ordered
sequence of points x1, . . . , xn ∈ D that are in relation with some frame point
not of type (K,K). These are exactly the points considered in the construction
of lines of the graph G associated to Σ, (see the next section) . From (A2),
we have that for ε sufficiently small the corresponding frame curve D′ of Σ′

has the same number of distinct points yi with the same properties of xi.
Moreover, the points yi are in the same order as the xi. Hence we have that
(A1),(A2) are fulfilled and A succeeds for Σ ′.

Recall Definition 36, p. 88. It is possible to construct the homeomorphism
Ψ with an inductive procedure. Let Ψ(γ+) = γ̃+ and let the image of every
frame point of ΓA(Σ) be the corresponding frame point of ΓA(Σ′). Then we
map every X–trajectory (Z–trajectory) arising from a point x of γ+ onto the
corresponding X–trajectory (Z–trajectory) arising from Ψ(x). The same can
be done for γ−, γ̃−. In this way we have defined Ψ on the trajectories formed
by two arcs. By induction, if Ψ is constructed on trajectories with n arcs we
consider the frame curves D formed by terminal points of these trajectories.
Let D′ and the points xi ∈ D, yi ∈ D′ be as above. By construction we have
Ψ(D) = D′ and Ψ(xi) = yi. As for γ+ and γ̃+, we can now define Ψ on the
X–,Y – and Z–trajectories originating from D and D′. In a finite number of
steps the definition of Ψ is completed. Every trajectory γ of ΓA(Σ) is formed
by arcs of the same type of the arcs forming Ψ(γ) and meets the same frame
curves in the same order as Ψ(γ). This ensures the conditions (E1)–(E3) for
Ψ and then the equivalence between Σ and Σ ′.

2.8.4 Graphs

In this section we introduce the definition of graph and describe a procedure
to associate a graph to every system for which the algorithm A succeeds.
The points and edges of this topological graph correspond to frame points
and curves of the system. Moreover, some additional lines must be included
in the definition of graph, to describe the history of all trajectories that form
the optimal synthesis. These lines are precisely the trajectories ”transporting”
special information mentioned at the end of Section 2.6.1. In Remark 38, p.
106 we give some examples to motivate the definition of graph.
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From now on, we consider only the systems of Ξ for which the algorithm
A succeeds at time τ .

Definition 40 (Graph). A graph G is a finite set of points of R
2 and smooth

connected embedded one dimensional manifolds with boundary connecting the
points, called edges. Moreover, inside each region enclosed by edges there
are possibly some other smooth manifolds, called lines, connecting points and
edges. We assume that edges and lines do not cross each other.

Every edge can be of one of the following types: X,Y, F, S, C,K; corre-
sponding to the types of frame curves. An edge of type X,Y or S has an
orientation and hence an initial and a terminal point. The edges of type C
have a positive side, corresponding to the fact that constructed trajectories
cross a frame curve of type C passing from one side to another.

Every region enclosed by edges, that are not all of F type, has a sign
+ or −. This corresponds to the fact that a region of the reachable set, that
contains no frame curve, is covered by X- or by Y -trajectories. On each region
we can have some curves connecting points and edges. These correspond to
constructed trajectories that pass through frame points. See Remark 38, p.
106 below.

We say that two edges E1, E2 are related and we write E1 ∼ E2 if they
have in common a point of the graph.

We now describe a canonical way of associating a graph to a system. Given
a system Σ (for which A succeeds at time τ) we associate a graph G to Σ in the
following way. For every frame point we construct a point of G having the same
coordinates in R

2. For every frame curve D, with no frame point in D \ ∂D,
∂D = {x1, x2}, we construct an edge E of G of the same type connecting the
points of G corresponding to x1, x2. If D is an X,Y or S-curve then D has
the orientation of increasing time and we endow E with the corresponding
orientation. If D is of type C, then some constructed trajectories enter one
side of D. We define the corresponding side of E to be positive.
For every region A ⊂ R enclosed by frame curves there is a region A′, in the
plane of the graph, enclosed by the corresponding edges. If A is covered by
Y -trajectories, we assign to A′ the positive sign, otherwise we assign to A′ the
negative sign.
We pass now to the construction of lines. These lines are necessary to describe
the behavior of every optimal trajectory of the synthesis, see Remark 38, p.
106. Consider a frame point x of Clos(A), which is not of (K,K) type (recall
the terminology of Section 2.6.2, p. 60), and the constructed trajectory γx
verifying γx(tx) = x for some tx. Assume that γx(I) ⊂ A, for some I =
[a, b] ⊂ Dom(γx), tx ∈ I. Notice that it can happen a 6= tx 6= b, e.g. if x is of
type (X,K)3. If tx 6= a and γx(a) ∈ D frame curve, then we construct a line
in A′ going from a point y of the edge E, corresponding to D, to the point x′

of G corresponding to x. If γx(a) is a frame point then we choose y to be the
corresponding point of E, otherwise we choose y in E \ ∂E. If D is of C type,
and γx(a) ∈ D \ ∂D, then we consider the last switching point z of γx before
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γx(a). If D is of S type then there exists a constructed trajectory γ1 that
switches at γx(a) and enters the region on the opposite side, with respect to
D, of the region entered by γx. Indeed, a Y and an X constructed trajectory
originate from every point of a turnpike. We let, in this case, z to be the first
switching point of γ1 after γx(a). If z belongs to a frame curve D1 then we
construct a line going from a point z′ of the edge E1, corresponding to D1, to
the point y. Again if z is a frame point we let z′ be the corresponding point
of G. If D1 is a C or S frame curve then we proceed in the same way. We
continue until we reach a frame curve not of C or S type. We do the same if
tx 6= b.
We can construct these lines in such a way that they do not cross each other.
If G is associated to Σ in this way then we say that G is canonically associated
to Σ.

Remark 38 Consider the system
{

ẋ1 = 3x1 + u
ẋ2 = x2

1 + x1

For every time τ > ln(4)/3 the reachable set in time τ contains two switching
curves starting from γ−. There are two frame points of type (X,C) that are
not topologically equivalent. See Example 3 of Section 2.6.4, p. 62 for an
accurate description of this system and for the classification of (X,C) frame
points. In Fig. 2.31 it is portrayed the reachable set of this example and in
Fig. 2.32 its associated graph G3. If we do not specify a sign for every region of
G3 then the two (X,C) frame points are not distinguishable. Hence, for some
system Σ with a frame point of type (X,C)1 or (X,C)2, we can construct a
system with the same graph, except the signs of the regions, but not equivalent
to Σ. This show the necessity of specifying a sign for every region.

Consider the system Σ4 of Example 4 of Section 2.6.4, p. 62. There is a
region A that is a connected component of the complement of the reachable
set and is bounded. In the corresponding graph, we cannot give a sign to
the region corresponding to A. Otherwise, we would have equivalent systems
corresponding to different graphs. The regions enclosed by edges all of F type
correspond exactly to the holes of the reachable set.

Consider now the frame point x of (C,S)2 type of Example 8 of Section 2.6.4,
p. 62. If we do not specify, in the corresponding graph, a positive side for the
edge corresponding to the switching curve then we do not know, from the
graph, if the Y or the X trajectories enter the switching curve. Again there
would exist two not equivalent systems corresponding to the same graph.
The lines divide the graphs into subregions in such a way that the trajectories,
contained in the same subregion, have the same history, i.e. cross the same
frame curves in the same order and are composed by the same sequence of el-
ementary arcs. For example XY ZX..., where X,Y and Z denote respectively
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Fig. 2.31. Reachable set of Example 3 of Section 2.6.4, p. 62
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Fig. 2.32. Graph corresponding to Example 3 of Section 2.6.4, p. 62

X,Y arcs and trajectories running a turnpike. If the lines are not constructed
then, in some cases, we can not decide the story of every trajectory and then
we can not recognize equivalent systems. To appreciate this point, consider
the following examples. Firstly, let the syntheses of Fig. 2.33 and Fig. 2.34 cor-
respond to some system. The associated graphs contain the same points and
edges. However, the syntheses are not equivalent. Indeed, the homeomorphism
Ψ should map the trajectory through the (X,S) point onto the corresponding
one to satisfy (E1), but obviously in this case (E2) cannot be satisfied. To
have an explicit example, consider now the system Σ4 of the fourth example
of Section 2.6.4, p. 62. Let γ be the constructed trajectory that pass through
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the (Y, S) point and then goes on as X trajectory. If we do not consider the
lines, from the graph associated to Σ4 we cannot know if γ reaches the overlap
curve or the frontier of the reachable set. Hence we cannot uniquely determine
the synthesis from the graph.

C C

X

S

Fig. 2.33. An Example of Synthesis

2.8.5 Admissible Graphs

We now give some admissibility conditions that characterize a class of graphs.
This class is be proved to be the class of graphs that correspond to systems
canonically.

To every system of the Examples of Section 2.6.4, p. 62 we can associate a
topological graph in the canonical way. We consider these examples restricted
to a neighborhood of a frame point, then we obtain a set of graphs E , whose
elements are defined locally and each one corresponds to a type of frame
point. A point x′ of a graph G is said to be admissible if there exist a graph
G′ ∈ E such that G contains a copy of G ′ to which x′ belongs. We use the same
terminology for the points of G, e.g. (X,Y ) point. The first condition is:

(G1) All points of G are admissible.

We consider graphs that contain exactly one point of the type (X,Y )
and we call this point the origin of the graph. Assume that (G1) holds. Let
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X

C CS

Fig. 2.34. An Example of Synthesis

E be a Y -edge and let x be the initial point of E. If x is not the origin
then there exists a Y -edge E1 for which x is the terminal point. We consider
the initial point x1 of E1 and do the same considerations. Since G is finite,
proceeding by induction, we find a finite collection E1, . . . , En of Y -edges such
that Ei ∼ Ei+1, i = 1, . . . , n − 1, and the initial point of En is the origin.
Then, since there is only one origin, the Y -edges form a set {E1, . . . , Em}
such that the initial point of E1 is the origin and for each i = 1, . . . ,m−1 the
terminal point of Ei is the initial point of Ei+1. We call η+ the union of these
edges. Analogously we define η− for the X-edges. In the first step of A we have
described all the possibilities for the sequence of frame points on a curve γ+ of
a system Σ. We say that η+ is admissible if there exists a system Σ such that
the curve γ+ correspond to η+ canonically. That is there is a correspondence
defined for points, edges of η+, for lines intersecting η+ and for the regions
to which η+ belongs, that follows the rules of canonical correspondence. This
happens exactly when η+ and γ+ have an ordered sequence of corresponding
points. The second condition is:

(G2) G has exactly one (X,Y ) point, called the origin. The collections of
edges η± are admissible.

Let E be a C-edge, x′1, x
′
2 be the endpoints of E and A′ a region on one side

of E. There exist two frame points x1, x2 corresponding to x′1, x
′
2. Consider the

correspondence between x′1 and x1. Let D be the frame curve that correspond
to E and Ã1 the region corresponding to A′. We define A1 to be the connected
component of Ã1\{x : ∆A(x)∆B(x) = 0} that contains D. Similarly we define
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the region A2. We say that E is admissible if there exist x1, x2 such that the
functions ∆A,∆B have the same sign on A1 and A2.

Remark 39 If, for example, E connect two points of (C,S) type then A1, A2

are both covered by Y -trajectories or both covered by X-trajectories. In this
case, since the two vector fields must point to opposite side of turnpikes, it
follows that∆A have a different sign on the two regions A1, A2. From Theorem
11, p. 44 we have that along C the function f , see Definition 20, p. 44, does not
change sign. Hence there exists at least one curve, intersecting C, on which
∆A = 0 and ∆B = 0. This is clearly a not generic situation.

Another admissibility condition is:

(G3) Every C-edge is admissible.

The relation ∼ partition the set of F -edges into a finite number of equiv-
alence classes. If (G1) holds then the union of the elements of an equivalence
class form a closed curve.

(G4) Only one closed curve, that is union of the elements of an equivalence
class of F -edges, encloses a region on which there are points and edges.
Moreover, there are no frame curves and points outside this region.

Notice that it can happen to have more than one equivalence class of F -
edges, e.g. the system in Example 4 of Section 2.6.4, p. 62, where R(τ) has
one hole.

Definition 41 (Entrance, Exit, Side) Consider now a region A′ enclosed
by edges of G. If one edge E is: of X type if A′ is positive, of Y type if A′ is
negative, of C type with the negative side on A′ or of S type then we say that E
is an entrance. If E is of K,F or C type with positive side on A′ then we say
that E is an exit. Otherwise, we say that E is a side, i.e. if it is of Y type and
A′ is positive or of X type and A′ is negative. The definitions are motivated
by the fact that if D is a frame curve corresponding to E canonically, then
through each point of D there passes a constructed trajectory that enters, resp.
exits, the region corresponding to A′ if and only if E is an entrance, resp. exit.

We say that the set of lines of G is admissible if they do not cross each
other and the following holds. Every line connects an entrance to an exit.
If a point x′ belongs to two entrances, resp. exits, then there is a line con-
necting x′ with an exit, resp. entrance. Let x′ be a point of one of the types
(X,C)3, (X,K)3, (C,C)1, (C,S)2, (C,K)1, (S,K), and let A′, B′ be the two
regions such that x′ ∈ Cl(A′) ∩ Cl(B′). There are two lines l1, l2, both con-
tained in A′ or both in B′, passing through x′; l1 connects x′ to an entrance
and l2 connect x′ to an exit.
If x′ is of type (C,C)2 then there are two lines arriving at x′ from different
regions and at least one of them reaches another frame point. These are the
only lines that connect two frame points.
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If x′ ∈ E \ ∂E, E is of C or S type and there is a line l arriving at x′

from a region A′ then there is a line arriving at x′ from the other region B′

such that x′ ∈ Cl(B′). There are no other lines.

Remark 40 The conditions given for the set of lines follow directly from the
canonical way of associating a graph to a system and from the description of
frame points given in Section 2.6.2.

Consider the closed curve F̃ , union of F -edges, described in (G4). Let U
be the connected component of the complement of the union of F -edges, that
is enclosed by F̃ and verifies F̃ ⊂ Cl(U). If A′ is a region contained in U we
define L(A′) to be the set of lines contained in A′. The last condition is:

(G5) The set of lines of G is admissible. If A′ ⊂ U and A′
1 is a connected

component of A′ \ L(A′) then Cl(A′
1) contains exactly one entrance and

one exit.

The conditions in (G5) is given only for regions A′ ⊂ U , because if the
opposite happens then A′ corresponds to an hole of R, L(A) = ∅ and Cl(A′)
contains only exits.

Definition 42 If a graph G satisfies conditions (G1), . . . , (G5) then we say
that G is admissible.

It is easy to check that if G corresponds to a system Σ then G is admissible.
In the following we prove the converse.

2.8.6 Classification

To ensure that the canonical way of associating a graph to a system is well
defined we have to prove that two systems are equivalent if and only if the
associated graphs are equivalent.

Since we have defined the equivalence between systems in weak form, ex-
cluding overlap curves, equivalent systems may correspond to graphs having a
different number of K edges. Hence we have to define an equivalence relation
between graphs excluding K edges.

Given two admissible graphs G1,G2, we say that they are equivalent and
we write G1 ∼ G2 if there is a correspondence ψ between edges and lines of
G1 and G2 such that the following holds. We let ψ be multivalued and not
injective on the set of K-edges, but it has to be a bijective function restricted
to the edges not of K type. Moreover, ψ is a bijective function restricted to
the set of lines. Finally the following holds:

(H1) For every edge E, not of K type, ψ(E) is an edge of the same type;
E1 ∼ E2 if and only if ψ(E1) ∼ ψ(E2), when E1, E2 are not both K-edges;
ψ preserves orientations and positive sides.
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(H2) If l is a line that connects E1 with E2 then ψ(l) connects ψ(E1) with
ψ(E2). The same holds for line connecting points. If l1, l2 arrive to the
same point than the same happens for ψ(l1), ψ(l2).

(H3) If A′ is a region enclosed by edges E1, . . . , En then the region enclosed
by ψ(E1), . . . , ψ(En) has the same sign.

(H4) If K1,K2 are the set of equivalence classes of K-edges (for the relation
∼) of G1,G2, then ψ induces a bijective correspondence between K1,K2.

We have the following:

Theorem 19 If Σ1, Σ2 are two systems and G1,G2 the corresponding graphs
then Σ1 ∼ Σ2 if and only if G1 ∼ G2.

Proof. Assume first that Σ1 ∼ Σ2 and let Ψ be as in Definition 36, p. 88. For
simplicity we use the symbols Γ1, Γ2 for ΓA(Σ1), ΓA(Σ2) respectively.
Given a frame curve D of Γ1 that is not a K-curve let E1, E2 be the edges
corresponding respectively to D and Ψ(D). We define ψ(E1) = E2. We can
proceed in the same way to define ψ on the set of lines. From (E1),(E2) it
follows that (H1) and (H2) hold, and from (E3) it follows that (H3) holds.
Now, if K1,K2 are two K frame curves (of K type) of Γ1, or of Γ2, then we
set K1 ∼ K2 if they have a point in common. The union of the elements of
an equivalence class of Γ1 is a connected curve K. If we extend by continuity,
Ψ then Ψ(K) is the union of elements of an equivalence class of Γ2. Therefore
we can define ψ on K-edges in such a way that (H4) holds.

Assume now that G1 ∼ G2. Let E1 be an X,Y or S-edge of G1, E2 = ψ(E1)
and D1, D2 the frame curves corresponding to E1, E2 respectively. From (H1)
we have that D1, D2 are of the same type. Assume that x1, . . . , xn are the
points ofD1\∂D1, ordered for increasing time, that are in relation with a frame
point, not of (K,K) type, for the definition given in the previous Sections.
There are exactly n lines if D1 is of X or Y type and 2n lines if D1 is of S type,
starting at xi. From (H2) it follows that there exist y1, . . . , yn ∈ D2 \ ∂D2,
ordered for increasing time, from which some lines of G2 start. Observe that, if
l is a line passing through xi and ψ(l) passes through yj , then i = j. Indeed,
if i 6= j there must be a crossing between lines, but this is not allowed by
the definition of a graph. We define Ψ on D1 in such a way that Ψ is an
homeomorphism, Ψ(D1) = D2 and Ψ(xi) = yi, i = 1, . . . , n.

For every y ∈ D1 consider the constructed trajectories γy ∈ Γ1 for which
y = γy(by) is a switching point. If D1 is of X or Y type there is at most one
such trajectory, if D1 is of S type then there are two such trajectories. If D1

is of type X or Y and there exists γy then from (H3) there exists a trajectory
γΨ(y) ∈ Γ2 having the same property. Let cy > by be the first time in which
γy reaches another frame curve and define bΨ(y), cΨ(y) similarly. We define:

Ψ
(

γy(t)
)

=̇γΨ(y)

(

bΨ(y) +
cΨ(y) − bΨ(y)

cy − by
(t− by)

)

∀t ∈ [by, cy].
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In this way we have defined Ψ also on the frame curves that are reached by
the trajectories γy. We proceed in the same way, defining Ψ on the images
of the constructed trajectories that switch at the point of these new frame
curves. After a finite number of steps we define Ψ on the whole reachable set
R1 of the system Σ1. Notice that we can have two different definitions of Ψ
on the K frame curves, but Ψ restricted to R′

1 (see the Definition 36, p. 88)
is well defined. The condition (E1) follows by construction. The conditions
(H1),(H2) ensure that corresponding trajectories have the same history, i.e.
they cross the same type of frame curves in the same order and are composed
by the same elementary arcs. Finally from conditions (H1)-(H4), we have that
Ψ satisfies (E1)-(E3).

Assume now that G is an admissible graph. We want to find a system Σ
such that G is associated to Σ in the canonical way. This and Theorem 19,
p. 112 show that the correspondence Σ ↔ G is a bijection between the set of
equivalence classes of systems for which A succeeds, and the set of equivalence
classes of admissible graphs.

Theorem 20 If G is an admissible graph then there exists a system Σ to
which G is canonically associated.

Proof. See Appendix A.

2.9 Systems on Two Dimensional Manifolds

All the geometric techniques used in this Chapter are local, thus it is possible
to establish analogous results for a control system defined on a general smooth
two dimensional manifold. Since R(τ) is compact, we restrict, for simplicity, to
an orientable compact smooth 2–D manifold. Recall that orientable compact
smooth 2–D manifolds are described by a genus g ≥ 0 which counts the

number of ‘handles’ glued to the sphere S2. The classification program is now
performed using a new definition of graph. The key point is the introduction
of a rotation system that, at each vertex, individuates a cyclic order of the
incident edges and permits to define the faces of a graph. Thanks to a theorem
of Heffter, a graph with a rotation system can be embedded uniquely on a 2-D
orientable manifold, preserving the rotation system, if the faces are mapped to
regions homeomorphic to a disk. Thus we can classify, via admissible graphs
(with rotation systems), couples formed by a system and the 2-D manifold of
minimal genus on which the system can live. The problem of embedding graphs
into manifolds is subject of investigations for Topological Graph Theory, see
[68] for an introduction. For differential and algebraic topology we refer the
reader to [71, 99].

To have a more elegant representation, we let the lines, introduced above,
be frame curves (hence edges of the associated graph). These new frame curves
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are also trajectories and transport special information about the history of
optimal trajectories. We have to distinguish three kinds of curves:

• curves of kind γA that are abnormal extremals,
• curves of kind γk that are curves passing through an endpoint of an overlap

(i.e. FPs of kind (Y,K)3 (S,K)2, (C,K)1)
• curves of kind γ0 that are the other arcs of optimal trajectories passing

through FPs.

Remark 41 This refined definition of frame curves is essential for studying
properties of the minimum time function. They are naturally constructed by
a new algorithm, given in Chapter 3, used to provide additional information
about the level curves of minimum time.

2.9.1 Graphs, Cellular Embeddings and the Heffter Theorem

We start introducing a new definition of graph.

Definition 43 A graph is a topological Hausdorff space G with a closed dis-

crete subspace G0, whose points are called the vertices of G, such that the
following holds. The complementary set G\G0 is a disjoint union of open sub-
sets ei; every ei is homeomorphic to an open interval I ⊂ R and is called
an edge of G. For each edge ei its boundary ∂ei is a subset of G0 consisting
either of one or two points; in case ∂ei consists of two points, the set ei is
homeomorphic to a closed interval I = [0, 1] ⊂ R; in case ∂ei consists of one
point, the set ei is homeomorphic to the unit circle S1. We indicate by VG the
set of vertices and by EG the set of edges.

Remark 42 Graph theory is usually developed in the framework of CW–
complexes. For simplicity we stated directly the corresponding definition of
graph. Notice that graphs corresponding to optimal synthesis are connected,
have a finite number of vertices and edges, moreover all edges boundaries
consist of two points.

Definition 44 A local rotation of a vertex v is an oriented cyclic order (de-
fined up to the cyclic permutations) of all edges incident to v. A rotation system
R of a graph G is a union of all local rotations over all vertices of G. An ori-
ented graph, briefly orgraph, is a pair (G, R) formed by a graph and a rotation
system.

Let G and G′ be two finite graphs. A graph map f : G → G ′ consists of
a vertex function fV : VG → VG′ and an edge function fE : EG → EG′

such that the incidence structure is preserved. If (G, R) is an orgraph, we
demand also that f preserves orientation at every edge. We consider also
partially oriented graphs, that are graphs containing some oriented and some
non oriented edges. In this case f should send oriented edges to oriented edges,
preserving orientation, and non oriented edges to non oriented edges. A graph
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map f : G → G′ between two graphs G and G ′ is called an isomorphism if
both its vertex function fV and edge function fE are one-to-one and onto
(surjective). Two graphs G and G ′ are called isomorphic if there exists an
isomorphism f : G → G′.

We call surface any 2-dimensional orientable compact manifold. An em-
-bedding i : G → M of a graph G into a surface M is a 1-1 continuous map
of the topological space G into the topological space M . Two embeddings i1
and i2 of G in a surface M are equivalent if there exists a homeomorphism
h : M →M such that h ◦ i1 = i2 (in other words, h brings the image i1(G) to
the image i2(G)).

If one takes an embedding i : G → M of a connected graph G in M , then
the set M\i(G) is a union of open regions Am. Clearly, gluing up handles to
each Am, it is possible to obtain embeddings of G into surfaces of an arbitrary
high genus. An embedding i : G → M is called 2-cell (or cellular), if all open
regions Am are homeomorphic to an open disk.

Denote by i : G →M a 2-cell embedding of an orgraph G into a surface M .
Let M\i(G) = A1∪...∪Am be a union of open disk regions in M . A dual graph

G#, associated to i, is a graph with the vertex set VG# = {A1, ..., Am}. An edge
e# ∈ EG# between Ai and Aj should be drawn (case i = j is not excluded),
if and only if there is an edge e ∈ EG between Ai and Aj , i.e. e ⊆ Ai ∩Aj .

Rotation systems give rise to a certain system of faces on G and the fol-
lowing face tracing algorithm allows to determine all faces of a graph G cor-
responding to a rotation system R. Take an arbitrary vertex v1 ∈ V (G) and
an edge av1 , incident to v1. Let v2 be the vertex of G, connected with v1 by
the edge av1 and let av2 be the edge of the vertex v2, which lies to the right
of av1 in the cyclic order at v2. Moving along the edge av2 to a vertex v3,
we define an edge av3 , which lies to the right of av2 . Proceeding inductively,
we stop the process at an edge avn

if the two forthcoming edges are again
av1 and av2 . Hereby a cycle av1 , av2 , ..., avn

of a length n, which defines a face
A1 on G, is traced. For tracing a next face A2 one should start with an edge
which lies to the right of any edge of the face A1 and such, that a corner be-
tween them did not occur in A1 – and apply the above construction. All faces
A1, A2, ..., Am on G are so traced, when it remains no unused corner.

We can now state Heffter’s Theorem, see [70]. This result, dating back to
late 19th century, was recently rediscovered, see [104, 105], and used to provide
a more neat topological classification of two dimensional dynamical systems.

Theorem 21 (Heffter’s Theorem) Let G be a finite graph endowed with a
rotation system R. Then there exists a 2-cell embedding of G into an orientable
surface M such that one of two rotations, induced by this embedding, coincides
with R. Moreover, two embeddings are equivalent if and only if they have
equivalent rotation systems.

Each embedding i : G → M induces a pair of rotation systems R and R∗,
where R∗ is a mirror image of R (i.e can be obtained from R by reversing of
the cyclic order of all local rotations ). The corresponding embeddings i(G)
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and i∗(G) are conjugate by a homeomorphism h : M →M , which is not close
to idM .

2.9.2 Admissible Graphs and Syntheses Classification

We consider connected finite graphs, with oriented and non oriented edges,
endowed by a rotation system R. As done in previous sections, on the orgraph
(G, R), we put additional structure. Thus G presents edges of nine types:
X,Y,C, S,K, F, γA, γk and γ0. The edges of type X,Y, S, γA, γk and γ0 have
an orientation. As explained above we can associate to (G, R) a finite number
of faces A1, . . . , Am. We let the faces Ai, that are not enclosed by edges of
type F , have a sign ± (corresponding to the fact that the optimal feedback is
equal to ±1). In other words we assign a sign ±1 to the vertices of the dual
graph G#.

Remark 43 Notice that now we do not need to let edges of type C have a
sign on one side, as done for the previous classification. This because the
orientation of the new edges γA,k,0 permits to individuate uniquely the side
optimal trajectories are entering.

We say that two orgraphs (Gi, Ri), i = 1, 2, are isomorphic if there exists a
graph isomorphism f that is compatible with Ri, preserves edges types and
the sign of regions.

In a way entirely similar to the one described in Section 2.8.4, we associate
an orgraph (G, R) to a system Σ defined on a surface M . Thanks to the finer
partition of R(τ) provided by the new frame curves, we have that each orgraph
(G, R) associated to a system can present only a finite number of cell types. In
the sense that, if Ai is a region of the orgraph (G, R) and ∂Ai = {e1, . . . , en},
where ej are the edges surrounding Ai, then necessarily there are a finite
number of possibilities for ∂Ai. More precisely we have the following.

Definition 45 Let (G, R) be an orgraph, Ai a face and ∂Ai = {e1, . . . , en}.
An edge e is called a side if e is of type γA, γK , γ0 and of type X if the
region has sign − and of type Y if the region has sign +. The face Ai is called
admissible if:

i) n = 3 or 4;
ii) if n = 3 there is only one side, otherwise there are two not incident sides

and there is no orientation of ∂Ai compatible with both orientations of the
sides;

iii) the edge containing the initial point(s) of the side(s) is called entrance
and is of type X (if the sign is +), Y (if the sign is −), S or C;

iv) the edge containing the terminal point(s) of the side(s) is called exit and
is of type C, K, or F .

In Figure 2.35 we represent all admissible faces.
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Fig. 2.35. Admissible faces in the case u = +1.

Proposition 6 If (G, R) is an orgraph associated to a system, then each face
Ai is admissible.

Again, a set of admissibility conditions are given (beside that of admissible
faces). These can be easily obtained by those of Section 2.8.5 and the descrip-
tion of admissible faces.

Finally, by the same methods of Section 2.8, we get

Theorem 22 Let Σ1 and Σ2 be two control systems on a compact orientable
2-dimensional manifold M . Then Σ1 is equivalent to Σ2 if and only if the
associated orgraphs (G1, R1) and (G2, R2) are isomorphic.

Theorem 23 Let (G, R) be an arbitrary admissible orgraph. Then there exists
a compact 2-dimensional orientable manifold M and a system Σ on M , whose
associated orgraph is isomorphic to (G, R).

Remark 44 Notice that the manifold M of Theorem 23 is unique up to dif-
feomorphism because of the cellular embedding. The same system Σ can be
put on a manifold with higher genus adding an arbitrary number of handles.
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2.10 Applications

In this section we show some applications and extensions of the theory devel-
oped in this Chapter. For the case of two dimensional initial and final sets see
Appendix B.

2.10.1 Applications to Second Order Differential Equations

The program, developed in this Chapter, can be used to to provide a particu-
larly simple classification for optimal syntheses of a class of systems that are
of interest for physical applications. More precisely, we study some controlled
dynamics appearing in Lagrangian systems of mathematical physics and we
classify the solutions to the following problem:

Problem: Consider the autonomous ODE in R:

ÿ = f(y, ẏ), (2.89)

f ∈ C∞(R2), f(0, 0) = 0 (2.90)

that describes the motion of a point under the action of a force depending
on the position and velocity of the point (for instance due to a magnetic
field or the viscosity of a fluid). Let us apply an external force, that we
suppose bounded (e.g. |u| ≤ 1):

ÿ = f(y, ẏ) + u. (2.91)

Controlling the external force we want to reach in minimum time a point
(y0, v0), of the configuration space, from the rest state (0, 0).

First of all observe that if we set x1 = y, x2 = ẏ, (2.91) becomes:

ẋ1 = x2 (2.92)

ẋ2 = f(x1, x2) + u, (2.93)

that can be written in our standard form ẋ = F (x)+uG(x), x ∈ R
2 by setting

x = (x1, x2), F (x) = (x2, f(x)), G(x) ≡ (0, 1).
In this case we have:

∆A(x) = det(F (x), G(x)) = x2 (2.94)

∆B(x) = det(G(x), [F (x), G(x)]) = 1. (2.95)

From these it follows:

∆−1
A (0) = {x ∈ R

2 : x2 = 0} (2.96)

∆−1
B (0) = ∅. (2.97)
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By direct computations it is easy to see that the generic conditions (P1),...,(P7)
(see Section 2.4, p. 48), are satisfied under the condition:

f(x1, 0) = ±1 ⇒ ∂1f(x1, 0) 6= 0 (2.98)

that obviously implies f(x1, 0) = 1 or f(x1, 0) = −1 only in a finite number
of points.
The reader can easily prove that for our problem (2.92), (2.93), with the
condition (2.98), the “shape” of the optimal synthesis is that shown in Figure
2.36.

C

x1

x2

C

+1

+1

+1

−1

−1

−1

Fig. 2.36. The shape of the optimal synthesis for our problem.

In particular the partition of the reachable set is described by the following:

Theorem 24 The optimal synthesis of the control problem (2.92) (2.93) with
the condition (2.98), satisfies the following:

1. there are no turnpikes;
2. the trajectory γ± (starting from the origin and corresponding to constant

control ±1) exits the origin with tangent vector (0,±1) and, for an in-
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terval of time of positive measure, lies in the set {(x1, x2) : x1, x2 ≥ 0}
respectively {(x1, x2) : x1, x2 ≤ 0};

3. γ± is optimal up to the first intersection (if it exists) with the x1-axis.
At the point in which γ+ intersects the x1-axis it generates a switch-
ing curve that lies in the half plane {(x1, x2) : x2 ≥ 0} and ends at
the next intersection with the x1-axis (if it exists). At that point another
switching curve generates. The same happens for γ− and the half plane
{(x1, x2) : x2 ≤ 0};

4. let yi, for i = 1, ..., n (n possibly +∞) (respectively zi, for i = 1, ...m (m
possibly +∞)) be the set of boundary points of the switching curves con-
tained in the half plane {(x1, x2) : x2 ≥ 0} (respectively {(x1, x2) : x2 ≤
0}) ordered by increasing (resp. decreasing) first components. Under generic
assumptions, yi and zi do not accumulate. Moreover:
• For i = 2, ..., n, the trajectory corresponding to constant control +1

ending at yi starts at zi−1;
• For i = 2, ...,m, the trajectory corresponding to constant control −1

ending at zi starts at yi−1.

Remark 45 The union of γ± with the switching curves is a one dimensional
C0 manifold M . Above this manifold the optimal control is +1 and below
is −1. The optimal trajectories turn clockwise around the origin and switch
along the switching part of M . If n,m <∞, they stop turning after the last
yi or zi and tend to infinity with x1(t) monotone after the last switching.

From 4 of Theorem 24 it follows immediately the following:

Theorem 25 To every optimal synthesis for a control problem of the type
(2.92) (2.93) with the condition (2.98), it is possible to associate a couple
(n,m) ∈ (N ∪∞)2 such that one of the following cases occurs:

A. n = m, n finite;
B. n = m+ 1, n finite;
C. n = m− 1, n finite;
D. n = ∞, m = ∞.

Moreover, if Γ1, Γ2 are two optimal syntheses for two problems of kind (2.92),
(2.93), (2.98), and (n1,m1) (resp. (n2,m2)) are the corresponding couples,
then Γ1 is equivalent to Γ2 iff n1 = n2 and m1 = m2.

Remark 46 In Theorem 25 the equivalence between optimal syntheses is the
one given in Definition 36, p. 88).

2.10.2 Example: the Duffin Equation

In the following we show the qualitative shape of the synthesis of the controlled
Duffin Equation. More precisely we want to determine the value of the couple
(m,n) of Theorem 25.
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The Duffin equation is given by the formula ÿ = −y− ε(y3 + 2µẏ), ε, µ >
0, ε small. By introducing a control term and transforming the second order
equation in a first order system, we have:

ẋ1 = x2 (2.99)

ẋ2 = −x1 − ε(x3
1 + 2µx2) + u. (2.100)

To know the shape of the synthesis we need to know where (F +G)2(x) = 0.
If we set a = 1

2εµ , this happens where

x2 = a(1 − x1 − εx3). (2.101)

From (2.99) and (2.100) we see that, after meeting this curve, the trajectory
γ+ moves with γ̇+

1 > 0 and γ̇+
2 < 0. Then it meets the x1-axis because oth-

erwise, if γ+(t) ∈ Ω := {(x1, x2), x1, x2 > 0}, then we necessarily have (for
t→ ∞) γ+

1 → ∞, γ̇+
2 → 0, that is not permitted by (2.100). The behavior of

the trajectory γ− is similar.

In this case, the numbers (n,m) are clearly (∞,∞) because the +1 trajectory
that starts at z1 meets the curve (2.101) exactly one time and behaves like γ+.
So the C-curve that starts at y1 meets again the x1 axis. The same happen
for the −1 curve that starts at y1. In this way an infinite sequence of yi and
zi is generated.

2.10.3 Generalization to Bolza Problems

Quite easily we can adapt the previous program to obtain information about
the optimal syntheses associated (in the previous sense) to second order dif-
ferential equations, but for more general minimizing problems.

We have the well known:

Lemma 16 Consider the control system:

ẋ = F (x) + uG(x), x ∈ R
2, F,G ∈ C∞(R2,R2), F (0) = 0, |u| ≤ 1. (2.102)

Let L : R
2 → R be a C3 bounded function such that there exists δ > 0 satisfy-

ing L(x) > δ for any x ∈ R
2.

Then, for every x0 ∈ R2, the problem: min
∫ τ

0
L(x(t))dt s.t. x(0) = 0, x(τ) =

x0, is equivalent to the minimum time problem (with the same boundary con-
ditions) for the control system ẋ = F (x)/L(x) + uG(x)/L(x).

By this Lemma it is clear that if we have a second order differential equation
with a bounded–external force ÿ = f(y, ẏ)+u, f ∈ C3(R2), f(0, 0) = 0, |u| ≤
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1, then the problem of reaching a point in the configuration space (y0, v0) from
the origin, minimizing

∫ τ

0
L(y(t), ẏ(t))dt, (under the hypotheses of Lemma 16)

is equivalent to the minimum time problem for the system: ẋ1 = x2/L(x),
ẋ2 = f(x)/L(x) + 1/L(x)u. By setting: α : R

2 →]0, 1/δ[, α(x) := 1/L(x),
β : R

2 → R, β(x) := f(x)/L(x), we have: F (x) = (x2α(x), β(x)), G(x) =
(0, α(x)). From these it follows: ∆A(x) = x2α

2, ∆B(x) = α2(α+ x2∂2α).
The equations defining turnpikes are: ∆A 6= 0, ∆B = 0, that with our ex-
pressions becomes the differential condition α+ x2∂2α = 0 that in terms of L
is:

L(x) − x2∂2L(x) = 0. (2.103)

Remark 47 Since L > 0 it follow that the turnpikes never intersect the x1-
axis. Since (2.103) depends on L(x) and not on the control system, all the
properties of turnpikes depend only on the Lagrangian.

Now we consider some particular cases of Lagrangians.

L=L(y) In this case the Lagrangian depends only on the position y and not
on the velocity ẏ (i.e. L = L(x1)). (2.103) is never satisfied so there are
no turnpikes.

L=L(ẏ) In this case the Lagrangian depends only on velocity and the turn-
pikes are horizontal lines.

