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Preface

These lecture notes contain the first part of the lectures about sub-Riemannian geodesics given by
the first author at the IHP Trimester “Geometry, Analysis and Dynamics on sub-Riemannian man-
ifolds”, Paris, Sept - Dec 2014. The point of view is the one of geometric control and Hamiltonian
systems. c:geodiff

In Chapter iﬂ,’gvmall some preliminaries of differential geometry, with special attention to
vector fields and, Lie brackets and vector bundles. This material is classical, but it is presented for
Self—contained%qﬁ)sasaﬁd to introduce the notation used in the following chapters.

Chapter Iﬁhmed to sub-Riemannian structures. We introduce the general framework and we
prove three fundamental results: the finiteness and the continuity of the sub-Riemannian distance
(under the bracket generating condition); the existence of length-minimizers; the infinitesimal char-
acterization of length-minimizers. The first is the classical Chow-Rashevski theorem, the second
is a version of the Filippov existence theorem and the third is the Pontryagin maximum principle
proved for the J)gg}ﬂai]lgggf agf systems that in linear the control with quadratic cost.

In Chapter EZI; we mtroduce the language of symplectic geometry. The presentation of the sym-
plectic structure, or equivalently the Poisson bracket, is not classical, but it is naturally introduced
to give a geometric description of extremals characterized in the previous chapter. We define the
sub-Riemannian Hamiltonian flow, and we specify it for an interesting class of three-dimensional
problems. Finally we prove that small pieces of normal trajectories are length-minimizer.

Andrei Agrachev, Davide Barilari, Ugo Boscain.
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Chapter 1

Vector fields and vector bundles

In this chapter we collect some basic definitions of differential geometry, in order to recall some
useful results and to fix the notation. We assume the reader to be familiar with the definitions of
smooth manifold and smooth map between manifolds.

1.1 Differential equations on smooth manifolds

1.1.1 Tangent vectors and vector fields

Let M be a smooth n-dimensional manifold and 71,7, : (—&,&) — M two smooth curves based at
g = 711(0) = ¥2(0) € M. We say that v, and 72 are equivalent if, in some coordinate chart, they
have the same 1-st order Taylor polynomial in some (or, equivalently, in any) coordinate chart.
This defines an equivalence relation on the space of smooth curves based at a fixed point.

Definition 1.1. Let M be a smooth n-dimensional manifold and let v : I — M is a smooth curve
such that v(0) = ¢ € M. Its tangent vector at ¢ = v(0), denoted by

d

E tZOV(t)’ or 7(0)7 (1‘1)

is the equivalence class in the space of all smooth curves in M such that v(0) = q.

It is easy to check, using the chain rule, that this is a well-defined object (i.e., it does not depend
on the representative curve).

Definition 1.2. Let M be a smooth n-dimensional manifold. The tangent space at a point g € M
is the set

T4M = {i
dt|i—g

It is a standard fact that 7, M has a natural structure of n-dimensional vector space.

v(t), v: (—e,&) = M smooth, v(0) = q} .

Definition 1.3. A vector field on a smooth manifold M is a smooth map
X :q— X(q) € TyM,

that associates to every point ¢ in M a tangent vector at q. We denote by Vec(M ) the set of smooth
vector fields on M.



ve
complete

In coordinates we can write X =Y " | X i(x)a%i, and the vector field is smooth if and only if

its components X*(x) are smooth functions. The value of a vector field X at a point ¢ is denoted
both with X (¢q) and X|q.

Definition 1.4. Let M be a smooth manifold and X € Vec(M). The equation

q=X(q), q€ M, (1.2)

:odeb
is called an ordinary differential equation (or ODE) on M. A solution of 1S a smooth curve

~v:1 — M, where I C R is an interval, such that
W) = X(4(8),  Wtel. (1.3)
We also say that - is an integral curve of the vector field X.

A standard theorem on ODE ensures that, for every initial condition, there exists a unique
integral curve of a smooth vector field, defined on some interval.

Theorem 1.5. Let X € Vec(M) and consider the Cauchy problem

{q(t) = X(q(t)) (1.4)

) ) . . ;: odeb2
For any point qo € M there exists 6 > 0 and v : (=d,0) — M a unique solution of (fﬁ)ﬁl@noted
by v(t; q0). Moreover the map (t,q) — ~(t;q) is smooth on a neighborhood of (0,qo).

A vector :1;132,% X € Vec(M) is called complete if, for every qo € M, the solution v(¢; qo) of the
equation ( Iféi can be extended for all ¢t € R.

Remark 1.6. Standard results from ODE ensure completeness of the vector field X € Vec(M) in
the following cases:

(i) M is a compact manifold (or more generally X has compact support in M),
(14) M =R"™ and X is sub-linear, i.e. there exists C1,C2 > 0 such that
| X (x)| < Ci|z| + Cq, Ve R
where | - | denotes the Euclidean norm in R™.

When we are interested in the behavior of the trajectories of a vector field X € Vec(M) in a
compact subset K of M, the assumption of completeness is not restrictive.

Indeed consider an open neighborhood Ok with compact closure of a compact K in M. There
exists a smooth cut-off function a : M — R that is identically 1 on K, and that vanishes out of
Ok . Then the vector field aX is complete, since it has compact support in M. Moreover, inside
K, the vector fields X and aX coincide, hence the integral curves of the two vector fields coincide
too.