L=V (y) + 1
2 ẏ

2 In this case we want to minimize an energy with a kinetic part
1
2 ẏ

2 and a positive potential depending only on the position and satisfying
V (y) > 0. The equation for turnpikes is (x2)

2 = 2V (x1).

2.10.4 The Non-locally Controllable Case

If we relax the condition F (0) = 0, that assures local controllability, there are
some differences in the shape of the optimal syntheses in a neighborhood of
γ+∪γ−. We briefly discuss what happen in a neighborhood of the origin and
we leave the study of the other singularities as an exercise.

First observe that if F (0) 6= 0, but there exists u ∈ [−1, 1] such that
F (0) + uG(0) = 0 (this is a nongeneric case), then the shape of the optimal
syntheses is exactly as in the case F (0) 6= 0. In the generic case, ∆A(0) 6= 0
(F (0) and G(0) are not parallel) and we can assume ∆B(0) 6= 0. According
to Theorem 11, p. 44, only one switching is permitted depending on the sign
of f . More precisely:

• if f(0) = −∆B(0)/∆A(0) > 0 then every optimal trajectory is of the type
X, Y or Y ∗X–trajectory.

• if f(0) = −∆B(0)/∆A(0) < 0 then every optimal trajectory is of the type
X, Y or X ∗ Y –trajectory.

The shape of the local optimal syntheses is drawn in Figure 2.37.
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Fig. 2.37. Generic local optimal synthesis for F (0) 6= 0
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[27]. Properties of extremal trajectories for single input affine control systems
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proved in [43]. Finally, a complete classification of generic singularities and
generic optimal synthesis is given by Bressan and Piccoli in [44, 110]. Ex-
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presented in [35, 104]. For graph theory, used in Section 2.9, p. 113 see [68].
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found in the book [69]. Jakubczyk and Respondek studied feedback equiv-
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The problem of the construction of the Time Optimal Synthesis for the
system ẋ = F (x) + uG(x), |u| ≤ 1 where x ∈ R

3, under generic conditions,
is very difficult and still open. Results on the local structure of the reachable
set can be found in [42, 90, 115, 116]. Results about the bound on the num-
ber of switchings, using higher order techniques, can be found in the recent
interesting paper [11].

For the difficulties arising in extending our results to infinite time, we refer
the reader to the works of Davydov [54, 55, 56, 57]. Related to our problem
is also the interesting paper by Butenina [47].

The classification of the class of systems coming from second order differ-
ential equations, developed in Section 2.10.1, was published by the authors in
[36].
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Fig. 2.38. Exercise 10

Exercises

Exercise 10 Draw the possible singularities along γ+ for the θ+ functions
given in Figure 2.38.

Exercise 11 Recall Section 2.10.1, p. 118. Find the couple (m,n) for the
Van der Pol equation: ÿ = −y + ε(1 − y2)ẏ + u, ε > 0 and small. Study the
reachable set R(T ) for T → ∞.

Exercise 12 Recall Section 2.10.1, p. 118. Find the couple (m,n) for the
equation ÿ = −ey + ẏ + 1.

Exercise 13 Prove that if X1, X2 are smooth vector fields on Rn and ψ
a smooth function on Rn, then [X1, ψX2] = LX1

ψX2 + ψ[X1, X2] where
LX1

ψ = ∇ψ ·X1 is the Lie derivative of ψ along X1.

Exercise 14 Prove Lemma 12, p. 47 using the generalized Legendre–Clebsch
condition of Theorem 7, p. 25.
[Hint: using Definition 20, p. 44, Exercise 13, PMP and Lemma 6, p. 40 (in
this order), write the generalized Legendre–Clebsch condition as LGf ≥ 0.]

Exercise 15 Prove formula (2.18) of the proof of Lemma 14, p. 52.
[Hint: use mean–value theorem and the differentiability of ψ.]
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Exercise 16 Draw the optimal syntheses in a neighborhood of the origin in
the nongeneric case in which γ+, γ− and ∆−1

B (0) are as in Figure 2.39.

Exercise 17 Find all the singularities along γ+ ∪ γ− in the case F (0) 6= 0,
for the generic situation.

Exercise 18 After reading Appendix B, compute the time optimal synthesis
for Example A of the Introduction with target the unit closed ball.

Exercise 19 After reading Appendix B, compute the time optimal synthesis
for Example 1 of Section 2.6.4, p. 62 with target the ball of radius

√
10/3. Do

the same for Example 3 of Section 2.6.4, p. 62 with target the ball of radius
1/3.

γ +

γ −

∆  (0)B
-1

Fig. 2.39. Exercise 16





3

Generic Properties of the Minimum Time

Function

Let us first introduce the concept of value function:

Definition 46 Given a family of control problems {Px1
}x1∈M of type (1.1)-

(1.7), one defines the value function V (x1) to be the value of the minimum of
the problem Px1

.

It is well known that, for a general optimal control problem of the form (1.7),
p. 19, under suitable assumptions, the function V , that in general is not dif-
ferentiable, satisfies the Hamilton-Jacobi-Bellman equation:

−min
u∈U

{∇V (x) · f(x, u) + L(x, u)} = 0.

in viscosity sense [23].
Recall now our model problem:

ẋ = F (x) + uG(x), x ∈M, |u| ≤ 1 (3.1)

where M is a smooth two dimensional manifold, we assume F (x0) = 0 and
consider the problem of reaching every point of M in minimum time from x0.
For this problem the value function is the minimum time function.

In this Chapter, we treat the problem of topological regularity of minimum
time function. We recall that a smooth function is a Morse function if it has
isolated critical points with nondegenerate second derivatives at these points.
We say that a continuous function, not necessarily smooth, is topologically a
Morse function if its level sets are homeomorphic to the level sets of a Morse
function. This is sufficient, for example, to derive Morse inequalities, see [101].
In Figure 3.1 we represent the level sets of a Morse function on the plane.

It is known that a function that is the minimum of a finite number of
smooth functions in generic position is a Morse function in topological sense [8,
98]. We give a positive answer to the question of V.I. Arnold: is the minimum
time function generically a Morse function in topological sense? This result is
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.

Not Critical Point Maximum or Minimum Saddle

Fig. 3.1. Level curves of a Morse function.

in the same spirit of [8, 98], being now the minimization taken over a finite
dimensional family of functions. In order to prove our result, we analyze the
Minimum Time Fronts (briefly MTF) that are the level sets of the minimum
time function. The properties of the MTFs are given in Theorem 27.

This analysis permits to understand the evolution of the topology of the
reachable set. More precisely, the topology of the reachable set R(τ) generi-
cally changes only at a discrete set of times when an overlap curve either is
formed or ends. More precisely, at these times the reachable set may change
topology because either a handle is added or a hole is closed.

In the following we give the definition of topological Morse function
and state our main result (Theorem 26). We recall that the reachable set
within time T > 0 is given by:

R(T ) := {x ∈ M : ∃t ∈ [0, T ],∃ a trajectory γ : [0, t] →M of (3.1)

such that γ(0) = x0, γ(t) = x}, (3.2)

and we call simply reachable set the set:

R(∞) := {x ∈ M : ∃t ≥ 0,∃ a trajectory γ : [0, t] →M of (3.1)

such that γ(0) = x0, γ(t) = x}. (3.3)

Results about the structure of R(∞) for (3.1) can be found in [54], while here
we are interested in the evolution of R(T ). Recall that the minimum time
function T(·) : R(∞) → R

+ (now we drop the label x0) is by definition:

T(x) := inf{t ≥ 0 : there exists a trajectory γ of (3.1) s.t.

γ(0) = x0, γ(t) = x}. (3.4)

In general T(·) is not C1, but in our case, under generic hypotheses, it is C∞

outside a rectifiable set of codimension 1.
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Let us introduce the following:

Definition 47 We say that a set Q ⊂M is thin if Q = ∪ni=1Mi, with n ∈ N,
Mi connected embedded smooth one dimensional manifold with boundary. We
say that a function f : A ⊂ M → R, A open, is piecewise C∞ if it is C∞

except a thin set Q.

A smooth function is said Morse function if at critical points its Hessian is
non singular. To treat the case of a piecewise C∞ function, we introduce the
following:

Definition 48 Let f : A ⊂ M → R be a piecewise C∞ function and Q ⊂ A
the corresponding thin set. We say that f is topologically a Morse function
if, taking Q minimal, the following holds. On the set A \ Q, f is a Morse
function and for each x ∈ Q there exist a neighborhood I(x) of x and an
homeomorphism ψ : I(x) → I(x) such that f · ψ : I(x) → R is a Morse
function.

Thus a topologically Morse function is a function whose level sets are home-
omorphic to one of the cases of Figure 3.1.

Theorem 26 (Morse Property) Fix τ > 0. Under generic conditions on
F and G, on the interior of the set R(τ), the minimum time function T(·) is
a piecewise C∞ function and topologically a Morse function.

In Section 3.1 we refine the definition of Frame Curves, recall the shape of
the singularities of the optimal synthesis (classified in Chapter 2) and define
a suitable set of bad points. In Section 3.2 the definition of optimal strip is in-
troduced and the local properties of the Minimum Time Front, briefly MTF,
are studied. In Section 3.3 we prove that the minimum time function is topo-
logically a Morse function. The case of a two-dimensional initial manifold is
discussed in Appendix B. The results developed in this Chapter were obtained
in [40].

3.1 Basic Definitions and Statements of Results

In Chapter 2 it was proved that, under generic assumptions, the problem of
reaching in minimum time every point of the reachable set for the system
(3.1) admits a regular synthesis and it is provided a complete classification of
all types of Frame Points (briefly FPs) and Frame Curves (FCs).

We call γ± : [0, t±f ] → M the extremal trajectories exiting x0 with con-

stant control ±1, where t±f are the last times in which γ± are extremal (if
they are less than τ) or τ (otherwise).

Moreover let t±op the last times in which γ± are optimal, we have t±op ≤ t±f .

We define γ±op = γ±|[0,t±op].
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Remark 48 Notice that in Chapter 2 γ± were the trajectories exiting x0 with
constant control ±1 defined on the whole [0, τ ].

We recall that all the possible FCs are the following:

• FCs of kind Y (resp. X), that correspond to subsets of γ+
op (resp. subsets

of γ−op),
• FCs of kind C, called switching curves, that are curves made of switching

points,
• FCs of kind S, i.e. turnpikes,
• FCs of kind K, called overlaps, reached optimally by two trajectories com-

ing from different directions.
• FCs that are arcs of optimal trajectories that start at FPs. These trajec-

tories “transport” special information. Here we need to distinguish three
kinds of these curves:
– curves of kind γA that are abnormal extremals (recall that they are

bang-bang, see Proposition 2, p. 49),
– curves of kind γk that are curves passing through an endpoint of an

overlap (i.e. that start at the FPs of kind (Y,K)3 (S,K)2, (C,K)1, see
below)

– curves of kind γ0 that are the other arcs of optimal trajectories that
start at FPs.

There are eighteen topological equivalence classes of FPs: (X,Y ), (Y,C)1,2,3,
(Y, S), (Y,K)1,2,3, (C,C)1,2, (C,S)1,2, (C,K)1,2, (S,K)1,2,3, (K,K). The op-
timal synthesis near each Frame Point is showed in Figure 2.9, p. 61.

Definition 49 We define the following sets of bad points:

• badk := {x ∈ R(τ) : there exist two optimal trajectories γ1, γ2 : [0, T ] →
M , T > 0 and ε > 0 such that γ1(0) = γ2(0) = x0, γ1(T ) = γ2(T ) = x,
γ1(t) 6= γ2(t) for every t ∈ [T − ε, T [}.

• badγ := {x ∈ R(τ) : there exist two optimal trajectories γ1, γ2 : [0, T ] →
M , T > 0, a ∈]0, T [ and 0 < ε < a such that γ1(0) = γ2(0) = x0,
γ1(T ) = γ2(T ) = x, γ1(t) = γ2(t) for t ∈ [a, T ] and γ1(t) 6= γ2(t) for
t ∈ [a− ε, a[}.

• badCV := badk ∪ badγ .
• badCX := Supp(γ+

op) ∪ Supp(γ−op) \ (γ+(t+f ) ∪ γ−(t−f )).

Remark 49 Of course badk is the set of all the overlap FCs and badγ is the set
of γk’s. Moreover the set badCX is the optimal part of Supp(γ±) if t±op < t±f ,

otherwise it is Supp(γ±) without the terminal point. See Figure 3.2.

Definition 50 The minimum time front in time 0 < T < τ (in the following
MTF) is the T–level surface of T(x):

FT = {x ∈ R(τ) : T(x) = T}. (3.5)
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Fig. 3.2. Definition 49

We want to prove that, under generic conditions on (F,G) and for generic T ,
the corresponding MTF is a one dimensional piecewise C1 compact manifold.
More precisely the result is valid for every T such that the following conditions
hold.

(C1) No FP of kind (Y,K)2, (Y,K)3 or (K,K) is on the front FT .
(C2) The front FT is not tangent to badk.

Definition 51 Let x ∈ FT . We define the contingent cone to the set R(T(x)) =
R(T ) at x as:

CC(R(T(x)), x) = {v ∈ TxM : ∃ ξ :] − ε, ε[→ R(T(x)) smooth s.t.

ξ(0) = x, ξ̇(0) = v}.

and the normal cone as:

CN (R(T(x)), x) = {w ∈ T ∗
xM : < w, v >≤ 0, for all v ∈ CC(R(T(x)), x)}

Let x ∈ ∂R(T(x)). Notice that if ∂R(T(x)) is smooth at x then we have
CN (R(T(x)), x) = {α∇T(x) : α ≥ 0}. When M = R

2 and ∂R(T(x)) has a
corner at x, we have the following: R(T(x)) is convex at x iff CN (R(T(x)), x)
is a cone with nonempty interior while R(T(x)) is concave iff CN (R(T(x)), x) =
{∅}.
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In the next section, we prove the following:

Theorem 27 (Smoothness Properties of FT ) Under generic conditions
on (F,G), for 0 < T < τ satisfying conditions (C1) and (C2), FT is a
one–dimensional piecewise C1 compact embedded submanifold of M . Moreover,
x ∈ FT is a point at which FT is not C1 iff:

(case 1) x ∈ badCV or
(case 2) x ∈ badCX .

For every such x we have CN (R(T ), x) = {0} (case 1) or Int(CN (R(T ), x)) 6=
∅ (case 2), i.e. if M = R

2 then R(T ) is concave at x if x ∈ badCV and convex
if x ∈ badCX .

Theorem 28 (FT on Abnormal Extremals) Fix 0 < T < τ , let x̄ ∈
FT and suppose x̄ /∈ badCV ∪ badCX . Let γ̄ be the unique optimal trajectory
reaching x̄. Then, under generic conditions, FT is tangent to Supp(γ̄) at x̄ iff
γ̄ is an abnormal extremal.

Similar properties to the ones described by this Theorem were studied in
[32, 129].

3.2 Properties of the Minimum Time Front FT

To prove Theorems 27, p. 132 and 28, p. 132, we first study the smoothness
properties of the MTF in a neighborhood of Supp(γ+

op)∪Supp(γ−op). From now
on, for simplicity, we consider the case M = R

2 and x0 = 0. The conclusions
are valid in the general case mutatis mutandis.

3.2.1 Definition of Strips

Now we give the key definition of optimal strip. An optimal strip is essentially
a one parameter continuous family of optimal trajectories formed by the same
sequence of arcs.

Definition 52 Let a, b be two real numbers such that 0 ≤ a < b ≤ τ , x ∈
R(τ) and f : [a, b] → R a function such that f(α) ≥ α for every α ∈ [a, b].
A set of trajectories Sa,b,x,f = {γα : [0, f(α)] → M , α ∈ [a, b], γa(a) = x} is
called an optimal strip if:

i) ∀ α ∈ [a, b], γα : [0, f(α)] → M , is an optimal trajectory for the control
problem (3.1). Moreover there exists ε > 0 such that γ|[α,α+ε] corresponds
to a constant control ±1.

ii) ∀ α ∈]a, b[, γα does not switch on ∆−1
A (0) ∪∆−1

B (0) after time α.
iii) The set Ba,b,x,f = {y ∈ R(∞) : ∃ α ∈ ]a, b[ and t ∈]α, f(α)[ such that

y = γα(t), t is a switching time for γα} is never tangent to X or Y .
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iv) The map η : α ∈ [a, b] 7→ γα(α) ∈ M is a bang or singular arc and for
a ≤ α′ ≤ α ≤ b, it holds γα(t) = γα′(t) for t ∈ [0, α′].

The function η is called the base of the optimal strip, moreover Int(Sa,b,x,f ) :=
{γα : α ∈]a, b[} is called an open optimal strip and ∂Sa,b,x,f := {γa, γb} is
called optimal strip border. The concept of strip is clarified in Figure 3.3.

C

γ
a

(a)

γ
b

(b)

(α)=γ (α)
α

C
S or X or Y

x=

γ
b

γ
aη

Fig. 3.3. optimal strip

The construction of the optimal synthesis, as in Chapter 2, can be done in the
following way, with a new algorithm. One first constructs all optimal strips
bifurcating from γ±op. Then one studies the evolution of each strip. It can
happen that an optimal strip is divided into two strips when some trajectory
of the strip enters a turnpike. This happens at Frame Points of kind (C,S)1
and (S,K)1 (moreover two strips with the turnpike as base start at these
points). A strip can terminate on some K curve. Finally, a strip can glue
together with another strip at Frame Points of kind (Y,K)3, (C,K)1 and
(S,K)2 (indeed the strip is divided into two parts, one of which ends on the
K curve and the other glues together with another strip).
Let {SiM}i∈I be the set of all the maximal strips, i.e. the strips with maximal
base and maximal time f(α). Clearly we may split the synthesis Γ as:

Γ =
⋃

i∈I
SiM .

This partition of the optimal synthesis permits to study the evolution of the
MTF and the properties of the minimum time function separately for the
base, the borders, the internal of the strips and for the overlap curves. Notice
that if Sa,b,x,f is a maximal strip then f(α) < τ for some α ∈]a, b[ iff there
exists an overlap curve K such that γα(f(α)) ∈ K. We can split the maximal
strips in such a way that they satisfy the following:

v) either {γα(f(α)), α ∈ [a, b]} is a K curve or f(α) = τ for every α ∈ [a, b].

Moreover notice that every FC of the optimal synthesis, that is not an overlap
curve, is the support of a base or the support of a border of an optimal strip.
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In Section 3.2.2 we study the evolution of FT in a neighborhood of x0 = 0,
while in Section 3.2.3 in a neighborhood of γ+

op ∪ γ−op. Then in Section 3.2.4
we study the evolution of the MTF on the other bases of the strips (i.e the
turnpikes), in Section 3.2.5 on the internal of the strips, in Section 3.2.6 on
overlap curves and finally in Section 3.2.7 on the borders.

3.2.2 FT in a Neighborhood of the Origin

Choose a local system of coordinates such that:

Y =

(

1
0

)

, X(x) =

(

−1 +O(x1, x2)
−b x1 + b′x2 +O(|x|2)

)

, b < 0. (3.6)

The expressions for γ+
op and γ−op are:

γ+
op(t) =

(

t
0

)

, γ−op(t) =

(

−t+O(t2)
1
2bt

2 +O(t3)

)

. (3.7)

Let us compute the MTF along γ+
op, in the region where x2 < 0. Consider

a trajectory γα corresponding to constant control -1 on the interval [0, α[
and to constant control +1 on the interval [α, T ] where α belongs to the
interval [0, T ]. Using the expressions (3.7) it follows that γα(T ) has coordinates
x1(α) = T − 2α + O(α2), x2(α) = 1

2bα
2 + O(α3), from which it follows the

expression for the MTF:

x2(x1) =
1

8
b(x1 − T )2 +O(x3

1). (3.8)

Let us compute the MTF along γ+
op, in the region where x2 > 0. A point with

x2 > 0 is reached at time T by a trajectory corresponding to constant control
+1 in the interval [0, T−α[ and to constant control -1 in the interval [T−α, T ]
where α belong to the interval [0, T ]. Consider now an optimal trajectory γ−

η

of (3.1), corresponding to constant control -1, and having initial condition
γ−η (0) = (η, 0). We have:

γ−η (t) =

(

η − t+O(t2, tη)
1
2bt

2 − bηt+O(t3, η2t, ηt2)

)

. (3.9)

Similarly to the previous case we obtain the expression for the MTF:

x2(x1) =
1

2
bT (x1 − T ) +

3

8
b(x1 − T )2 +O((x1 − T )2).

In the same way we may compute the MTF along γ−op, moreover the MTF is

clearly smooth on I(0)\
(

Supp(γ+
op)∪Supp(γ−op)

)

, where I(0) is a neighborhood
of the origin.
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This result can be summarized in the following (see Figure 3.4):

Proposition 7 For T > 0, sufficiently small, FT is a 1–dimensional piece-
wise C1 embedded compact submanifold of M . The only two points in which
FT is not C1 are the points FT ∩ Supp(γ+

op) and FT ∩ Supp(γ−op). Moreover if

x is a such point we have Int(CN (R(T ), x)) 6= ∅, that is R(T ) is convex at x
(see Figure 3.4).

F

+

−γ

γ

T
x1

x 2

o

o

Fig. 3.4. Proposition 7

3.2.3 FT in a Neighborhood of γ+
op ∪ γ−op

Let I(γ±op) be a neighborhood of Supp(γ+
op)∪Supp(γ−op). In this subsection we

study the smoothness properties of FT ∩ I(γ±op). For this purpose we analyze
FT in a neighborhood of all the (Y, . ) FPs ordered by increasing time.

Analysis up to the first (Y, S) or (Y,C)1 FP.

Assume t′+1 > 0 (being the case t+1 > 0 entirely similar) and suppose that at
the point γ+

op(t
′+
1 ) a turnpike starts. In this case it bifurcates on the left of

γ+
op. Choose a system of coordinates such that:























Y =

(

1
0

)

,

X(x) =

(

a0 + a1(x1 − t′+1 ) + a2x2 +O((x1 − t′+1 )2, x2
2)

b0 + b1(x1 − t′+1 ) + b2x2 +O((x1 − t′+1 )2, x2
2)

)

,

a0 < 1, b0 > 0.

(3.10)
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To have a (Y, S) point at (t′0, 0) the following conditions must hold:

1) (t′+1 , 0) ∈ ∆−1
B (0) that implies:

a2 =
a1b0
a0 − 1

.

Under this condition, the set ∆−1
B (0) is locally described by the equation:

x2(x1) = ms(x1 − t′+1 ) +O((x1 − t′+1 )2) where ms =
a1a2 − a1b1
a2
2 − a1b2

,

and we assume the generic conditions a2
2 − a1b2 6= 0, ms 6= 0. The case

in which a2
2 − a1b2 = 0 is the case in which the tangent to the turnpike is

vertical.
2) X and Y point to opposite sides of ∆−1

B (0) that implies arctan(b0/a0) >
arctan(ms) where we assume [0, π[ as range of the function arctan.

Let us compute the evolution of the MTF in a neighborhood I of (t′+1 , 0). We
refer to Figure 3.5.

γ

γ S
Ω

Ω Ω
+

1

2

3

0

o

Fig. 3.5. Evolution of the MTF in a neighborhood I of (t′+1 , 0)

We have to compute the front FT in the region Ω1 ⊂ I enclosed by γ+
op (before

time t′+1 ) and the trajectory γ0 corresponding to constant control -1 starting
from (t′+1 , 0), on the region Ω2 enclosed by γ0 and the turnpike, finally on the
region Ω3 between the turnpike and γ+

op (after time t′+1 ).
In Ω1 using the expression of X(x) given by formula (3.10), we obtain for FT
the expression:

x2(x1) =
b0

a0 − 1
(x1 − T ) +O((x1 − t′+1 )2). (3.11)

To compute the locus FT in Ω2 and Ω3 we need the explicit expression for
the singular trajectory. The velocity of the singular trajectory at a point
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x ∈ S is the convex combination of X(x) and Y (x) corresponding to the
direction of the turnpike. This guarantees the smoothness of the MTF on
S (see Proposition 9, p. 141) and gives us the expression for the singular
trajectory γs (S = Supp(γs), γs(0) = γ+

op(t
′+
1 )):

γs(t) =

(

t′+1 + v1t+O(t2)
v2t+O(t2)

)

where:

v1 =
b0

(

a1 b0
2 − (−1 + a0)

2
b2

)

a1 b0

(

−1 + 2 a0 − a0
2 + b0

2
)

+ (−1 + a0)
2 ((−1 + a0) b1 − b0 b2)

(3.12)

v2 =
(−1 + a0) b0 (a1 b0 + b1 − a0 b1)

a1 b0

(

−1 + 2 a0 − a0
2 + b0

2
)

+ (−1 + a0)
2 ((−1 + a0) b1 − b0 b2)

.(3.13)

With similar arguments to the ones of the previous Section we obtain the
expression for FT in Ω2:

x2(x1) = v2(T − t′+1 ) +
(x1 − t′+1 ) − v1(T − t′+1 )

(a0 − v1)
(b0 − v2) +O((x1 − t′+1 )2).

Using (3.12) and (3.13), we obtain exactly the expression (3.11). This means
that FT is C1 at the intersection point with Supp(γ0). Exactly the same result
holds in the case when condition 2) fails that is when at (t′+1 , 0) a switching
curve bifurcates from γ+

op. In this case, we have to use directly the PMP, but
we omit this proof because it is entirely similar to the proof of Proposition 10
below. The smoothness properties of FT in a neighborhood of Supp(γ+

op|]0,t′+
1

])

comes immediately from the shape of the synthesis in this region. All these
results are summarized in the following:

Proposition 8 Suppose t′+1 > 0, fix y0 ∈ Supp(γ+
op|]0,t′+

1
]) and let t0 be such

that y0 = γ+
op(t0). There exists a ball B with center in y0 such that if ε > 0

satisfies γ+
op(T ) ∈ B for every T ∈]t0 − ε, t0 + ε[, then FT ∩ B is a one

dimensional piecewise C1 embedded submanifold of M . Moreover FT is not C1

only at the point x = FT ∩ Supp(γ+
op) and we have Int(CN (R(T ), x)) 6= ∅,

that is R(T ) is convex at x.

Analysis up to the First (Y,K)1 or (Y,C)2 FP.

Assume s+1 > 0 (being the case s′+1 > 0 entirely similar). In this case an
abnormal extremal γA bifurcates on the right of γ+

op(s
+
1 ) and we can have two

kind of FPs:

• (Y,K)1 if an overlap curve starts at γ+
op(s

+
1 ),

• (Y,C)2 if a switching curve starts at γ+
op(s

+
1 ).
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The analysis of the first case is postponed to Section 3.2.6, hence let us con-
sider the second case. Set x = (x1, x2), and choose a local system of coordi-
nates as done in formulas (2.66) and (2.67) p. 94:

Y ≡
(

1
0

)

X(x) =

(

−1 + a1x1 + a2x2 +O(|x|2)
b1x1 + b2x2 +O(|x|2)

)

, b1 > 0, (3.14)

X(x) =

(

c0 + c1(x1 − s+1 ) + c2x2 +O(|x− (s+1 , 0)|2)
d1(x1 − s+1 ) + d2x2 +O(|x− (s+1 , 0)|2)

)

,

{

c0 ∈]0, 1[,
d1 < 0.

(3.15)

For the signs of b1 and d1 and the condition c0 < 1 see the discussion after
formula (2.67) p. 94, while the condition c0 > 0 follows from the fact that
a C curve originates. The expression for X in formula (3.14) is useful in a
neighborhood of (0, 0), while the expression (3.15) gives information in a
neighborhood I of (s+1 , 0). In Section 2.8, p. 86, we proved that at (s+1 , 0) a
C curve starts if:

δ := c0d1 − b1

(

1 − c0
2

)2

< 0. (3.16)

Indeed, following Chapter 2, one can compute the expression of the curve
D reached at the same time by trajectories leaving the origin with different
controls. The above condition corresponds precisely to having that extremal
trajectories reach the C curve before intersecting D. If the opposite happens
D is an overlap curve of the optimal synthesis.

In Section 2.8, p. 86, we computed the expression of the C curve starting
at (s+1 , 0) and of the abnormal extremal bifurcating from the same point:

x2(x1) = − 2d2
1

b1(1 − c0)2
(x1 − s+1 )2 +O((x1 − s+1 )3), (3.17)

γA(t) =

(

x1(t)
x2(t)

)

=

(

s+1 + c0t+O(t2)
d1(

1
2c0t

2) +O(t3)

)

. (3.18)

Supp(γA) is described as:

xγA

2 (x1) =
1

2

d1

c0
(x1 − s+1 )2 +O((x1 − s+1 )3). (3.19)

Divide I in the four regions ΩA, ΩB , ΩC , ΩD delimited by γ+
op, C and γA as

in Figure 3.6. In the following we compute FT (T = τ1 + τ2) in these regions
and we check that on C and γA the tangents to FT from both sides coincide.

In ΩA the expression for FT is obtained similarly to (3.8):

xA2 (x1) =
1

8
b1(x1 − T )2 +O(x3

1). (3.20)
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Fig. 3.6. Analysis of FT at the (Y, C)2 FP
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Fig. 3.7. Analysis of FT at the (Y, C)2 FP

A point xB ∈ ΩB is reached by an optimal trajectory γB corresponding to
constant control -1 in the interval [0, τ1], to constant control +1 in the interval
[τ1, t̄] (where t̄ is the time in which this trajectory intersects the C curve) and
to constant control -1 in the interval [t̄, T ] (see Figure 3.7).
Let us parameterize the curve C with τ1. Using (3.17) we obtain the expression:

{

x1(τ1) = s+1 + h1(τ1) +O(τ2
1 )

x2(τ1) = h2(τ1) +O(τ3
1 ),

where h1(τ1) :=
b1(1 − c0)

2d1
τ1, h2(τ1) :=

1

2
b1τ

2
1 .

The expression for an optimal trajectory γh of (3.1) corresponding to constant
control -1, and having initial condition γh(0) = (s+1 + h1, h2) ∈ I is:

γh(t) =

(

x1(t) = s+1 + h1 + c0t+O(t2, h1t, h2t)
x2(t) = h2 + d1(

1
2c0t

2 + h1t) +O(t3, h1t
2, h2

1t, h2t
2, h2

2t)

)

. (3.21)
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It follows that xB ∈ FT ∩ΩB has coordinates:

{

xB1 (τ1) = s+1 + h1(τ1) + c0β(τ1) +O(τ2
1 )

xB2 (τ1) = h2(τ1) + d1(
1
2c0β(τ1)

2 + h1(τ1)β(τ1)) +O(τ3
1 ),

where β(τ1) := T − t̄ = T − h1(τ1)− s+1 − 2τ1. Hence the expression for FT in
ΩB :

xB2 (x1) =
1

2
c0d1(T − s+1 )2 + d1(T − s+1 )x′1

+ d1
(2 − c0)b1 + 4d1

8δ
x′21 +O(x′31 ), (3.22)

where x′1 := (x1−s+1 −c0(T−s+1 )). Finally, the front FT ∩ΩC can be obtained
by lengthy but straightforward computations:

xC2 (x1) = d1
x′1

1 − c0
(T − s+1 − x′1

1 − c0
) +

1

2
c0d1(T − s+1 − x′1

1 − c0
)2

+O((T − s+1 − x′1
1 − c0

)3) (3.23)

=
1

2
c0d1(T − s+1 )2 − d1(

1

2
c0 − 1)(T − s+1 )

x′1
1 − c0

+ d1(
1

2
c0 − 1)(

x′1
1 − c0

) +O((
x′1

1 − c0
)3).

Now it is easy to check the following:

• ẋA2 (x̃1) = ẋB2 (x̃1) where x̃1 is the intersection of the two fronts with the C
curve. This means that FT is C1 in x̃1.

• ẋB2 (x̄1) = ẋC2 (x̄1) = ẋγA

2 (x̄1) where x̄1 is the intersection of the two fronts
with Supp(γ0). This means that FT is C1 in x̄1 and it is tangent to γA in
x̄1.

Analysis of the other Frame Points.
The front FT at the other singular points along γ±op can be analyzed by ar-
guments completely similar to those used above. The only delicate points are
γ±op(t

+
op). At these points we can have a (Y,K)2,3 or a (Y,C)3 FP. The first

two cases are analyzed in details in the proof of Theorem 26. In the case
(Y,K)3 that is the only case in which a γk trajectory generates from γ±op, it is
easy to check that the MTF forms a concave corner on γk. The last case, can
be studied as the interior of strips (see below). We obtain that FT is always
a piecewise C1 manifold with corners only on γ±op. Notice that an abnormal
extremal may bifurcates from a (Y,C)3 points and in this case we can prove
that the front is tangent to the abnormal extremal by arguments similar to
those used above.
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3.2.4 The MTF on Other Bases

The front FT on the singular trajectories is described by the following:

Proposition 9 Suppose that there exists a point y0 ∈ FT ∩ S where S is a
turnpike of the optimal synthesis. Then FT is C1 at y0.

Proof. It is a consequence of the fact that the velocity of the singular tra-
jectory at a point x ∈ S is the convex combination of X(x) and Y (x) corre-
sponding to the direction of the turnpike. Indeed, fix y ∈ FT , y = γs(T ) and
for every ε small let x = γs(T − ε) where γs runs the turnpike. Notice that,
generically, γ̇s(T ) = λX(y) + (1 − λ)Y (y), for some 0 < λ < 1. Let γεX be
the X–trajectory such that γεX(0) = x and define γεY in the same way with X
replaced by Y . We have:

γεX(ε) = x+X(y)ε+O(ε2) ∈ FT

γεY (ε) = x+ Y (y)ε+O(ε2) ∈ FT .

Now the tangent from the left and from the right to FT at y are computed
using y − x = γ̇s(T )ε+O(ε2), by:

d

dε
(γεX(ε) − y) = X(y) − γ̇s(T ) = (1 − λ)(X − Y )(y)

d

dε
(γεY (ε) − y) = Y (y) − γ̇s(T ) = −λ(X − Y )(y),

(3.24)

proving that FT is C1 at y.

3.2.5 The MTF on Open Strips

In this Section we prove that the MTF restricted to an open strip is always
C1.

Remark 50 Notice that the C1 property of the MTF can also be obtained
reasoning on the position of the covectors with respect to the MTF. More
precisely, each covector of the PMP has negative scalar product with all vari-
ational vectors corresponding to needle variations. From the structure of the
optimal synthesis, it is clear that, fixed an optimal trajectory, the neighboring
trajectories of the optimal synthesis can be obtained by needle variations. This
implies that the MTF of a strip can not form angles in such a way that the
reachable set is locally concave, otherwise this would contradict optimality.
On the other side, after the first switching the covector is determined up to
the multiplication by a positive constant, hence also angles of the MTF that
render the reachable set locally convex are prohibited.
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Fix an optimal strip Sa,b,x,f and let T ∈]a, sup{f(α), α ∈]a, b[}[. We define
the strip-MTF (in the following s-MTF) to be the set:

F a,b,x,fT := {y ∈ FT : y = γα(T ) for some γα ∈ Sa,b,x,f , α ∈]a, b[}.

Proposition 10 Let Sa,b,x,f be an optimal strip, T ∈]a, sup{f(α), α ∈]a, b[}[
and FT the corresponding s-MTF. Then F a,b,x,fT is a one–dimensional C1

embedded submanifold of M . Moreover if T ∈]a, inf{f(α), α ∈]a, b[}[ then

F a,b,x,fT is also connected.

The proof follows from the next two Lemmas. With the first we prove that
the s-MTF is smooth when it intersects the “first” switching locus. With the
second we prove that if the s-MTF is C1 when it intersect a switching locus,
then it is C1 when it intersects the subsequent. By induction we reach the
conclusion.

Lemma 17 Let Int(Sa,b,x,f ) be an open optimal strip. Fix α0 ∈]a, b[ and
suppose that T0 ∈]α0, f(α0)[ is the first switching time of γα0

after α0. Then

F a,b,x,fT0
is C1 in y0 := γα0

(T0).

Proof. Suppose that γα0
corresponds to constant control +1 in the interval

]α0, T0[. Choose a local system of coordinates in such a way that Y ≡ (1, 0),
γα0

(α0) = (0, 0) and the expression for the base of the strip is:

η(t) =

(

0
t− α0

)

, t ∈]a, b[.

In this system of coordinates we have y0 = (T0 − α0, 0) and the expression of
G on the base is (t ∈]a, b[):

G(η(t)) =























1
2

(

1
−1

)

if the base is a X–trajectory, so X(0, t) = (0, 1)

1
1−ϕ(η(t))

(

1
−1

)

if the the base is a Z–trajectory

so (F + ϕG)(0, t) = (0, 1).

(3.25)

Let λα be the covector associated to γα (α ∈]a, b[). From the condition λα(α) ·
G(γα(α)) = 0 we obtain, up to multiplication by a constant λα(α) = ±(1, 1).
The switching curve C passing from y0 is determined by the equation:

λα(t) ·G(γα(t)) = 0. (3.26)

Let tα be the first switching time of γα after α, then λ̇α(t) = 0 for t ∈ [α, tα].
We get that condition (3.26) is equivalent to:

G1(x) +G2(x) = 0, (3.27)

where G1(x) and G2(x) are the two components of G.
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In terms of components of the vector field X, (3.27) can be written as:

X1(x) +X2(x) = 1. (3.28)

We suppose that at y0, F a,b,x,fT and C are not tangent otherwise the conclusion
follows easily. Assume that we are in the situation of Figure 3.8 (the other
case being similar). In a neighborhood of the point y0 we may parameterize
the C curve by a function:

y(α) =

(

T0 − α0 − a(α)
α

)

, (3.29)

γα

γα

F
T

a

b

γα0

y(  )α

y =(T          ,0)0

0
(T  ) 

0

C

−α

α 
0

0

0

Fig. 3.8. Proof of Lemma 17

where a(·) is a C1 function defined in a neighborhood of α0 and satisfying
a(α0) = 0. Define for α > α0:

z(α) := γα(T0) = y(α) + (a(α) + α0 − α)X(y0) +O(α2). (3.30)

It follows

ż(α0) =

(

−ȧ(α0) + (ȧ(α0) − 1)X1(y
0)

1 + (ȧ(α0) − 1)X2(y
0)

)

.

While in the region such that x2 < 0 we have that the s–MTF has direction
(−1, 1). The front F a,b,x,fT is C1 in y0 iff ż(α0) is parallel to (−1, 1). This
condition is satisfied since (3.28) holds.

Lemma 18 Let Int(Sa,b,x,f ) be an open optimal strip. Fix α0 ∈]a, b[ and
suppose that T0, T1 ∈]α0, f(α0)[ are two subsequent switching times of γα0

after α0. Suppose that F a,b,x,fT0
is C1 in y0 := γα0

(T0). Then F a,b,x,fT1
is C1 in

y1 := γα0
(T1).
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Proof. Suppose that γα0
corresponds to constant control +1 in the interval

]T0, T1[. Set x = (x1, x2), choose a local system of coordinates in such a way
Y ≡ (1, 0), y0 = γα0

(T0) = (0, 0), the expression for the switching curve C0

passing from y0 is:

C0 = {x ∈M : x1 = 0, x2 ∈]a′, b′[ a′ < 0, b′ > 0},

and X(0, x2) = (β, β) (β ∈ R \ {0}) for x2 ∈]a′, b′[ (see Figure 3.9). For
simplicity set α0 = 0.

a’

b’

γ
0

αα =0
0

CC
y =(T  ,0)

1
y

0
1

=(0,0)0 1

Fig. 3.9. Proof of Lemma 18

In this system of coordinates we have y1 = (T1 − T0, 0) and the expression of
G on C0 is:

G((0, x2)) =
1

2

(

1 − β
−β

)

for every x2 ∈]a′, b′[. (3.31)

Using the same reasoning as to the proof of the previous Lemma, we have that
the switching curve C1 passing through y1 is determined by the condition:

X1(x) +
1 − β

β
X2(x) = 1. (3.32)

Suppose that we are in the same situation of the proof of Lemma 17 (see
Figure 3.8). Let T (α) and TT (α) be the switching times of γ(α) on respectively
switching curves C1 and C2. Define a(α) = (T1−T0)−T (α)−TT (α) and notice
that a(·) is C1 with a(0) = 0. At time T1 a trajectory with α > 0 reaches the
point:

z(α) := γα(T1) = y(α) + (a(α) − αṪ (0))X(y1) +O(α2), (3.33)

where:

y(α) =

(

T1 − T0 − a(α)
α

)

,
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(being a(·) a C1 function defined in a neighborhood of α = 0 and satisfying
a(0) = 0) and T (α) is the switching time of γα on the switching curve passing
from y0. It follows:

ż(0) =

(

−ȧ(0) + (ȧ(0) − Ṫ (0))X1(y
1)

1 + (ȧ(0) − Ṫ (0))X2(y
1)

)

.

This vector must be parallel to the vector (−Ṫ (0), 1), i.e. the following con-
ditions must hold:

(c1) Ṫ (0) = 1−β
β

if Ṫ (0) 6= 0,

(c2) β = 1 if Ṫ (0) = 0.

Imposing that F a,b,x,fT0
is C1 in y0 := γα0

(T0), it is easy to check that (c1)
and (c2) are verified.

3.2.6 FT on Overlap Curves

The MTF along overlap curves is described by the following:

Proposition 11 Let y0 = FT ∩ K where K is some overlap curve of the
optimal synthesis and suppose that condition (C2) (at the end of Section 3.1,
p. 129) holds. Then there exists a ball B centered at y0 such that FT ∩ B is
not C1 only at y0. Moreover, generically, CN (R(T ), y0) = {0}, that is R(τ)
is concave at y0.

Proof. Choosing B sufficiently small, we have that y0 is the only possible
point in which FT is not C1, indeed (FT ∩ B) \ {y0} is contained in interiors
of strips. By condition (C2), the two connected components of (FT ∩ B) \
{y0} cannot be tangent to K. Moreover the K curve is reached from the
two sides by trajectories with constant control +1 and −1 respectively. By
contradiction suppose that we have Int(CN (R(T ), y0)) 6= ∅. This means that
we have the situation of Figure 3.10. The point x̄ is reached by a trajectory
γ−1 (corresponding to constant control -1) at time T , while it is reached
at time T ′ < T by a trajectory γ+1 corresponding to constant control +1.
This is due to the fact that γ+1 reaches x′ at time T . This contradicts the
optimality of γ−1. The situation in which (FT ∩B) is C1 in y0 is not generic.
Thus generically R(T ) is concave at y0, hence CN (R(T ), y0) = {0}.

3.2.7 FT on Borders

In this section we study the smoothness property of the MTF on strip borders.
In the first and second Sections we analyze respectively the strip borders of
kind γ0 and γA. In the third Section we analyze the strip borders of kind
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K

F T x
γ−1

γ +1

x’

y 0

Fig. 3.10. Proof of Proposition 11

γk. Since at the two sides of a border of a strip the trajectories have the
same control, we have to analyze only the FPs at which this border generates.
The FPs of kind (Y, .) are already studied in Section 3.2.3, p. 135. Here we
complete the analysis.

FT on Strip Border of Kind γ0

The strip borders of kind γ0, that do not bifurcate from γ±op, are generated at
the following FPs: (C,C)1, (C,S)1,2, (S,K)1, and at (C,C)2 if ∆A 6= 0 (see
Figure 2.9, p. 61). We analyze in details the case (C,S)1 and (S,K)1. The
other cases can be treated by the same argument used in Section 3.2.4.

Assume to have a (C,S)1 or a (S,K)1 FP at y1 := γ0(t1) and suppose the
following:

• the previous switching time of γ0 is t0 < t1;
• γ0 corresponds to constant control +1 in the interval [t0, t1];
• y0 := γ0(t0) belongs to a X FC (being similar the cases in which it belong

to a switching curve or to a turnpike).

Set T0 = t1 − t0. Choose a system of coordinates and shift the time in such a
way that y0 = γ0(0) = 0, and:

Y =

(

1
0

)

, X(0, x2) =

(

0
1

)

X(x) =

(

a0 + a1(x1 − T0) + a2x2 +O((x1 − T0)
2, x2

2)
b0 + b1(x1 − T0) + b2x2 +O((x1 − T0)

2, x2
2)

)

, a0 < 1, b0 > 0.

To have a (C,S)1 or a (S,K)1 FP at y1 the following condition must hold
(cfr. Section 3.2.3, p. 135):

a2 =
a1b0
a0 − 1

. (3.34)
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Fig. 3.11. Analysis of the minimum time front at frame points of type (C, S)1 or
(S, K)1

Exactly as in Section 3.2.3, we obtain the equation of the singular trajectory
starting from y1 at time 0:

γs(t) =

(

T0 + v1t+O(t2)
v2t+O(t2)

)

,

where v1 and v2 are given by formulas (3.12) and (3.13). Let I be a neighbor-
hood of y1 and let us compute the MTF in the region Ω1 enclosed by γ0 (after
T0) and S (see Figure 3.11). Consider a trajectory corresponding to constant
control +1 in [0, T0[, to the singular control ϕ(γs(t− T0)) on [T0, T0 + α[ and
to constant control +1 on [T0 + α, T ]. At time T this trajectory reaches the
point:

z(α) = (T0, 0) + αγ̇s(0) + (T − T0 − α)

(

1
0

)

+O(α2) ∈ Ω1.

It follows:

ż(0) = γ̇s(0) −
(

1
0

)

.

The MTF is C1 at γ0(T ) iff ż(0) is parallel to (1,−1), so we have to check the
condition:

v1 + v2 = 1. (3.35)

Let λ(·) be the covector associated to γ0(·). From the following equations:

λ(0) ·G(γ0(0)) = 0,

λ̇(t) = 0 ∀ t ∈ [0, T0],

λ(T0) ·G(γ0(T0)) = 0,

λ(T0) · [F,G](γ0(T0)) = 0,
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we obtain:

a0 + b0 = 1, a1 + b1 = 0. (3.36)

Using (3.36) and (3.34) one checks immediately that condition (3.35) is veri-
fied.

FT on Strip Border of Kind γA and Proof of Theorem 28

After the first switching, the only FP involving an abnormal extremal is the
point (C,C)2 where ∆A vanishes. In the following we prove that if tn, tn+1

are two consequent switching times for an abnormal extremal γA, and the
switching curve passing through tn is tangent to γA then the switching curve
passing through tn+1 is tangent to γA as well. From this fact, with an analysis
completely similar to that of Section 3.2.5, it follows that the MTF is C1 on
γA and it is always tangent to Supp(γA). This proves Theorem 28.

Let us consider only the case in which γA corresponds to constant control
+1 on [tn, tn+1], the opposite case being similar. Choose a local system of
coordinates and rescale the time in such a way that:

tn = 0, γA(tn) = 0,

Y ≡
(

1
0

)

X(x) =

(

e0 + e1x1 + e2x2 +O(|x|2)
f1x1 + f2x2 +O(|x|2)

)

,

X(x) =

(

g0 + g1(x1 − tn+1) + g2x2 +O(|x− (tn+1, 0)|2)
h1(x1 − tn+1) + h2x2 +O(|x− (tn+1, 0)|2)

)

.

We can parameterize the switching curve Cn through γA(tn) in the following
way. Given x ∈ Cn there exists (γx, λx) extremal that switches at x at time
τn(x). By induction, we can assume that τn is invertible for x near γ(tn) and
parameterize Cn by τn:

x1(τn) = αnτn +O(τ2
n),

x2(τn) = βnτ
2
n +O(τ3

n),

for some αn, βn that by genericity we may assume different from zero.
Let (γ̃, λ̃) := (γ̃, λ̃)τn

be the extremal trajectory of (3.1) switching at τn on
Cn and let τn+1 be the next switching time. We have:

γ̃(τn) =

(

αnτn +O(τ2
n)

βnτ
2
n +O(τ3

n)

)

, γ̃(τn+1) =

(

αnτn + τn+1 +O(τ2
n)

βnτ
2
n +O(τ3

n)

)

.

and:

λ̃(τn) ·G(γ̃(τn)) = 0, (3.37)

λ̃(τn+1) ·G(γ̃(τn+1)) = 0. (3.38)
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With computations entirely similar to the those of Section 3.2.7 and using sim-
ilar generic conditions we conclude that the switching curve passing through
γ(tn+1) has the expression:

x1(τn+1) = tn+1 + αn+1(τn+1 − tn+1) +O((τn+1 − tn+1)
2),

x2(τn+1) = βn+1(τn+1 − tn+1)
2 +O((τn+1 − tn+1)

3),

for some αn+1, βn+1 6= 0. This concludes the proof.

FT on Strip Border of Kind γk

The strip borders of kind γk, that do not bifurcate from γ±op, are generated at
the following FPs: (C,K)1, (S,K)2. Again it is easy to check that the MTF
forms a corner on γk. Moreover, for every x ∈ γk, one has CN (R(T(x)), x) =
{0} i.e. the reachable set is locally concave at x. For example in the (C,K)1
case, using again the PMP, one checks that the front is not deflected when
passing through the C curve. Since the front forms a concave angle on K, the
same happens on γk.

3.2.8 Proof of Theorem 27

The front at points in the interior of a strip or a strip border has been analyzed
in the previous sections.

Assume that x is a Frame Point and (C1) holds, so x is not of kind
(Y,K)2,3 or (K,K). The cases (Y,X), (Y,C)1,2,3, (Y, S) and (Y,K)1 have
been treated in Section 3.2.2, p. 134. The cases (C,C)1, (C,S)1,2, (S,K)1 and
(C,C)2 with ∆A 6= 0, were analyzed in Section 3.2.7, p. 146. The case (C,C)2
with ∆A = 0 is in Section 3.2.7, p. 148. Finally, the cases (C,K)1 and (S,K)2
are in Section 3.2.7, p. 149. The remaining case (C,K)2 is easily treated by
using Proposition 10, p. 142 and 11, p. 145.

Finally, if x is on a frame curve of kind K, that is where a strip may end,
and the condition (C2) holds then we can apply Proposition 11.

This concludes the proof of Theorem 27.

3.3 Proof of Theorem 26

We are going to prove Theorem 26, p. 129 analyzing the MTF first at points
inside a strip, then at points on Frame Curves and finally at Frame Points.

If x is a point inside a strip, not on a C curve, the wave fronts are locally
smooth one dimensional manifolds. Moreover, the optimal synthesis is locally
a flow box of one of the vector fields X and Y . It easily follows that the
minimum time function T is smooth and x is not a critical point (see Figure
3.1, p. 128), since T increases in the direction of X or Y .
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Assume now that x belongs to a Frame Curve (but is not a Frame Point).
If the Frame Curve is of kind X, Y , γ0 or S then the front is a piecewise C1

manifold and the minimum time is increasing along the Frame Curve, hence
the function T is locally topologically equivalent to a nonzero linear function
and x is not a critical point. Notice that indeed the front is C1 in case of γ0

and S curves. If the Frame Curve is of kind C then the front is C1 and there
is an increasing direction (indeed two directions X and Y ) so T is C1 and
topologically equivalent to a nonzero linear function and x is not a critical
point. We are left with the cases of K and γk Frame Curves. Given a Frame
Curve D of K type, there exist two Frame Curves D1 and D2 such that the
curve D is determined by the solution of the following system, see Chapter 2:

{

(exp tX)α1(s) = (exp t′Y )α2(s
′)

s+ t = s′ + t′
,

where (exp tV )x̄ indicates the integral trajectory at time t of the vector field
V starting from x̄ and α1 and α2 are two smooth parameterizations of the
curves D1 and D2 respectively. It is clear that under generic assumptions on
X and Y , hence on F and G, the above system determines a smooth curve D
such that the minimum time function T restricted to D is a Morse function.
We have now three cases:

a) x is not critical for T on D,
b) x is a maximum for T on D,
c) x is a minimum for T on D.

In case a), we are in the situation of Proposition 11, the MTFs near x are
piecewise C1 manifolds. The function T is increasing (or decreasing) in the
direction tangent to K and is topologically equivalent to a nonzero linear
function. Therefore x is not a critical point.

Assume case b) holds, then x is not a Frame Point and condition (C2)
is violated. Since T is increasing along the two strips ending at K, x is a
maximum for T. The MTF through x reduces to a point and is homeomorphic
to a circle for points in a neighborhood of x. Therefore T is topologically
equivalent to f(x1, x2) = −x2

1 − x2
2 at the origin, that is x is topologically a

maximum.
If c) holds, then either x is a Frame Point or x is not a Frame Point

and condition (C2) does not hold. Assume the latter occurs. Again, T is
increasing along the two strips ending at K. The MTF at x is formed by two
tangent parabolas through x, for points in a neighborhood is formed by two
branches that are smooth if they do not intersect the K curve. Therefore T
is topologically equivalent to f(x1, x2) = x2

1 − x2
2 at the origin, that is x is

topologically a regular saddle.
If the Frame Curve is of kind γk then we are in case a) above, indeed T is

increasing along γk, and we conclude in the same way.
We are left with the case of x Frame Point. The points along γ± have been

analyzed above and the minimum time function T is topologically equivalent
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to a linear function at those points. The same happens for the Frame Points
of kind (C,C)1,2, (C,S)1,2, (C,K)1,2, (S,K)1,2,3. It remains to analyze the
cases (Y,K)2,3 and (K,K).

Assume that x = γ+(T(x)) is a (Y,K)2 Frame Point (being the case of
γ− entirely similar). For ε > 0 sufficiently small, there are two strips S1,2

containing γ+|[T(x)−ε,T(x)] and one strip S3 reaching x from the other side.

We indicate by R+ the reachable set corresponding to trajectories of S1,2

and by R∗ the reachable set corresponding to trajectories of S3. Generically,
we have that Int(CN (R+(T(x)), x)) 6= ∅ and CN (R∗(T(x)), x) is a half line.
Hence x is the first point reached on the overlap curve K and is a minimum
for T restricted to K. The front FT(x) is formed by a smooth branch on the

strip S3 and by a piecewise C1 branch with an angle at x on the strips S1,2.
For times t < T(x), near T(x), the front Ft consists of one smooth branch
on S3 and one piecewise smooth on S1,2, while for t > T(x), near T(x),
consists of two piecewise smooth branches crossing K on opposite sides of x.
We conclude that x is topologically a regular saddle for T.

The analysis of the point (Y,K)3 can be done in a similar way. Notice
that x is an endpoint of K and one easily checks that x is a minimum for
T restricted to K. However, now there are four strips intersecting at x. Two
of them end at K coming from different directions, while the other two have
the γk curve through x as border with γ+ being the base of one of the two.
Again, we conclude that x is topologically a regular saddle for T.

Assume x is of kind (K,K). If x is reached by a γ0 Frame Curve then the
fronts on each side of K are C1 and generically we are in case a) above, where
D now is the union of the two K curves, and T is equivalent to a nonzero
linear function.

If x is reached by a γk Frame Curve, then the corresponding front has an
angle on γk and the reachable set is locally concave, see Section 3.2.7. The
function T has a maximum at x and x is topologically a maximum.

Thus, on R(τ), T is topologically a Morse function with the set Q being
the collection of all Frame Curves of Int(R(τ)).

3.4 Topology of the Reachable Set

From the the analysis of Chapter 2, it easily follows:

Theorem 29 (Topological Properties of R(T )) For every T , R(T ) is
connected. Moreover, if badk is empty, R(T ) is simply connected. At the times
T0 when (C1) or (C2) fails, the topology of the reachable set changes. In the
planar case, there exists n ∈ N such that for t in a left neighborhood of T0 the
reachable set R(t) is homeomorphic to a disk with n holes and for t in a right
neighborhood of T0, R(t) is homeomorphic to a disk with n+ 1 holes or n− 1
holes. For a general manifold it may also happen that we add a handle.



152 3 Generic Properties of the Minimum Time Function

Notice that if the first part of Theorem 29 applies, that is badk = ∅, then
the minimum time function has no critical point except x0 and thus the level
sets are homeomorphic to circles. More precisely, outside Supp(γ±op) the level
sets are diffeomorphic to circles. In this case, trivially one concludes that the
minimum time function topologically is a Morse function.

Exercises

Exercise 20 Define the generalized gradients of the value function:

∂−V (x) = {l ∈ R
2 : V (x) + l · (y − x) ≤ V (y)}

∂+V (x) = {l ∈ R
2 : V (x) + l · (y − x) ≥ V (y)}.

Compute ∂±V (x) for x ∈ Supp(γ±), for points on switching curves and on
turnpikes.

Exercise 21 With the definitions of Exercise 20, compute ∂±V (x) for x ∈ K
in Example 4 of Chapter 2, see pp. 68. Is there any point at which both are
empty?

Exercise 22 Determine the sets badk, badγ , badCV , badCX of Definition 49,
p. 130 for Example 13 of Chapter 2, see pp. 80.

Exercise 23 For Examples 1,2,3 and 4 of Chapter 2 determine the topology
of the reachable set for any time. Compute the times for which the topology
changes.

Exercise 24 Given a second order controlled equation, as in Section 2.10.1,
p. 118, can the corresponding reachable set change topology?
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Extremal Synthesis

In Chapter 2 an algorithm was defined to construct, under suitable conditions,
a structurally stable time optimal synthesis from x0 for the control system:

ẋ = F (x) + uG(x), x, x0 ∈M, |u| ≤ 1 (4.1)

where M is a smooth two dimensional manifold, and we assume F (x0) =
0. Roughly speaking, at step n the algorithm constructs the extremal arcs
made of n pieces such that each of them is either a bang arc or a singular
arc. Moreover, the not optimal arcs are cut by the algorithm. However, the
whole set of extremals happens to share a nice structure, so in Step 3 of
the geometric control approach, see Section 1.4, p. 27, an alternative method
for the construction of the synthesis is indicated, namely, to construct all
extremals in the cotangent bundle and then project on the base space. This
second method is more involved, but induces a more clear idea of the properties
of extremal trajectories and of the relationships between the optimal synthesis
and the minimum time function. In particular it shows that the overlaps
appearing in the optimal synthesis are related to projection singularities of
the set of extremals. Thus we now describe a new algorithm to construct a
regular extremal synthesis that is the collection of extremals in the cotangent
bundle.

We start by constructing all the extremal pairs via an underlinealgorithm
that stops (under generic conditions on the pair (F,G)) in a finite number of
steps. Generically all extremal trajectories leave the origin with control +1 or
−1. Thus, if γ± are the extremal arcs corresponding to constant controls ±1
and exiting x0, then each extremal trajectory bifurcates from γ±.

The set of bifurcating extremal trajectories are divided into extremal strips,
that are one dimensional families presenting the same sequence of arcs (bang
and singular). Then the evolution of “extremal strips” is studied under generic
conditions. The obtained set of extremal pairs has some regularity properties
summarized in the definition of extremal synthesis. The set N ⊂ T ∗M of pairs
that are reached by an extremal trajectory fails to be a manifold but it is still
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a Whitney stratified subset of T ∗M of dimension 3. Moreover, the extremal
trajectories (in finite time) are again finite concatenations of bang and singu-
lar arcs and the set formed by points at which N fails to be a manifold is a
finite union of two dimensional strata.

The covector associated to an extremal pair is defined up to the multipli-
cation by a positive constant, hence we project N onto M × S1 obtaining a
stratified set N of dimension two. The strata of dimension one and zero of N
are called, also in this case, Frame Curves and Points. As a byproduct we get
a complete classification of Frame Curves and Points.

Abnormal Extremals

A key role in the construction of the extremals synthesis, is played by ab-
normal extremals, that are trajectories with vanishing Hamiltonian. We al-
ready proved that the optimal ones are finite concatenations of bang arcs with
switchings happening on the set of zeroes of the function ∆A (that is where
the two vector fields F and G are collinear), see Proposition 2, p. 49. In Sec-
tion 4.3, p. 171, we study abnormal extremals in more details. In particular
we show that the singularities of the synthesis involving abnormal extremals
present some special features. Moreover, we classify all possible generic 28
singular points of the synthesis occurring along (projections of) abnormal
extremals.

Also the minimum time front and the extremal front have some important
properties at points reached by abnormal extremals. Namely they are always
tangent to abnormal extremals (see Theorem 28, p. 132 and the analysis of
the extremal front in Chapter 5).

From now on, for simplicity, we consider the case M = R
2 and x0 = 0.

The conclusions are valid in the general case mutatis mutandis. Let us now
introduce the precise concept of extremal synthesis and state the main result.
First we need some definitions.

Definition 53 Let Λ ⊂ R
n be a set such that Λ = ∪j∈JMj, where J ⊂ N

and Mj are disjoint embedded connected submanifolds of R
n. Then Λ is a

Whitney stratified set if the collection P := {Mj}j∈J , called the stratification
of Λ, is locally finite and the following holds:

• if Mj ∩ Clos(Mk) 6= ∅, j 6= k, then Mj ⊂ Clos(Mk) and dim(Mj) <
dim(Mk);

• let xn, yn ∈ Mj, n ∈ N, xn, yn → x̄ ∈ Mk ⊂ Clos(Mj) and denote by `n
the direction of R

n containing the segment joining xn with yn. If Txn
Mj →

T (affine subspace of R
n) and `n → `, then ` ⊂ T and Tx̄Mk ⊂ T .

We define the dimension of Λ by dim(Λ) = maxj dim(Mj) and say that Λ is
regular if every z ∈ Λ belongs to the closure of a stratum of dimension dim(Λ).
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Given an extremal pair (γ, λ) one can easily check that for every α ∈ R, α > 0,
the pair (γ, αλ) is also extremal. It is then natural to introduce the following
projection:

π∗ : R
2 × (R2)∗ \ {0} → R

2 × S1, π∗(x, p) =

(

x,
p

|p|

)

,

that is the projectivization of T ∗
R

2. A key role is played by the trajectory-
covector pairs (γ±, λ±) starting from the origin and corresponding to constant
control ±1.

Definition 54 A regular extremal synthesis Γ ∗ for (4.1) in time τ is a collec-

tion of trajectory-covector pair sets {Γ ∗
(x,p) : (x, p) ∈ T ∗(R2) = R

4} satisfying
the following properties:

1. For every (x, p) ∈ R
4, Γ ∗

(x,p) is the collection of all trajectory-covector

extremal pairs (γ, λ) : [0, a] → R
4, 0 ≤ a ≤ τ , such that γ(0) = 0,

γ(a) = x and λ(a) = p.
2. For every (x, p) ∈ R

4, x /∈ γ±(Dom(γ±)), the set {π∗(γ, λ) : (γ, λ) ∈
Γ ∗

(x,p), is finite.

3. For every (x, p) ∈ R
4 and every (γ, λ) ∈ Γ ∗

(x,p), γ is a finite concatenation
of bang and singular arcs.

4. The set N = {(x, p) : Γ ∗
(x,p) 6= ∅} is a regular Whitney stratified subset of

R
4 and dim(N ) = 3.

5. The set of discontinuities of #(Γ ∗
(x,p)) on N (i.e. where N fails to be a

manifold) is a finite collection of two dimensional embedded submanifolds
of R

4 (more precisely it is a finite collection of strata of the stratification
P of N .)

For every τ > 0 the algorithm, under generic assumptions on (F,G), con-
structs in a finite number of steps all the extremal pairs defined on the in-
terval [0, τ ]. Under generic assumptions on τ the collection of these pairs has
all the properties required by the definition of regular extremal synthesis.
Using generic conditions similar to those of Chapter 2, we are able to prove
structural stability of the extremal synthesis for fixed time. For the difficulties
arising in extending these results for infinite time, we refer the reader to [54].

Theorem 30 Fix τ > 0. There exists an open dense subset Πτ of Ξ such
that for every (F,G) ∈ Πτ there exists a regular structurally stable extremal
synthesis Γ ∗

τ in time τ .

As a byproduct we obtain a detailed study of the singularities for the
extremal regular synthesis. There exists a finite set of (equivalence classes of)
stable singularities described by Theorems 36 and 37 (see Section 4.6, p. 195).

In Section 4.1.4 the local synthesis near (γ±, λ±) is studied. In Section
4.2 the subdivision in extremal strips is operated and we make a detailed
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description of the algorithm. In Section 4.3 the case of abnormal extremals is
treated. Finally in Section 4.4 the evolution of interior of strips complete the
analysis.

4.1 Basic Facts

In this section we discuss some preliminary facts that are essential to state
the new algorithm: generic conditions, anti-turnpikes, new frame curves, the
set of extremals in a neighborhood of γ+ ∪ γ− and a special singularity.

4.1.1 Generic Conditions

In order to guarantee structural stability, in this Chapter, we assume the
generic conditions (GA1)÷(GA8) stated in Section 2.8, p. 86. For the con-
venience of the reader, they are rewritten in the following.

(GA1) For every t ∈ [0, t+f ], G(γ+(t)) 6= 0;

(GA2) θ̇+(0) 6= 0, θ̇+(t+f ) 6= 0;

(GA3) If θ̇+(t) = 0, then θ+(t) 6= 0,
..

θ
+

(t) 6= 0;
(GA4) If t 6= s and θ̇+(s) = θ̇+(t) = 0 then θ+(s) 6= θ+(t);
(GA5) (∇∆B · V )(γ+(t)) 6= 0, V = X,Y at all points t ∈ {t+i , t′+i ; i ≥ 1};
(GA6) If t+f = τ , then max{|θ+(t) − θ+(τ)|, t ∈ [0, τ ]} < π;

(GA7) Let v be the unit tangent vector at γ+(s+i ) to the switching curve
starting at γ+(s+i ). We have v · X(γ+(s+i )) 6= 0, for each i ≥ 2. And
similarly for the points γ+(s′+i );

(GA8) Suppose s+1 6= 0 and consider a local system of coordinates in a
neighborhood of γ+(s+1 ) such that Y = (1, 0), X(0) = (−1, 0), X(s+1 , 0) =
(c0, 0) and define b1 := ∂x1

X2(0), d1 := ∂x1
X2(s

+
1 , 0). We have c0 6= 0 and

c0d1 − b1
(

1−c0
2

)2 6= 0. A similar condition is assumed if s′+1 6= 0.

In addition, to avoid non generic self–intersections in the cotangent bundle,
we assume:

(GA9) γ+(t) 6= (0, 0) for every t ∈ [0, t+f ].

It is assumed that similar conditions hold for γ−. Finally we consider a generic
τ , i.e. we assume the generic condition:

(GAτ) Let (γ, λ) : [0, τ ] → R
2 × (R2)∗ be en extremal pair. Recall Definition

16, p. 40, then the condition φ(τ) = λ(τ) · G(γ(τ)) = 0 implies the
following:
• if γ = γ+, then τ /∈ {t±i , t′±i , s±i , s′±i } (see Definition 38, p. 90);
• γ(τ) /∈ ∆−1

A (0). The fact that this is generic follows from Theorem 18,
p. 172 and Corollary 3, p. 176;
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• if γ(τ) ∈ ∆−1
B (0) then there exists ε > 0 such that γ corresponds to

the singular control ϕ on [τ − ε, τ ] (see (2.13)) and |ϕ(γ(τ))| < 1;
• X(γ(τ)) and Y (γ(τ)) are not tangent to C or C̄ curves.

Remark 51 Notice that (GA6) is a consequence of (GAτ).

4.1.2 Anti-Turnpikes

In Section 2.3, p. 40, we proved that an anti-turnipike is never optimal (see
Lemma 12, p. 47). Anyway an anti-turnipike is extremal, thus, in principle,
there may be an arc running an anti-turnpike and belonging to some extremal
trajectory. The next Lemma shows that this is not the case for the extremal
synthesis starting from the origin, since an extremal trajectory γ such that
γ(0) = 0 never enters an anti-turnpike.

Lemma 19 Let S be an anti-turnpike, (γ, λ) an extremal pair such that
γ(0) = 0, and assume that there exist t̄ ∈ Dom(γ) and ε > 0 such that
γ([t̄− ε, t̄[) ∩ S = ∅ and γ(t̄) ∈ S. Then λ(t̄) ·G(γ(t̄)) 6= 0.

Proof. Let Ω,ΩX , ΩY be as in Definition 22, p. 45. First suppose that γ
reaches x from Ω with bang control, say +1, so that γ([t̄−ε, t̄[) ⊂ ΩX (possibly
choosing ε smaller). The function φ(t) satisfies the equation φ̇(t) = λ(t) ·
[F,G](γ(t)). Since Ω ∩ ∆−1

A (0) = ∅, we can write for x ∈ Ω, [F,G](x) =

f(x)F (x) + g(x)G(x). It follows φ̇(t) = f(γ(t))λ(t) · F (γ(t)) + g(γ(t))λ(t) ·
G(γ(t)) for a.e. t ≤ t̄. Now if γ was an abnormal extremal then the condition
λ(t̄) ·G(γ(t̄)) = 0 would imply γ(t̄) ∈ ∆−1

A (0) (see Proposition 1, p. 45), hence
we consider the case:

λ(t) · (F (γ(t)) +G(γ(t))) = cost > 0. (4.2)

Assume by contradiction that λ(t̄) · G(γ(t̄)) = 0. From (4.2), taking t′ ≤ t̄
sufficiently close to t̄, one gets λ(t) · F (γ(t)) > 0 for every t ∈ [t′, t̄]. Now for
t ∈ [t′, t̄[ we have f(γ(t)) > 0, hence if k is such that |g(x)| < k for x in a
neighborhood of γ(t̄), we get

φ̇(t) = f(γ(t))λ(t) · F (γ(t)) + g(γ(t))λ(t) ·G(γ(t)) > −kφ(t) ∀t ∈ [t′, t̄],

φ(t′) = φ0 > 0.

Hence φ is strictly positive on [t′, t̄], which gives a contradiction.

Remark 52 Using the generic conditions (P1)–(P7) of Section 2.4, p. 48,
one can check that an extremal trajectory γ can never enter an anti-turnpike
even from a singular point. Indeed there are only two cases corresponding to
conditions (P6) and (P7). In the first case ∆−1

B (0) is either formed by two
turnpikes or by two anti-turnpikes, while in the second case the singular point
is reached in infinite time along ∆−1

B (0).
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4.1.3 New Frame Curves

In Chapter 2 the one and zero dimensional strata (submanifold of R
2) of the

optimal synthesis are called respectively Frame Curves and Frame Points (in
the following briefly FCs and FPs, respectively). As we see in next Sections, N
(recall that we set N := π∗(N )) is a stratified subset of R

2 ×S1 of dimension
two. With some abuse of notation we call also the one and zero dimensional
strata of N Frame Curves and Frame Points respectively.

We use the same name for the curves and points in R
2 × S1 and for their

projections on R
2, being clear from the context if we are treating the former

or the latter. Finally the letters X,Y,C, S,K indicate the types of FCs as in
Section 2.6.1, p. 58.

In the construction of the optimal synthesis at each step some extremal
non optimal trajectories are cut by the algorithm generating the so called
overlap curves. Now we keep all extremal trajectories thus the overlap curves
are not constructed and some new FCs appears. The following facts illustrate
the main differences with respect to the optimal case:

• we do not have any K (overlap) FC because these FCs are obtained as
“cuts” of not optimal extremal trajectories (see Chapter 2 and 3);

• beside the C curves on which X and Y point to the same side, we also
have a new type of FC (called C̄) on which X and Y point to opposite
sides (see Figure 4.1 Cases 1 and 2).

By definition switching curves are loci of conjugate points to other FCs and C̄
curves were excluded from the optimal synthesis because trajectories switching
on C̄ are not locally optimal.

Notice that a C Frame Curve can be smoothly joined to a C̄ Frame Curve
if the switching locus becomes tangent to X or to Y . Other FCs that appear
in the extremal synthesis are:

• FCs called W that are arcs of extremal trajectories characterized by the
property that the projection of all the extremal trajectories close to them
lie on the same side of W (see Figure 4.1 Case 3);

• FCs called γ0 that are arcs of extremal trajectories that “transports” some
special information, e.g. they switch every time they meet the locus∆−1

A (0)
or they evolve into W FCs. The optimal synthesis close to a γ0 FC is
regular, but possibly the covectors do not depend in a smooth way from
points on the plane.

More details are given later.
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Case 1 Case 2 Case 3

W
C

C

Fig. 4.1. FCs of kind C, C̄ and W .

4.1.4 The Set of Extremals in a Neighborhood of γ+
∪ γ−

To explain better the situation, here we build the set of extremals in a neigh-
borhood of γ+ ∪ γ−. To this purpose, we first study the set of extremal in
which the covectors are pulled back to their initial condition:

N0 ={(x, p) ∈ R
2 × S1 : there exists a time t ∈ [0, τ ] and an extremal pair

(γ, λ) : [0, t] → R
2 × S1 such that γ(0) = 0, γ(t) = x, λ(0) = p}.

One can easily see that in a neighborhood of the origin, the set of extremals
is homeomorphic to N0 (see Proposition 12).
Consider the projector π : (x, p) ∈ R

2 × S1 7→ x ∈ R
2. Clearly we have

R(τ) = π(N0). If we set Λ0(x) = {p ∈ S1 : (x, p) ∈ N0}, we have
(x,Λ0(x)) = π−1(x) ∩N0.

The structure of N0 is described in the following Theorem (see Definitions
14, p. 37 and 38, p. 90 for the definitions of the function θ+(·) and of the
times t+f , t

+
i , t

′+
i , s

+
i , s

′+
i ):

Theorem 31 Choose a local coordinate system such that G(0) = (0, 1).

A) Let x ∈ R(τ) \ (Supp(γ+)∪Supp(γ−)) reached by a X ∗ Y trajectory γ at
some time t̄:

γ : [0, t̄] → R(τ)

γ(0) = 0, γ(t̄) = x.

Then there exists a unique covector λ : [0, t̄] → (R2)∗ such that |λ(0)| = 1
and (γ, λ) is an extremal pair on [0, t̄]. Moreover, let t0(γ) ∈]0, t+f [ be the
switching time of γ, then we have:

Λ0(x) =

{

θ+(t0(γ)) if t0(γ) ∈ [s+i , t
+
i ]

π + θ+(t0(γ)) if t0(γ) ∈ [s′+i , t
′+
i ]

(4.3)

B) Λ0(0) = [−π, π]
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C) Let x ∈ Supp(γ+) \ {0} and let t(x) ∈]0, t+f ] be the first time such that

x = γ+(t(x)). Then:

Λ0(x) =















[θ+(t(x)), π + θ+(t′+i−1)] if t(x) ∈]s+i , t
+
i ],

[θ+(t+i ), π + θ+(t′+i−1)] if t(x) ∈]t+i , s
′+
i ],

[θ+(t+i ), π + θ+(t(x))] if t(x) ∈]s′+i , t
′+
i ],

[θ+(t+i ), π + θ+(t′+i )] if t(x) ∈]t′+i , s
+
i+1].

Proof. Let us first prove A). By definition p exists. We have to prove the
uniqueness. Since γ is extremal, we know that there exists a non trivial cov-
ector λ : [0, t̄] → (R2)∗ such that for a.e. t ∈ [0, t0]:

λ̇(t) = −λ(t) · ∇Y (γ(t))

λ(t) ·G(γ(t)) ≥ 0.

Using the definition of v+ (see Definition 14, p. 37) and by the property
λ(t) · v+(v0, t0; t) =const (for t ∈ [0, t0], see Lemma 7, p. 42), PMP implies
that for a.e. t ∈ [0, t0] :

0 ≤ λ(t) ·G(γ(t)) = (4.4)

= λ(t) · v+(G(γ(t)), t; t) =

= λ(0) · v+(G(γ(t)), t; 0) =

= λ(0) · v̄+(t).

++

+θ  (t)

v  (t)v  (0)

Fig. 4.2. Proof of Theorem 31.

Now v̄+(t) is a vector that satisfy arg(v̄+(0), v̄+(t)) = θ+(t), where θ+ is a
function whose range reaches π exactly at time t+f (see formula (2.61), Chapter
2). So in our local coordinates we have the situation of figure 4.2. All the λ(0)
in the sketched region satisfy the condition (4.4).



4.1 Basic Facts 161

Now:

• if t0 ∈ [s+i , t
+
i [ (resp. t0 ∈ [s′+i , t

′+
i [), then

1. from Proposition 3, p. 92 at time t0 we have a Y ∗X switching;

2. θ̇+(t0) > 0 (resp. < 0); (4.5)

3. formula (4.4) is satisfied with the equality at time t0,

i.e. λ(0) · v̄+(t0) = 0; (4.6)

• if t0 = t+i (resp. t′+i ), then

1. from Proposition 3, p. 92, at time t0 we have a Y ∗X switching;

2. θ has a maximum (resp. a minimum) at this time; (4.7)

3. λ(0) · v̄+(t0) = 0. (4.8)

Notice that Proposition 3, p. 92, excludes that t0 ∈]t+i , s
′+
i [ or t0 ∈]t′+i , s

+
i+1[.