1.1.2 Flow of a vector field Eector field!flov
ow

Given a complete vector field X € Vec(M) we can consider the family of maps vector
field!lnonauto:

¢t M — M, oe(q) =(t;q), teR. (1.5)

In other Qrgg, ¢+(q) is the shift for time ¢ along the integral curve of X that starts from ¢. By
Theorem it follows that the map

¢:RXM_>M7 gb(t,Q):qbt(Q),

is smooth in both variables and the family {¢¢, t € R} is a one parametric subgroup of Diff(M),
namely, it satisfies the following identities:

¢0 = Id7
o ds = P50 Pt = Pris, Vi, sER, (1.6)
(¢0) ™" = ¢, VteR,

Moreover, by construction, we have

8¢5§q) = X(¢t(q)), ¢olq) =¢q, Vqe M. (1.7)

eq:flow
The family of maps ¢, defined by ( Ifgi is called the flow generated by X. For the flow ¢; of a
vector field X it is convenient to use the expone%tia!l%%ation ¢ := X, for every t € R. Following

the exponential notation, the group properties ake the form:
0X — Id, !X o e5X — o5X 5 otX — e(t—l—s)X’ (etX)—l _ e—tX’ (18)
d ix tX
—e” = Xe . 1.9
7 (1.9)

Remark 1.7. When X is a linear vector field on R”, then X (z) = Az for some n x n matrix A. In
this case the corresponding flow ¢; is the matrix exponential ¢;(z) = e ().

1.1.3 Nonautonomous vector fields

A family of smooth vector fields {X;}ier, where X; € Vec(M) for every t € R, is said to be
measurable and locally bounded with respect to t if for every smooth function a € C*(M) the
function px : R — R defined by ¢x () = X;a is measurable and locally bounded.

onautonomous| Definition 1.8. A nonautonomous vector field is family of smooth vector fields {X;}ier that is
measurable and locally bounded with respect to ¢.

Now we consider a nonautonomous ODE, i.e. an equation of the form

q = Xi(q), qge M, (1.10)

where X is a nonautonomous vector field. If we consider local coordinates x = (r1,...,2y) in an
open set O on the manifold M, the equation (d%‘ls written in coordinates as

T = f(t,x), z € R,

where the map (¢, z) — f(¢,x) is defined on a subset of R x R™ and satisfies

9



ratheodory (7) f is measurable and locally bounded with respect to ¢, for any fixed z € O,
(#i) f is smooth in x for every fixed ¢t € R,

(7i7) f has locally bounded derivatives, i.e.,

of
'a—fl(t,:n) <Cr K, ICR, KCO compact, i=1,...,n.
x

where we denote with f = (f1,..., f,) the components of the vector function f.

The existence and I%i%gggelscscgfithe solution in the nonautonomous case is guaranteed by the
following theorem (see [7])-

Theorem 1.9 (Carathéodory theorem). Assume that f : R x R™ — R"™ satisfies (i)-(iii). Then

the Cauchy problem
i(t) = f(t,z(t),  z(to) = o, (1.11)

eq:nncauch
has locally a unique solution x(t;tg, xo) such that dIfIf ; 18 sa%z’sﬁed for almost every t and x(ty; to, z9) =
xg. Moreover the map (t,zq) — x(t;to, o) is Lipschitz with respect to t and smooth with respect to
Zo-

:cara
Let us assume now that the equation (ﬁ)—ls complete, i.e. for all tp € R and zg € R" the
solution z(t;tp, zo) is defined for all ¢ € R. Let us denote by Py +(zo) = x(t;t0, z0). The family of
maps Py ¢ is the nonautonomous flow generated by X;. It satisfies

d 0P, of
o o (@) = (8 P y(0)) P o (x)

Moreover the following algebraic identities are satisfied

Py =1d,
Pty 0 Pty = Prtg, Vi, ta,t3 €R, (1.12)
(Pfq,tg)_l :Ptg,tly th,tz GR,

. g OI‘%ersely, to every family of smooth diffeomorphism P : M — M satisfying the relations
(ﬁ%le can define its infinitesimal generator X, as follows:

d
Xi(a) = —|  Pr+s(0), Vge M. (1.13)

S 1s=0

The following lemma characterizes the flows whose generator is autonomous.

. . . . flowd .
Lemma 1.10. Let {P; s}t ser be a family of smooth diffeomorphisms satisfying (ﬁﬁ‘ts infinites-

imal generator is an autonomous vector field if and only if

PoioPos = Foitss Vi, s €R.

10



1.1.4 Vector fields as operators on functions

A vector field X € Vec(M) induces an action on the algebra C>°(M) of the smooth functions on
M, defined as follows

X :C®(M) = C®(M), a— Xa, acC®(M), (1.14)

where

d

== tzoa(etx(q)), g€ M. (1.15)

(Xa)(q)

In other words it computes the derivative of the function a restricted on integral curves of the
vector field X.

Remark 1.11. Let us denote a; := a o !X, Clearly the map ¢ — a; is smooth and from (% it
immediately follows that Xa represents the first order term in the expansion of a;:

a; = a+tXa+ O(t?).

Exercise 1.12. Let a € C*°(M) and X € Vec(M), and denote a; = a o €', Prove the following
formulas

d
aat = Xat, (116)
t2 t3 tk
at:a+tXa+§X2a+§X3a+...+EX’fa+O(tk+1). (1.17)

It is easy to see also that the following Leibnitz rule is satisfied
X (ab) = (Xa)b+ a(XD), Va,beC®(M), (1.18)

that means that X, as an operator on functions, is a derivation of the algebra C*°(M).