Formulas (4.5), (4.6), in the first case, and (4.7), (4.8), in the second, determine
exactly the λ(0) given by the right hand side of formula (4.3) that includes
both cases. Now, since the evolution equation of λ (see i) of Theorem 10, p.
35) satisfies the Caratheodory uniqueness conditions, λ(t) is unique, and (4.3)
follows.

Because of the request “a.e.” in the statement of the PMP, at the origin
every λ(0) is allowed. By normalizing we have Λ0(0) = [−π, π]. This proves
B).

By the same argument of the proof of formula (4.3) we have that for a.e.
t ∈]0, t(x)]:

0 ≤ λ(0) · v̄+(t). (4.9)

From the definition of the times t+i , s
+
i , t

′+
i , s

′+
i , it follows the expression for

Λ0(x) in the case x ∈ Supp(γ+) \ {0}, that concludes the proof.

Remark 53 A similar Theorem can be written for the trajectory γ− that
starts from the origin with control −1.

Let I(0) be a small neighborhood of the origin. The shape of N0|I(0) can be
obtained from Theorem 31 and it is drawn in Figure 4.3. Notice that N0 in a
neighborhood of the origin is homeomorphic to the set R described in Figure
4.4.
From the fact that in a neighborhood of the origin the extremal trajectories
do not intersect, and from continuous dependence on initial data we get the
following:

Proposition 12 N0 and N are homeomorphic in a neighborhood of the lift
of origin.
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X

γ +

B

0

−π

+π
C

the loci p and q are glued

D

γ -

S1 B

θ (t)+

2

p

q

A

1X

Fig. 4.3. N0 in a neighborhood of the origin.

4.1.5 Number of pre–Images

If we project the extremal synthesis on R(τ), it may happen that subsets of
R(τ) are covered by more than one trajectory. In fact the borders of these
subsets correspond to singularities of the projection from N and they are
treated in the following (and in Chapter 5) in more detail.

Fix x̄ ∈ R(τ) and an extremal trajectory γ̄ : [0, ā] → R(τ) such that γ̄(0) = 0
and γ̄(ā) = x̄, and define the function:

K x̄,γ̄
ε (x) := ]{extremal trajectories γ : γ(0) = 0, γ(a) = x, |γ(t) − γ̄(t)| < ε

∀ t ∈ [0,min(a, ā)], |a− ā| < ε}. (4.10)

We refer to Figure 4.5 where for simplicity we drop the dependence on x̄, γ̄
and ε.
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D

B

C

γ -

γ+ γ+
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Z

Z2

1

A

Fig. 4.4. The set R.
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Fig. 4.5. Number of pre-images

Definition 55 Fix x̄ ∈ R(τ) and an extremal trajectory γ̄ : [0, ā] → R(τ)
such that γ̄(0) = 0 and γ̄(ā) = x̄;

• we say that x̄ is a normal point along γ̄ if for ε sufficiently small there
exists a neighborhood U of x̄ such that K x̄,γ̄

ε (U) = 1;
• we say that x̄ is a fold point along γ̄ if there exists a one dimensional

piecewise–C1 manifold l, with x̄ ∈ l, satisfying the following. For ε suf-
ficiently small there exists a neighborhood U of x̄ divided by l into two
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connected components Ω1, Ω2 such that K x̄,γ̄
ε (Ω1) = 2, K x̄,γ̄

ε (Ω2) = 0,
K x̄,γ̄
ε (l) = 1;

• if l, U(ε), Ω1, Ω2 are as above, then if K x̄,γ̄
ε (Ω1) = 1, K x̄,γ̄

ε (Ω2) = 3 and
K x̄,γ̄
ε (l) = 2, we say that x̄ is a cusp point along γ̄;

• if l, U(ε), Ω1, Ω2 are as above then if K x̄,γ̄
ε (Ω1) = 2, K x̄,γ̄

ε (Ω2) = 4 and
K x̄,γ̄
ε (l) = 3, we say that x̄ is a ribbon point along γ̄;

• we say that x̄ is a bifold point along γ̄ if there exists a one dimensional con-

nected piecewise–C1 embedded manifold l and two connected C1 embedded
manifolds l1 and l2 satisfying the following:
– l ∩ ∂li = {x} (i = 1, 2); ∂l1 ∩ ∂l2 = {x};
– for ε sufficiently small there exists a neighborhood U of x satisfying the

following. The set U \ l has two connected components Ω1, Ω2 and
the set Ω2 \ {l1 ∩ l2} has three connected components Ω21, Ω22, and
Ω23 (the name are chosen as in Figure 4.5) such that K x̄,γ̄

ε (Ω1) = 0,
K x̄,γ̄
ε (Ω21) = 2, K x̄,γ̄

ε (Ω22) = 4, K x̄,γ̄
ε (Ω23) = 2, K x̄,γ̄

ε (l) = 1 and
K x̄,γ̄
ε (li) = 3 (i = 1, 2).

Example of ribbon and bifold points are given in Section 4.3, p. 171. Notice
that the manifolds l, l1, l2 where K x̄,γ̄

ε is discontinuous correspond to FCs of
kind C̄ and W .

4.1.6 Singularities Along γ+
∪ γ−

The FPs of the optimal synthesis along γ+
op ∪ γ−op are described in Chapter 2

(see in particular Figure 2.9, p. 61). For the extremal synthesis case we have
the same FPs, but the extremal synthesis does not contain any K curve and,
on the other side may present C̄, γ0, W curves. The local extremal synthesis
around these points is depicted in Figure 4.6. Let x be such a FP. In Figure
4.6 the first column indicates the time t such that x = γ+(t), the second
shows the type of Frame Point, the third depicts the synthesis near x, finally
the fourth indicates the corresponding projection singularity. The superscripts
“tg” and “t-o” denotes the fact that the two FCs are tangent with the same
or opposite versus, respectively. The superscripts “C” and “D” on the FCs
W are explained in Section 4.3, p. 171. Moreover at the points labeled with ∗
(e.g. (Y C̄)t−o1 ) the trajectories self intersect (but their lifts in the cotangent
bundle do not!). The situation is studied in [37]. The singularities along γ−

are similar.

4.1.7 Singularities Along Singular Trajectories

After the singularities along Supp(γ+) ∪ Supp(γ−) the first singularities we
need to study are the end points of turnpikes. These singularities were studied
in Chapter 2 (see Example 8,14 Section 2.6.4) and are called (C,S)2 and
(S,K)3. For the extremal synthesis the latter singularity does not contain a
K curve and the new singularity is called (S, S) singularity, the name being
clear from the following:
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Fig. 4.6. FPs along γ+∪γ−. In the point labeled with ∗ the trajectories self intersect.
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Theorem 32 Consider an extremal trajectory γ corresponding to a constant
control (say +1) in ]t0 − ε, t0] and to the singular control ϕ in ]t0, t0 + ε[.
Then the trajectory γ̃ satisfying γ̃|[0,t0+ε[ = γ|[0,t0+ε[ and corresponding to the
singular control ϕ after t0 + ε is extremal at least up to the first time in which
X or Y becomes tangent to the set of zeros of ∆−1

B (0). Let t̄ be such time,
define x0 := γ̃(t̄), and distinguish two cases:

a) ∆A(x0) 6= 0;
b) ∆A(x0) = 0.

If a) holds then let U be a small neighborhood of x0 and UA, UB the two
connected components of U \∆−1

B (0). Under generic conditions, UA and UB
can be chosen in such a way that X(x0) and Y (x0) point in UA. Assume for
instance Y (x0) · ∇∆−1

B (0) = 0. Then γ̃ is extremal only up to t̄, a switching
curve of kind C originates at x0 and it lies in UA (see Figure 4.7 case A).

If b) holds true, then, under generic conditions, we are in the situation
of condition (P6) of Section 2.4, p. 48. Notice that ∆−1

B (0) is a turnpike on
both sides of x0 and let S1, S2 be the two connected components of ∆−1

B (0)\x0

ordered by increasing time along γ̃. Then γ̃ is extremal after t̄ and from S1

and S2 extremal trajectories generate on both sides. Moreover, the trajectories
generating from S1, crosses S2, x0 is a cusp singularity and we are in the
situation of Figure 4.7 case B.
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Fig. 4.7. Singularities along singular trajectories
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4.2 Extremal Strips and the Algorithm

Now we give the key definition of extremal strip. An extremal strip is essen-
tially a one parameter continuous family of extremal bang–bang trajectories
having the same switching strategy.

Definition 56 Let a, b be two real numbers such that 0 ≤ a < b ≤ τ and
x ∈ R(τ). A set of trajectories Sa,b,x = {γα : α ∈ [a, b], γa(a) = x} is called
a extremal strip if:

i) ∀ α ∈ [a, b], γα : [0, τ(α)] → R
2, τ(α) > α is an extremal trajectory

for the control problem (4.1). Moreover there exists ε > 0 s. t. γ[α,α+ε]

corresponds to a constant control ±1;
ii) ∀ α ∈]a, b[, γα does not switch on ∆−1

A (0) ∪∆−1
B (0) after time α;

iii) The set Ba,b,x = {y ∈ R(τ) : ∃ α ∈ ]a, b[ and t ∈]α, τ(α)[ s. t. y = γα(t),
t is a switching time for γα} is never tangent to X or Y ;

iv) The map η : α ∈ [a, b] 7→ γα(α) ∈ R
2 is a bang or singular arc, γα|[0,α′] =

γα′ |[0,α′] if a ≤ α′ ≤ α ≤ b and G(η(α)) 6= 0 for every α ∈]a, b[.

The function η : [a, b] → R
2 is called the base of the extremal strip,

◦
Sa,b,x:=

{γα : α ∈]a, b[} is called an open extremal strip and ∂Sa,b,x := {γa, γb} is
called extremal strip border (see Figure 4.8).

C
C

γ
a

(a)

γ
b
(b)

(α)=γ (α)
α

γ
b

γ
a

η

Fig. 4.8. Extremal Strip

Since trajectories generate from both side of a turnpike, one gets immediately:

Proposition 13 If Sa,b,x is an extremal strip and its base η is a singular
arc then there exists a extremal strip S ′ 6= Sa,b,x with the same base (the two
extremal strips start from the two sides of the turnpike).

Now we define an algorithm that constructs all the extremal trajectories up
to time τ .
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ALGORITHM

STEP 1 We construct all the open extremal strips
◦
Sa,b,x with x belonging to

Supp(γ+) ∪ Supp(γ−) and maximal base. In particular these strips are
the strips which bases are γ+|]s+

i
,t+

i
[, γ

+|]s′+
i
,t′+

i
[, γ

+|]s−
i
,t−

i
[, γ

+|]s′−
i
,t′−

i
[ and

the strips obtained in the following way. Suppose that at time t+i (resp.
t′+i , t

−
i , t

′−
i ) a turnpike starts and let γ be the trajectory corresponding

to the constant control +1 (resp. +1, -1, -1) in the interval [0, t+i ] (resp.
[0, t′+i ], [0, t−i ], [0, t′−i ]) and to the singular control ϕ in ]t+i , b] (resp. ]t′+i , b],
]t−i , b], ]t′−i , b]) where b = τ (if the turnpike does not reach a (C,S)2 or a
(S, S) singular point before τ) or b is the time when the turnpike meets
a (C,S)2 or a (S, S) singular point (see Theorem 32, p. 166). In this case
we have also the two extremal strips having γ|]t+

i
,b[ (resp. γ|]t′+

i
,b[, γ|]t−

i
,b[,

γ|]t′−
i
,b[) as a base (cfr. Proposition 13, p. 167). Notice that there is a finite

number of strips built in this way.
STEP 2 We extend every trajectory of all the extremal strips built in the

previous step(s) up to the maximal time at which ii) and iii) of Definition
56, p. 167 are satisfied.

STEP 3 If all the trajectories built in the previous steps satisfy τ(α) = τ we
jump to step 4. Otherwise:
step 3.1 let γα be a trajectory built in the previous steps that satisfies

τ(α) < τ (that means that ii) or iii) are violated at γα(τ(α))), and

suppose that this trajectory belongs to the open extremal strip
◦
Sa,b,x

(α ∈]a, b[). Then we substitute this strip with the two open strips
◦
Sa,α,x and

◦
Sα,b,x;

step 3.2 if at γα(τ(α)) a turnpike starts then we build also the two new
open extremal strips (with maximal base) having this turnpike as a
base;

step 3.3 jump to step 2.
STEP 4 We construct all the borders of the strips built in the previous steps.

Notice that a border never corresponds to the singular control ϕ. Moreover,
from the conditions (P1)–(P7), (GA1)–(GA9), (GAτ) and from the anal-
ysis of next Sections it follows that the Algorithm stops after a finite number
of steps. Indeed from Chapter 2, we have that under the generic conditions
(P1)–(P7), all extremals are finite concatenations (with an uniform bound
on the number of arcs) of bang and singular arcs. The number of extremal
strips is also finite, because under generic conditions, the assumptions ii) and
iii) of Definition 56, p. 167 are violated in a finite number of points. In order to
construct a stable extremal synthesis we assume various generic conditions on
FCs and FPs during the execution of the algorithm. Some of these conditions
are explicitly stated in Chapter 2 and others are given in the following Sec-
tions, namely conditions (GA10)–(GA16). After the end of the algorithm,
we need some more generic stability conditions. In Chapter 2, Definition 33,
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p. 59 it was defined an equivalence among Frame Points, we introduce here a
similar one:

Definition 57 If x1, x2 are two FPs, we say that they are equivalent if there
exist some points y0 = x1, y2, ..., yn = x2 such that the following holds. Each
yi belongs to a frame curve Di. For every yi, i = 1, ..., n − 1, there exists an
extremal trajectory γi and ai, bi ∈ Dom(γi), satisfying γi(ai) = yi, γi(bi) =
yi+1, where γi|[ai,bi] is an X or Y trajectory and γi|[ai,bi] is not part of γ±,
γ0 or W FCs. That is there exists a curve connecting x1 with x2 formed by X
and Y arcs of extremal trajectories and no one of these arcs is part of γ±, γ0,
or W FCs.

To understand the meaning of this equivalence see the corresponding definition
given in Chapter 2. Moreover it is possible to give natural stability conditions
for each FP. We assume the following:

(A) all FPs are stable. If x1, x2 are two equivalent FPs then x1 = x2.

Compare with the condition (A1) and (A2) of Chapter 2, Section 2.8.2, p. 89.
To ensure stability, we need also the following:

(F) the inequality φ(t) ≥ 0 is verified in strict sense in the interior of each
interval where an extremal trajectory corresponds to a constant bang
control.

This is equivalent to condition (F1) of Chapter 2, Section 2.8.2, p. 89. Finally,
notice that the stability assumption (F2) of Chapter 2, Section 2.8.2, p. 89,
is a consequence of (GAτ).

Definition 58 We denote by Γ the set of trajectories built by the Algorithm.

The set of trajectories built before step 4 are denoted by
◦
Γ and the set of the

borders by ∂Γ .

Notice that Γ is the canonical projection of Γ ∗ (see Section 4.1.6, p. 164) from
R

2 × (R2)∗ to R
2. Moreover, with the above Definitions: i) all the FPs are

contained in the base or borders of the extremal strips; ii) in the interior of a
strip we can have only C and C̄ one dimensional singularities. This is due to
the following:

Theorem 33 Let Sa,b,x be an extremal strip built by the Algorithm, γα ∈
◦
Sa,b,x,

γα : [0, τ ] → R(τ) and t0 ∈ ]α, τ [. Then there exist ε1, ε2, δ (ε1 > δ >
0, ε2 > 0) such that for each β ∈]α − ε2, α + ε2[ all the trajectories γβ have
the same constant control , say +1, in the interval ]t0 − ε1, t0 − ε1 + δ[ and
one of the following possibilities occur:

1) for each β ∈]α− ε2, α+ ε2[, γβ does not switch in ]t0 − ε1, t0 + ε1[;
2) for each β ∈]α − ε2, α + ε2[, γβ switches from Y to X (and there are not

other switchings) in ]t0 − ε1, t0 + ε1[, and the switching locus is of kind C;
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3) for each β ∈]α − ε2, α + ε2[, γβ switches from Y to X (and there are not
other switchings) in ]t0 − ε1, t0 + ε1[, and the switching locus is of kind C̄.

Proof. From ii) of Definition 56, p. 167 we have only the following possibilities:

1) t0 is not a switching time for γα,
2) t0 is a switching time from Y to X for γα.

By the generic assumptions (P1)–(P7), (GA1)–(GA9), (GAτ) there exists
ε1 > 0 such that:

• γα does not switch in ]t0 − ε1, t0 + ε1[, in the first case;
• γα switches only once in ]t0−ε1, t0+ε1[ with a YX switching, in the second

case.

By continuity ∆−1
A (0) and ∆−1

B (0) never vanish in a neighborhood of γα(t0),
hence there exists ε2 such that for each β ∈]α− ε2, α+ ε2[

• γβ does not switch in ]t0 − ε1, t0 + ε1[ in the first case;
• γβ switches only once in ]t0 − ε1, t0 + ε1[ (with a YX switching) in the

second case.

To conclude the proof it remains to check that the switching locus is entirely
of kind C or C̄, and this is a consequence of iii) of Definition 56, p. 167.

The singularities of the bases were already studied in Section 4.1.6, p. 164
except for the starting points of the turnpikes if they do not belong to
Supp(γ+) ∪ Supp(γ−). To enter a turnpike we need to switch on ∆−1

B (0),
so ii) of Definition 56, p. 167 implies that these singularities happen only on
borders of extremal strips.

4.2.1 Extremal Strip Borders: the FCs of Kind γ0 and W

We clearly have:

Proposition 14 ∂Γ is a finite set.

Moreover, by construction, every border belongs to two different strips and
adjacent strips correspond locally to the same control. More precisely it holds:

Proposition 15 Let γ ∈ ∂Γ , S1 and S2 be the two strips such that {γ} =
S1 ∩ S2 and t̄ be a switching time for γ. Then the switching loci of S1 and
S2 passing trough γ(t̄) correspond both to switchings from Y to X or both to
switchings from X to Y ..

Definition 59 Let γ ∈ ∂Γ and suppose that it corresponds to a constant
control in the interval ]b, c[ (0 < b < c ≤ τ). We say that in ]b, c[ γ is an
extremal strip border of kind W if for every t ∈ ]b, c[, γ(t) is a fold point.
Viceversa if for every t ∈ ]b, c[, γ(t) is a normal point, we say that in ]b, c[ γ
is an extremal strip border of kind γ0.
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By construction we get:

Proposition 16 If γ ∈ ∂Γ , γ is of kind W in ]a, b[ and of kind γ0 in ]b, c[
(0 ≤ a < b < c ≤ τ) or viceversa then b is a switching time for γ.

In Section 4.3 we study the singularities of the borders of extremal strips that
are abnormal extremals. In Section 4.4, p. 181 we study all the singularities
of the other types of borders.

4.3 Abnormal Extremals

4.3.1 Generic Properties of Abnormal Extremals

In this section we state and prove the main results about the switching strate-
gies of abnormal extremals.

We already know that optimal abnormal extremals are finite concatena-
tions of bang arcs with switchings happening on the set of zeroes of the func-
tion ∆A (that is where the two vector fields F and G are collinear), see
Proposition 2, p. 49. We now prove the same result for abnormal extremals
not necessarily optimal:

Proposition 17 Under generic conditions, it holds:

• up to normalization of the covector, there exist two maximal abnormal
extremals;

• the two maximal abnormal extremals are bang–bang and do not switch on
G−1(0).

Proof. From the definition of abnormal extremal we have 0 = H(0, λ(0)) =
λ(0) · F (0), hence up to normalization there are two choices for λ(0) and the
first claim is proved.

By condition (P5) (see Section 2.4, p. 48), generically an abnormal ex-
tremal γ does not cross the set ∆−1

A (0)∪∆−1
B (0). Hence any non regular time

of γ is isolated and it is a switching time. Therefore γ is bang–bang.

From now on we assume to be in the generic situation of Proposition 17,
so all abnormal extremals are bang-bang.

Definition 60 Let γ : [0, τ ] → R
2 be (the first component of) an abnor-

mal extremal for the control problem (4.1) such that it switches at least
once and let t1 be its first switching time. We call the couple (γ, t1) a
Non Trivial Abnormal Extremal (in the following NTAE). By definition a
NTAE is maximal if it is defined on [0, τ ].

Definition 61 Let γ : [0, τ ] → R
2 be a NTAE, and t1 < t2 < ... < tn(γ)−1 <

tn(γ) := τ the sequence of switching times. We set AA(i) = Supp
(

γ|[ti,ti+1]

)

(i = 1, ..., n(γ) − 1) and we call it an abnormal arc.
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From Proposition 17 we get:

Proposition 18 Let γ : [0, τ ] → R
2 be an extremal trajectory for the con-

trol problem (4.1) such that it switches at least once at a time t1 with
G(γ(t1)) 6= 0. Let λ : [0, τ ] → (R2)∗ be the corresponding covector and as-
sume that t1 < t2 < ... < tn(γ)−1 < tn(γ) := τ is the sequence of switching
times such that G(γ(ti)) 6= 0, i = 1, ..., n. Then, under generic conditions, it
holds:

A) λ(·) is unique (up to the multiplication by a positive constant);

B) the following conditions are equivalent:

(a) (γ, t1) is a NTAE;
(b) γ(ti) ∈ ∆−1

A (0) for some i ∈ {1, ..., n(γ) − 1};
(c) γ(ti) ∈ ∆−1

A (0) for each i ∈ {1, ..., n(γ) − 1};
(d) γ(t̄) ∈ ∆−1

A (0) (t̄ ∈ Dom(γ), G(γ(t̄) 6= 0) iff t̄ = ti for some i ∈
{1, ...n(γ) − 1};

Proof. For the proofs that (a) ⇒ (c), and (b) ⇒ (a), see Proposition 1, p.
45. The implications (c)⇒(b), (d)⇒(b) are obvious.
Proof of A). The covector associated to an extremal trajectory is completely
determined after the first switching. From n(γ) ≥ 2 it follows that λ(·) is
unique up to a positive constant.
Proof that (a) implies (d). Fix t̄ such that γ(t̄) ∈ ∆−1

A (0). We have F (γ(t̄)) =

βG(γ(t̄)) (by genericity we may assume β 6= 0,±1) and there exists a sequence
t′m ↗ t̄ such that |u(t′m)| = 1 and

H(γ(t′m), λ(t′m), u(t′m)) = λ(t′m) · (F + u(t′m)G)(γ(t′m)) = 0.

Hence (1+u(t′m)β)λ(t′m) ·G(t′m) → 0 and being limm→∞ u(t′m) = ±1 we have
λ(t̄) ·G(t̄) = 0. Under generic assumptions, ∆B(γ(t̄)) 6= 0 thus θ̇(t̄) 6= 0 and t̄
is a switching time. Viceversa, since a) implies c), we get that ∆A(γ(ti)) = 0
for each i.
This concludes the proof.

From Proposition 17 and Definition 56, p. 167 it follows:

Lemma 20 Let (γ, t1) be a NTAE then γ ∈ ∂Γ .

Hence it is natural to define ∂ΓA = {γ ∈ ∂Γ, γ is an abnormal extremal}.
Definition 62 Let x ∈ ∆−1

A (0) be a switching point for a NTAE, then clearly
X(x) 6= 0, Y (x) 6= 0 and (F +G)(x) = α(F −G)(x) for some α 6= 0. If α > 0
(resp. α < 0) we say that at x, ∆−1

A (0) is direct (resp. inverse).

From Lemma 20, p. 172 it follows that any AA(i) is an extremal strip border
of kind γ0 or W , but for abnormal extremals a more precise definition for the
strip borders of kind W is necessary.
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Definition 63 We refer to Figure 4.9. Let γ ∈ ∂ΓA, and suppose that it
corresponds to a constant control (say +1) in the interval ]b, c[ (0 < b < c ≤
τ). Let S1 and S2 be the two strips such that {γ} = S1 ∩S2 and suppose that
in the interval ]b, c[ γ is an extremal strip border of kind W .

• We say that in ]b, c[ γ is a strip border of kind WC if S1 and S2 both lie
on the right (resp. on the left) of γ|]b,c[ and X points to the right (resp. to
the left) of γ|]b,c[ at every point of Supp(γ|]b,c[).

• We say that in ]b, c[ γ is a strip border of kind WD if S1 and S2 both lie
on the right (resp. on the left) of γ|]b,c[ and X points to the left (resp. to
the right) of γ|]b,c[ at every points of Supp(γ|]b,c[).

W
C

W
D γ

0

Fig. 4.9. The abnormal extremals of type W C , W D and γ0.

From Proposition 18, p. 172 we have the following:

Lemma 21 Let A1, A2 ∈ {WC ,WD, γ0} and γ ∈ ∂ΓA. If γ is of kind A1

in ]a, b[ and of kind A2 in ]b, c[ (A1 6= A2, 0 < a < b < c ≤ τ) then b is a
switching time for γ.

Now it is clear the meaning of this more fine definition in the case of abnor-
mal extremal strip borders. An abnormal extremal can be of kind WC (resp.
WD) on [t − ε, t], ε > 0 and of kind WD (resp. WC) on [t, t + ε], only if
t is a switching time. On the contrary in the case of strip borders that are
not abnormal extremals the change from WC to WD or viceversa can occur
without switching and so the difference between WC and WD is not crucial.

Proposition 19 Let γ be a NTAE, t1 < t2 < ... < tn(γ)−1 < tn(γ) := τ be
the sequence of its switching times and set t0 = 0. From Proposition 17, p.
171 generically G(γ(ti)) 6= 0. If F (γ(ti)) = βiG(γ(ti)), then clearly βi 6= ±1
(otherwise X(γ(ti)) = 0 or Y (γ(ti)) = 0.) For all i = 0, .., n(γ) − 2 it holds:
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v(G(γ(ti+1)), ti+1; 0) = (βi + 1)/(βi+1 + 1)v(G(γ(ti)), ti; 0)
if γ corresponds to constant control +1 in [ti, ti+1]

v(G(γ(ti+1)), ti+1; 0) = (βi − 1)/(βi+1 − 1)v(G(γ(ti)), ti; 0)
if γ corresponds to constant control -1 in [ti, ti+1]

(4.11)

Proof. Fix i and suppose that γ corresponds to constant control +1 in
[ti, ti+1], the opposite case being similar. From F (γ(ti+1)) = βi+1G(γ(ti+1)),
recalling Lemma 7, p. 42 we have

F (γ(ti)) +G(γ(ti)) = v(F (γ(ti+1)) +G(γ(ti+1)), ti+1; ti)

= (1 + βi+1)v(G(γ(ti+1)), ti+1; ti).

Now from F (γ(ti)) = βiG(γ(ti)) (notice that in case i = 0 we have F (0) = 0,
hence β0 = 0) and using again Lemma 7, p. 42 we have

(1 + βi)v(G(γ(ti)), ti; 0) = (1 + βi+1)v(G(γ(ti+1)), ti+1; 0)

that concludes the proof.

Proposition 20 Let γ : [0, τ ] → R
2 be an extremal trajectory for the control

problem (4.1) that switches at least once, θγ the corresponding function defined
in (2.5) (Chapter 2) and t1 < t2 < ... < tn(γ)−1 < tn(γ) := τ the sequence
of switching times. Then under generic assumptions the following conditions
are equivalent:

(a) (γ, t1) is a NTAE;
(b) θγ(ti) ∈ {0,±π} for some i ∈ {1, ..., n(γ) − 1};
(c) θγ(ti) ∈ {0,±π} for each i ∈ {1, ..., n(γ) − 1};
(d) θγ(t̄) ∈ {0,±π}, (t̄ ∈ Dom(γ)) iff t̄ = ti for some i ∈ {1, ...n(γ) − 1}.
Proof. Proof that (a) implies (c). By definition θγ(0) = 0. Proposition 19
implies that the vectors v(G(γ(ti+1), ti+1; 0) and v(G(γ(ti), ti; 0) are parallel.
Since θγ(ti+1) and θγ(ti) measure precisely the angle between these vectors
and G(0), we have θγ(ti+1) = θγ(ti) ± π.
Proof that (c) implies (a). From c) we have θγ(t1) ∈ {0,±π}, then for some
b ∈ R (that by genericity we may assume different from 0 and 1) it holds
vγ(G(γ(t1)), t1; 0) = bG(γ(0)). Now if we suppose that γ corresponds to con-
stant control +1 in the interval [0, t1] (the opposite case being similar), we
have bG(γ(0)) = b(F +G)(γ(0)) = vγ(b(F +G)(γ(t1)), t1; 0). From the injec-
tivity of the map v0 → vγ(v0, t0; t1) we obtain γ(t1) ∈ ∆−1

A (0). By Proposition
18, p. 172 it follows (a).
Proof that (b) implies (c) and viceversa. Clearly (b) follows from (c), let us
prove the opposite. Let λ be the covector associated to γ. From (b) we have
that λ(0) is orthogonal to G(0), hence γ switches iff θγ ∈ {0,±π}. Thus (c)
follows.
Proof that (a) implies (d). It is a consequence of Proposition 18, p. 172

The implication (d)⇒(c) is obvious. This concludes the proof.



4.3 Abnormal Extremals 175

Proposition 21 Let (γ, t1) be a NTAE and 0 =: t0 < t1 < t2 < ... <
tn(γ)−1 < tn(γ) := τ the sequence of switching times. Suppose that for some

i ∈ {0, 1, ..., n(γ) − 2}, ∆−1
A (0) is inverse at the points γ(ti), γ(ti+1). Then

θγ(ti+1) = θγ(ti).

Proof. Set (F + G)(γ(ti)) = αi(F − G)(γ(ti)) and F (γ(ti)) = βiG(γ(ti)).
Under generic assumptions, αi and βi are well defined for each i = 1, ...n(γ)−1
and it holds:

α0 = −1, β0 = 0 and αi, βi /∈ {0,±1}, βi =
1 + αi
1 − αi

, i ∈ {1, ..., n(γ) − 1}.

Now if ∆−1
A (0) is inverse at both points γ(ti), γ(ti+1) (i ∈ {0, ..., n(γ) − 2}

then αi, αi+1 < 0 and we have βi, βi+1 ∈] − 1, 1[ (see Figure 4.10). Recalling
the definition of θγ , from Proposition 19, p. 173 it follows the conclusion.

β

α i

i

-1

-1

1

1

Fig. 4.10. Proof of Proposition 21

From Propositions 17, p. 171 and 20, p. 174, using the definitions of the times
s+1 , s

′+
1 , t+f , s

−
1 , s

′−
1 , t−f , it follows:

Corollary 2 Let γ be an extremal trajectory exiting the origin with control
+1, then its first switching can occur on ∆−1

A (0) only if s1 6= 0 (cond. A) or
s′1 6= 0 (cond. B) or |θ+(t+f )| = π (cond. C). Moreover, at most one of the
conditions A, B, C holds and the corresponding time is the first switching time
of γ and the first time at which γ+ intersect ∆−1

A (0). A similar result holds
for γ− and for the times s−1 , s

′−
1 , t−f .

Referring to conditions 1, 2, 3 of Remark 35, p. 90, conditions A and B cor-
respond both to case 2 or case 1 (with s+1 6= 0 or s′+1 6= 0) and condition C
corresponds to case 3. Moreover it is clear that for a NTAE (γ, t1), t1 is the
first time at which γ reaches ∆−1

A (0). In particular, if the trajectory exits the
origin with control +1, we have t1 = s+1 or t1 = s′+1 or t1 = t+f . In the case
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s+1 = 0 and s′+1 is not defined or viceversa and |θ+(t+f )| < π (that implies

t+f = τ) there are not NTAE exiting the origin with control +1 (an abnor-
mal extremal exists but it never switches). This case corresponds to case 1
of Remark 35, p. 90 with s+1 = 0 and s′+ is not defined or viceversa. These
observations are collected in the following:

Corollary 3 There are at most two maximal NTAE. Moreover:

(♠) one exits the origin with control +1 and its first switching is at
• s+1 iff s+1 6= 0;
• s′+1 iff s+1 6= 0;
• t+f iff |θ+(t+f )| = π;

(♣) the other exits the origin with control −1 and its first switching is at
• s−1 iff s−1 6= 0;
• s′−1 iff s′−1 6= 0;
• t−f iff |θ−(t−f )| = π.

Finally if |θ±(t±f )| = π then ∆−1
A (0) is direct at γ(t±f ).

The following two Propositions describe the position of the switching curves
of the extremal strips whose borders are abnormal extremals.

Proposition 22 Let (γ, t1) be a NTAE, ti and ti+1 two consecutive switching
times, S an extremal strip such that γ ∈ ∂S and U i, U i+1 two sufficiently
small neighborhoods of γ(ti) and γ(ti+1). Moreover let U iin and U iout (resp.
U i+1
in , U i+1

out ) be the two connected components of U i \ ∆−1
A (0) (resp. U i+1 \

∆−1
A (0)) chosen in such a way that γ enters U iin (resp. U i+1

in ). Under generic
conditions we have the following cases:

(1) θγ(ti) = θγ(ti+1) and ∆−1
A (0) direct at γ(ti).

In this case if the switching locus of S passing through γ(ti) lies in U iin
(resp. U iout) then the switching locus of S passing through γ(ti+1) lies in
U i+1
out (resp. U i+1

in ).
(2) θγ(ti) = θγ(ti+1) and ∆−1

A (0) inverse at γ(ti).
In this case if the switching locus of S passing through γ(ti) lies in U iin
(resp. U iout) then the switching locus of S passing through γ(ti+1) lies in
U i+1
in (resp. U i+1

out ).
(3) θγ(ti) = θγ(ti+1) ± π and ∆−1

A (0) direct at γ(ti).
In this case we have the same conclusion as in case (2).

(4) θγ(ti) = θγ(ti+1) ± π and ∆−1
A (0) inverse at γ(ti).

In this case we have the same conclusion as in case (1).

Proof. Let fi (resp. Ai) be the sign of −∆B/∆A (resp. ∆A) on U iin and Bi
the sign of ∆B on U i. By hypothesis, taking U i sufficiently small, these quan-
tities are well defined and we have fi = −AiBi. Moreover, set θi = +1 if
θγ(ti) = θγ(ti+1) ± π and θi = −1 if θγ(ti) = θγ(ti+1).

Claim Bi+1 = θiBi
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Proof of the Claim From sgn(θ̇γ(t)) = sgn(∆B(γ(t))) we have that v̄γ(t) (see
formula (2.5)) is a vector rotating counterclockwise in U i (resp. U i+1) iff
Bi > 0 (resp. Bi+1 > 0). Recalling that θi, θi+1 ∈ {0,±π} it is clear that Bi
and Bi+1 have the same sign iff θi+1 = θi ± π.

Case 1 First suppose that ∆A is direct at γ(ti). In this case from Proposi-
tion 18, p. 172 we clearly have Ai+1 = −Ai. Now if the switching loci of S lie
one in U iin and the other in U i+1

in (resp. U iout and U i+1
out ), then from Lemma 11

we have fi = −fi+1. This occurs iff −AiBi = +Ai+1Bi+1 = −AiBiθi, from
which it follows θi = +1.

On the other hand, if the switching loci of S lie one in U iin and the other
in U i+1

out (resp. U iout and U i+1
in ), then fi = +fi+1 (that occurs iff θi = −1).

Case 2 If ∆A is inverse at γ(ti) we have Ai+1 = +Ai. Now if the switch-
ing loci of S lie one in U iin and the other in U i+1

in (resp. U iout and U i+1
out ) we

have fi = −fi+1. This occurs iff θi = −1.
On the other hand, if the switching loci of S lie one in U iin and the other

in U i+1
out (resp. U iout and U i+1

in ) then fi = +fi+1 (that occurs iff θi = +1).

Proposition 23 Let (γ, t1) be a NTAE and let S1 and S2 be two extremal
strips such that {γ} = S1 ∩S2. Let t̄ be a switching time for γ and U a small
neighborhood of γ(t̄) such that U \∆−1

A (0) has two connected components Uin
and Uout, chosen in such a way that γ enters U from Uin. Then, under generic
conditions, the switching loci of S1 and S2 passing through γ(t̄) satisfy the
following:

(a) they both lie in Uin or in Uout;
(b) they are tangent to Supp(γ) in γ(t̄).

Proof. of (a). By the analysis of the singularities at the first switching time
(see Figure 4.11) we know that (a) is true in the special case t̄ = t1. Using
Proposition 22, p. 176 and by induction it follows the thesis.

Proof. of (b). See Section 3.2.7, p. 148 , Chapter 3.

4.3.2 Singularities

In this Section we describe all possible Frame Points occurring along a NTAE.
We start to describe the first singularity for the NTAE exiting the origin

with control +1, the opposite case being similar. We refer to Figure 4.11 where
all extremal trajectories are depicted in a neighborhood of the Frame Points.
Following Corollary 3, a NTAE generates at time s+1 (iff s+1 6= 0), or at time
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Fig. 4.11. Proof of Proposition 23, the first switching time of an abnormal extremal

s′+1 (iff s′+1 6= 0), or at time t+f (iff |θ+(t+f )| = π). Assume s+1 6= 0, then a

switching curve tangent to Supp(γ+) bifurcates from γ+(s+1 ). Recall formula
(3.17) of Chapter 3. Using the definition of θ+ and s+1 , and reasoning as in
Chapter 2, one gets that b1 > 0, d1 < 0 (we would have b1 < 0, d1 > 0,
if s+1 6= 0) and c0 < 1. Hence the switching curve is bifurcating to the right
of Supp(γ+). Moreover it follows that m, defined in formula (2.72), is bigger
than 1 and being b1 > 0 we have (in formula (3.17)) x1 > s+1 . If the switching
curve is of kind C we call the singularity (Y,C)tg2 . If the switching curve is of
kind C̄ and ∆−1

A (0) is direct at γ+(s+1 ) we call the singularity (Y, C̄)tg1 . Finally
if the switching curve is of kind C̄ and ∆−1

A (0) is inverse at γ+(s+1 ) we call the
singularity (Y, C̄)t−o1 . These names are chosen in accordance with Chapter 2.
The case s′+1 6= 0 is entirely similar.

The case when the NTAE starts at γ(t+f ) (that happens iff |θ+(t+f )| = π),

is again described by formula (3.17) with s+1 replaced by t+f . In this case,
reasoning as in Chapter 2, Section 2.8.2, we get c0 > 1 and b1d1 < 0. It
follows that the switching curve bifurcates to the right, m < 1, and in formula
(3.17) we have x1 < t+f . Moreover, at t+f , γ+ stops to be extremal and ∆−1

A (0)

is direct at γ(t+f ) (see Proposition 21, p. 175). We call this singularity (Y,C)tg3 .
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To classify the other generic singularities involving a NTAE we consider
at the Frame Points:

• if ∆−1
A (0) is direct or inverse;

• if the switching happens in Uin or Uout, according to Proposition 22;
• all the essentially different directions of the exiting abnormal trajectory.

We obtain 24 types of singularities. The singularities with entering abnormal
extremals of kind γ0 are showed in Figure 4.12, while in Figure 4.13 all the
possible singularities for a NTAE of the kind WC , and WD are listed. In these
figures we also indicate the labels fold, cusp, bifold or ribbon in accordance
with Definition 55, p. 163.
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Fig. 4.12. Singularities along abnormal extremals of kind γ0

In particular call x̄ := γ(t̄) the singular point and let I ∈ {X,Y } be the
vector field such that γ is a I–trajectory in [t̄− ε, t̄] for some ε > 0. Moreover
choose a local system of coordinates in a small neighborhood U of x̄ such that
x̄ = (0, 0), I = (1, 0) and ∆−1

A (0) ∩ U = {(x, y) ∈ R
2 ∩ U : x = 0}.
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In this way (referring to Theorem 22, p. 176) we have:

Uin = {(x, y) ∈ R
2 ∩ U : x ≤ 0}

Uout = {(x, y) ∈ R
2 ∩ U : x ≥ 0}.

First suppose that γ is a strip border of kind γ0, ∆
−1
A (0) is direct at x̄ and

the switching loci of the two strips S1 and S2 such that {γ} = S1 ∩ S2 lie in
Uin. Under these hypotheses Supp(γ) ∩ Uout has equation:

x2 = ax2
1 +O(x3

1) for x1 > 0

and the switching loci of S1 and S2 are represented by the following equation.

x2 = bx2
1 +O(x3

1)

x2 = cx2
1 +O(x3

1)

b > 0, c > 0, x < 0.

We assume:

(GA10) a, b, c are distinct and different from zero.

Suppose a > 0, the other case being similar. If a > b then for some ε > 0 the
trajectory γ|[t̄,t̄+ε] is an extremal strip border of kind WC . In this case we say
that the singularity is of type 1 (see figure 2.6). On the other hand, if a < b,
then for some ε > 0 the trajectory γ|[t̄,t̄+ε] is an extremal strip border of kind
γ0. In this case we say that the singularity is of type 2 (see figure 2.6). The
other cases can be treated similarly under similar generic assumptions and
these singularities include the singularities at t1. From the above assumptions
we have the following:

Proposition 24 Let (γ, t1) be a NTAE and t1 < t2 < ... < tn(γ)−1 the
sequence of its switching times. Set t0 = 0 and tn(γ) = τ . Under generic
conditions, for every i = 1, . . . , n(γ)− 1, we have the following. If γ|[ti−1,ti] is

an extremal strip border of type WC , WD or γ0, then γ|[ti,ti+1] is also a strip

border of type WC , WD or γ0 (but not necessarily of the same type!).

By induction one gets:

Proposition 25 Under generic conditions, the singularities of Figure 4.11,
4.12, 4.13 include all the possible singularities along a NTAE.

The proof of the fact that all these singularities are in fact realized, is in the
next Chapter.

4.4 Extremal Strips Evolution and Frame Points

In this Section we complete the study of strips evolution under generic as-
sumptions and classify all possible Frame Points that are generated as well as
the new Frame Curves.
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To study extremal strip borders we have to consider the evolution of γ0

and W Frame Curves, while for the interior of extremal strips the presence of
turnpikes and the violation of condition iii) (of Definition 56, p. 167) generate
new Frame Curves and cause the division of strips in smaller strips.

As a byproduct we obtain a complete classification of all possible stable
Frame Points of the extremal synthesis.

4.4.1 Frame Curves and Frame Points Along C and C̄

We first prove a theorem used in the following.

Theorem 34 Consider an extremal trajectory γ̄ that switches on ∆−1
B (0) at

time t̄. Assume ∆A(γ̄(t̄)) 6= 0 and that X(γ̄(t̄)) · ∆−1
B (0)(γ̄(t̄)) and Y (γ̄(t̄)) ·

∆−1
B (0)(γ̄(t̄)) are both positive or both negative. Under generic assumptions

there exists ε > 0 such that every extremal trajectory γ satisfying ‖γ−γ̄‖C0 < ε
switches before crossing ∆−1

B (0) iff it switches after crossing ∆−1
B (0).

Proof. From the assumptions of the statement we have that the set ∆−1
B (0)

is not a turnpike (indeed it is a barrier, see [126]) in a neighborhood of γ̄(t̄)).
Moreover, if ε is sufficiently small then every γ satisfying ‖γ − γ̄‖C0 < ε
crosses the set ∆−1

B (0) near γ̄(t̄) and we can define the function θγ(t) =
arg(G(γ(t̄)), v(G(γ(t)), t; t̄)). Notice that θγ is the same as θγ for t̄ = 0. By
definition θγ̄(t̄) = 0 and from Lemma 8, p. 43, we have that there exists δ > 0
such that θγ̄ is monotone increasing (decreasing), in [t̄ − δ, t̄] and monotone
decreasing (increasing) in [t̄, t̄ + δ]. For ε sufficiently small θγ has the same
behavior, i.e. there exists tγ such that |tγ − t̄| < (δ/4), θγ is monotonically in-
creasing (decreasing) in [t̄− (3δ/4), tγ ] and monotone decreasing (increasing)
in [tγ , t̄+ (3δ/4)], and |θγ(t̄± (3δ/4))− θγ̄(t̄± (3δ/4))| < (|θγ̄(t̄± (3δ/4))|/4).
(Notice that tγ is precisely the time at which γ crosses the set ∆−1

B (0).) As-
sume now that γ switches at a point sγ near t̄. Then λγ(sγ) · G(γ(sγ)) = 0
(here λγ denotes the covector associated to γ). Generically, s(γ) 6= t(γ) and
if ε is sufficiently small then |θγ(sγ)| < min{|θγ(t̄− (3δ/4))|, |θγ(t̄+ (3δ/4))|}.
Thus there exists s′γ such that θγ(s

′
γ) = θγ(sγ). This implies that s′γ is an-

other switching time for γ. Indeed λγ(t) · G(γ(t)) = λγ(t̄) · v(G(γ(t)), t; t̄)
and the vectors v(G(γ(sγ)), sγ ; t̄) and v(G(γ(s′γ)), s

′
γ ; t̄) are parallel, hence

from λγ(sγ) ·G(γ(sγ)) = 0 we deduce λγ(s
′
γ) ·G(γ(s′γ)) = 0. Moreover, from

s′γ 6= tγ we conclude d
ds
λγ(s) ·G(γ(s))|s=s′γ 6= 0.

Now we describe all possible Frame Points occurring in an extremal strip. We
start analyzing Frame Points on C and C̄ curves. To this purpose, let x be a
point of a Frame Curve F of kind C or C̄.

Proposition 26 Consider a Frame Curve F of C or C̄ type, a point x ∈ F
and denote by Ḟ the tangent unit vector to the curve F . If ∆A(x) ·∆B(x) 6= 0,
X(x) ∧ Ḟ (x) 6= 0 and Y (x) ∧ Ḟ (x) 6= 0 then x is not a Frame Point.
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Proof. For each point y in a neighborhood of x we indicate by (γy, λy) the
extremal pair reaching y at time ty. If θy(t) = arg(G(y), v(G(γy(t)), t; ty) then

sgn(θ̇y(ty)) = sgn(∆B(y)). Hence, by continuity sgn(θ̇y(t)) 6= 0 for (y, t) in
a neighborhood of (x, tx) and all trajectories γy switch. Finally, the nontan-
gency assumptions for the vector fields X and Y ensure that Frame Curve F
does not change type (from C to C̄ or viceversa) and thus x is not a Frame
Point.

Since abnormal extremals have been already considered in the previous Sec-
tion, we assume ∆A(x) 6= 0. Hence if x is a Frame Point on the curve F , then
we have one of the following cases:

i) ∆B(x) = 0,
ii) X(x) ∧ Ḟ (x) = 0 or Y (x) ∧ Ḟ (x) = 0,

under the generic assumption:

(GA11) i) and ii) are mutually exclusive.

Case i) Assume i) happens and denote by TB the unit tangent vector to
the set ∆−1

B (0). We choose a system of local coordinates so that x = (0, 0),

Ḟ = (0, 1) and F ⊂ {(x, y) : y ≤ 0}. Let us denote by I ∈ {X,Y } and
O ∈ {X,Y } the vector fields such that the extremal trajectories enter F as
I-trajectories and exit F as O-trajectories.

If F is of type C then without loss of generality we assume that I1(x) ≥ 0
and O1(x) ≥ 0. We have two generic cases:

a) I2(x) > O2(x),
b) O2(x) > I2(x)

under the generic assumption:

(GA12) I2(x) 6= O2(x).

Let K =: {aX(x)+bY (x) : a, b ∈ R} be the cone generated by X(x) and Y (x)
(i.e. by I(x) and O(x)). For TB(x) we have three possibilities: 1) ±TB(x) ∈ K;
2) ±TB(x) /∈ K, TB(x) or −TB(x) is in the first orthant; 3) ±TB(x) /∈ K,
TB(x) or −TB(x) is in the second orthant, and the generic assumption:

(GA13) ±TB /∈ ∂K, ± TB · e1 6= 0, ± TB · e2 6= 0.

In case a1) a turnpike generates from x and x is a (C,S)1 Frame Point. In cases
a2) and a3) applying Theorem 34 we obtain that the extremal trajectories
must switch before (case 2)) or after (case 3)) crossing F . Thus a second
switching points curve generates at x and x is a (C,C)1 point. Moreover, in
both cases the I-trajectory trough x is a γ0 Frame Curve.

The case b1) is impossible (indeed the extremal trajectories would not
switch). In cases b2) and b3) applying again Theorem 34 we obtain that the
extremal trajectories must switch before (case 2)) or after (case 3)) crossing
F . Thus a second switching points curve generates at x. This new Frame
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Curve can be of type C or C̄. In case b2), with a new C curve generated, we
have that the point x is of type (C,C)1 and the I-trajectory trough x is a γ0

Frame Curve. While if the new curve is a C̄ Frame Curve then we say that
x is a (C, C̄)2 point, the I-trajectory trough x is a γ0 Frame Curve before x
and a W Frame Curve after x, and x is a fold point. The case b3) with a new
curve of type C is entirely similar to case b2) with a new C curve. While if
the new curve is of type C̄ then we say that the point x is of type (C, C̄)1,
the I-trajectory trough x is a γ0 Frame Curve before x and a W Frame Curve
after x, and x is a cusp point. All possibilities are depicted in Figure 4.14.
The case in which F is a C̄ Frame Curve can be treated similarly. We have
four possible cases and Frame Points of type (C, C̄)2, (C̄, S)2, (C, C̄)1 and
(C̄, S)1 respectively. All cases are shown in Figure 4.15.
Case ii). Necessarily the vector O(x) is tangent to F at x. We have two
possible subcases under the generic condition:

(GA14) there exists a neighborhood U of x such that the forward O-
trajectory from x is contained either in the connected component of U \F
where I(x) points into or in the other connected component of U \ F .

In the former case of (GA14) we say that x is a (C, C̄)3 Frame Point, the
extremal trajectory through x is a γ0 Frame Curve before x and a W Frame
Curve after, and x is a fold point. In the latter case we call x a (C, C̄)4 Frame
Point, again the extremal trajectory through x is a γ0 Frame Curve before x
and a W Frame Curve after, while x is a cusp point. In Figure 4.16 are listed
the possibilities.

4.4.2 Frame Curves and Points Along γ0

A Frame Curve F of type γ0 that is an extremal strip border generically does
not enter a turnpike (even it may cross the set ∆−1

B (0)). Then if the trajectory
γ0 does not switch, there is no Frame Point. Assume now that x is a switching
point for γ0. Then on each side of F a C curve is generated. Let us call them
C1 and C2. These two curves curves intersect at x but generically we have:

(GA15) Ċ1(x) and Ċ2(x) are not parallel at x.

Let us denote by I ∈ {X,Y } and O ∈ {X,Y } the vector fields such that the
extremal trajectory corresponding to F reaches x as I-trajectory and leaves
from x as O-trajectories. We choose a local system of coordinates so that x =
(0, 0), C1 = {(x, y) : y = 0, x ≤ 0}, I(x) = (0, 1) and C2 ⊂ {(x, y) : x ≥ 0}.
We distinguish two cases:

i) Ċ2 or −Ċ2 is in the second orthant,
ii) Ċ2 or −Ċ2 is in the first orthant.
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Then there exists a small neighborhood U of x such that if r1 and r2 are
the lines through the origin with tangent vectors Ċ1(x) and Ċ2(x) respec-
tively, then U \ (r1∪r2) has four connected components U1, . . . , U4. There are
four generic subcases for O(x) lying in one of the regions U1, . . . , U4. All the
possibilities are shown in Figure 4.17.

4.4.3 Frame Curves and Points Along W

Let us now consider the Frame Points along a Frame Curve F of type W . Also
in this case we have a Frame Point only when the trajectory corresponding to
W switches. Then assume that x is such a switching point. There exists two
switching curves C1 and C2 generating at x with generically distinct tangent
vectors Ċ1(x) and Ċ2(x) at x. In this case the two curves lie on the same
side of W . Again, let us denote by I ∈ {X,Y } and O ∈ {X,Y } the vector
fields such that the extremal trajectory corresponding to F reaches x as I-



188 4 Extremal Synthesis

(C,C)
3

(C,C)
2

(C,C)
2

(C, C)
1

(C, C)
1

(C,C)
4

(C,C)
4

(C,C)
3 i)

 ii)

Case Subcase

In
Out

In

In

Out

In

Out

In OutIn

In

Out

In

Out

In

Out

Local Synthesis

CUSP

CUSP

FOLD

FOLD

FOLD

FOLD

FP

Fig. 4.17. FPs along γ0.



4.5 Existence of an Extremal Synthesis 189

trajectory and leaves from x as O-trajectories. We choose a local system of
coordinates so that x = (0, 0), I(x) = (1, 0) and the extremal trajectories near
F are contained in the set {(x, y) : y ≥ 0}. We have two generic cases:

i) O2(x) > 0,
ii) O2(x) < 0,

under the generic condition:

(GA16) O2(x) 6= 0.

There exists a small neighborhood U of x such that if r is the line through
the origin parallel to O(x) then the set (U ∩{(x, y) : y ≥ 0}) \ r in case i) and
(U ∩ {(x, y) : y ≤ 0}) \ r in case ii) has two connected components U1 and
U2. Therefore, we have three subcases according to the fact that the vectors
tangent to the curves C1 and C2 (or their opposite) both point into U1, both
point into U2 or point to different connected components. All possible Frame
Points are illustrated in Figure 4.18.

4.5 Existence of an Extremal Synthesis

In this Section we prove that the algorithm of Section 4.2, p. 167 gives rise
to an extremal synthesis. First we describe the extremal locus near the origin
and γ±. Then we consider the possible intersections of lift of extremal strips
in the cotangent bundle. Finally we prove Theorem 30, p. 155.

Observe that for every point x ∈ Supp(γ+) ∪ Supp(γ−) there are more
than one p’s such that (x, p) ∈ N .

For every t > 0 we have {(x, p) ∈ N : x = γ+(t)} = [θ1(t), θ2(t)], where the
segment is taken in counterclockwise direction on S1. We define two curves
in R

2 × S1 both projecting on γ+ by γ1+(t) := (γ+(t), θ1(t)), γ
2+(t) :=

(γ+(t), θ2(t)). We do the same for γ−. The FP (X,Y ) on the plane (see Figure
2.9, p. 61, Chapter 2) corresponds to a couple of FPs in the cotangent bundle
called (γ1+, γ2−), (γ2+, γ1−). This can be easily understood from Figure 4.3
and 4.4 that show N in a neighborhood of the origin and a subset of R

2

to which it is diffeomorphic. The others FPs on the curve γ+ on the plane
correspond to some FPs of N on the curves γ1+ or γ1− according to the
direction toward which the corresponding FC bifurcates from γ+.

Definition 64 Let BadN be the set of points (x, p) ∈ N (we recall that N =
π∗(N )) such that there exist two times t1, t2 ≤ τ, d ∈ [0,min(t1, t2)[, ε > 0
and two extremal pairs (γ1, λ1), (γ2, λ2) such that:

(1) γ1(0) = γ2(0) = 0, γ1(t1) = γ2(t2) = x, λ1(t1) = λ2(t2) = p ∈ S1 ⊂ R
2;

(2) γ1 and γ2 correspond to the same control in respectively [t1 − d, t1],

and [t2 − d, t2];
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(3) γ1 corresponds to the singular control ϕ in [t1 − d− ε, t1 − d];

γ2 corresponds to the constant control +1 or to the constant

control -1 in [t1 − d− ε, t1 − d]};

The projection of BadN on R(τ) is showed in Figure 4.19. The solid lines and
the dashed lines describe two different strips. Figure 4.20 shows an example
of fold entering a turnpike in two different points, hence creating a BadN
region.
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Fig. 4.19. The projection of BadN is the dotted region.

Theorem 35 Let (x, p) belong to N , then generically there exists a unique
extremal pair (γ, λ) : [0, t] → R

4 such that γ(0) = 0, γ(t) = x, λ(t) = p ∈ S1

for some t ≤ τ iff (x, p) /∈ BadN .

Proof. By definition, the uniqueness implies (x, p) /∈ BadN .
Let us now prove that generically (x, λ) /∈ BadN implies the uniqueness of
(γ, λ). Assume by contradiction that (x, p) /∈ BadN and suppose that there
exist two different extremal pairs (γ1, λ1), (γ2, λ2) such that γ1(0) = γ2(0) = 0,
γ1(t1) = γ2(t2) = x, λ1(t1) = λ2(t2) = p for some t1, t2 ≤ τ . Let A := {t ≥
0 : γ1(t1 − t) = γ2(t2 − t), λ1(t1 − t) = λ2(t2 − t)} and Ac the connected
component of A containing 0. Notice that Ac is closed and let d := maxAc.
If d = min(t1, t2) (that implies t1 = t2) then (γ1, λ1) ≡ (γ2, λ2) and there is
nothing to prove. Otherwise set:

t̄1 = t1 − d, t̄2 = t2 − d,

x̄ = γ1(t̄1) = γ2(t̄2),

λ̄ = λ1(t̄1) = λ2(t̄2).

Claim: λ̄ ·G(x̄) = 0.
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Fig. 4.20. A local example of extremal synthesis creating a BadN region. A fold is
switching and entering a turnpike in two different points.

Proof of the Claim let u1 and u2 be the controls corresponding to γ1 and γ2.
There exists ε > 0 such that one of the following cases occurs:

(a) u1 = ϕ on [t̄1 − ε, t̄1], u2 = +1 or u2 = −1 on [t̄2 − ε, t̄2] or viceversa;
(b) u1 = +1 on [t̄1 − ε, t̄1], u2 = −1 on [t̄2 − ε, t̄2], or viceversa.

In case (a) from u1 = ϕ in [t̄1 − ε, t̄1] we have λ̄ ·G(x̄) = 0. In case (b) (say
with u1 = +1) from the PMP we have:

λ1(t) · (F +G)(γ1(t)) = max
|w|≤1

λ1(t) · (F + wG)(γ1(t)) for a.e. t ∈ [t̄1 − ε, t̄1],

λ2(t) · (F −G)(γ2(t)) = max
|w|≤1

λ2(t) · (F + wG)(γ2(t)) for a.e. t ∈ [t̄2 − ε, t̄2],

so we have:

λ1(t) ·G(γ1(t)) ≥ 0 for a.e. t ∈ [t̄1 − ε, t̄1],

λ2(t) ·G(γ2(t)) ≤ 0 for a.e. t ∈ [t̄2 − ε, t̄2].

Since all the functions are continuous, we get λ̄ · G(x̄) = 0 that proves the
Claim.
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Now since (x, p) /∈ BadN then, condition (3) of Definition 64 must fail.
This means that we are in situation (b) of the proof of the Claim. Hence
(γ1, λ1)|[0,t̄1] and (γ2, λ2)|[0,t̄2] are two different extremal pairs reaching x̄, say
with controls +1 and -1 respectively, and satisfying:

λ1(t̄1) ·G(γ1(t̄1)) = 0, (4.12)

λ2(t̄2) ·G(γ2(t̄2)) = 0. (4.13)

Generically ∆A(x) 6= 0 otherwise γ1 and γ2 would be two NTAE, see Section
4.3, p. 171. We have the following cases:

Case 1 x̄ /∈ ∆−1
B (0). In this case t̄1 is a switching from Y to X for γ1 and

t̄2 is a switching from X to Y for γ2 (hence generically d = 0). Define
vi(t) := vγi(G(γi(t)), t; t̄i) (i = 1, 2) (cfr. Definition 14, p. 37) and the
functions:

α1(t) := arg(G(x̄), v1(t))

α2(t) := arg(G(x̄), v2(t)).

Now αi(t) = θγi(t) + Ai (i = 1, 2) where A1, A2 are real numbers. Since
∆B(x̄) 6= 0, by Proposition 8 (Chapter 2) there exists ε > 0 such that
sgn(α̇1(t̄1 + h)) = sgn(α̇2(t̄2 + h)) for each h ∈ [−ε, ε]. Moreover we can
choose ε small enough such that:
C1) for each t ∈ [t̄1 − ε, t̄1], λ1(t) ·G(γ1(t)) = λ1(t̄1) · v1(t) ≥ 0 where the

equality holds iff t = t̄1;
C2) for each t ∈ [t̄2 − ε, t̄2], λ2(t) ·G(γ2(t)) = λ2(t̄2) · v2(t) ≤ 0 where the

equality holds iff t = t̄2.
Now λ1(t̄1) = λ2(t̄2) and v1, v2 are two vector functions satisfying
v1(t̄1) = v2(t̄2) and rotating in the same direction. This contradicts C1)
or C2).

Case 2 x̄ ∈ ∆−1
B (0) and X, Y point to the same side of ∆−1

B (0). In this case
with an entirely similar argument used for Case 1 we reach a contradiction.

Case 3 x̄ ∈ ∆−1
B (0) and X,Y point to opposite side of ∆−1

B (0). In this case
from Proposition 12, p. 47 ∆−1

B (0) is a turnpike near x, hence γ1 and γ2

may enter the turnpike at time respectively t̄1 and t̄2. This case is not
generic.

Let us now introduce the concept of equivalent extremal syntheses and
stable extremal synthesis in finite time.

Definition 65 Let Γ ∗
1 and Γ ∗

2 be two extremal syntheses in finite time cor-
responding to (F1, G1), (F2, G2) ∈ Ξ respectively. We say that Γ ∗

1 and Γ ∗
2

are equivalent and we write Γ ∗
1 ∼ Γ ∗

2 if there exists an homeomorphism
Ψ : R

4 → R
4 such that:

• Ψ(N1) = Ψ(N2);
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• Ψ maps arcs of extremal trajectories corresponding to control ±1 (resp. ϕ)
to arcs of extremal trajectories corresponding to ±1 (resp. ϕ);

• π∗ ◦ Ψ ◦ π−1
∗ maps FCs (resp. FPs) of N1 to FCs (resp. FPs) of N2 of the

same kind.

Definition 66 An extremal synthesis Γ ∗
τ in time τ > 0 corresponding to

(F,G) ∈ Ξ is stable if the following holds. There exists ε such that if
‖(F ′, G′)−(F,G)‖ < ε and Γ ∗′

τ is the extremal synthesis at time τ for (F ′, G′),
then Γ ∗

τ ∼ Γ ∗′
τ .

Proof of Theorem 30. By definition, Γ ∗
τ is the set of extremal pairs constructed

by the Algorithm in time τ > 0. The Algorithm of Section 4.2, p. 167 con-
structs all the extremal pairs up to time τ . This guarantees 1. of Definition 54,
p. 155 at time τ . Under the generic conditions (P1)–(P7), (GA1)–(GA16),
(GAτ), (GAϕ) the Algorithm stops after a finite number of steps generating
a finite number of extremal strips, FCs and FPs. This ensures 2. of Definition
54. Moreover, there exists m ∈ N such that for every trajectory γ built by the
Algorithm, we have n(γ) ≤ m, that is γ is a concatenation of at most m arcs
and each arc corresponds to a constant control ±1 or to the singular control
ϕ. Hence we obtain 3. of Definition 54, p. 155. The lift to R

2 × S1 of each
extremal strip S is a piecewise–C1 manifold and there is a natural stratifica-
tion setting FCs be the one dimensional strata and FPs the zero dimensional
strata. Now for each couple of (lift of) extremal strips we define:

S1 ∩ S2 =
{

(x, p) = (γ1, λ1)(t1) = (γ2, λ2)(t2) : (γi, λi) ∈ Si,
ti ∈ Dom(γi), i ∈ {1, 2}} ,

and:

S1 ∪ S2 =
{

(x, p) = (γi, λi)(ti) : (γi, λi) ∈ Si, ti ∈ Dom(γi), i ∈ {1, 2}
}

.

From Theorem 35, p. 191 we get a description of the set S1∩S2. More precisely,
if two extremal strips intersect each other then S1∩S2 = BadN (S1,S2) where
BadN (S1,S2) = BadN ∩ (S1 ∪ S2). It follows that S1 ∪ S2 is a stratified set
with FCs and FPs as strata, indeed ∂BadN (S1,S2) ⊂ FCs. Since the number
of extremal strips is finite we conclude that N is a stratified set in time τ .
Now N = π−1

∗ (N), therefore N is a locally closed locally finite in R
4 regular

Whitney stratified subset of R
4 of dimension three. Thus 4. of Definition 54,

p. 155 is verified. The set of discontinuities of ](Γ ∗(x, p)) on N is precisely
the union of the sets π−1

∗
(

∂BadN (S1,S2)
)

. Hence we obtain 5. of Definition
54, p. 155.

The generic conditions (P1)–(P7), (GA1)–(GA16), (GAϕ), (GAτ),
(A), and (F), imply that all FCs and FPs are stable. It is easy to check that
Γ ∗
τ is stable and this concludes the proof.
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4.6 Classification of the Singularities in R
2

× S1

In this Section we topologically classify all generic FCs and FPs in the nor-
malized cotangent bundle R

2 × S1.

Definition 67 Let l1 and l2 be two FCs of N = π∗(N ). We say that l1 and l2
are topologically equivalent if for every (x1, p1) ∈ l1 and for every (x2, p2) ∈ l2
there exist a neighborhood U1 of (x1, p1) in N , a neighborhood U2 of (x2, p2)
in N and a homeomorphism Ψ : U1 → U2 such that:

1) Ψ(U1) = U2;

2) Ψ(l1 ∩ U1) = l2 ∩ U2;

3) Ψ(x1, p1) = (x2, p2);

4) Ψ send extremal arcs of trajectory–covector pairs

onto extremal arcs of trajectory–covector pairs.

Definition 68 Let (x,p1), (x2, p2) be two FPs of N . We say that they are
topologically equivalent if there exist a neighborhood U1 of (x1, p1) in N , a
neighborhood U2 of (x2, p2) in N and a homeomorphism Ψ : U1 → U2 satisfy-
ing 1, 3, 4 of Definition 67 and:

5) if l1 is a FC that intersects U1, then Ψ(l1 ∩ U1) = l2 ∩ U2 where l2 is a
FC equivalent to l1.

By the previous analysis and from Definition 67, p. 195 we have the following
equivalence:

• γ1±|[s±
i
,t±

i
] ∼ γ2±|[s′±

i
,t′±

i
]. We call this class TY (topologically equivalent

to Y –curve).
• γ1±|[t±

i
,s±

i+1
] ∼ γ2±|[t′±

i
,s′±

i+1
] ∼ γ0 ∼ W ∼ WC ∼ WD (for every

γ0, W, WC , WD that are not in ∂BadN (S1,S2) for every S1,S2 ex-
tremal strips). We call this class Tγ0;

• all C and C̄ are equivalent. We call this class TC;
• all the turnpikes are equivalent. We call this class TS;
• the two connected components of π−1(0) \ {(γ1+, γ2−), (γ2+, γ1−)} are

equivalent. We call this class TB;
• all the ∂BadN (S1,S2), for every S1,S2 extremal strips, are equivalent.

We call this class T∂BadN .

It follows:

Theorem 36 The equivalence classes of FCs in R
2 × S1 are the following:

TY γ 0T TC TS TB
T  Bad

N
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Similarly from Definition 68, p. 195 we have the equivalences:

• (γ1+, γ2−) ∼ (γ2+, γ1−). We call this class T (X,Y ).
• All the FPs of kind (Y,C)1 are equivalent. We call this class T (Y,C)1.
• All the FPs of kind (Y,C)2, (Y,C)tg2 , (Y, C̄)1, (Y, C̄)tg1 , (Y, C̄)t−0

1 are
equivalent. We call this class T (Y,C)2.

• All the FPs of kind (Y,C)3, (Y,C)tg3 are equivalent. We call this class
T (Y,C)3.

• All the FPs of kind (C,C)1, (C, C̄)2, (C, C̄)1 are equivalent. We call this
class T (C,C)1.

• All the FPs of kind (C,C)2, (C̄, C̄)1, (C, C̄)3, (C, C̄)4, 1ab, ...., 24ab,
(W,C,C), (W, C̄, C̄), (W,C, C̄)1, (W,C, C̄)2 (where 1ab...24ab are the
points of figure 5.2, 5.3, 5.4, 5.5) are equivalent. We call this class T (C,C)2.

• All the FPs of kind (C,S)1, (C̄, S)1, (C̄, S)2 are equivalent. We call this
class T (C,S).

• All the FPs of kind (Y, S) are equivalent. We call this class T (Y, S).
• All the FPs of kind (C,S)2 are equivalent. We call this class T (C,S)2.
• All the FPs of kind (S, S) are equivalent. We call this class T (S, S).

It follows:

Theorem 37 The equivalence classes of FPs in R
2 × S1 are the follow-

ing: T (X,Y ), T (Y,C)1, T (Y,C)2, T (Y,C)3, T (C,C)1, T (C,C)2, T (C,S),
T (Y, S), T (C,S)2, T (S, S).
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Projection Singularities

To understand better the link between the singularities of the optimal synthe-
sis, of the extremal synthesis and of the minimum time function, we study the
set of pairs (extremal, cost) (that live in a five dimensional space) T ∗M × R

and its projections on the various subspaces. For simplicity we restrict to the
case M = R

2. Since the covector λ never vanishes (because the Lagrangian
cost is constantly equal to 1, see Remark 19, p. 36), we normalize it in such a
way its norm is 1. This corresponds to consider extremals on the projectivized
cotangent bundle PT ∗

R
2 = R

2×S1 of pairs (x, p) where x ∈ R
2 and p ∈ T ∗

xR
2

with |p| = 1. We thus study the set:

Q := {(x, p, t) ∈ PT ∗
R

2 × R = R
2 × S1 × R

+ : 0 ≤ t ≤ τ,∃ an

extremal pair (γ, λ) s.t. γ(0) = 0, γ(t) = x, λ(t) = p}.

We prove that Q is a two dimensional piecewise C1 submanifold of PT ∗
R

2×R

with boundary. Then we consider the projections on (x, p), (x, t) and x spaces,
namely on the projectivized cotangent space, on the space containing the
graph of the minimum time function and on the base space. We have the
situation depicted in Figure 5.1.

Projecting Q onto the (x, p) space throughΠ1, it may happen that two regions
glue together as in Figure 5.2. This is the reason why the set of extremals is a
Whitney stratified set, but not a manifold, and the set of points where it fails
to be a manifold is described by Theorem 35, p. 191 of Chapter 4. Notice that
this is the only topological type of projection singularity for Π1 that happens
under generic assumptions.

Let us recall the definition of N and give that of Ñ :

N = {(x, p) ∈ R
2 × S1 : ∃ t ≤ τ,∃ extremal pair

(γ, λ) : [0, t] → T ∗
R

2 s.t. γ(0) = 0, γ(t) = x, λ(t) = p},
Ñ = {(x, t) ∈ R

2 × R
+ : ∃ extremal trajectory

γ : [0, t] → R
2 s.t. γ(0) = 0, γ(t) = x},
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that is N = Π1(Q) and Ñ = Π3(Q). We study the stable singularities of
the projection of N onto R

2 through Π2. At points where N is a manifold,
we are in the situation of the projection of a two dimensional manifold on
the plane, hence we may expect to find the classical Whitney singularities of
smooth maps between two dimensional manifolds, namely folds and cusps.
Apart from some special singularities (called vertical) due to the fact that the
target is a point (for the case of a general target see Appendix B), the stable
projection singularities encompass, beside folds and cusps, two new singular-
ities called bifold and ribbon, see Figure 5.3. The former appears in relation
with not optimal trajectories along fold points, while the second appears only
along abnormal extremals. Since N is only a stratified set and not a smooth
manifold, it is necessary to point out that the classification of stable projection
singularities:

• is done only for points at which N is a manifold,
• has to to be intended in topological sense.

for this picture, for size problems, see www.sissa.it/~boscain/PROJ.eps

Fig. 5.3. Some singularities of Π2.

It is nontrivial to prove that all singularities appear under generic conditions.
In fact, some singularities are related to the history of extremal trajecto-
ries and show up only if some global conditions are verified by the control
system. In particular, this is true for the ribbon projection singularity, that
can be found only along abnormal extremals. The set of possible singularities
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along abnormal extremals is formed of 28 (equivalence classes of) singular
points, but not all sequences of singularities can be realized. We recall that
a set of words Ω, from a given finite alphabet, is recognizable if there exists
an automaton generating exactly the words of Ω. An automaton is roughly
speaking a directed graph, with labelled edges, and one constructs words con-
sidering all the paths starting from a given set of points and ending to another
fixed set of points. We are able to prove that the generic sequences of singu-
larities, along abnormal extremals, can be classified by a recognizable set of
words. As a byproduct, we obtain the existence of systems presenting projec-
tion singularities of ribbon type.

In Section 5.2, we consider also the projectionΠ3 on the (x, t) space andΠ4

on R
2. The manifold Q is two dimensional, thus the projection Π3 can be seen

as the immersion of a two dimensional manifold into a three dimensional space.
The only stable singularity, for the smooth case, is the Whitney Umbrella
and the same happens in our case (in topological sense). To every cusp in
R

2 × S1, it corresponds a Whitney Umbrella in the (x, t) space and this is
due to the presence of an overlap curve in the optimal synthesis. For smooth
classification, the singularity is precisely a Swallowtail, see Figure 5.4. To every
ribbon, it corresponds a ribbon point (not a singularity for Π3 but only for
Π4) and to every bifold it corresponds either a bifold (again not a singularity
for Π3 but only for Π4) or a Whitney Umbrella.

Cusp 

R2 R(x,p) R2 S1 (x,t)

1 ΠΠ2 4

# preimage 

overlap

3

Withney Umbrella (Swallowtail)

Fig. 5.4. Cusp and Whitney Umbrella.
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The analysis of the projectionsΠ3 andΠ4 is made by studying the evolution of
the time front along extremals. It is interesting to notice that the projection of
the extremal time front on R

2, generically develops only standard singularities
as wave front on a two dimensional manifold, see [16, 17].

Theorem 38 (Q is a manifold) Under generic conditions, on F and G, Q
is a piecewise C1 manifold with boundary.

Proof. In Theorem 35, p. 191, it is proved, under generic conditions, that the
set {(x, p) : ∃t s.t. (x, p, t) ∈ Q} fails to be a manifold only because of singular
trajectories called turnpikes. More precisely if (x, p) is such a point then there
exist two distinct trajectories, say γ1, γ2 reaching the same turnpike. It is easy
to check that, under generic assumptions, γ1 and γ2 reach a same point of the
turnpike at different times, so that Q is a manifold at each (x, p, t).

5.1 Singularities of the Projection Π2

Notice that Π2 is a projection from a Whitney stratified set of dimension
two, contained in R

2 × S1, to the plane. Hence we should expect the classical
singularities, namely fold and cusp. It happens that indeed there are other
stable singularities. We first need the following:

Definition 69 A stable topological singularity of the projection Π2 is a stable

topological singularity for the projection of N onto R
2 outside a neighborhood

of the set of discontinuities of #(Γ ∗
(x,p)) (where N fails to be a manifold see

Definition 54, p. 155).

5.1.1 Classification of Projection Singularities

We introduce the definition of topologically equivalent singularities:

Definition 70 Let (x1, p1), (x2, p2) be two points of N . We say that they are
two equivalent topological singularities of the projection of the extremal syn-
thesis, and we we write (x1, p1) ∼π (x2, p2) if there exists an homeomorphism
Ψ : U1 → U2, Ui neighborhood of (xi, pi) (i = 1, 2) in R

2 × S1, such that for
every p, p′ ∈ S1 we have:

1) π (Ψ(x, p)) = π (Ψ(x, p′))

2) Ψ(U1 ∩N) = U2 ∩N

Our topological classification follows from the analysis given in Chapter 4.
Recalling Definition 55, p. 163, of Chapter 4, we have the following:

Proposition 27 Take (x1, p1), (x2, p2) in N such that x1, x2 /∈ Supp(γ+) ∪
Supp(γ−), and let γ1, γ2 be the two extremal trajectories such that γi reaches
xi with covector pi. If the two points x1, x2 of R(τ) are both normal, fold,
cusp, bifold or ribbon, then (x1, p1) ∼π (x2, p2).
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Definition 71 We call the equivalence classes determined by Proposition 27
respectively normal, fold, cusp, bifold and ribbon. Moreover we call vertical a
point of Supp(γ+) ∪ Supp(γ−).

In Figure 5.3, p. 199, we depict the projection singularities in R
2 × S1. The

projection singularities of Π2 are described by the following:

Theorem 39 Under generic assumptions on (F,G) ∈ Ξ, each stable topo-
logical singularity of the projection of Q through Π2 is of one of the following
type:

1. Vertical (origin, normal, cusp, fold, ending)
2. Fold,
3. Cusp,
4. Bifold,
5. Ribbon.

Only 1.,2.,3. can happen on a small neighborhood of the intersection with the
set of optimal pairs, with fold points not being optimally reached. Moreover 5.
appears only along abnormal extremals.