Remark 1.13. Notice that, in coordinates, if a € C*(M) and X = ), Xi(:n)a%i then Xa =

> Xi(:n)g—;. In particular, when X is applied to the coordinate functions a;(z) = z; then
Xa; = X;, which shows that a vector field is completely charactherized by its action on func-
tions.

Exercise 1.14. Let fi,..., fr € C®°(M) and assume that N = {f; = ... = fr = 0} C M where
dfi A ... ANdfy, # 0 on N. Show that X € Vec(M) is tangent to the smooth submanifold N if and
only if Xf; =0 foreveryi=1,...,k.

1.2 Differential of a smooth map

A smooth map between manifolds induces a map between their tangent spaces, simply by trans-
forming the smooth curves.

Definition 1.15. Let ¢ : M — N a smooth map between smooth manifolds and ¢ € M. The
differential of ¢ at the point ¢ is the linear map

Pxq - TqM — Tp(q)N, (1'19)

11

differential of a
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defined as follows:

d d

pra) =g _eOO) i =gl a0, a=90)

It is easily checked that this definition depends only on the equivalence class of ~.
Remark 1.16. Applying the definition, one immediately verifies that, if ¢ : M — N, ¢ : N — @
are two smooth maps between manifolds, then the differential of the composition ¢y o : M — Q
satisfies (1) 0 p)y = Py 0 ps.

The differential ¢, , of a smooth map ¢ : M — N, also called its pushforward, is sometimes
denoted by the symbols D,y or dyep,

As we said, a smooth map induces a transformation of tangent vectors. If we deal with diffeo-
morphisms, we can also pushforward a vector field.

Definition 1.17. Let X € Vec(M) and ¢ : M — N be a diffeomorphism. The pushforward
0 X € Vec(N) is the vector field on N defined by

(e X)(0(q)) == ¢u(X(q)),  VqeM. (1.20)
If P € Diff(M) is a diffeomorphism of M, we can rewrite the previous identity as
(P.X)(q) = P.AX(PX(q))),  Vaqe M. (1.21)

Notice that, in general, if ¢ is a smooth map, the pushforward of a vector field is not defined.
Remark 1.18. From this definition it follows the useful formula for X,Y € Vec(M)
d
tX tX tX _ _sY _—tX
(e Y)‘q =e; (Y‘e*tX(q)) = Szoe oe® oe " (q).

The following lemma shows that P, X is the vector field whose integral curves are the image
under P of integral curves of X. Moreover it shows how the pushforward of a vector field acts on
functions:

Lemma 1.19. Let P € Diff(M), X € Vec(M) and a € C*°(M) then

X = poetX o P, (1.22)
(P.X)a = (X(aoP))oP L (1.23)
Proof. From the formula
d _ _
prii e o Pl (q) = P(X (P (g))) = (P.X)(q),
t=0

:relfl
it fOHOEeS'th?;UrE — Poe!X o P7l(q) is an integral curve of P,X, from which (ﬁﬁ;ﬁﬂlows. To

prove et us compute

(P*X)a|q =

dt|,_

eq:relfl
Using (ﬂm_fﬁis is equal to

d

X d
S| P (Plg) = &

=0 dt

12
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Remark 1.20. From this lemma it follows the following formula: for every X,Y € Vec(M) Lie bracket
(eXY)a = Y(aoeX)oe X, (1.21)

1.3 Lie brackets

Now we introduce a fundamental notion of all our theory, the Lie bracket of two vector fields X
and Y. Geometrically it is defined as the infinitesimal version of the pushforward of the second
vector field along the flow of the first one. As expalined below, it measures how much Y is modified
by the flow of X.

Definition 1.21. Let X,Y € Vec(M). We define their Lie bracket as the vector field

e XY, (1.25) |eq:commutatc

Remark 1.22. The geometric meaning of the Lie bracket can be understood by writing explicitly

e X o 0 et (g). (1.26) |eq:liebrtutt

t=s=0

X 0

t:Oe* (Y|etx(q)) ~ 9sot

|  _ix 0
[X.Y]|, = 5 t:oe*t = =

We recover its algebraic properties in the following

Proposition 1.23. As derivations on functions we have

[X,Y]= XY - YX. (1.27)

Proof. By definition of Lie bracket we have [X,Y]a = % ‘ ol tXY)a. Hence we have to compute
the first order term in the expansion, with respect to ¢, of the map

t = (e;*Y)a.
Using formula (ﬂﬁs% have
(e;¥Y)a =Y (aoe ) oelX,
By Remark ﬁ we have aoe ™™ =a_; =a—tXa+ O(t?), hence

(e Y)a=Y(a—tXa+O(?))oe
= (Ya—tYXa+ O(t?)) o e,

Denoting b= Ya —tY Xa + O(t?), by = bo €', and using again the expansion above we get

(e™Y)a=(Ya—tYXa+OF)) +tX(Ya—tYXa+ O(t?)) + Ot?)
=Ya+t(XY —YX)a+ O(t?).

Hence the first order term is (XY — Y X)a. O

13



p:liebflow

From this proposition it easily follows also the coordinate expression of the Lie bracket. Indeed

SN 0
X:;Xia—%, Y:;Yj%j,

if

we have

n
oY; 0X;\ 0
X.Y] = X J Y. J -
[ ’ ] i;l ( Zal‘i ’ 8:17@) al‘j
Proposition &ﬁ shows that Vec(M), being an associative algebra with commutator as multiplica-
tion, is a Lie algebra with the Lie bracket.
Now we prove that every diffeomorphism induces a Lie algebra homomorphism on Vec(M).