Remark 54 Notice that the difference, with respect to the Whitney classical
singularities of smooth maps between two dimensional smooth manifolds, (see
[130]), is that now we have a stratified set with “edges” and “corners”.

Proof. There are projection singularities along γ+ ∪ γ− that we call vertical.
In particular all points of π−1(0) are called vertical origin. All the points of

π−1 (Supp(γ+) ∪ Supp(γ−)) that are not FPs are equivalent and they are
called vertical normal singularities. The lift in N of a FP of kind (Y, C̄)tg1
is called a vertical cusp point (see figure 4.5 and 4.6). It is easy to check

the equivalences (Y, C̄)tg1 ∼π (Y, C̄)t−o1 ∼π (Y, C̄)1. Finally, the lifts of the
equivalent points (Y,C)3 ∼π (Y,C)tg3 are called vertical ending. From the
analysis of Chapter 4 we conclude.

5.1.2 Classification of Abnormal Extremals

Notice that Theorem 39 describes all possible stable projection singularities
of Π2 on Q. However it is not proved that these singularities actually appear
for some system.

The vertical, fold and cusp singularities appear in the examples given in
Section 2.6.4, p. 62, Chapter 2, and are described in details in the analysis of
FPs along γ±. Bifold singularities may appear along normal extremal and it is
not difficult to construct examples. On the other side, the ribbon singularity
may appear only along abnormal extremals.

The set of all possible singularities along abnormal extremals is formed of
28 (equivalence classes of) singular points, but not all sequences of singularities
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can be realized. We aim to provide a classification of all possible sequences of
singularities, and prove the realizability of the ribbon singularity.

A good classification is obtained if one can put the possible sequences
in bijective correspondence with some algebraic or combinatorial object Ω
with simple structure. If all possible sequences of singularities were admitted,
then this classification could be done choosing Ω to be the set of all words
formed with letters from the alphabet {1, . . . , 28}, with the meaning that each
number corresponds to a singularity. This is not the case, however we can still
have some regular structure, more precisely Ω can be chosen as a set of words
recognizable by an automaton and this is the most natural classification for
this problem, see rules R1,R2,R3 of below. The recognizable sets of words
share a regular structure used in theoretical computer science, see [60].

Definition 72 We say that a set A provides a generic classification of ab-
normal extremals (in time τ) if there exists a generic subset Π of Ξ and a
map Φ : Π → A such that Φ((F,G)) = Φ((F ′, G′)), (F,G), (F ′, G′) ∈ Π, if
and only if the corresponding maximal abnormal extremals present the same
finite sequence of generic singularities.

Since the sequence of singularities completely describes the abnormal ex-
tremal, we obtain that abnormal extremals are recognizable by an automaton:

Theorem 40 The set of abnormal extremals in a generic set of Ξ, can be
classified through a set of words recognizable by an automaton.

Using Corollary 3, p. 176, we have that for each system (F,G) ∈ Ξ there
exists exactly two maximal abnormal extremals γ±A = γ±A ((F,G), τ) in time
τ , exiting the origin respectively with control ±1.

Remark 55 From Section 4.3, p. 171, we know the structure of the set of
extremal trajectories near each generic singularity. Hence, if two abnormal
extremals present the same sequence of singularities then the synthesis near
them is exactly the same.

First we build an automaton, naturally associated to a system, with the
simplest possible set of edges. By this automaton we can prove that the rib-
bon and the bifold singularities are realized, but more than one sequence of
singularities may correspond to a recognizable word. Then we build a more
complicated automaton that has the required property, i.e. to every recogniz-
able word it corresponds one and only one sequence of generic singularities.

Let us first recall some definition from automata theory. For a more ex-
tensive and detailed treatment of the subject we refer to [60].

Definition 73 Let Σ be a finite set and consider the set Σ∗ of ordered n–
tuples s = (σ1, ..., σk), σi ∈ Σ (i = 1, ...k), k ≥ 0. We call Σ the alphabet,
σ ∈ Σ a letter, s = (σ1, ..., σk) ∈ Σ∗ a word of length k and Σ∗ the set of
words generated by Σ.
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The set of words generated by an alphabet is a set with a simple structure
and a classification based on such a set is quite satisfying. Such a kind of
classification was given, for example, for the sequence of generic singularities
along γ± in [108]. For abnormal extremals we have to use a set with a more
complicate structure.

Definition 74 Let Σ be a finite alphabet, an automaton A over Σ consists
of the following:

• a finite set S whose elements are called states;
• a set of initial states I ⊆ S;
• a set of terminal states T ⊆ S;
• a set of edges E ⊆ S × Σ × S. An edge is indicated as (S1, σ, S2) and we

say that it begins at S1, it ends at S2 and it carries the label σ.

Usually an automaton is represented by a set of circles (states) and a set of
arrows that connect the circles (the edges). The initial (resp. final) states are
labelled by arrows pointing towards (resp. away from) the circle. If there are
several edges beginning and ending at the same states they are replaced by
a single arrow carrying several labels. An example of automaton is shown in
Figure 5.5.

S S

S

1 2

3

σ
σ σ σ

1
2

3

4 σ5,

Fig. 5.5. Example of automaton

A path in A is a finite sequence of edges of the type (S1, σ1, S2)(S2, σ2, S3)...
(Sk, σk, Sk+1). If S1 ∈ I and Sk+1 ∈ T we say that the path is successful.

Definition 75 A set of words Ω ⊂ Σ∗ is said to be recognizable by A if for
every word (σ1, σ2, ..., σm) ∈ Ω of length m there exists S1, ..., Sm+1 ∈ S such
that:

• (Si, σi, Si+1) ∈ E for every i = 1, ...,m;
• (S1, σ1, S2)(S2, σ2, S3)...(Sm, σm, Sm+1) is a successful path.

Let us resume all the information on the switching strategy of an abnormal
extremal via three rules. Let (γ, t1) be a NTAE and t1 < t2... < tn(γ)−1 <
tn(γ) := τ the sequence of its switching times.
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R1. Let S1 and S2 be the two extremal strips such that γ ∈ S1 ∩ S2 and let
S̄ := S1 ∪ S2. We have the following cases:
(1) θγ(ti) = θγ(ti+1) and ∆−1

A (0) direct at γ(ti).
In this case if the switching locus of S̄ passing through γ(ti) lies in
U iin (resp. U iout) then the switching locus of S̄ passing through γ(ti+1)
lies in U i+1

out (resp. U i+1
in ).

(2) θγ(ti) = θγ(ti+1) and ∆−1
A (0) inverse at γ(ti).

In this case if the switching locus of S̄ passing through γ(ti) lies in
U iin (resp. U iout) then the switching locus of S̄ passing through γ(ti+1)
lies in U i+1

in (resp. U i+1
out ).

(3) θγ(ti) = θγ(ti+1) ± π and ∆−1
A (0) direct at γ(ti).

In this case we have the same conclusion as in case (2).
(4) θγ(ti) = θγ(ti+1) ± π and ∆−1

A (0) inverse at γ(ti).
In this case we have the same conclusion as in case (1).

The rule R1. is a direct consequence of Propositions 22, p. 176 and 23, p. 177
a).

R2. If ∆−1
A (0) is inverse at ti and ti+1 then θγ(ti+1) = θγ(ti).

The rule R2. follows from Proposition 21, p. 175.

R3. Only the following consecutive singularities are possible:

singularity at ti possible AA(i)
singularity at ti+1

(Y C)tg2 ,(Y C)tg3 ,2,4,6,8,12,16,20,24 1,2,3,4,5,6,7,8 γ0

(Y C̄)tg1 ,1,3,7,9,10,13,14,19,23 9,13,18,19,20,22,23,24 WC

(Y C̄)t−o1 ,5,11,15,17,18,21,22 10,11,12,14,15,16,17,21 WD

Clearly if an abnormal arc of kind γ0 (resp. WC ,WD) exits from the singular-
ity γ(ti) (i = 1, ..., n(γ)−1), then an abnormal arc of kind γ0 (resp. WC ,WD)
enters into the singularity γ(ti+1). Thus R3. can be directly checked using
Figure 4.1, 4.2 and 4.3.

We now are ready to build an automaton A. For us the set of states is the
set of the 28 singularities:

S := {(Y C)tg2 , (Y C̄)tg1 , (Y C̄)t−o1 , (Y C)tg3 , 1, 2, ..., 23, 24}

and the alphabet is:
Σ := {0, π}

that is (if we are considering two singularities at ti and ti+1) the set of values
assumed by the function ∆θγi := |θγ(ti+1)− θγ(ti)|. The set of initial states is
formed by the singularities (Y C)tg2 , (Y C̄)tg1 , (Y C̄)t−o1 and (Y C)tg3 and the set
of terminal states coincides with S. Using rules R1÷ R3 we obtain Table A
that shows how the edges connect the states, i.e. it describes the set of edges
E.
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letters→ 0 π

states
↓

(Y C)tg
2 1,2,5,6 3,4,7,8

(Y C̄)tg
1 9,18,19,20 13,22,23,24

(Y C̄)t−o
1 14,15,16,21 10,11,12

(Y C)tg
3 1,2,5,6 3,4,7,8

1 13,22,23,24 9,18,19,20

2 3,4,7,8 1,2,5,6

3 9,18,19,20 13,22,23,24

4 1,2,5,6 3,4,7,8

5 10,11,12,17 14,15,16

6 1,2,5,6 3,4

7 13,22,23,24 9

8 3,4,7,8 1,2

9 13,22,23,24 9,18,19,20

10 13,22,23,24 9,18,19,20

11 14,15,16,21 10,11,12,17

12 3,4,7,8 1,2,5,6

13 9,18,19,20 13,22,23,24

14 9,18,19,20 13,22,23,24

15 10,11,12,17 14,15,16,21

16 1,2,5,6 3,4,7,8

17 10,11,12,17 14,15,16

18 10,11,12,17 14,15,16

19 9,18,19,20 13

20 1,2,5,6 3,4

21 14,15,16,21 10,11,12

22 14,15,16,21 10,11,12

23 13,22,23,24 9

24 3,4,7,8 1,2

Table A

For example from the state (singularity) 18, using the letter π we may reach
the states 14, 15, 16. This means that the edges of E with label π, that start
at the state 18 are: (18, π, 14), (18, π, 15) and (18, π, 16). It is clear that for
this automaton every word of Σ∗ is recognizable, but A does not provide a
generic classification because a word corresponds to more than one sequence
of singularities. However it describes in a simple way the set of abnormal
extremals and, in particular, from Table A we have:
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Theorem 41 All states 1 ÷ 24 can be reached with at most two edges. More
precisely the singularity 17 is the only one that needs more than one edge.
Moreover, the singularity number 22 (the ribbon) can be realized with the edge
((Y C̄)tg1 , π, 22) and the singularity number 10 (that is a bifold) with the edge
((Y C̄)t−o1 , π, 10).

Figure 5.6 shows the automaton with all states, but not all the edges. More
precisely only the edges of the kind ((Y C)tg2 , . , . ), ((Y C̄)tg1 , . , . ) and
(15, . , . ) are drawn.

0

π

0

π

π

0

18

123456789101112

2324 22 21 20 19 17 16 15 14 13

(YC)
tg
1

3
(YC)

1
(YC)t o

2(YC)

Fig. 5.6. The automaton (some edges are omitted).

To build a new automaton A′ that provides a generic classification, we need to
include more information in the alphabet. First of all we assign a label to the
entry arrows I1, I2, I3, and I4, corresponding respectively to the singularities
(Y C)tg2 , (Y C̄)tg1 , (Y C̄)t−o1 , and (Y C)tg3 . Then we introduce more information
in the letters, i.e. we use a bigger alphabet. To do this, given a generic sin-
gularity on a NTAE, we want to include the following data relatively to the
subsequent singularity:

• ∆−1
A (0) direct or inverse (indicated by D and I respectively),

• the kind of exiting abnormal arc (i.e. γ0,WC or WD).

In this way, the automaton A′ is formed by S
′ = S, Σ′ = {0, π}×{D, I}×

{γ0,WC ,WD} ∪ Σ′
1 (where Σ′

1 = {I1, I2, I3, I4}) and set of edges E
′. Every

element of Σ′ (that is not in Σ′
1) is indicated by a triplet ( . , . , . ). In

Table B the set of edges E
′ (with labels not in Σ′

1) is completely described.
Notice that not all words of (Σ ′)∗ are recognizable by A′. For example the
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word I2(π, I,W
D)(0, D,WC) is recognizable and it corresponds to the se-

quence of singularities (Y C̄)tg1 → 22 → 14 while the word I1(0, I,W
C) is not

recognizable.
With these definitions, to every word recognizable by A′ it corresponds

one and only one possible sequence of generic singularities along a NTAE.
Theorem 40 is therefore proved.

letters→ (0, D, γ0) (0, D, W C) (0, D, W D) (0, I, γ0) (0, I, W C) (0, I, W D)
states

↓

(Y C)tg
2 2 1 – 6 – 5

(Y C̄)tg
1 – 9 – 20 19 18

(Y C̄)t−o
1 16 14 15 – – 21

(Y C)tg
3 2 1 – 6 – 5

1 – 13 – 24 23 22

2 4 3 – 8 7 –

3 – 9 – 20 19 18

4 2 1 – 6 – 5

5 12 10 11 – – 17

6 2 1 – 6 – 5

7 – 13 – 24 23 22

8 4 3 – 8 7 –

9 – 13 – 24 23 22

10 – 13 – 24 23 22

11 16 14 15 – – 21

12 4 3 – 8 7 –

13 – 9 – 20 19 18

14 – 9 – 20 19 18

15 12 10 11 – – 17

16 2 1 – 6 – 5

17 12 10 11 – – 17

18 12 10 11 – – 17

19 – 9 – 20 19 18

20 2 1 – 6 – 5

21 16 14 15 – – 21

22 16 14 15 – – 21

23 – 13 – 24 23 22

24 4 3 – 8 7 –

Table B (first part)
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letters→ (π, D, γ0) (π, D, W C) (π, D, W D) (π, I, γ0) (π, I, W C) (π, I, W D)
states

↓

(Y C)tg
2 4 3 – 8 – 7

(Y C̄)tg
1 – 13 – 24 23 22

(Y C̄)t−o
1 12 10 11 – – –

(Y C)tg
3 4 3 – 8 7 –

1 – 9 – 20 19 18

2 2 1 – 6 – 5

3 – 13 – 24 23 22

4 4 3 – 8 7 –

5 16 14 15 – – –

6 4 3 – – – –

7 – 9 – – – –

8 2 1 – – – –

9 – 9 – 20 19 18

10 – 9 – 20 19 18

11 12 10 11 – – 17

12 2 1 – 6 – 5

13 – 13 – 24 23 22

14 – 13 – 24 23 22

15 16 14 15 – – 21

16 4 3 – 8 7 –

17 16 14 15 – – –

18 16 14 15 – – –

19 – – – – 13 –

20 4 3 – – – –

21 12 10 11 – – –

22 12 10 11 – – –

23 – 9 – – – –

24 2 1 – – – –

Table B (second part)

We refer to Figure 5.7 for a graphic example of synthesis involving a ribbon
singularity.

5.2 Projection Singularities for Π3

Let us introduce some more definitions. Since Q is a piecewise smooth two
dimensional manifold and the codomain of Π3 is R

2 × S1, the singularities of
Π3 can be seen as the singularities of the immersion of a surface in a three
dimensional space. For the smooth case, the only generic singularity is called
Whitney Umbrella. More precisely,
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γ

γ

+

−

C
C

C

A∆

A∆ inverse

directx 1

2x

WD

Fig. 5.7. An example of synthesis involving a ribbon.

Definition 76 We say that a point (x, p, t) is a Whitney Umbrella singularity
for the projection Π3 if the following holds. There exist a neighborhood U of
(x, p, t) and a one dimensional connected manifold ` ⊂ Q containing (x, p, t),
such that: i) ` \ {(x, p, t)} has two connected components `1 and `2, ii) Π3 is
injective on U \ `, iii) for every z ∈ `1 there exists one and only one w ∈ `2
such that Π3(z) = Π3(w).

Also in this case it happens that generically only Whitney Umbrella singular-
ities appear. Notice that we can identify N and Ñ with subsets of Q, more
precisely (x, p, t) ∈ Q implies (x, p) ∈ N and (x, t) ∈ Ñ . We obtain:

Theorem 42 Let (x, p, t) belong to Q. Then:

• if (x, p) is a normal point in N then Ñ is a manifold in a neighborhood
of (x, t) and the projections Π3, and Π4, are regular at (x, p, t) and (x, t)
respectively;

• if (x, p) is a fold point in N then Ñ is a manifold in a neighborhood of
(x, t), the projection Π3 is regular at (x, p, t) and the projection Π4 has a
fold singularity at (x, t);

• if (x, p) is a cusp point in N then Π3 has a Whitney Umbrella singularity
at (x, p, t), hence Ñ is not a manifold at (x, t);

• if (x, p) is a bifold point in N then either Π3 has a Whitney Umbrella
singularity at (x, p, t) (hence Ñ is not a manifold at (x, t)), or Π3 is regular
at (x, p, t) and Π4 has a bifold singularity at (x, t);

• if (x, p) is a ribbon point in N then Π3 is regular at (x, p, t) and Π4 has a
ribbon singularity at (x, t).
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To prove Theorem 42, we study the time front along extremal trajectories.
This analysis, and in particular that of the projection of the front on the base
R

2, is of own interest, hence we organize the obtained results in a subsection.

5.2.1 The Extremal Front

If we consider all extremal trajectories, including the not optimal ones, we
can define the extremal front F eT as the set of points that are reached by an
extremal trajectory at time T . Obviously we have FT ⊂ F eT . Our aim is to
study the singularities developed by F eT as a one dimensional wave front on a
two dimensional manifold.

It is well known that for such wave fronts there is only a generic kind of
local singularity called standard singularity, see [16, 17]. We want prove that
at Frame Points of the optimal synthesis the extremal front F eT develops only
standard singularities.

We start by describing the situation at the Frame Point y0 = γ+(s+1 )
which is of kind (Y,K)1. The extremal synthesis (that is the collection of
all extremals in the cotangent bundle) has a cusp projection singularity at
(Y,K)1. The borders of the cusp are the X trajectory from y0 (that is a γ0

Frame Curve for the extremal synthesis) and a curve of kind C̄, that is a curve
of switching points reached by not optimal extremal trajectories that reflects
“back” after the switching.

Let x = (x1, x2) and choose a system of coordinates in such a way that
(2.66) and (2.67), p. 94 hold. The fact that a K curve starts at (s+1 , 0) implies
(see Proposition 5, p. 95):

δ := c0d1 − b1

(

1 − c0
2

)2

> 0. (5.1)

For time t < T(y0), in a neighborhood of T(y0), F et = Ft and the ex-
tremal front F et is a one dimensional piecewise smooth manifold. For time
t > T(y0), in a neighborhood of T(y0), the extremal front F et is formed by
three branches:

• the first corresponds to trajectories that bifurcate from γ+ after x0. Its
expression as a function of x1 is an arc of the function xA2 (x1) defined in
(3.20);

• the second corresponds to trajectories that switched on the C̄ curve. Its
expression as a function of x1 is an arc of the function xB2 (x1) defined in
(3.22);

• the third corresponds to Y trajectories that did not reach yet the curve C̄.
Its expression as a function of x1 is an arc of the function xC2 (x1) defined
in (3.23).

Let αA, αB , and αC be the coefficients of x2
1 in the expression of xA2 , x

B
2 , and

xC2 respectively. With our choice of parameters (i.e. b1 > 0, d1 < 0, c0 < 1,
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δ > 0) one can check that αA < 0, αB > αC > 0. Moreover xA(x1), x
B(x1)

have a first order tangency at the point:

xAB =
(1 − c0)b1t+ 4d1s

+
1

(1 − c0)b1 + 4d1
,

while xB(x1) and xC(x1) have a first order tangency between them and with
the trajectory exiting y0 with constant control −1 at the point

xBC = s+1 + c0(t− s+1 ).

We have xAB > xBC thus the extremal front F et develops a standard sin-
gularity. Figure 5.10 shows the extremal synthesis and F et close to the point
(Y,K)1, in the two cases in which c0 > 0 and c0 < 0. The case c0 = 0 is not
generic.

The cases of Frame Points of type (C,K)2, (S,K)1 and (S,K)3 can be
analyzed in an entirely similar way. At the other Frame Points the extremal
front F eT presents no singularity. We finally obtain:

Theorem 43 The extremal front F eT presents only standard singularities.
Moreover, all singularities are developed at Frame Points (namely (Y,K)1,
(C,K)2, (S,K)1 and (S,K)3) corresponding to cusp projection singularities
of the extremal synthesis.

In the following we further analyze the properties of F eT , in particular along
abnormal extremals. First we need a technical Lemma. Recall Definition 12,
p. 25, Theorem 8, p. 25 and the Definition of extremal strips 56, p. 167.

Lemma 22 Let Sa,b,x be an extremal strip and γα ∈ Int(Sa,b,x) with α ∈
]a, b[. Assume that x̄ = γα(t̄) is not on a frame curve of the extremal strip
(that are curves of kind C or C̄). Then given η : [0, ε] → R

2 of class C1 such
that:

• η(0) = x̄,
• for every s ∈ [0, ε], η(s) = γβ(t) for some β ∈]a, b[ and t ≤ t̄,

there exists a one–parameter variational family uε, ε ∈ [0, ε̄], of controls,
generating the vector A d

ds
η(s)|s=0 for some A > 0. Hence, if λα is the covector

of γα,

λα(t̄) · d
ds
η(s)|s=0 ≤ 0

Proof. Inside each extremal strip but not on a frame curve the required one–
parameter variational family uε can be constructed in the following way.

Assume that the trajectory γα, reaching x̄, is bang–bang and let uα be
the corresponding control that switches to control (say) +1 at α. Then we
can define uε(t) = 0 for t ∈ [0, f1(ε)], uε(t) = uα(t− f1(ε)) for t ∈ [f1(ε), α+
f1(ε) − f2(ε)] and finally uε(t) = 1 on [α + f1(ε) − f2(ε), t̄]. Let γε be the
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Fig. 5.8. Extremal synthesis and MTF in a neighborhood of the first FP of kind
(Y, K)1.

trajectory corresponding to uε. If we choose a system of coordinates such that
F + G ≡ (1, 0) in a neighborhood of γα([α, t̄]) and (F − G)(γα(α)) = (0, 1)
then (d/dε)γε(t̄)|ε=0 = (ḟ2 − ḟ1, ḟ2), where ḟi = (d/dε)fi(ε)|ε=0. Choosing
properly the two functions fi we get the required conclusion.

The case in which γα is not bang-bang can be treated making suitable
variations along the last singular part. We omit details.

One of the one dimensional singularities of the extremal synthesis is called
C̄, see Section 4.1.3, p. 158. This curve is formed by switching points of ex-
tremal trajectories that reflect backward. Next Theorem gives information
about the position of extremal time fronts near C̄.
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Proposition 28 Let S be an extremal strip and γ ∈ Int(S) a trajectory such
that x̄ := γ(t̄) is a switching point on some C̄ curve for some t̄. Let U be a
sufficiently small neighborhood of x̄ and (F e

t̄
)1, (F e

t̄
)2, the two components of

the extremal front F e
t̄

restricted to U , chosen in the following way:

• if x ∈ (F e
t̄
)1, then the extremal trajectory γx ∈ S such that γx(t̄) = x has

not switched on C̄.
• if x ∈ (F e

t̄
)2, then the extremal trajectory γx ∈ S such that γx(t̄) = x has

switched on C̄.

Then (F e
t̄
)1 and (F e

t̄
)2 are tangent at x̄. Moreover they are in the same position

of Figure 5.9, i.e. one can find a local system of coordinates such that for some
a0 > 0, a1 < 0 and b < 0 we have x̄ = (0, 0) and:

Y =

(

1
0

)

, X(x̄) =

(

0
1

)

,

C̄ = {(x1, x2) ∈ U : x1 ∈ R, x2 = a0x1},
(F et̄ )1 = {(x1, x2) ∈ U : x1 ≤ 0, x2 = a1x1 +O(x3

1)},
(F et̄ )2 = {(x1, x2) ∈ U : x1 ≤ 0, x2 = a1x1 + bx2

1 +O(x3
1)}.

In other words, the extremal front (F e
t̄
)1 is “ahead” of (F e

t̄
)2 along the flows

of X and Y .

t
(F  ) 1e

t

2e
(F  )

C

Fig. 5.9. Proposition 28
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Proof. The fact that the two extremal fronts are tangent on the C̄ curve can
be proved with arguments completely similar to the ones used in the analyzes
along a C curve (see Section 3.2.5, p. 141 and in particular Remark 50, p.
141).

Now assume by contradiction that we are in the situation of Figure 5.10,
that is (F e

t̄
)2 is ahead of (F e

t̄
)1. Take ε > 0 small and consider the minimum

time problem with the following initial set R. Consider the trajectories of S
restricted to [0, t̄− ε] and do not let them switch on C̄. Thus we obtain a set
R that locally contains the reachable set in time t̄ − ε denoted by R(t̄ − ε).
Notice that (F e

t̄−ε)
1 ⊂ ∂R.

R R

ε

γ

γ

Κ

y

x
R(t−   )ε R(t−   )ε

Κ
(F  )

t
1e

(F  )
t

2e

Ct−

1

2

0

(F    )e 1

Fig. 5.10. Proof of Proposition 28

The transversality condition of PMP ensures the following. Let x0 = R(t̄−ε)∩
C̄. The extremal trajectories start from ∂R\(F e

t̄−ε)
1 with control −1 and from

(F e
t̄−ε)

1 with control +1. Reasoning as for (Y, C̄)1 (see Section 2.8.2, p. 89), we
get that there exists an overlap curve K, starting at x0, such that the optimal
synthesis is formed by X and Y trajectories leaving ∂R and reaching K from
opposite sides (see the Figure 5.10). Let γ1 be the X trajectory starting from
x0. Notice that γ1(ε) belongs to (F e

t̄
)2 and Supp(γ1)∩ (F e

t̄
)1 = y = γ1(t) with

t ∈]0, ε[. Let γ2 be the Y trajectory starting from F e
t̄−ε and passing through

y. We obviously have y = γ2(ε), which contradicts the optimality of γ2.
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The following Proposition describes the position of the extremal front with
respect to the position of the vector fields X and Y along abnormal extremals.

Proposition 29 Let Sa,b be an extremal strip, γ = γa ∈ ∂S an abnormal
extremal with at least one switching, λ the associated covector and x = γ(t),
such that γ|[t−ε,t+ε] corresponds to control +1. Let F et be the extremal time
front on S and v : [0, ε] → R

2 a smooth local parameterization of F et with
v(0) = x. Recall that v̇(0) is parallel to Y (x), see Proposition 28, p. 132.
Then:

• λ(t) · Y (x) = 0;
• the following conditions are equivalent (see Figure 5.11):

i) v̇(0) · Y (x) < 0 (> 0),
ii) X(x) points outside (inside) S,
iii) λ(t) points inside (outside) S.

F
t

e
F

t

e

γ

S a,b

+1

X

γ

X

S a,b

+1
a a

Fig. 5.11. Proposition 29: relative position of the extremal front and the vector
field X for an abnormal extremal corresponding to control +1, along the extremal
strip.

Proof. Since the Hamiltonian of PMP vanishes, we get λ(t) · Y (x) = 0.
Let us show first that i) implies ii). Assume v̇(0) · Y (x) < 0 and by

contradiction that X(x) points inside S. Consider α sufficiently close to a so
that X(γα(t)) points outside the extremal strip restricted to time less than or
equal to t. This is possible because γa does not switch at x, hence X(x) is not
parallel to Y (x). Then for every ε ∈ [0, α] define γε to be the trajectory that
runs on γα−ε up to some time tε and then reach X(γα(t)) with control −1.
One has that tε ∼ t− (

√
α−√

α− ε), while the time to reach X(γα(t)) from
γε(tε) is of order ε. We thus obtain that the trajectories γε reach X(γα(t)) in
time of order t+ ε− (

√
α−√

α− ε) = t+ ε(1 − (2
√
α)−1) + o(ε2) < t, for α

and ε sufficiently small. Thus, γα(t) can not be extremal.
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Now we prove that ii) implies iii). From λ(t) · Y (x) = 0, λ(t) · G(x) > 0
(from the maximization condition of PMP), and X = Y − 2G we get λ(t) ·
X(x) < 0, hence the conclusion.

Finally, if λ(t) points inside S, then from Lemma 22 we obtain that
v̇(0) · Y (x) < 0. Otherwise we can produce variations having positive scalar
product with λ(t). This proves that iii) implies i) and concludes the proof.

In Section 4.3, p. 171 it is shown that, out of frame points, abnormal ex-
tremals correspond to normal or fold points, and (see Section 4.1.3, p. 158)
we say that the abnormal extremal is of γ0 type if it is formed by normal
points and of W type if it is formed by fold points. Moreover, we say that
it is of WC type if the field corresponding to the other bang control points
towards points with two preimages for Π2 and we say that it is of WD type
if the opposite happens, see Definition 63, p. 173.
From Proposition 29, we immediately get the following:

Corollary 4 Consider an abnormal extremal (γ, λ), x = γ(t), with at least
one switching, such that γ|[t−ε,t+ε] corresponds to control +1, and let (F et )1,
(F et )2 be the two fronts of the extremal strips having γ as border. Let vi :
[0, ε] → R

2 be a smooth local parameterization of (F et )i with vi(0) = x. We
have the following:

• if γ is of type γ0 then: v̇1(0) · Y (x) > 0 (< 0) iff v̇2(0) · Y (x) < 0 (> 0);
• if γ is of type W then: v̇1(0) · Y (x) < 0 (> 0) iff v̇2(0) · Y (x) < 0 (> 0) iff

γ is of kind WD (WC) iff λ(t) point inside (outside) the extremal strip.
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+1 +1

W C
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W
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X

X

X

Fig. 5.12. Corollary 4: relative position of the extremal front for an abnormal
extremal of kind γ0, W D and W C .

Proposition 30 Assume that x is a ribbon point, then at x it enters a WC

FC. Moreover, the extremal time fronts never self intersect.
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Proof. The analysis of Section 4.3, p. 171 implies the first assertion. Corol-
lary 4, using the same notation, gives v̇i(0) · Y (x) > 0. Hence the time fronts
are ahead of the abnormal extremal and we obtain the conclusion from the
shape of the extremal synthesis.

We are now ready to prove Theorem 42, p. 210.

Proof of Theorem 42. The first two claims are easy to prove. The third claim
follows from the fact that the overlap curve is reached at the same time by
the two extremal trajectories, coming from the two sides.

Now, if we have a bifold point then, by Proposition 28, p. 214, the two
extremal fronts can either cross each other along a one dimensional manifold
or never cross each others, depending on the position of the switching curve
of type C or C̄. This implies the fourth claim.

Finally, Proposition 30 implies that Π3 cannot be singular at a ribbon
point.



A

Some Technical Proofs of Chapter 2

In this Appendix we collect some proofs of Theorems stated in Chapter 2,
that can be skipped at first reading.

A.1 Proof of Theorem 15, p. 60

In this section we give a complete description of Frame Curves generated by
the algorithm A. We use the notation introduced in Section 2.6.1, p. 58, for
the six types of Frame Curves and we refer to the Examples of Section 2.6.4.
From now on we consider a fixed τ ≥ 0 and a fixed system Σ for which A
succeeds at time τ .

A FCD is simple ifD\∂D does not contain any frame point. Every FC can
be divided into a finite number of simple FC’s. The classification of simple
FC’s in connection with the classification of frame points gives a complete
classification of FC’s. In fact two FC’s D1, D2 are equivalent if we can divide
them in two families D1

1, . . . , D
n
1 and D1

2, . . . , D
n
2 such that:

Di
1 ≡ Di

2 Di
1 ∩Dj

1 ≡ Di
2 ∩Dj

2 ∀ i, j ∈ {1, . . . , n}

where we assume, by definition, that ∅ ≡ ∅. Therefore, we consider only simple
FC’s.

Y-curve. Consider a Y –curve D and x ∈ D \ ∂D. There exists a neigh-
borhood U of x such that the control uA is constant in each one of the two
connected components U1, U2 of U \D. If, for example, uA = 1 on U1 then
Y –trajectories leave from D entering U1. It is clear that there are only two
possibilities:
(Y1) uA = 1 on U1 and uA = −1 on U2, or viceversa
(Y2) uA = −1 on U1 ∪ U2.
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Consider the system Σ1 of Example 1 at time π
2
√

1−ε . If (Y1) holds true then:

ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|γ−(t0)

where:
0 < t0 < 1.

Hence D is equivalent to γ−|[0, 1]. In this case we say that D is of type Y1 or
that D is an Y1−curve.
If (Y2) holds true then:

ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|γ−(t0)

where:
1 < t0 < 2.

Then D is equivalent to γ−|[1, 2]. As before, we say that D is of type Y2 or
that D is an Y2−curve.
F-curve. Consider an F−curve D and x ∈ D \ ∂D. There exists a neighbor-
hood U of x in R(τ) such that uA is constant on U \Fr(R(τ)). Consider the
system Σ1 at time τ1 of Example 1. Choose 0 < ε < 1 and let x1 be the point
reached by the trajectory corresponding to the control:

u1 = −1 on [0, ε], u1 = 1 on [ε, τ ].

We have:
ΓA(Σ, τ)|x ≡ ΓA(Σ2, τ2)|x1.

C-curve. Let D be a C−curve and consider a point x of D \∂D. There exists
a neighborhood U of x such that the control uA is constant in each one of the
two connected components of U \ D. From the description of the switching
curves it is clear that uA is equal to 1 on one component and equal to −1 on
the other.
Consider the system Σ2 of Example 2 at time τ2 >

3
2π. We have:

ΓA(Σ, τ)|x ≡ ΓA(Σ2, τ2)|(−3,−1).

S-curve. Let x be a point of the relative interior of an S−curve D. As for the
previous case, there exists a neighborhood U of x such that uA is constant in
each connected component of U \D. From the definition of turnpike we have
that uA has different signs on the two components.

Consider the system Σ1 at time τ1 of Example 1. The following equivalence
holds:

ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|
(

−1,−1

2

)

.

K-curve. Consider a K−curve D and x ∈ D \ ∂D. If U is a suitably small
neighborhood of x, then the control uA is constant in each connected com-
ponent of U \ D. As before, uA has different signs on the two components.
Consider the system Σ1 of Example 1 at time τ1 > 4, we have the equivalence:
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ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|(−2, 0).

Thank to this analysis we have proved Theorem 15.

A.2 Proof of Theorem 16, p. 60

In the following we use notations of Section 2.6.2, p. 60 and refer to Examples
of Section 2.6.4, p. 62. We consider only stable frame points, therefore, all
frame points are intersections of no more than two frame curves. Indeed, an
intersection of three or more frame curves can be destroyed by an arbitrary
small perturbation of the system.
From now on we consider a fixed τ > 0 and a fixed system Σ for which A
succeeds at time τ . In particular Σ is locally controllable. For each type of
frame point there are only a finite number of equivalence classes.

It is easy to check that, by construction, (FP0) can never occur. The case
in which one frame curve is of type X,Y, F, S or K is immediate. The case in
which D1, D2 are both C frame curve is consequence of the following observa-
tion. If we assume that D1, D2 are not tangent, and this is a generic situation,
then there are some curves of zeros of either ∆A or ∆B to which x belongs.
Indeed, near x, there are trajectories switching from control +1 to −1 and
viceversa. Moreover, from Theorem 11, p. 44, it follows that the possibility
of switching from control +1 to −1 and viceversa, depends on the sign of the
function f . In all possible cases, we obtain the existence of trajectories hav-
ing two switchings near such curves. But this is prohibited by Lemma 14, p. 52.

(X,Y)-point. Consider an (X,Y )–point x of ΓA(Σ, τ). If x = (0, 0) then it is
a stable (X,Y )–frame point. Indeed if Σ ′ is ε−near to Σ and ε is sufficiently
small, then Σ′ is locally controllable and ΓA(Σ, τ)|(0, 0) ≡ ΓA(Σ′, τ)|(0, 0).
Let Σ1 be the system of Example 1 at time τ1 > 0, then:

ΓA(Σ, τ)|(0, 0) ≡ ΓA(Σ1, τ1)|(0, 0).

Now suppose that x 6= (0, 0). It follows that x = γ−(t−) = γ+(t+), t− > 0,
t+ > 0. We have that t− = t+ otherwise one of the two trajectories is deleted
from the synthesis. Since the condition t− = t+ can be destroyed by a small
perturbation, x is not stable. In fact in this case x belongs to an overlap curve,
hence it is the intersection of at least three frame curves.
(Y,F)-point. Let x be an (Y, F )–frame point. The cases (FP1), (FP3) cannot
occur because ∂

(

Fr(R(τ))
)

= ∅. Therefore we are in the case (FP2). There
exists a neighborhood U of x (in R(τ)) such that uA is constant in each one of
the two connected components U1, U2 of U \(γ−∪F ). One of the two following
cases holds:

(YF1) uA = −1 on U1 ∪ U2

(YF2) uA = 1 on U1 and uA = −1 on U2, or viceversa.
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Consider the system Σ1 of Example 1 (Section 2.6.4, p. 62) at time τ1, and
let x1 = γ−(τ1). If (YF1) holds true and:

1 < τ1 < 2

then:
ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|x1.

In this case we say that x is a frame point of type (Y, F )1.
If (YF2) holds true then some Y –trajectories arise from γ− and reach F . Let:

τ1 > 2

then:
ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|x1

and x is a frame point of type (Y, F )2.
(Y,C)-point.

Assume that (FP1) holds true. There exists a neighborhood U of the
(Y,C)–frame point x such that uA is constant in each one of the three con-
nected components U1, U2, U3 of U \ (γ− ∪ C). We label U1, U2, U3 in such
a way that: U3 is the connected component of U \ γ− that does not contain
C ∩ U ; U1 comes before U2 along γ− for the orientation of increasing time.
Because of the definition of C−curve we have one of the following:

(YC1) uA = 1 on U1

(YC2) uA = 1 on U2.

Consider the system Σ3 at time τ3 of Example 3. If (YC1) holds true then
uA = −1 on U2 ∪ U3 and the Y –trajectories leaving γ− reach C. We have:

ΓA(Σ, τ)|x ≡ ΓA(Σ3, τ3)|γ−
(

1

3
ln

5

2

)

.