Proposition 1.24. Let P € Diff(M). Then P; is a Lie algebra homomorphism of Vec(M), i.e.
P, [X,Y] = [P.X, P.Y], VX,Y € Vec(M).

Proof. We show that the two terms are equal as derivations on functions. Let a € C* (M), prelim-
inarly we see, using , that

P.X(P.Ya) = P.X(Y(ao P)o P71)
=X(Y(aoP)oP toP)opP!
=X(Y(aoP))o P
and using twice this property and (I%’c))M
[P.X,P,Y]a = P.X(P,Ya) — P,Y(P.Xa)

= XY(aoP)oP™' —~YX(aoP)o P!

= (XY -YX)(aoP)o P!

= P,[X,Y]a.

O

To end this section, we want to show that the Lie bracket of two vector fields is zero, that means
that they commute as operators, if and only if the same holds for their flows.

Proposition 1.25. Let X,Y € Vec(M). The following properties are equivalent:
(1) [X,Y]=0,
(ii) e oe’Y =eY oetX| Vit seR.

Proof. We start the proof with the following

Claim. [X,Y]=0 = ;XY =Y.

Proof of the Claim. Let us show that [X,Y] = % e;™Y = 0 implies that %e;tXY =0 for

t=0
all ¢ € R. Indeed we have
ie*—tXY — i 6;(t+€)XY — i e*_tXe;eXY
dt de |, de |,
=ty S e x Y] =0,
de |,

14



and the Claim is proved.
(i) = (i). Let us show that P, := e~*X 0 e*Y 0 e!X is the flow generated by Y. Indeed we have

0 0
p =2 —tX o p(s+e)Y o otX
Os Oe|._,
0
_9 —tX ) EY X otX  sY o otX
e e=0
= >

=e;XYoP, =Y oP,.

where in the last equality we used the Claim. Using uniqueness of the flow generated by a vector
field we get
e oeY o™ =Y, Vi seR,
which is equivalent to (i7).
(73) = (i). For every function a € C* we have

d? d?
XYa = %‘t:szoa oe’Y oetX = Tt t:s:Oa oetXoeY =Y Xa.
Then (i) follows from . O

Exercise 1.26. Let XY € Vec(M) and ¢ € M. Consider the curve on M
’Y(t) — e—tY o e—tX o etY o etX(q)'
Prove that tangent vector to the curve y(v/%) is exactly [X,Y](q).

Exercise 1.27. Let X, Y € Vec(M). Using the semigroup property of the flow, prove the following
expansion
t2 t3

e Y =Y +[X, Y] + FIX XY+ E[X, (X, [X, Y]] +... (1.28)

Exercise 1.28. Let X,Y € Vec(M) and a € C*°(M). Prove the following Leibnitz rule for the Lie
bracket:
[X,aY] =a[X, Y]+ (Xa)Y.

Exercise 1.29. Let X,Y, Z € Vec(M). Prove that the Lie bracket satisfies the Jacobi identity:
(X, Y. Z]|+[Y.[Z, X]|+ [Z,[ X, Y]] =0. (1.29) |eq:liejacobi

Hint: Differentiate the identity e/X[Y, Z] = [e!XY, elX Z].

1.4 Cotangent space

In this section we introduce tangent covectors, that are linear functionals on the tangent space.
The space of all covectors at a point ¢ € M, called cotangent space is, in algebraic terms, simply
the dual space to the tangent space.

15
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Definition 1.30. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q € M is the set
TyM = (T,M)* = {\: T;M — R, X linear}.

If A€ T;M and v € T, M, we will denote by (\,v) := A(v) the action of the covector A on the
vector v.

As we have seen, a smooth map yields a linear map between tangent spaces. Dualizing this
map, we get a linear map on cotangent spaces going in the opposite direction.

Definition 1.31. Let ¢ : M — N be a smooth map and ¢ € M. The pullback of ¢ at point ¢(q),
where ¢ € M, is the map
o* T;(q)N — T, M, A=t

defined by duality in the following way
(P A, 0) == (A, psv) Vo eTyM, YA€ T, M.

Example 1.32. Let a : M — R be a smooth function and ¢ € M. The differential dsa of the
function a at the point ¢ € M is an element of T;’ M since we have a well defined linear action

d
(dga,0) = 2| a(y(t),  veT,M.
dt|—g

where 7(t) is any smooth curve such that v(0) = ¢ and %(0) = v.
Definition 1.33. A differential 1-form on a smooth manifold M is a smooth map
w:qg—w(q) € Ty M,

that associates to every point ¢ in M a cotangent vector at q. We denote by A'(M) the set of
differential forms on M.

Since differential forms are dual objects to vector fields, it is well defined the action of w € A*M
on X € Vec(M) pointwise, defining a function on M.

(w, X) : ¢ = (w(q), X(q)) - (1.30)

The differential form w is smooth if and only if, for every smooth vector field X € Vec(M), the
function (w, X) € C>*(M)

Definition 1.34. Let ¢ : M — N be a smooth map and a : N — R be a smooth function. The
pullback ¢*a is the smooth function on M defined by

v a(q) =ale(q), g€ M.
In particular, if 7 : T*M — M is the canonical projection and a € C*°(M), then
mra(N) = a(w(N)), AeT*M,
which is constant on fibers.

16



1.5 Vector bundles

Heuristically, a smooth vector bundle on a manifold M, is a smooth family of vector spaces
parametrized by points in M.

Definition 1.35. Let M be a n-dimensional manifold. A smooth vector bundle of rank k over M
is a smooth manifold FE with a surjective smooth map 7 : £ — M such that

(i) the set E, := n1(q), the fiber of E at g, is a k-dimensional vector space

(1) for every g € M there exist a neighborhood Oy of ¢ and a linear-on-fiber diffeomorphism (also
called local trivialization) 1 : 7~1(0,) — O, x R¥ such that the following diagram commutes

71(0,) —2> 0, x RF (1.31)

Oq
The space E is called total space and M is the base of the vector bundle. We will refer at 7 as the
canonical projection and rank E will denote the rank of the bundle.

Remark 1.36. The existence of local trivialization maps v says that E, as smooth manifold, has
dimension
dim F = dim M 4 rank £ =n + k.

In the case when there exists a global trivialization map, i.e. a local trivialization with O, = M,
then E ~ M x RF and we say that E is trivializable.

Example 1.37. For any smooth n-dimensional manifold M, the tangent bundle T M, defined as
the disjoint union of the tangent spaces at all points of M,

T™ = | J T,M,
qeEM

has a natural structure of 2n-dimensional smooth manifold, equipped with the vector bundle struc-
ture (of rank n) induced by the canonical projection map

m:TM — M, m(v)=q if vel,M.
In the same way one can consider the cotangent bundle T* M, defined as

M= | T;M.
qeEM

Again, it is a 2n-dimensional manifold, and the canonical projection map
w:T"M — M, m(A)=q if ANeT;M,
endows T* M with a structure of rank n vector bundle.

17
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le!morphism

le!section

ex:zerosec

Let O C M be a coordinate neighborhood where

Yv: 0 — R, U(q) = (x1,...,2n),
define a local coordinate system. The differentials of the coordinate functions

da:i| i1=1,...,n, q€e€ o0,

q7

form a basis of the cotangent space T, M. The dual basis in the tangent space T;M is defined by
the vectors

0 .
oz, qGTqM, i1=1,...,n, qge o, (1.32)
dz; 9 = 0, i,j=1 n (1.33)
Z’@xj — Uiz, ) = Ly .

Thus any tangent vector v € T; M and any covector A € T/ M can be decomposed in these basis

v:ivi% )\Zipid%’

9 q’
q

and the maps

Uy 10 (T1y ey Ty, U1, e, Up), Un: A= (T1, .o, Ty DLy e ooy D), (1.34)

define local coordinates on T'M and T™*M respectively, which we call canonical coordinates induced
by the coordinates 1 on M.

Definition 1.38. A morphism f : E — E’ between two vector bundles E, E’ on the base M (also
called a bundle map) is a smooth map such that the following diagram is commutative

E- L. (1.35)

!

M
where f is linear on fibers. Here m and 7’ denote the canonical projections.

Definition 1.39. Let 7 : E — M be a smooth vector bundle over M. A section of E is a smooth
ma o:AC M — E satisfying m oo = Id4. In other words o(gq) belongs to E, for each q € A,
smoothly with respect to q. If o is defined on all M it is said to be a global section.

Example 1.40. Let 7 : E — M be a smooth vector bundle over M. The zero section of E is the
global section
(:M—F, C(g) =0¢€ E, Vqe M.

We will denote by My := ((M) C E.

1

as a map between manifolds.
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Remark 1.41. Notice that vector fields and differential forms are, by definition, sections of the induced bundle
vector bundles T'M and T*M respectively.

nducedbundle| Definition 1.42. Let ¢ : M — N be a smooth map between smooth manifolds and E be a vector
bundle on N, with fibers {Ey, ¢ € N}. The induced bundle ¢*E is a vector bundle on the base M
defined by
¢*E :={(q,v)[q € M,v € E,q} CM x E.

Notice that rank ¢* E = rank E, hence dim ¢*E = dim M + rank F.

Example 1.43. (i). Let M be a smooth manifold and T'M its tangent bundle, endowed with an
Euclidean structure. The spherical bundle SM is the vector subbundle of T'M defined as follows

SM = | S;M,  S;M={veT,M|v|=1}.
qeM

(i7). Let E,E’ be two vector bundles over a smooth manifold M. The direct sum E @ E' is the
vector bundle over M defined by
(E®E'),:=E,; & E,,.

1.6 Submersions and level sets of smooth maps

If o : M — N is a smooth map, we define the rank of ¢ at ¢ € M to be the rank of the linear map
Pug + TyM — T,y N. 1t is of course just the rank of the matrix of partial derivatives of ¢ in any
coordinate chart, or the dimension of Im (¢, ) C Ty, N. If ¢ has the same rank k at every point,
we say ¢ has constant rank, and write rank ¢ = k.

An immersion is a smooth map ¢ : M — N with the property that ¢, is injective at each point
(or equivalently rank ¢ = dim M). Similarly, a submersion is a smooth map ¢ : M — N such that
@« 18 surjective at each point (equivalently, rank ¢ = dim N).

Theorem 1.44 (Rank Theorem). . Suppose M and N are smooth manifolds of dimensions m and
n, respectively, and ¢ : M — N 1is a smooth map with constant rank k in a neighborhood of ¢ € M.