In this case we say that x is of type (Y,C)1.

Remark 56 Consider an (Y,C)1 Frame Point. In Example 3, γ−( 1
3 ln 5

2 ) be-
longs to a nonordinary arc that is not a turnpike. This happens for every
frame point x of type (Y,C)1. Indeed, assume x = γ−(tx) and let (γr, ur),
r ∈ [tx − ε, tx + ε] (ε > 0), be the pair such that γr(0) = γ−(r) and ur ≡ 1.
Let λr be the covector field along (γr, ur) satisfying:

λr(0) ·G
(

γr(0)
)

= 0 det
[

λr(0), G
(

γr(0)
)]

> 0 ‖ λr(0) ‖= 1

and consider the function:

ψ(r, s) = λr(s) ·G
(

γr(s)
)

.
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The equation ψ(r, s) = 0 has two branches of solutions in (tx, 0), then we
have:

0 =
∂ψ

∂s

∣

∣

∣

∣

(tx,0)

= λtx(0) · [F,G](γ−(tx)).

Now 0 = λtx(0) ·G(x) = λtx(0) · [F,G](x) and λtx(0) 6= 0 then

∆B(x) = det
(

G(x), [F,G](x)
)

= 0.

It follows that if ∇
(

∆B(x)
)

6= 0 then x belongs to a non ordinary arc. This
non ordinary arc cannot be a regular turnpike otherwise it would have been
constructed by the algorithm A.

If (YC2) holds true then uA = −1 on U1 ∪ U3. Hence:

ΓA(Σ, τ)|x ≡ ΓA(Σ3, τ3)|γ−
(

1

3
ln 4

)

and we say that x is of type (Y,C)2.
The case (FP2) is not generic. Indeed if (FP2) holds, then there exists a

neighborhood U of x in C such that for each y ∈ U there exists a trajectory
γy that switches at y = γy(ty). One side of C with respect to x is reached
by trajectories γy that arise from a FC D1. The other side is reached by
trajectories that originate from a different FC, sayD2. Then at x, two different
switching curves meet each other and x is not stable.
Suppose that (FP3) holds true. If C lies on the left (right) of γ− then uA ≡ −1
to the left (right) of γ−. Consider the system Σ2 of Example 2 (of Section
2.6.4, p. 62) at time τ2 > π. Then we have that:

ΓA(Σ, τ)|x ≡ ΓA(Σ2, τ2)|(2, 0).

In this case x is of type (Y,C)3.

(Y,S)-point. Let x be an (Y, S)–point x and assume that (FP1) holds true.
There exists a neighborhood U of x such that uA is constant on each one of
the three connected components U1, U2, U3 of U \ (γ− ∪ S). We suppose that
U1, U2, U3 are labelled in such a way that: U3 is the connected component of
U \ γ− that does not contain S ∩ U ; U1 comes before U2 along γ− for the
orientation of increasing time. From the definition of turnpike it follows that
uA = 1 on U1 and uA = −1 on U2 ∪ U3. Consider the system Σ1 at time τ1
of the first example (Section 2.6.4, p. 62). The following equivalence holds:

ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|
(

−1,−1

3

)

.

The cases (FP2),(FP3) can not occur because, from the definition of turnpike,
it follows that γ− can not terminate at x.
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(Y,K)-point. Assume that (FP1) holds true. As before, there exists a neigh-
borhood U of x such that uA is constant on each one of the three connected
components U1, U2, U3 of U \ (γ− ∪ K). We label U1, U2, U3 in such a way
that: U3 is the connected component of U \ γ− that does not contain K ∩ U ;
U1 comes before U2 along γ− for increasing time. We have that uA = 1 on
U2 and uA = −1 on U1 ∪ U3. Under generic assumptions, the Y –trajectories
arising from γ− reach K. In fact, if the contrary happens then X(x) and Y (x)
are parallel, but this is not generic. Consider again the system Σ1 at time τ1
of the first example (of Section 2.6.4, p. 62). In this case we have:

ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|
(

−2,−2

3

)

and we say that x is of type (Y,K)1.
Now let (FP2) hold. For every sufficiently small neighborhood U of x, we have
that uA is constant on each one of the two connected components U1, U2 of
U \K. If, for example, U1 contains γ− ∩ U then uA = −1 on U1 and uA = 1
on U2. Consider the system Σ4 at time τ4 of Example 4 and let x̄ be the point
in which γ− intersects the overlap curve. We have:

ΓA(Σ, τ)|x ≡ ΓA(Σ4, τ4)|x̄

and we say that x is of type (Y,K)2.
Assume that (FP3) holds true and that Y and K are not tangent. There
exists a neighborhood U of x such that uA is constant in each one of the two
connected components U1, U2 of U \(γ−∪K). Suppose that U1, U2 are labelled
in such a way that the vector X(x) points into U2. It is clear that uA = −1
on U1 and uA = 1 on U2. The Y –trajectories leaving from γ− do not reach
K. Consider the synthesis Γ5 of Example 5. We have that:

ΓA(Σ, τ)|x ≡ Γ5|
(

1 ,
2

3

)

and we say that x is of type (Y,K)3.

(X,X),(Y,Y),(F,F)-point. It is easy to verify that points of these types
cannot exist.

(F,C)-point. Consider an (F,C)–point x. Since ∂
(

Fr(R(τ))
)

= ∅, the cases
(FP2) and (FP3) cannot occur. Then (FP1) holds true. There exists a neigh-
borhood U of x in R(τ) such that uA is constant in each one of the two
connected components of U \ (F ∪ C). It is clear that uA = 1 on one con-
nected component and uA = −1 on the other. The trajectories leaving from
C reach F . Consider the system Σ2 of Example 2 (Section 2.6.4, p. 62) at
time π.
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We have:
ΓA(Σ, τ)|x ≡ ΓA(Σ2, π)|(−3,−1).

(F,S)-point. As for the previous type, only the case (FP1) can hold. There
exists a neighborhood U of x in R(τ) such that uA is constant in each one
of the two connected components of U \ (F ∪ S). Again uA = 1 on one
connected component and uA = −1 on the other. Under generic assumptions
the trajectories leaving from S reach F . Consider the system Σ1 at time τ1 of
Example 1 (Section 2.6.4, p. 62). Let x1 be the point in which the turnpike
intersects the frontier of the reachable set, namely

x1 =
(

− 1,−1

3
− 1

2
(τ1 − 1)

)

.

It follows:
ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|x1.

(F,K)-point. Consider an (F,K)–point x. The case (FP1) is the only possible
one. There exists a neighborhood U of x in R(τ) such that uA is constant in
each one of the two connected components of U \ (F ∪ K). It is clear that
uA = 1 on one connected component and uA = −1 on the other. Consider
again the system Σ1 at time τ1 of Example 1 (Section 2.6.4, p. 62). Let x1 be
the point in which the overlap curve intersects the frontier of the reachable
set, namely:

x1 =

(

−2,
2

3
+

1

3

(

1 +
τ

2

)3

−
(

1 +
τ

2

)2
)

.

We have the following:

ΓA(Σ, τ)|x ≡ ΓA(Σ1, τ1)|x1.

(C,C)-point. Let x be a (C,C)–point. From the definition of switching curve
we have that the cases (FP1),(FP2) cannot occur. Therefore (FP3) holds.
There exist two switching curves C1, C2 verifying x = C1 ∩ C2 and a neigh-
borhood U of x such that uA is constant in each connected component of
U \ (C1 ∪ C2). We have that uA has different signs on the two connected
components. Consider the cases:

(CCa) Trajectories leaving from C1 reach C2

(CCb) Trajectories leaving from C2 reach C1.

It is easy to show that (CCa),(CCb) cannot hold at the same time, otherwise
there is no trajectory reaching x. Hence we have two cases:

(CC1) (CCa) holds and (CCb) does not, or viceversa
(CC2) (CCa) and (CCb) do not hold.

Consider the synthesis Γ6 of Example 6. If (CC1) holds true then:

ΓA(Σ, τ)|x ≡ Γ6|
(

−1

3
,−13

72
+

4

9
ln

(

3

√

5

2

))
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and we say that x is of type (C,C)1.
Consider the system Σ2 at time τ2 > 3π of Example 2 (Section 2.6.4, p. 62).
If (CC2) holds true then:

ΓA(Σ, τ)|x ≡ ΓA(Σ2, τ2)|(4, 0)

and we say that x is of type (C,C)2.

Remark 57 Reasoning as in Remark 56, p. 222, one can prove that if x is a
frame point of type (C,C)1, then ∆B(x) = 0.

The frame points of type (C,C)2 are not effective singular points. Indeed, the
optimal synthesis near these points is equivalent to the synthesis near a point
x of a simple FC of type C, verifying x ∈ C \ ∂C. However the curve C may
fail to be smooth at these points, as showed by Example 2.

(C,S)-point. Consider a (C,S)–point x. There exists a neighborhood U of x
such that uA is constant in each connected component of U \(C∪S). The cases
(FP1), (FP2) can not occur because the control uA changes sign crossing S
(or C), moreover it has to be constant along each side of C (or S). Therefore
(FP3) holds true. There exists a C1 parameterization α : [0, ε] 7→ R

2, ε > 0,
such that α(t) ∈ C, α(0) = x. Consider the vectors:

C(x) = lim
t→0

α̇(t) S(x) = F (x) + ϕ(x)G(x)

where ϕ is the control to stay on S (cfr. Lemma 10, p. 46). Assume that
C(x) and S(x) are not parallel. Let UX , UY be the connected component
of U \ {x + tS(x) : t ∈ R} labelled in such a way that X(x), Y (x) point
into UX , UY respectively. Moreover, let U1, U2 be the connected component
of U \ (C ∪ S) labelled in such a way that the angle with vertex x and sides
C(x), S(x) contained in U1 is smaller than that one contained in U2. Now, if
U1 is contained in UY then uA = 1 on U1 otherwise uA = −1 on U1. There
exists γS ∈ Traj(Σ) such that γS(Dom(γS)) = S ∩ U . We have two cases:

(CS1) In(γS) = x,
(CS2) Term(γS) = x.

Assume that (CS1) holds. There are two subcases:

(CSa) Some constructed trajectories reach C from U2

(CSb) Some constructed trajectories reach C from U1.

If (CSb) holds, then no nontrivial trajectory reaches x, but this is not possible.
Hence (CSa) holds true. For the same reason the trajectories originating from
S and entering U2 cannot reach C. Consider the synthesis Γ7 of Example 7
(Section 2.6.4, p. 62), we have:

ΓA(Σ, τ)|x ≡ Γ7|
(

−1,−1

3

)
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and we say that x is of type (C,C)1. Suppose that (CS2) holds. We have
again the subcases (CSa),(CSb). The case (CSa) cannot hold. Indeed, the tra-
jectories arising from S and entering U2 cannot reach C and then, from the
direction of X(x), Y (x), we have that In(γS) = x contradicting (CS2). Sup-
pose (CSb) holds. We have that the trajectories leaving from S and entering
U1 reach C. From Theorem 11, p. 44, it follows that ∆B cannot have constant
sign on V ∩ U1 for any neighborhood V of x. Hence we have the nongeneric
condition ∇∆B(x) = 0.
Consider again the case (CS2) and assume now that C(x) and S(x) are par-
allel. The trajectories arriving onto C come from S. Consider the system Σ8

at time τ of Example 8, we have:

ΓA(Σ, τ)|x ≡ ΓA(Σ8, τ)|
(

−1 − 1

2 3
√

2
,−1 − 1

3
√

2

)

and we say that x is of type (C,S)2.

(C,K)-point. There exists a neighborhood U of the (C,K)–point x such
that uA is constant in each connected component of U \ (C ∪ K). The
cases (FP1), (FP2) can not occur because the control uA changes sign when
we cross K (or C), but it also has to be constant along each side of C
(or K). Therefore (FP3) holds true. There exist two C1 diffeomorphisms
α1,2 : [0, ε] 7→ R

2, ε > 0, such that α1(t) ∈ C, α2(t) ∈ K, α1,2(0) = x.
Consider the vectors:

C(x) = lim
t→0

α̇1(t) K(x) = lim
t→0

α̇2(t).

Suppose that C(x) and K(x) are not parallel. Let UX , UY be the connected
component of U \ {x+ tK(x) : t ∈ R} labelled in such a way that X(x), Y (x)
point into UX , UY respectively. Let U1, U2 be the connected component of
U \ (C ∪ K)labelled in such a way that the angle with vertex x and sides
C(x),K(x) contained in U1 is smaller than that one contained in U2. If U1 is
contained in UX then uA = 1 on U1 otherwise uA = −1 on U1.
We have two cases:

(CK1) Some constructed trajectories reach C from U1

(CK2) Some constructed trajectories reach C from U2.

Assume that (CK1) holds. The trajectories originating from C cannot reach
K, otherwise we have one of the not generic conditions Y (x) = 0, X(x) = 0.
Consider the synthesis Γ9 of Example 9, we have:

ΓA(Σ, τ)|x ≡ Γ9|
(

8

3
,

√
8

3

)

(A.1)

and we say that x is of type (C,K)1.
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Assume that (CK2) holds. Consider the synthesis Γ10 of Example 10, we have:

ΓA(Σ, τ)|x ≡ Γ10|
(

−1

3
,−13

72
+

4

9
ln

(

3

√

5

2

))

and we say that x is of type (C,K)2.
Now suppose that C(x) and K(x) are parallel. If the trajectories leaving

from C do not reach K then the equivalence (A.1) holds and a not stable
tangency between C and K is verified. If the opposite happens, then we have
a stable tangency between C and K. Consider the synthesis Γ11 of Example
11 and define (x̄1, x̄2) in the same way. The following equivalences hold:

ΓA(Σ, τ)|x ≡ Γ11|(x̄1, x̄2)

≡ Γ10|
(

−1

3
,−13

72
+

4

9
ln

(

3

√

5

2

))

.

Remark 58 The point (x̄1, x̄2) of Example 11 and (2.27) of Example 10 are
equivalent but they are in some sense different. In fact, proceeding as in Re-
mark 56, p. 222, one can prove that if K(x), C(x) are linearly independent
and (CK2) holds then ∆B(x) = 0. If, instead, K(x), C(x) are parallel we can
have that ∆B(x) 6= 0 as in Example 10.

(S,S)-point. It is easy to verify that these points cannot exist.

(S,K)-point. Consider an (S,K)–point x. The control uA is constant in each
connected component of U \ (S ∪ K), for every sufficiently small neighbor-
hood U of x. The cases (FP1), (FP2) cannot occur because the control uA
changes sign when we cross K (or S) and is constant along each side of S (or
K).Therefore (FP3) holds true. Assume that the trajectories leaving from
one side of S reach K and those leaving from the other side do not. There
exists γS ∈ Traj(Σ) such that γS(Dom(γS)) = S ∩ U . There are two cases:

(SK1) In(γS) = x
(SK2) Term(γS) = x.

If (SK1) holds true then consider the synthesis Γ12 of Example 12. We have:

ΓA(Σ, τ)|x ≡ Γ12|
(

−1,−1

3

)

and we say that x is of type (S,K)1.
If (SK2) holds, consider the system Σ13 at time τ and the curves S1,K1 of
Example 13. Let x1 = S1 ∩K1. We have:

ΓA(Σ, τ)|x ≡ ΓA(Σ13, τ)|x1



Proof of Proposition 3 229

and we say that x is of type (S,K)2.
Assume now that trajectories arising from both side of S reachK, and consider
the system Σ13, then:

ΓA(Σ, τ)|x ≡ Γ14|(0, 0)
Remark 59 At a point x where G(x) = 0 and ∆−1

B (0) is locally a turnpike,
generically, the synthesis either is regular, with a C curve passing through x
being transversal to ∆−1

A (0) and ∆−1
B (0), or it presents an (S,K)3 point. An

example of the first case can be found in the synthesis of Example 3 of the
Introduction and it is described in detail in [34]. Assume now that a singular
trajectory reaches such a point x. Making a local change of coordinates we
can assume F ≡ (0, 1) and let:

∇G(x) =

(

a b
c d

)

.

To fix the ideas assume that Y points to the right of the turnpike. Since
the turnpike is tangent to F (x) (see Lemma 13, p. 51), then b < 0 and
det(∇G(x)) > 0. Making a linear change of coordinates using the matrix

(

1 0
−d/b 1

)

,

we are back to the situation of Example 14 of Section 2.6.4.

(K,K)-point. Consider a (K,K)–point x. From the definition of overlap
curve we have that the cases (FP1), (FP2) can not occur, then (FP3) holds.
Consider the system Σ13 at time τ of Example 13. The overlap curve K1 is
union of two overlap curves K ′

1, K
′′
1 . The set K ′

1 is formed by intersections of
Y ∗X– and X ∗Y –trajectories, while K ′′

1 is formed by intersections of Y ∗X–
and X ∗ S ∗ Y –trajectories. Let x1 = K ′

1 ∩K ′′
1 . We have:

ΓA(Σ, τ)|x ≡ ΓA(Σ13, τ)|x1.

From the present analysis we have immediately Theorem 16.

A.3 Proof of Proposition 3, p. 92

The trajectory γ+ is extremal on some interval [0, t∗] iff there exists a nonzero
adjoint vector which satisfies

λ̇(t) = −λ(t) · ∇Y
(

etY (0)
)

, λ(t) ·G
(

etY (0)
)

≥ 0, (A.2)

for all t ∈ [0, t∗]. From (A.2) it follows

λ(t)·G
(

etY (0)
)

= λ(0)·v+(G(γ+(t), t; 0) = λ(0)·
(

e−tY
)

∗G
(

etY (0)
)

≥ 0. (A.3)
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Observe that a vector λ(0) satisfying (A.3) for all t ∈ [0, t∗] can exist if
and only if the vector v+(G(γ+(t), t; 0) ranges within an angle ≤ π. By the
definition of t+f and by (GA2), this happens if and only if t∗ ≤ t+f . This
establishes (I).

To prove (II), call γ the trajectory corresponding to the control u in (2.62).
Then γ is extremal iff there exists an adjoint vector λ which satisfies condition
i) of PMP (Theorem 10, p. 35, Chapter 2) together with

{

λ(t) ·G(γ(t)) ≥ 0 if t ∈ [0, t∗],
λ(t) ·G(γ(t)) ≤ 0 if t ∈ [t∗ t∗ + ε].

(A.4)

The inequalities in (A.4) are equivalent to

{

λ(0) · v+(G(γ+(t), t; 0) ≥ 0
if t ∈ [0, t∗],

(A.5)

{

λ(0) ·
(

e−t
∗Y
)

∗
(

e(t
∗−t)X)

∗G
(

e(t−t
∗)Xet

∗Y (0)
)

= λ(0) · v+(G(γ+(t), t; 0) ≤ 0
if t ∈ [t∗, t∗ + ε].

(A.6)
From the properties of the angular function θ+ it follows that, if t∗ does not
belong to any closed interval [s+i , t

+
i ] or [s′+i , t

′+
i ], there can be no vector

λ(0) 6= 0 which satisfies (A.5) together with

λ(0) · v+(G(γ+(t), t; 0) = 0. (A.7)

On the other hand, if t∗ is contained in one of the open intervals ]s+i , t
+
i [ or

]s′+i , t
′+
i [, then some vector λ(0) does exist, such that (A.5), (A.7) hold. We

have to show that there exists ε > 0 sufficiently small so that

λ(0) · v
(

G(γ(t)), t; 0
)

< 0 ∀t ∈ ]t∗, t∗ + ε].

The above inequality is a consequence of (A.6), (A.7) if we show that, as
t ranges in a suitably small neighborhood of t∗, the vector v

(

G(γ(t)), t; 0
)

rotates in a constant direction. This is indeed the case, because, by Lemma
8, p. 43,

sgn

(

d

dt
arg
(

G(0), v
(

G(γ(t)), t; 0
)

)

)

= sgn
(

∆B(γ(t))
)

= sgn
(

∆B(et
∗Y (0))

)

,

for t sufficiently close to t∗. Now (GA4) implies θ̇(t∗) 6= 0, with

sgn
(

∆B(et
∗Y (0))

)

= sgn
(

θ̇+(t∗)
)

= sgn
(

θ+(t∗)
)

=

{

1 if t∗ ∈]s+i , t
+
i [ ,

−1 if t∗ ∈]s′+i , t
′+
i [ .
(A.8)

As the control u switches from 1 to −1 at time t∗, the corresponding trajec-
tory bifurcates from the curve γ+ to the right (i.e., clockwise) or to the left
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(counterclockwise) depending on whether the determinant X ∧ Y = 2 F ∧G
at the point et

∗Y (0) is positive or negative. Since the Jacobian matrix (e−tY )∗
preserves orientation,

sgn F
(

etY (0)
)

∧G
(

etY (0)
)

= sgn Y
(

etY (0)
)

∧G
(

etY (0)
)

= sgn
(

e−tY
)

∗Y
(

etY (0)
)

∧
(

e−tY
)

∗G
(

etY (0)
)

= sgn Y (0) ∧
(

e−tY
)

∗G
(

etY (0)
)

(A.9)

= sgn G(0) ∧
(

e−tY
)

∗G
(

etY (0)
)

= sgn θ+(t).

Recalling (A.8), this completes the proof of (II).

To prove (III), fix some t+i ∈]0, t+f [. The analysis for a time t′+i is entirely

similar. From the relation sgn(θ̇(t))) =sgn(∆B(γ(t))), we have

θ̇+(t+i ) = 0 = ∆B

(

et
+

i
Y (0)

)

. (A.10)

Thus using:

d

dt
{arg(v0, v(t))} =

v(t) ∧ v̇(t)
‖v(t)‖2

, (A.11)

and the stability assumption (GA3) it follows

0 > θ̈+(t+i ) =
v(t+i ) ∧ v̈(t+i )

‖v(t+i )‖2
, (A.12)

for v(t) :=
(

e−tY
)

∗G
(

etY (0)
)

= v+(G(γ+(t), t; 0), so that

v̇(t) =
(

e−tY
)

∗[F,G]
(

etY (0)
)

, v̈(t) =
(

e−tY
)

∗[Y, [F,G]]
(

etY (0)
)

. (A.13)

Indeed
(v ∧ v̇)(t+i ) = ∆B(γ+(t+i )) = 0. (A.14)

At the point pi
.
= et

+

i
Y (0) = γ+(t+i ) we now have

∇∆B · Y = (∇G)Y ∧ [F,G] +G ∧ (∇[F,G])Y

= [Y,G] ∧ [F,G] − (∇Y )G ∧ [F,G] +G ∧ [Y, [F,G]] −G ∧ (∇Y )[F,G]

= G ∧ [Y, [F,G]]. (A.15)

Indeed, (A.14) implies G = k[F,G] for some k, hence

(∇Y )G∧ [F,G]+G∧ (∇Y )[F,G] = (∇Y )G∧kG+G∧ (∇Y )kG = 0. (A.16)
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Together, (A.12), (A.13), (A.14), (A.15), (A.16) yield

∇∆B · Y (pi) < 0. (A.17)

In particular, this implies ∇∆B(pi) 6= 0. By the implicit function theorem,
the equation ∆B = 0 locally defines a smooth curve S, passing through the

point pi = et
+

i
Y (0) = γ+(t+i ). From (GA5) we have ∇∆B ·X(pi) 6= 0. If now

∇∆B · X(pi) > 0, then we must have |∇∆B · F (pi)| < |∇∆B · G(pi)| 6= 0,
hence the function ϕ

S
in (2.13) is well defined and satisfies

∣

∣ϕ
S
(x)
∣

∣ < 1 in

a neighborhood of pi. For ε > 0 suitably small, the solution of the Cauchy
problem

x(0) = 0, ẋ(t) =

{

Y (x) if t ∈ [0, t+i ],
F (x) + ϕ(x)G(x) if t ∈ [t+i , t

+
i + ε],

is thus an admissible, extremal trajectory of the control system. To show that
S is a turnpike, it remains to check the sign of the function f in Definition 20,
p. 44. Here ∆A = F ∧G > 0 because of (A.9). Hence, if U is a small open ball
centered at pi, divided by S into the connected components UX , UY , recalling
(2.12) we have

sgn
(

f(x)
)

= −sgn
(

∇∆B · Y (pi)
)

> 0 ∀x ∈ UY ,

sgn
(

f(x)
)

= −sgn
(

∇∆B ·X(pi)
)

< 0 ∀y ∈ UX .

Now consider the case where ∇∆B ·X and ∇∆B · Y are both negative at

the point pi
.
= et

+

i
Y (0) = γ+(t+i ). For ε1, ε2 in a neighborhood of the origin,

define the function

α(ε1, ε2)
.
= arg

(

G(0),
(

e(ε1−t
+

i
)Y
)

∗
(

e−ε2X
)

∗G
(

eε2Xe(t
+

i
−ε1)Y (0)

)

)

. (A.18)

Thus α(ε1, ε2) = θγ(t − ε1 + ε2) where γ is the concatenation of the Y –
trajectory γ+|[0, t+i − ε1] with an X–trajectory.

Since α is twice continuously differentiable, we can define the C1 function
β by setting

β(ε1, ε2)
.
=











α(ε1,ε2)−α(ε1,0)
ε2

if ε2 6= 0,

∂α(ε1,ε2)
∂ε2

if ε2 = 0.

By (A.11), at (ε1, ε2) = (0, 0), we have

β =
∂α

∂ε2
=

(

e−t
+

i
Y
)

∗G(pi) ∧
(

e−t
+

i
Y
)

∗[F,G](pi)

‖
(

e−t
+

i
Y
)

∗G(pi)‖2
,
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∂β

∂ε1
=

∂2α

∂ε1∂ε2
= −

(

e−t
+

i
Y
)

∗G(pi) ∧
(

e−t
+

i
Y
)

∗[Y, [F,G]](pi)

‖
(

e−t
+

i
Y
)

∗G(pi)‖2
,

∂β

∂ε2
=
∂2α

∂ε22
=

(

e−t
+

i
Y
)

∗G(pi) ∧
(

e−t
+

i
Y
)

∗[X, [F,G]](pi)

‖
(

e−t
+

i
Y
)

∗G(pi)‖2
.

From (A.16), we have ∇∆B · Y = G ∧ [Y, [F,G]] and similarly we obtain

∇∆B ·X = G∧[X, [F,G]]. Since the matrix (e−t
+

i
Y )∗ preserves the orientation

it follows β = 0 and:

sgn

(

∂β

∂ε1

)

= sgn
(

(−Y ) · ∇∆B(pi)
)

, sgn

(

∂β

∂ε2

)

= sgn
(

X · ∇∆B(pi)
)

.

By the implicit function theorem, we can now locally solve the equation
β(ε1, ε2) = 0 and determine a function ε2 = ψ(ε1), with

sgn

(

∂ψ

∂ε1
(0)

)

= sgn

(∇∆B ·X(pi)

∇∆B · Y (pi)

)

= 1.

From the previous analysis, it follows that for ε ≥ 0 suitably small, there
exists t† >]t+i − ε+ψ(ε) such that the trajectory corresponding to the control

u(t) =

{

1 if t ∈ [0, t+i − ε] ∪ (t+i − ε+ ψ(ε), t†],
−1 if t ∈ (t− ε, t− ε+ ψ(ε)],

is extremal. The parametrized curve

ε 7→ eψ(ε)Xe(t
+

i
−ε)Y (0) (A.19)

is the switching curve of conjugate points, originating to the right of γ+.

To prove (IV), assume θ̇+(t+f ) > 0, the other case being entirely similar.
By Lemma 8, p. 43, this implies ∆B(x) > 0 for all x in a neighborhood of
γ+(t+f ). Let j be the largest index for which t′j is defined. By the definitions of

t+f and the points t′+i , we thus have θ+(t+f )− θ+(t′j) = π, hence t+f and t′j are

negatively conjugate. If j > 1 then by (III), from p′j = et
′
jY (0) it originates

either a turnpike or a curve of conjugate points. To set the ideas, consider
the turnpike case. Then a left neighborhood of the arc γ+|[t′

j
,t+

f
] is covered by

extremal trajectories of the form

t 7→ etY eε(F+ϕG)(p′j).

Since t+f is conjugate to t′j and ∆B(x) > 0 near γ+(t+f ), by the implicit
function theorem for each ε > 0 sufficiently small there exists a unique t(ε)
close to t+f − t′j such that the points

Λ′(ε)
.
= eε(F+ϕG)(p′j), Λ′′(ε)

.
= et(ε)Y eε(F+ϕG)(p′j)
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are conjugate along an integral curve of Y . The map Λ′′ now parametrizes the
desired curve of conjugate point. If j = 1 we can repeat the same argument
using the extremal trajectories:

t 7→ etY eεX(0).

Since the system is locally controllable at the origin, it is well known that
for small ε, t these trajectories are time optimal. This completes the proof of
(IV).

A.4 Proof of Proposition 4, p. 94

Fix some time s+i with i ≥ 2, the proof for s′+i being similar. By (III), at the
point pi−1 := eti−1Y (0) = γ+(ti−1) initiates either a turnpike or a curve of
conjugate points.

We study the turnpike case first. Consider the equation

Ψ(σ1, σ2, σ3)
.
= e(σ3−σ1)Y eσ1(F+ϕG)(pi−1)−eσ2Xe(σ3−σ2)Y (pi−1) = 0. (A.20)

A trivial branch of solutions is σ1 = σ2 = 0. Observing that

∂Ψ

∂σ1
(0, 0, σ3) =

(

eσ3Y
)

∗
(

ϕG−G
)

(pi−1),
∂Ψ

∂σ2
(0, 0, σ3) = 2G

(

eσ3Y (pi−1)
)

,

(A.21)
since |ϕ(pi−1)| < 1, it is clear that a nontrivial branch of solutions of (A.21)
can bifurcate only when ti−1 + σ̄3 is conjugate to ti−1 along γ+. At σ3 =
s′+i − ti−1 we have

d

dσ3

(

G(pi−1) ∧
(

e−σ3Y
)

∗G
(

eσ3Y (pi−1)
)

)

> 0

because of the stability assumptions (GA3), (GA4). Therefore,

∂

∂σ3

(

∂Ψ

∂σ1
∧ ∂Ψ

∂σ2

)

6= 0.

A standard result in bifurcation theory [52] now implies the existence of a C1

function ε 7→
(

σ1(ε), σ2(ε), σ3(ε)
)

such that

(

σ1, σ2, σ3

)

(0) = (0, 0, s+i − t+i−1), Ψ
(

σ1(ε), σ2(ε), σ3(ε)
)

= 0 ∀ε,

and such that the nontrivial vector
(

∂σ1

∂ε
,
∂σ2

∂ε

)
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is in the kernel of the 2 × 2 matrix

A =

(

∂Ψ

∂σ1
,
∂Ψ

∂σ2

)

.

Because of (A.21), the vectors ∂Ψ/∂σ1, ∂Ψ/∂σ2 have opposite orientations at
(0, 0, s+i − t+i−1). We can thus assume that the nontrivial branch of solutions
is parametrized so that the maps ε 7→ σ1(ε), ε 7→ σ2(ε) are both increasing.
The assignment

ε 7→ eσ2(ε)Xe

(

σ3(ε)−σ2(ε)
)

Y (pi−1) ε ∈ [0, ε0] (A.22)

locally parametrizes the overlap curve, for ε0 small enough.
At this stage, two lines through qi have been constructed: the curve Γi of

conjugate points at (2.63) and the overlap curve Λi in (A.22). Of these two,
only one actually occurs in the time optimal synthesis. To decide which one,
observe that by (GA7) the vector field X is not tangent to Γi. If X,Y point
to the same side of Γi, then there is a neighborhood N of qi such that all
points in N to the right of γ+ can be covered by extremal trajectories which
either make a switching on the curve Γi, or else follow γ+ up to some time
t ≥ s+i and then make a switching. By a sufficiency argument, see [111], these
trajectories are optimal. On the other hand, if X,Y point to opposite sides of
Γi, then the trajectories of the form

t 7→ etY eε(F+ϕG)eti−1Y (0) (A.23)

cross the curve
t 7→ etXes

+

i
Y (0) (A.24)

before hitting the curve Γi. In this case, the curves (A.23) remain optimal for
a short time beyond the crossing of the trajectory (A.24). This implies that
in (A.22) one has

d

dε

(

σ3(ε) − σ2(ε)
)

> 0,

hence the trajectories that reach the overlap curve make their switching after
time s+i , and are thus extremal. Again a sufficiency theorem ensures that,
such a local feedback is optimal.

In the case where at pi−1 starts a curve of conjugate points, let

ε 7→ eψ(ε)Xe−εY (pi−1) (A.25)

be a parametrization of such curve, with ψ as in (A.19). Consider the equation

Ψ(σ1, σ2, σ3)
.
= e(σ3−ψ(σ1)+σ1)Y eψ(σ1)Xe−σ1Y (pi−1) − eσ2Xe(σ3−σ2)Y (pi−1) = 0.

(A.26)
Again, σ1 = σ2 = 0 is a trivial branch of solutions.
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We now have

∂Ψ

∂σ1
(0, 0, σ3) =

(

eσ3Y
)

∗(−2ψ′(0))G(pi−1),
∂Ψ

∂σ2
(0, 0, σ3) = 2G

(

eσ3Y (pi−1)
)

.

Therefore, when σ3 = s+i − t+i−1, the assumptions (GA3), (GA4) imply

∂Ψ

∂σ1
∧ ∂Ψ

∂σ2
= 0,

∂

∂σ1

(

∂Ψ

∂σ1
∧ ∂Ψ

∂σ2

)

6= 0.

As in the previous case, standard bifurcation theory now yields the existence of
a nontrivial branch of solutions ε→ (σ1, σ2, σ3)(ε) of (A.26). The assignment

ε 7→ eσ2(ε)Xe

(

σ3(ε)−σ2(ε)
)

Y (pi−1) ε ∈ [0, ε0]

locally parametrizes the overlap curve.
As in the turnpike case, this overlap curve is actually present in the optimal

feedback synthesis if the trajectories

t 7→ etY eψ(ε)Xe−εY (pi−1)

cross the curve (A.24) before reaching Γi. This completes the proof.

A.5 Proof of Theorem 20, p. 113

We construct Σ = (F,G) defining it on a finite collection of open sets that
cover G and then gluing together along the intersections. We proceed defining
Σ and a synthesis Γ for Σ at the same time. Moreover, every trajectory γ ∈ Γ
is endowed with an adjoint covector. At the end of the construction, we have
Γ ≡ ΓA(Σ). It can happen that Σ is determined defining two of the fields
F,G,X = F −G,Y = F +G.

Let F̃ be the union of the elements of the equivalence class of F -edges
described in (G4). Consider the connected components of the complement, in
R

2, of the union of F -edges of G. There is only one such component R that
is contained in the region enclosed by F̃ and such that F̃ ⊂ Cl(R). We have
to construct Σ only on R.
From (G2), we have that there is one origin O and O is also the origin for Σ.
It is clear that, possibly translating G, we can assume that O is the origin of
R

2. Consider a differentiable change of coordinate such that η+ corresponds,
in the new coordinates, to the line {(x1, x2) : x2 = 0, 0 ≤ x1 ≤ a} for some
a > 0. We define the field Y = F + G to be the constant field (1, 0) on
a neighborhood N+ of η+ that contains only the points of G that are in
η+. Since η+ is admissible there exists a function θ̃+ such that the points
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{t+i , t′+i , s+i , s′+i } of Definition 38, p. 90 determine the same sequence of frame
points of η+. We can define a vector field G(x1) on N+ such that the function
θ+ verifies θ+(t) = θ̃+(t). This is easy because from the definition of Y we
have that

θ+(t) = θ+(x1) = arg(G(0), G(x1)).

Since the synthesis is determined by the sequence of maxima and minima of
θ+ and not by the values at these points, we can assume that |θ+| < π/2 at
every point t+i , t

′+
i , s

+
i , s

′+
i . Therefore, if G(x1) = (α(x1), β(x1)) then

∇∆B ·X = (1 − 2α) ∇∆B · Y.

Indeed, we have:

∇∆B =

(

α∂
2β

∂x2
1

− β ∂
2α
∂x2

1

0

)

, X =

(

1 − 2α
−2β

)

.

The choice of θ+ uniquely determines the direction of the vector G, but not
its norm. Hence, we can choose α in such a way that ∇∆B ·Y , ∇∆B ·X have
the same (resp. the opposite) sign at the points pi = γ+(t+i ), p′i = γ+(t′+i ) if at
the corresponding points of η+ there is a C-edge (resp. a S-edge). From (III)
of Proposition 3, p. 92, it follows that there is a canonical correspondence at
the points pi, p

′
i.

We can again modify θ+, G in such a way that Γ̇i(0), i > 1, see (2.63), (2.64),
(GA7) 94, lies in the cone determined by Y (qi), G(qi), qi = γ+(s+i ). We
proceed in the following way. For every y sufficiently small there exists an
extremal trajectory γy, with second coordinate constantly equal to y after the
last switching, that switches along Γi. Let λy be its associated covector. Now,
Y is constant then λy is also constant, after the last switching time of γy, and
there exists ζ1(y) such that λy ·G(ζ1(y)) = 0. Since θ+ is increasing near s+1 ,
we have that λy ·G(x1) is a monotone function of x1 in [s+1 −ε, s+1 +ε] for some
ε > 0 and then ζ1(y) exists unique for y small. Assume we want to modify G
in such a way that Γi is described by the points (ζ2(y), y). Let ξ(y, x1) be a
smooth function, monotone in x1 for every y, verifying

ξ(y, s+i ± ε) = s+i ± ε, ξ(y, ζ2(y)) = ζ1(y).

We redefine G in such a way that if θ̃+(x1, x2) = arg(G(0), G(x1, x2)) then
θ̃+(x1, x2) = θ+(ξ(x2, x1)). From the definition of ξ and its monotonicity we
have that γy switches at (ζ2(y), y).
Now, choosing the module of G(qi) in a suitable way, we can assume that X,Y
point to the same side, resp. to opposite side, of Γi if at the corresponding
points of η+ there is a C-edge, resp. a K-edge. We can repeat the same
construction for q′i = γ+(s′+i ).
Finally, possibly changing θ+, G, we can assume that δ > 0, resp. < 0, see
(GA8), p. 95, for the definition of δ, if at the point of η+ corresponding to
q1 there is a C-edge, resp. a K-edge. We repeat the same arguments for q′1.
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Therefore from Propositions 3, p. 92, Proposition 4, p. 94, Proposition 5, p.
95, we have that η+ corresponds to γ+ in the canonical way. Since we have
defined Y and G the system Σ is determined.
Now consider η− and a change of coordinate as for η+. Possibly restrictingN+,
we can define X and G on a neighborhood N− of η−, in such a way that they
coincide on N+ with the previous definitions and such that γ− correspond to
η− in the canonical way. In this way, we have defined Σ on N+ ∪N−, that is
a neighborhood of η+ ∪ η−. We define Γ = ΓA(Σ) on N+ ∪N− and to every
γ ∈ Γ we associate the covector field constructed by A.