Then there exist coordinates (x1,...,xy,) centered at q and (y1,...,yn) centered at p(q) in which
© has the following coordinate representation:
o1, ..y xm) = (T1,...,2,0,...,0). (1.36)

Remark 1.45. The previous theorem can be rephrased in the following more invariant way. Let
@ : M — N be a smooth map between two smooth manifolds. Then the following are equivalent:

(i) ¢ has constant rank in a neighborhood of ¢ € M.

(ii) There exist coordinates near ¢ € M and ¢(q) € N in which the coordinate representation of
@ is linear.

H strank
In the case of a submersion, from Theorem “ ﬁ on can deduce the following result

:submersionc| Corollary 1.46. Assume ¢ : M — N is a smooth submersion at q. Then ¢ admits a local right
inverse at p(q). Moreover ¢ is open at q. More precisely it exist € > 0 and C > 0 such that

Bcp(q)(c_lr) C @(Bq(r)), Vr € [0,el. (1.37) |eq:submersic
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. . eq: submersionc . X X
Remark 1.47. The constant C' appearing in (il EZ( ) 1s the norm of the differential of the local right
inverse. In the case when ¢ is a diffeomorphism it can be taken as the norm of the differential of
the inverse of ¢ and we recover the well known statement of the inverse function theorem:.

Using these results, one can give some very general criteria for level sets of smooth maps (or
smooth functions) to be submanifolds.

Theorem 1.48 (Constant Rank Level Set Theorem). Let M and N be smooth manifolds, and let
©: M — N be a smooth map with constant rank k. Each level set o=1(y), for y € N is a closed
embedded submanifold of codimension k in M.

. . . . t:crlst
Remark 1.49. Tt is worth to specify the following two important sub cases of Theorem W

(a) If ¢ : M — N is a submersion at every q € ¢~ !(y) for some y € N, then »~!(y) is a closed
embedded submanifold whose codimension is equal to the dimension of N.

(b) If a: M — R is a smooth function such that d,a # 0 for every q € a~!(c), where ¢ € R, then
the level set a~!(c) is a smooth hypersurface of M

Exercise 1.50. Let a : M — R be a smooth function. Assume that ¢ € R is a regular value of
a, i.e., dya # 0 for every ¢ € a='(c). Then N, = a~!(c) = {qg € M |a(q) = ¢} C M is a smooth
submanifold. Prove that for every ¢ € N,

TyN. =kerd,a = {v € T,M | (dya,v) = 0}.

Bibliographical notes

The material presented 1% thhsD cllagt gcésr m%la%é%%i and q?vered by many textbook in differential
geometry, as for instance [7, 7, 7
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Chapter 2

Sub-Riemannian structures

2.1 Basic definitions

In this section we introduce a definition of sub-Riemannian structure which is quite general. In-
deed, this definition includes all the classical notions of Riemannian structure, constant-rank sub-
Riemannian structure, rank-varying sub-Riemannian structure, almost-Riemannian structure etc.

Definition 2.1. Let M be a smooth manifold and let 7 C Vec(M) be a family of smooth vector
fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M) containing F, namely

Lie F := span{[X1,..., [ X1, X;]], X; € F,j € N}. (2.1)
We will say that F is bracket-generating (or that satisfies the Hormander condition) if
Lie,F :={X(q),X € Lie F} =T;M, Vqe M.

Definition 2.2. (sub-Riemannian manifold) Let M be a connected smooth manifold. A sub-
Riemannian structure on M is a pair (U, f) where:

(i) U is an Euclidean bundle with base M and Euclidean fiber U, i.e. for every ¢ € M, U, is
a vector space equipped with a scalar product g,, smooth with respect to ¢q. For u € U, we
denote the norm of u as |u| = /(ulu),.

(ii) f : U — TM is a smooth map that is a morphism of vector bundles, i.e. the following
diagram is commutative (here 7y : U — M and 7 : TM — M are the canonical projections)

u-—torm (2.2)

RN

M
and f is linear on fibers.

(iii) The set of horizontal vector fields D := { f(o), o smooth section of U}, is a bracket-generating
family of vector fields.
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When the vector bundle U admits a global trivialization we say that (M, U, f) is a free sub-
Riemannian structure.

A smooth manifold endowed with a sub-Riemannian structure (i.e. the triple (M, U, f)) is
called a sub-Riemannian manifold. When the map, ‘émia:}n]iz TM is fiberwise surjective, (M, U, f))
is called a Riemannian manifold (cf. Exercise %%7

Definition 2.3. Let (M, U, f) be a sub-Riemannian manifold. The distribution is the family of
subspaces

{Dy}qems where D, := f(Uy) C T,M.
We call k(q) := dimD, the rank of the sub-Riemannian structure at ¢ € M. We say that the

sub-Riemannian structure (U, f) on M has constant rank if k(q) is constant.

The set of horizontal vector fields D C Vec(M) has the structure of a finitely generated C*°(M)-
module, whose elements are vector fields tangent to the distribution at each point, i.e.

D, = {X(q)| X € D}.
The rank of a sub-Riemannian structure (M, U, f) satisfies

k(q) < m, where m = rank U, (2.3)
k(q) <n, where n = dim M. (2.4)

In what follows we denote points in U as pairs (¢, u), where ¢ € M is an element of the base
and u € U, is an element of the fiber. Following this notation we can write the value of f at this
point as

flau)  or fula).
We prefer the second notation to stress that, for each ¢ € M, f,(¢) is a vector in T, M.