Now, let x′ be a point of G that is not in N+∪N−. From (G1), there exists
a frame point x, corresponding to x′, that is of one of the types classified in
Section 2.6.2, p. 60. We have shown, in Section 2.6.4, p. 62, an example for
every classified point, hence there exists a systemΣ(x′), a synthesis Γ (x′) both
defined on an open set U(x′) and a frame point x ∈ Γ (x′) that corresponds to
x′ in the canonical way. Consider an open neighborhood U ′ of x′ that does not
contain any other frame point and define a diffeomorphism Ψ : U(x′) → U ′ in
such a way that Ψ maps frame points and curves to corresponding points and
edges. Moreover, Ψ maps some constructed trajectories to the corresponding
lines. Using Ψ , we define Σ and Γ on U ′ and we associate a covector field to
every γ ∈ Γ .
From (G3) it follows that every C-edge E is admissible. However, it may
happen that, if x′, y′ are the points belonging to E, the functions ∆A,∆B do
not have the required signs on U ′(x′), U ′(y′). If Σ(x′) = (F,G) is one of the
system of the examples of 2.6.4, p. 62, we can consider the systems

Σ1 = (F,−G), Σ2 = (−F,G), Σ3 = (−F,−G).

Let ∆i
A,∆

i
B be the functions ∆A,∆B for Σi. We have that

∆1
A,∆

2
A = −∆A; ∆3

A = ∆A; ∆1
B = ∆B ; ∆2

B ,∆
3
B = −∆B .

The systems Σi have the same type of synthesis of Σ (choosing the dual
vectors in a suitable way). Therefore we can define Σ(x′), Σ(y′) in such a way
that the functions ∆A,∆B have the correct signs.

Next, we define Σ on neighborhoods of frame curves. Let E be a frame
curve, not of X or Y type, connecting the points x′, y′. We choose a differen-
tiable change of coordinates Ψ in such a way that E corresponds to the line
{(x1, x2) : x2 = 0, 0 ≤ x1 ≤ a} for some a > 0. If E is of C,S or K type then
we define Ψ in such a way that the vector field Y (defined on U ′(x′)∪U ′(y′))
corresponds to the vector field (0, 1). If E is of F type and the region on one
side of F is positive then again we let Y corresponds to (0, 1), otherwise we
let X correspond to (0, 1). For each type of curve we have shown an example
in Section 2.6.4, p. 62. We choose the system Σ(E) that gives an example of
frame curve D of the same type of E and is defined on an open set U(E).
If E is of C type, we can choose Σ(E) in such a way that ∆A,∆B have the
right sign, i.e. compatible with the systems Σ(x′), Σ(y′). We define a diffeo-
morphism Ψ ′ : U(E) → U ′(E), where U ′(E) is a neighborhood of E, in such
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a way that Ψ ′ establishes a canonical correspondence between D and E and
its differential dΨ ′ sends either the vector field Y or X onto the vector field
(0, 1), following the same rules used for Ψ .

We now glue together the systems defined near points and edges. Let V1, V2

be two open neighborhoods of x′ verifying

Cl(V1) ⊂ V2 ⊂ Cl(V2) ⊂ U ′(x′)

and consider a smooth function hx′ defined on

U = U ′(x′) ∪ U ′(y′) ∪ U ′(E)

such that
hx′ |V1

≡ 1, hx′ |U\V2
≡ 0.

We define hy′ in the same way for y′. Let (F ′, G′), (F ′′, G′′) be the vector
fields already defined on U ′(x′) ∪ U ′(y′), U ′(E) respectively, and define them
to be zero elsewhere in U . We set:

F̃ =̇(hx′ +hy′)F
′ +(1−hx′ −hy′)F ′′, G̃=̇(hx′ +hy′)G

′ +(1−hx′ −hy′)G′′.

In this way we have defined a system Σ̃ = (F̃ , G̃) on U . Since the syntheses
corresponding to Σ(x′), Σ(y′) and Σ(E) coincide on the set of intersections,
Γ is well defined on U . However, if E is of C or of S type, it may happen that
in the set where hx′ , hy′ 6= 0, 1, the functions ∆̃A, ∆̃B , have not the required
properties.
Consider first the case in which E is an S-edge. From E there originate Y -
trajectories that enter the half plane {(x1, x2) : x2 > 0}. In this case:

X̃1 > 0, X̃2 < 0, G̃1 < 0, ∆̃A > 0.

We define a new system Σ by setting

Y := Ỹ + (0, α), X := X̃

where |α| < 1. We have ∆A = (1/2)(1 + α)X̃1 > 0. If α(x1, 0) ≡ 0 then, after
straightforward calculations, we obtain:

∆B(x1, 0) =
1

2

(

2∆̃B +
∂α

∂x2
G̃1X̃2

)

(A.27)

and then we can choose (∂α/∂x2)(x1, 0) in such a way that ∆B(x1, 0) ≡ 0.
Moreover:

∇∆B(x1, 0) = ∇∆̃B(x1, 0) +
1

2
Θ1 +

1

2
Θ2 Θ1 =

(

0
∂2α
∂x2

2

G̃1X̃2

)

Θ2 =
∂α

∂x2

[

∇(G̃1X̃2) +

(

0
1
2 (2 − X̃2)

∂X̃1

∂x2
− G̃1

∂X̃2

∂x2

)]

+

(

∂2α
∂x1∂x2

G̃1X̃2

∂2α
∂x2∂x1

G̃1X̃1

)
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hence Θ2 is determined by the previous choices but we can define α choosing:

∂2α

∂x2
2

(x1, 0)

in such a way that ∇∆B(x1, 0) 6= 0. From the compactness of E, it follows
that there exists a neighborhood U ′ of E such that {x ∈ U ′ : ∆B(x) = 0} =
{(x1, x2) : x2 = 0}. Then we consider Σ restricted to U ′.
Consider now the case in which E is a C-edge. Assume that from E start
Y -trajectories that enter the half plane {(x1, x2) : x2 > 0} and that X̃1 > 0
(X̃2 > 0 follows from Ỹ2 > 0). Again we define Y = Ỹ + (0, α), X = X̃. If
we set α(x1, 0) = 0 then (A.27) holds and we can choose (∂α/∂x2) in such
a way that ∆B(x1, 0) 6= 0. Again by the compactness of E, there exists a
neighborhood U ′ of E in which ∆B does not vanish. We consider Σ restricted
to U ′.
Finally, we want to associate to every trajectory γ of Γ a covector field.
If γ is contained in V1(x

′) or V1(y
′) or in U ′(E) \ (V2(x

′) ∪ V2(y
′)) (see the

definitions above), we can associate a dual variable to γ using Ψ or Ψ ′, because
γ corresponds to a trajectory of the synthesis of Σ(x′) or Σ(y′) or Σ(E).
Otherwise assume that γ verifies γ(tx) = x ∈ E \ ∂E. If E is either an F - or
K-edge and γ is a Y -trajectory, resp. X-trajectory, then we choose λγ such
that λγ · G(x) > 0, resp. < 0. If E is either an S- or a C-edge and γ is a
Y -trajectory, resp. X-trajectory, after tx then we choose λγ in such a way
that λγ · G(x) = 0 and, if E is a C edge, λγ · [F,G](x) > 0, resp. < 0. We
associate to γ the adjoint variable that verifies λ(tx) = λγ . It is clear that if
γ(I) is not a turnpike for every I ⊂ Dom(γ) then (γ, λ) satisfies the PMP on
some neighborhood of tx. Assume now that γ(I) is a turnpike, I = [a, b]. Let
ϕ be the control defined in (2.13) and consider the system:

{

ẋ = F (x) + ϕ(x)G(x)

λ̇ = −λ · (∇F (x) + ϕ(x)∇G(x))
(A.28)

and the following submanifold of R
4:

Z = {(x, λ) : λ ·G(x) = 0}.

From the definition of λ, we have λ(b) · G(γ(b)) = 0. Since ∆B(γ(t)) = 0 for
t ∈ [a, b], from

d

dt

(

λ ·G
)

= λ · [F,G],

we have:

λ(t) ·G(γ(t)) = 0 ⇒ d

ds

(

λ(s) ·G(γ(s))
)

∣

∣

∣

∣

s=t

= 0.

By the standard theory of O.D.E. on closed set, we obtain the existence of a
solution (x, µ) that verifies x(b) = γ(b), µ(b) = λ(b) and (x(t), µ(t)) ∈ Z for
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every t ∈ [a, b]. Since the righthandside of (A.28) are Lipschitz continuous,
there is a unique solution for every initial data. Hence λ(t) · G(γ(t)) = 0 for
every t ∈ [a, b]. We conclude that (γ, λ) satisfies the PMP.
From the compactness of E there exists a neighborhood U ′′ of E such that
every γ ∈ Γ restricted to U ′′ is extremal. We consider Σ restricted to U ′′.

In this way we have defined Σ,Γ on an open set that contains all frame
points and curves. Now we complete the definition of Σ,Γ considering the
regions enclosed by edges.

For every region A ⊂ R let Bi(A), i = 1, . . . , n(A), be the connected
components of A \ L(A), where L(A) is the union of lines in A. Let B be the
set of all Bi(A), i = 1, . . . , n(A), as A ranges over the set of regions contained
in R. We define Σ on every B by induction. From (G5) we have that every
Cl(B), B ∈ B, contains exactly one entrance E(B). The induction hypotheses
is that for every x ∈ E(B) there exists γx : [0, tx] → R

2, γx ∈ Γ , such that
γx(tx) = x, i.e. the system Σ is constructed along γx backward in time. We
start defining Σ on the regions B for which E(B) is of X or Y type. Then
we consider the regions B such that on the region B ′, that lies on the other
side of E(B), the system Σ is already defined. If E(B) is of S type and x is
the initial point of E(B), then we consider B if there is a trajectory γx that
verifies the induction hypothesis. In a finite number of steps we define Σ on
every B ∈ B.
Fix, now, a region B ∈ B and assume that the induction hypothesis holds.
From (G5) we have that Cl(B) contains exactly one entrance E1 and one exit
E2. If E1 ∼ E2 then B is enclosed by E1, E2 and either a line l or a side E3.
Otherwise, B is enclosed by E1, E2, a line l1 and either another line l2 or a
side E3. We define Σ on B defining Y or X, and G. Indeed, we define Σ also
on a neighborhood of the lines in B if the system is not already defined near
these lines. Consider the case E1 ∼ E2 and assume that B is positive, being
similar the other case. Possibly using a change of coordinates, we can assume
that

E1 = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤ a}, E′ = {(x1, x2) : x2 = 0, 0 ≤ x1 ≤ b},
where either E′ = l or E′ = E3, and that Y is the constant vector field (1, 0).
We could define Y ≡ (1, 0) on B and let Γ be formed by Y -trajectories, but
we have to make some modifications to ensure that every γ ∈ Γ is extremal.
Consider γy ∈ Γ that verifies γy(t1) = (0, y), γy(t2) ∈ E2. By the induction
hypothesis such a trajectory γy exists defined on [0, t2] for every y ∈ [0, a].
Since we have already defined Σ on a neighborhood of E1 ∪ E2, there is a
covector field λy associated to γy that is defined on

I = [t1, t1 + µ1] ∪ [t2 − µ2, t2]

for some positive µ1, µ2. It can happen that t1 + µ1 = t2 − µ2, e.g. if we
are near the point E1 ∩ E2. We want to define Y in such a way that we can
associate to γy a covector field, defined on Dom(γy), that coincides with λy
on I. This ensures, choosing G in a suitable way, that every γy is extremal.
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Consider a region

Ω = [δ1, δ2] × [ε, a− δ3], δ3 > 0, 0 < δ1 < δ2

such that the following holds: Ω ⊂ A, where A is the region containing B,
and Ω ∩ (E1 ∪ E2) = ∅. See Figure A.1 where Ω is the darkened region.

E 1

E’

E

a

b

2

Fig. A.1. Proof of Theorem 20, p. 113

Let B′ be the region on the other side of E ′. If Σ is already defined on B′ then
ε > 0 otherwise ε < 0. Notice that if E ′ is a side (see definition in section 2.8.4,
p. 104) then it is of X or of Y type and the former case holds. We choose ε, δ3
in such a way that Σ is already defined on B∩{(x1, x2) : a−2δ3 ≤ x2 ≤ a} and
if ε > 0 then Σ is already defined on B ∩ {(x1, x2) : 0 ≤ x2 ≤ 2ε}. For every
y ∈ [ε, a− δ3], let γ1

y ∈ Γ be the trajectory that verifies γ1
y(t1(y)) = (0, y) and

let l1y be the covector field associated to γ1
y . We have that γ1

y , l
1
y are defined

on a neighborhood of t1(y). Consider the Mayer problem with final target E2

and the cost function:

ψ(T, x(T )) = −T + ψ0(x(T )) (A.29)

depending on terminal point and time, where we want to maximize ψ. For
every y ∈ [ε, a − δ3] let x̄(y) be such that (x̄(y), y) ∈ E2. There exists tra-
jectories γ2

y ∈ Γ that reach (x̄(y), y) with an associated covector field l2y. Let
t2(y) be such that γ2

y(t2(y)) = (x̄(y), y). Observe that γ2
y , l

2
y are defined on a

neighborhood of t2(y). We can define ψ in such a way that (γ2
y , l

2
y) satisfies

the PMP and the final transversality condition for the Mayer problem, see
[92]. Indeed the PMP is satisfied because γ2

y is extremal for the time optimal
problem.
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To satisfy the transversality condition, in view of (A.29) we need to find λ0, λ1

solution to:

λ0 = max
|ω|≤1

λ2
y(t2(y)) · (F + ωG)(x̄(y), y) (A.30)

λ2
y(t2(y)) = λ0∇ψ0(x̄(y), y) + λ1n2(x̄(y), y) (A.31)

where n2 is a unit normal vector to E2. Hence, (A.30) determines λ0 and
(A.31) gives a condition for λ1, ψ0.
Choose ν1, ν2, T1, T2 such that δ1 < ν1 < ν2 < δ2 and:

T1 > sup{t1(y) : y ∈ [ε, a− δ3]} T2 < inf{ψ0((x̄(y), y)) : y ∈ [ε, a− δ3]}.

We define Y = (α, 0) on Ω, α continuous and positive, α ≡ 1 on ∂Ω∪ [ν1, ν2]×
[ε, a − δ3], and we let Y = (1, 0) outside Ω. We choose α in such a way that
the following holds. For every y we have γ1

y(T1) = (ν1, y). If T2(y) < t2(y) is
the time at which γ2

y reaches, backward in time, the point (ν2, y) then

ψ(t2(y) − T2(y), (x̄(y), y)) = T2.

With this definition of Y we prolong γ1,2
y , l1,2y defining them on the whole set

B. Consider the reachable set R(T1), we have that

{(ν1, y) : ε ≤ y ≤ a− δ3} ⊂ ∂R(T1).

Since l1y(T1) has to be perpendicular to ∂R(T1), it follows that l1y(T1) has the
second component equal to zero. From Theorem 8.2 of Chapter IV of [62], we
have that l2y has to be perpendicular to the level set of the function:

ψ′(x, y) = ψ(t2(y) − t(x, y), (x̄(y), y)),

where t(x, y) is defined by γ2
y(t(x, y)) = (x, y). Hence also the second com-

ponent of l2y(T2(y)) has to be zero. By the PMP, since the Hamiltonian is
positive (see ii) of PMP), the first components of l1y(T1), l

2
y(T2(y)) have the

same sign. Since α = 1 on [ν1, ν2] × [ε, a − δ3], we obtain that l1y, l
2
y coincide

up to a scalar multiple. We can now associate to every γ1
y the covector field

l1y and define G in such a way that G is of class C3 and every γ1
y is extremal.

It may happen, however, that α is not smooth and hence Σ is not smooth.
Since α is continuous there exists a sequence αn of smooth functions converg-
ing uniformly to α. Let Σn, Γn be the system and synthesis associated to αn.
If E2 is of K or F type then for n large every γ ∈ Γn is extremal and we are
done. Indeed in this case no trajectory of Γ switches on E2 and by compact-
ness the same holds, if n is sufficiently large, for Γn. If E2 is of C type then
Σn has a switching curve Cn near to E2. Since Σ has not already been defined
on the region B′ that lies on the other side of E2, we can define Σ = Σn for n
sufficiently large. The only change is that we construct the system on a graph
equivalent to G, not exactly on G.
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The other case, that is when B is enclosed by E1, E2 and either two lines
or one line and one side, can be treated in an entirely similar manner. This
concludes the construction on the regions B ∈ B and then we have defined Σ
and Γ on the whole R.

We can again modify Σ on the regions B ∈ B, using the same techniques
described above, in such a way the following holds. If γ ∈ Γ reaches Fr(R)
then it reaches Fr(R) at time τ . If x belongs to an overlap curve, γ1, γ2 ∈ Γ ,
γ1(t1) = x = γ2(t2) then t1 = t2 ≤ τ , with equality holding only if x ∈ Fr(R).

Using a sufficiency argument as in [111], we can conclude that every γ ∈ Γ
is optimal and then R = R(τ), the reachable set in time τ for Σ. It is also
possible to use a dynamic programming argument. Indeed the time along the
set of trajectories Γ satisfies the Hamilton–Jacobi–Bellman equation for the
value function inside R and is constant on its frontier, see [22, 61]. It can
happen that some points are reached by more than one trajectory of Γ . How-
ever, we can construct a synthesis from Γ , that we call again Γ , following the
procedure described in Section 2.5, p. 56. We obtain Γ = ΓA(Σ). From the
construction it is clear that G corresponds to Σ in the canonical way.



B

Bidimensional Sources

The aim of this Appendix is to show how to extend the theory, developed
in the various chapters for the two points model problem, to the case of two
dimensional initial source or final target. Being the two cases equivalent (it is
enough to reverse time), we treat only the case of a two dimensional source.

From now on we fix a source SS that is assumed to be a smooth two
dimensional manifold with smooth boundary, and consider again the minimum
time problem from SS for a control system:

ẋ = F (x) + uG(x), |u| ≤ 1, (B.1)

where x ∈ R
2. The conclusions are valid, mutatis mutandis, in the general

case of a two dimensional manifold.
Notice that the condition F (0) = 0 is no more meaningful. The key con-

dition here is the one of local controllability from the source.

Definition 77 We say that the system (B.1) is locally controllable from the
source at a point x ∈ ∂SS if, for every y in a neighborhood of x in ∂SS, there
exists uy, |uy| ≤ 1, such that (F (y) + uy G(y)) ·ny > 0, where ny is the outer
normal to SS at y. We say that the system (B.1) is locally controllable from the
source if it is locally controllable at every point of ∂SS.

Remark 60 In the case of a two dimensional source the transversality condition
(PMP3) of Definition 8, p. 22 becomes essential (see also Remark 12, p. 23):

for every v ∈ Tγ(0)SS, λ(0) · v = 0. (B.2)

This means that if nγ(0) is the outer normal to SS at γ(0), we have λ(0) =
αnγ(0), for some α ∈ R \ {0}. From the condition of positivity of the Hamil-
tonian (see condition ii) of Theorem 10, p. 35) we get that α > 0 (in the case
of a two dimensional target, α < 0, see Figure B.1).
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n x
λ(0) 

Source Target

λ(0) 

n x

Fig. B.1. Transversality conditions for a two dimensional source and a two dimen-
sional target. The covector points outside the source and inside the target.

B.1 Local Optimal Synthesis at the Source

We start analyzing the local optimal synthesis at a generic point of ∂SS. Fix
a point x ∈ ∂SS and let nx be the outer normal. We distinguish three cases
that happen at a generic point:

a) nx · Y (x) > 0 and nx ·X(x) > 0;
b) nx · Y (x) > 0 and nx ·X(x) < 0 (or viceversa);
c) nx · Y (x) < 0 and nx ·X(x) < 0;

From Remark 60 we get the following. For case a) the synthesis is determined
by the sign of φ(0) = λ(0) ·G(γ(0)). More precisely if φ(0) > 0 then the local
synthesis is formed of Y trajectories, while if φ(0) < 0 it is formed by X
trajectories.
Assume now that φ(0) = 0. Under generic assumptions on the system, we
have ∆B(x) 6= 0, indeed sgn(φ(0)) = −sgn(nx · G(x)) and generically the
two set of zeroes do not intersect. Hence there is no turnpike starting at x.
The synthesis can be studied by the same methods of Chapter 2: two possible
cases appear with a C curve or a K curve, shown in Figure B.2, Cases a.1
and a.2. Notice that, in this case, there are not abnormal extremals. Indeed
the condition ∆A = 0 is generically verified at isolated points of ∂SS not co-
inciding with points where nx ·G(x) = 0.
In case b) the synthesis is formed by Y trajectories (X if the viceversa hap-
pens). See Figure B.2, case b. This analysis covers the points at which the
system is locally controllable.
Finally the synthesis is empty in case c), because no trajectory is exiting SS.
This ends the treatment of synthesis at a generic point.
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λ . G=0

SS SSSS
C

K

X
X

Y

X

Y

Case a.1 Case a.2 Case b

Ynx

λ(0)

Fig. B.2. Optimal syntheses in a neighborhood of a point in which the system is
locally controllable.

Let us pass to the case of not generic points that can happen for a system
that is not locally controllable. Assume, for example, that:

nx ·X(x) < 0, nx · Y (x) = 0,

and by genericity that, denoting by s→ ζ(s), ζ(0) = x, a local parametrization
of ∂SS:

d

ds
nζ(s) · Y (ζ(s))

∣

∣

∣

∣

s=0

6= 0.

Clearly the local optimal synthesis covers only part of a neighborhood of x
with Y trajectories. See Figure B.3. Notice that the Y trajectory exiting x is
an abnormal extremal. Indeed the condition nx · Y (x) = 0 implies that the
Hamiltonian is vanishing.

B.2 The Locally Controllable Case and Semiconcavity of

the Minimum Time Function

In the locally controllable case, the optimal synthesis can be constructed in
similar way to the point source case. Now there are no more curves γ± that
play a special role. Thus we obtain singularities entirely similar to the case of
a zero dimensional source, except for the singular points along γ±.
Also the classification program can be carried out with the obvious changes
(presence of the source SS and absence of γ±). Similarly the extremal synthesis
shares exactly the same properties.

Finally, projection singularities are simpler. Indeed, there are no more ver-
tical and ribbon singularities for Π2 and no more ribbon for Π4.
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SS
abnormal extremal

Y
X

n
x

λ(0) 

Fig. B.3. Optimal syntheses in a neighborhood of a point in which the system is
not locally controllable.

The minimum time function shares the same regularity: it is piecewise smooth
and topologically a Morse function. However, we have some more regularity
because the non differentiability occurs only along K Frame Curves (not along
γ±). This permits to prove the semiconcavity of the minimum time function
in the case in which M = R

2.

Definition 78 A function f : A→ R, A ⊂ R
2 open, is said to be semiconcave

if for every compact convex K ⊂ A, there exists cK > 0 such that f(x)−cK |x|2
is concave on K.

Theorem 44 Assume that the system (B.1) is locally controllable from a
source SS, then the minimum time function T(·), with initial set SS, is semi-
concave.

Proof. The assumption of local controllability ensures that the minimum time
function T(·) is Lipschitz continuous.

Obviously a smooth function is semiconcave, hence we have only to con-
sider Frame Curves and Frame Points. It is easy to check that points, at which
T(·) is topologically equivalent to a linear function, satisfy the assumptions
of semiconcavity. The same happens for maxima.

Thus we have only to check minima and saddles. In the case of a zero
dimensional source, the only minimum of T(x) is the origin, while now all the
points of ∂SS are minima and there are no other minima.

Moreover, from the previous analysis we know that the possible sad-
dle points are internal points of overlap curves K or Frame Points of kind
(Y,K)2,3. In the first case the function T(·) is smooth along K and again we



The Locally Controllable Case 249

retrieve semiconcavity, while the second case does not happen (there are no
γ± curves now).

Remark 61 In the non-locally controllable case, the minimum time function
is discontinuous. This case is more delicate, because new singularities are
appearing, both due to discontinuities of the minimum time and due to the
presence of abnormal extremals showed above.





References

1. A.A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, ”Sub-Riemannian sphere in
Martinet flat case”, ESAIM Control Optim. Calc. Var. 2 (1997), pp. 377–448.

2. A.A. Agrachev, Yu.L. Sachkov, “Lectures on Geometric Control Theory”,
Preprint SISSA 38/2001/M, May 2001, SISSA, Trieste. .

3. A.A. Agrachev and R.V. Gamkrelidze, “Symplectic Geometry for Optimal Con-
trol”, in “Non-Linear Controllability and Optimal Control”, Monogr. Textbooks
Pure Appl. Math., 133, Dekker, New York, pp. 263-277, (1990).

4. A.A. Agrachev and R.V. Gamkrelidze, ”Symplectic methods for optimization
and control”, in “Geometry of feedback and optimal control”, Monogr. Text-
books Pure Appl. Math., 207, Dekker, New York, pp. 19–77, (1998).

5. A.A. Agrachev, G. Charlot, J.P. Gauthier, V.M. Zakalyukin, ”On sub-
Riemannian caustics and wave fronts for contact distributions in the three-space,
J. Dynam. Control Systems 6 (2000), no. 3, 365–395.

6. A.A. Agrachev, J.P. Gauthier, “On the subanalyticity of Carnot-Caratheodory
distances.” Ann. Inst. H. Poincar Anal. Non Linaire 18 (2001), no. 3.

7. A.A. Agrachev, J.P. Gauthier, “On the Dido problem and plane isoperimetric
problems.” Acta Appl. Math. 57 (1999), no. 3, 287–338.

8. A. A. Agrachev, D. Pallaschke, S. Scholtes, “On Morse theory for piecewise
smooth functions”, J. Dynam. Control Systems, Vol 3 no. 4 (1997), pp. 449–
469.

9. A.A. Agrachev, A. Sarychev, “Abnormal Sub-Riemannian Geodesics: Morse In-
dex and Rigidity,” Ann. Inst. H. Poincaré Anal. Non Linéaire Vol. 13, No. 6
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68. J. L. Gross, Thomas W. Tucker, “Topological Graph Theory”, John Wiley and
Sons, Inc (1987).

69. H. Hermes and J.P. LaSalle, “Functional analysis and time optimal control”,
Mathematics in Science and Engineering, Vol. 56. Academic Press, New York-
London, 1969.

70. L. Heffter, “Ueber das Problem der Nachbargebeite,” Mat. Annalen 38 (1891),
pp. 477–508.

71. M.W. Hirsch, “Differential Topology”, Springer-Verlag, New-York, 1976.
72. A. Isidori. “Nonlinear control systems: an introduction”, Springer-Verlag,

(1985).
73. B. Jakubczyk, W. Respondek, “Feedback equivalence of planar systems and

stabilizability”. Robust control of linear systems and nonlinear control (Ams-
terdam, 1989), 447–456, Progr. Systems Control Theory, 4, Birkhuser Boston,
Boston, MA, 1990.

74. B. Jakubczyk, W. Respondek, “Feedback classification of analytic control sys-
tems in the plane”. Analysis of controlled dynamical systems (Lyon, 1990),
263–273, Progr. Systems Control Theory, 8, Birkhuser Boston, Boston, MA,
1991.



References 255

75. B. Jakubczyk, W. Respondek, “Bifurcations and phase portraits of control-affine
systems in the plane”, preprint.

76. F. Jean, “Uniform estimation of sub-Riemannian balls”. J. Dynam. Control
Systems 7 (2001), no. 4, 473–500.

77. V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech.
Anal. 124 (1993), no. 4, pp. 305–328.

78. V. Jurdjevic, “Geometric Control Theory”, Cambridge University Press, (1997).
79. V. Jurdjevic, “Optimal control problems on Lie groups: crossroads between ge-

ometry and mechanics”, in Geometry of feedback and optimal control, 257–303,
Monogr. Textbooks Pure Appl. Math., 207, Dekker, New York, 1998.

80. V. Jurdjevic and I.K. Kupka, “Control Systems subordinated to a group action:
accessibility”, J. Diff. Eq. Vol.39, pp. 186–211.

81. V. Jurdjevic and I.K. Kupka, “Control Systems on Semisimple Lie Groups and
Their Homogeneous Spaces”, Ann. Inst. Fourier, Vol.31, pp. 151–179.

82. V. Jurdjevic and H.J. Sussmann, “Controllability of Non-Linear systems”, J.
Diff. Eq. Vol.12, pp. 95–116.

83. M. Kiefer and H. Schattler, “Cut-Loci, and Cusp Singularities in Parameterized
Families of Extremals,” Optimal Control (Gainesville, FL, 1997), pp. 250-277,
Appl. Optim., 15, Kluwer Acad. Publ., Dordrecht, (1998).

84. M. Kiefer and H. Schattler, “Parametrized Families of Extremals and Singular-
ities in Solution to the Hamilton Jacobi Bellman Equation” SIAM J. Control
and Opt., 37 (1999), pp. 1346-1371.

85. W.-S. Koon, J.E. Marsden, “Optimal control for holonomic and nonholonomic
mechanical systems with symmetry and Lagrangian reduction”, SIAM J. Con-
trol Optim. 35 (1997), no. 3, 901–929.

86. V. Kostov and E. Degtiariova-Kostova “Suboptimal paths in the problem of a
planar motion with bounded derivative of the curvature.” Comptes rendus de
l’acadmie des sciences 321, 1995, pp. 1441–1447.

87. V. Kostov and E. Degtiariova-Kostova, “Irregularity of Optimal Trajectories in
a Control Problem for a Car-like Robot”, Research Report 3411, INRIA, 1998.

88. A.J. Krener, “A generalization of Chow’s and the bang bang theorem to non-
linear control problems”. SIAM J. Control Optimization 12 (1974), pp. 43-51.

89. A.J. Krener,“The high order maximal principle and its application to singular
extremals”, SIAM J. Control Optimization 15 (1977), no. 2, pp. 256–293.

90. A.J. Krener, H. Schättler, “The structure of small-time reachable sets in low
dimensions”, SIAM J. Control Optim. 27 (1989), no. 1, pp. 120–147

91. I.A.K. Kupka, “The ubiquity of Fuller’s phenomenon”, in Nonlinear controlla-
bility and optimal control, 313–350, Monogr. Textbooks Pure Appl. Math., 133,
Dekker, New York, 1990.

92. M.M. Lee, L. Markus, “Foundations of Optimal Control Theory”, Whiley, New
York, 1967.

93. C. Lobry, “Controllability of non-linear systems on compact manifolds”, SIAM
J. Control Optim., Vol.1, (1974) pp.1–4.

94. S. Lojasiewicz, H.J. Sussmann, “Some examples of reachable sets and optimal
cost functions that fail to be subanalytic”. SIAM J. Control Optim. Vol. 23, no.
4, pp. 584–598 (1985).

95. A.A. Markov, “Some examples of the solution of a special kind of problem in
greatest and least quantities”, (in Russian) Soobshch. Karkovsk. Mat. Obshch.
1, 1887, pp. 250–276.



256 References

96. C. Marchal, “Chattering arcs and chattering controls”, J. Optimization Theory
Appl. 11 (1973), 441–468.

97. A. Marigo, B. Piccoli “Regular syntheses and solutions to discontinuous ODEs”
ESAIM: Control, Optimisation and Calculus of Variations Vol. 7 (2002) pp.
291-308

98. V.I. Matov “Topological Classification of the Germ of Functions of the Max-
imum and Minimax Functions of a Family of Functions in General Position”.
Uspekhi Mat. Nauk (Russian), Vol. 37, no.4 (1982), pp.167-168.

99. W.S. Massey, “Algebraic Topology: An Introduction,” Springer-Verlag, New-
York, 1973.

100. D. McCaffrey, S.P. Banks, “Riemannian comparison and conjugate locus in
optimal control”, IMA J. Math. Control Inform. 17 (2000), no. 2, pp. 123–145.

101. J. Milnor, “Morse theory”, based on lecture notes by M. Spivak and R. Wells.
Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton,
1963.

102. R. Montgomery, “A survey of singular curves in sub-Riemannian geometry”,J.
Dynam. Control Systems 1 (1995), no. 1, pp. 49–90.

103. R. Montgomery, “A Tour of Subriemannian Geometries, Their Geodesics and
Applications”, American Mathematical Society, (2001).

104. I. Nikolaev, ”Foliations on surfaces”, Ergebnisse der Mathematik und ihrer
Grenzgebiete 41, Springer-Verlag, Berlin, 2001.

105. I. Nikolaev, E. Zhuzhoma, “Flows on 2-dimensional manifolds: an overview”,
Lecture notes in mathematics. v.1705, Berlin, Springer-Verlag, 1999.

106. M.M. Peixoto, “Structural stability on two-dimensional manifolds”, Topology
1 (1962), pp. 101–120.

107. M.M. Peixoto, “On the Classification of Flows on 2-Manifolds”, in Dynamical
Systems, M.M. Peixoto, ed., Academic Press, New York, 1973, pp. 389-419.

108. B. Piccoli, “A Generic Classification of Time Optimal Planar Stabilizing Feed-
back”, Ph.D. Thesis, SISSA, Trieste (1994).

109. B. Piccoli, “Regular Time–Optimal Syntheses for Smooth Planar Systems,”
Rend. Sem Mat. Univ. Padova, Vol.95 (1996), pp. 59-79.

110. B. Piccoli, “Classifications of Generic Singularities for the Planar Time-
Optimal Synthesis”, SIAM J. Control and Optimization, Vol.34 No.6 (December
1996), pp. 1914-1946.

111. B. Piccoli and H.J. Sussmann, “Regular Synthesis and Sufficiency Conditions
for Optimality”, SIAM J. Control and Optimization, Vol. 39 No. 2 pp. 359-410,
(2000).

112. L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, “The
Mathematical Theory of Optimal Processes”, John Wiley and Sons, Inc, 1961.

113. J.A. Reeds and L.A. Shepp, “Optimal Path for a car that goes both forwards
and backwards”, Pacific J. Math, Vol. 145, pp. 367-393, (1990).

114. Y. Sachkov, “Controllability of Invariant Systems on Lie Groups and Homoge-
neous Spaces,” J. Math. Sci., Vol.100, n.4, pp.2355-2427, (2000).

115. H. Schattler, “On the Local Structure of Time Optimal Bang-Bang Trajectories
in R

3,” SIAM J. Control Optim. 26, No.1 (1988), pp. 186-204.
116. H. Schattler, “The Local Structure of Time Optimal Trajectories in Dimension

3, Under Generic Conditions,” SIAM J. Control Optim. 26, No.4 (1988), pp.
899-918.

117. E.D. Sontag, “Mathematical control theory: Deterministic finite dimensional
systems”, Springer–Verlag, New York, 1990.



References 257

118. P. Soueres and J.P. Laumond, Jean-Paul, “Shortest paths synthesis for a car-
like robot”, IEEE Trans. Automat. Control 41 (1996), no. 5, pp. 672–688.

119. H.J. Sussmann, “Analytic stratifications and control theory”, in Proceedings
of the International Congress of Mathematicians (Helsinki, 1978), pp. 865–871,
Acad. Sci. Fennica, Helsinki, 1980.

120. H.J. Sussmann, “Geometry and Optimal Control” in Mathematical Control
Theory, Springer–Verlag, New York, 1998, pp. 140–198.

121. H.J. Sussmann, “Subanalytic sets and feedback control.” J. Differential Equa-
tions Vol. 31 (1979), no. 1, pp. 31–52.

122. H.J. Sussmann, “Envelopes, conjugate points, and optimal bang-bang ex-
tremals”, in Algebraic and geometric methods in nonlinear control theory, 325–
346, Math. Appl., 29, Reidel, Dordrecht, (1986).

123. H.J. Sussmann, “The Markov-Dubins Problem with Angular Acceleration Con-
trol,” Proceedings of the 36th IEEE, Conference on Decision and Control, San
Diego, CA, Dec. 1997. IEEE Publications, New York, 1997, pp. 2639-2643.

124. H.J. Sussmann, “Envelopes, higher–order optimality conditions and Lie Brack-
ets”, in Proc. 1989 I.E.E.E, Conf. Decision and Control.

125. H.J. Sussmann, “The structure of time-optimal trajectories for single-input
systems in the plane: the general real analytic case”, SIAM J. Control Optim.
25 No. 4 (1987), pp. 868–904

126. H.J. Sussmann, “The Structure of Time-Optimal Trajectories for Single-Input
Systems in the Plane: the C∞ Nonsingular Case,” SIAM J. Control Optim. 25,
No.2 (1987), pp. 433-465.

127. H.J. Sussmann, “Regular synthesis for time optimal control of single–input
real–analytic systems in the plane,” SIAM J. Control and Opt., 25 (1987),
pp.1145-1162.

128. H.J. Sussmann, G. Q. Tang, “Shortest Paths for the Reeds-Shepp Car: A
Worked Out Example of the Use of Geometric Techniques in Nonlinear Opti-
mal Control”, Rutgers Center for Systems and Control Technical Report 91-10,
September 1991, to appear in SIAM J. Control.

129. E. Trelat “Some properties of the value function and its level sets for affine con-
trol systems with quadratic cost.” Journal of Dynamical and Control Systems.
Vol.6 (2000), N.4, pp. 511–541.

130. H. Whitney, “On Singularities of Mappings of Euclidean Spaces. I, Mappings
of the Plane into the Plane”, Ann. Math. 62 (1955), 374-410.

131. M.I. Zelikin, “Synthesis of optimal trajectories on spaces of representations of
Lie groups” (Russian), Mat. Sb. (N.S.) 132(174) (1987), no. 4,541–555; transla-
tion in Math. USSR-Sb. 60 (1988), no. 2, pp. 533–546.

132. M.I. Zelikin and V.F. Borisov, “Theory of chattering control. With applica-
tions to astronautics, robotics, economics, and engineering”, Systems & Control:
Foundations & Applications, Birkhäuser, Boston, 1994.
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