Definition 2.4. (Admissible Curves) A Lipschitz curve v : [0,7] — M is said to be admissible
(or horizontal) for a sub-Riemannian structure if there exists a measurable essentially bounded
function

u:te [O,T] > ’LL(t) S U’y(t)v (2.5)

called the control function, such that

A(t) = f(y(t), u(t)), for a.e. t € [0,T]. (2.6)

In this case we say that u(-) is a control corresponding to 7. Notice that different controls could
correspond to the same trajectory.

Remark 2.5. Once we have chosen a local trivialization O, x R™ for the vector bundle U, where
O, is a neighborhood of a point ¢ € M, we can choose a basis in the fibers and the map f is
written f(q,u) = >_;"; u;fi(¢), where m is the rank of U. In this trivialization, a Lipschitz curve
~v:10,T] — M is admissible if there exists u = (uq,...,uy) € L>®([0,T],R™) such that

m
() =D w®)fi(y(t)),  forae te[0,T]. (2.7)
i=1
' t:cara
Thanks to this local characterization and Theorem or each initial condition ¢ € M and

u € L>®(]0,T],R™) there exists an admissible curve 7, defined on a sufficiently small interval, such
that u is the control associated with v and v(0) = q.
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Figure 2.1: An horizontal curve

Remark 2.6. Notice that, for a curve to be admissible, it is not sufficient to satisfy §(t) € D) for
almost every ¢ € [0,7]. Take for instance the two free sub-Riemannian structures on R? having
rank two and defined by

f(IE,y,’LLl,’LLQ) = (x7y7u17u2$)7 f/(ZE,y,’Lbl,’LLQ) = ($7y7u17u2$2)' (28)
and let D and D’ the corresponding moduli of horizontal vector fields. It is easily seen that the
curve v : [—1,1] — R?, ~(t) = (£, ¢?) satisfies §(t) € D) and §(t) € D;(t) for every t € [—1,1].

Moreover, 7 is admissible for f, since its corresponding control is (uj,us) = (1,2) for a.e.

t € [—1,1], but it is not admissible for f’, since its corresponding control is uniquely determined as
(up(t),ua(t)) = (1,2/t) for a.e. t € [—1,1], which is not essentially bounded.

This example shows that, for two different sub-Riemannian structures (U, f) and (U’, ') on
the same manifold M, one can have D, = Dy for every ¢ € M, but D # D’. Notice however that,
in the case of constant rank distribution, we have that D, = Dfl for every ¢ € M if and only if
D=7.

2.1.1 The minimal control and the length of an admissible curve
We start by defining a norm for vectors that belong to the distribution.
Definition 2.7. Let v € D;. We define the sub-Riemannian norm of v as follows
|lv]| := min{|u|, v € Uy s.t. v= f(q,u)}. (2.9)

Notice that since f is linear with respect to u, the minimum in (ﬁ%%ys attained at a unique
point. Indeed the conditio : "ngorirv defines an affine subspace of U, (which is nonempty since
v € D,) and the minimu IS I}énlquely attained at the orthogonal projection of the origin onto
this subspace (see Figure

Exercise 2.8. Show that || - || is a norm in D,. Moreover prove that it satisfies the parallelogram
law, i.e. it is induced by a scalar product (-|-) g on D, that can be recovered by the polarization
identity

1 1
(i), = 7l +wl* = Jllv—wl?,  v,weD, (2.10)
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1:measlemma

r:nocont

def :mincontr

Figure 2.2: The norm of a vector v for f(x,u1,us) = uy + usg

Exercise 2.9. Let uy,...,u, € U, be an orthonormal basis for U,. Define v; = f(q,u;). Show
that if f(q,-) is injective then vy, ..., vy, is an orthonormal basis for D,.

An admissible curve « : [0,7] — M is Lipschitz, hence differentiable at almost every point.
Hence it is well defined the unique control ¢ — u*(t) associated with v and realizing the minimum.

Definition 2.10. Given an admissible curve v : [0,7] — M, we say that the control ¢ — u*(t) is
the minimal control associated with ~.

.measlemma
The proof of the following crucial Lemma is postponed to the Section Eﬁ[

Lemma 2.11. Let v : [0,T] — M be an admissible curve. Then its minimal control u*(-) is
measurable and essentially bounded.

We stress that u*(t) is pointwise defined for a.e. t € [0,T]. In particular, if the admissible curve
7 :[0,T] = M is C', the minimal control is defined everywhere on [0, T).

Remark 2.12. Notice that, even if a rar@o%liﬁ%ble curve is smooth, its minimal control could be not
continuous. Consider, as in Remark EB fﬁe free sub-Riemannian structure on R?

f(x7y7u17u2) = (337?J7U17U233)7 (211)

and let v : [~1,1] — R2, ~4(¢t) = (¢,t?). Its minimal control u*(t) satisfies (ul(t),u3(t)) = (1,2)
when ¢ # 0, while (u}(0),u5(0)) = (1,0), hence is not continuous.

1:measlemma
Thanks to Lemma iE:I [Twe are allowed to introduce the following definition.

Definition 2.13. Let v : [0,7] — M be an admissible curve. We define the sub-Riemannian length
of v as

T
o) = /O () lde. (2.12)

We say that v is length-parametrized if ||¥(t)|| = 1 for a.e. t € [0,T]. For a length-parametrized
curve we have that ¢(y) =T.
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:deflength
Notice that 1EEl§i says that the length of an admissible curve is the integral of the norm of its

minimal control. -
()= [l

In particular any admissible curve has finite length.

(2.13)

Lemma 2.14. The length of an admissible curve is invariant by Lipschitz reparametrization.

Proof. Let 7y : [0,T] — M be an admissible curve and ¢ : [0,7'] — [0, T a Lipschitz reparametriza-

tion, i.e. a Lipschitz and monotone surjective map. Consider the reparametrized curve
0, T =M, =70,

First observe that v, is a composition of Lipschitz functions, hence Lipschitz. Moreover 7, is
admissible since, by the linearity of f, it has minimal control (u* o p)¢$ € L°°, where u* is the
minimal control of v. Using the change of variables ¢t = ¢(s), one gets

T’ T’ T T
() = /0 o (5)llds = /0 ™ ()| 6(5) ds = /0 (1) dt = /0 IF(®)ldt = €(y).  (2.14)
]

Lemma 2.15. Every admissible curve of positive length is a Lipschitz reparametrization of a
length-parametrized admissible one.

Proof. Let ¢ : [0,T] — M be an admissible curve with minimal control u*.
monotone function ¢ : [0,7] — [0, ¢(¢))] defined by

_ /Ot (7).

Consider the Lipschitz

Notice that if ¢(t1) = ¢(t2), the monotonicity of ¢ ensures 1(t1) = 1(t2). Hence we are allowed to
define « : [0,£4(¢))] = M by
~v(s) :=(t), if s = p(t) for some t € [0,T].

In other words, it holds ¥ = vy o ¢. To show that « is Lipschitz let us first show that there exists
a constant C' > 0 such that, for every to,¢; € [0,7] one has, in some local coordinates (where | - |
denotes the Euclidean norm in coordinates)

t1

[Y(t1) — (o) < C t [u*(7)|dT
Indeed
[ (t1) — 1b(to)| < Z\u fi((t))] dt
to ;=1
t m m
S A SITOERD SO
to i=1 i=1
<o [
to
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m 1/2
mlstructurelequialenty 1 i a compact set such that ([0,7]) € K and C = max (Z\f,(x)\z) - Then if
S
=1

s1 = @(t1) and sp = ¢(tg) one has

t1
[v(s1) = v(so)| = [¥(t1) = (o)l < C [ Ju*(7)|dT = Cls1 — sol,
to
hence v is Lipschitz. It follows that 4(s) exists for a.e. s € [0, £(¢))].
We are going to prove that v is admissible and its minimal control has norm one. Define for
every s such that s = ¢(t), ¢(t) exists and ¢(t) # 0, the control

o) ur(@)]
. les:misO . .
By Exercise e control v is defined for a.e. s. Moreover, by construction, |v(s)| =1 for a.e. s
and v is the minimal control associated with ~. O

Exercise 2.16. Show that for a Lipschitz and monotone function ¢ : [0,7] — R, the Lebesgue
measure of the set {s € R|s = ¢(t), o(t) exists, p(t) = 0} is zero.

By the previuos discussion, in what follows, it will be often convenient to assume that admissible
curves are length-parametrized (or parametrized such that ||§(t)|| = const).

2.1.2 Equivalence of sub-Riemannian structures

In this section we discuss the notion of equivalence for sub-Riemannian structures on the same base
manifold M and the notion of isometry between sub-Riemannian manifolds.

Definition 2.17. Let (U, f), (U’, ') be two sub-Riemannian structures on a smooth manifold M.
They are said to be equivalent if the following conditions are satisfied

(7) there exist an Euclidean bundle V and two surjective vector bundle morphisms p : V. — U
and p’ : V — U’ such that the following diagram is commutative

/\
\/

(i4) the projections p, p’ are compatible with the scalar product, i.e. it holds

(215)

|’LL| = mln{|’u|,p(v) = u}’ \v/u [= U’
[u'| = min{[o|,p'(v) =u'}, V' €U,

Remark 2.18. Notice that if (U, f), (U’, f’) are equivalent sub-Riemannian structures on M, then:
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(a) the distributions D, and D), defined by f and f’ coincide, since f(Uy) = f'(U}) for all ¢ € M. sub-Riemannia
sub-Riemannia

(b) for each w € D, we have ||w|| = |Jw]|’, where the norms are induced by (U, f) and (U’, f’) rank .
respectively. sub-Riemannia

In particular the length of an admissible curve for two equivalent sub-Riemannian structures is the
same.

Remark 2.19. Notice that (¢) is satisfied, with the vector bundle V possibly non Euclidean, if 3nd
only if the two moduli of horizontal vector fields D and D’ defined by U and U’ (cf. Definition
are equal.

Definition 2.20. Let M be a sub-Riemannian manifold. We define the minimal bundle rank of
M as the infimum of rank of bundles that induce equivalent structures on M. Given q € M the
local minimal bundle rank of M at ¢ is the minimal bundle rank of the structure restricted on a
sufficiently small neighborhood O, of gq.

Exercise 2.21. Prove that the free sub-Riemannian structure on R? defined by f : R? x R? — TR?
defined by

f(w7y7u17u27u3) = (wuyuuluuZT + US?J)

has non constant local minimal bundle rank.
For equivalence classes of sub-Riemannian structures we introduce the following definition.

Definition 2.22. Two equivalent classes of sub-Riemannian manifolds are said to be isometric
if there exist two representatives (M, U, f),(M’', U, '), a diffeomorphism ¢ : M — M’ and an
1somorphlsml of Euclidean bundles v : U — U’ such that the following diagram is commutative

ULy (2.16)

gk

U/7>TM,

2.1.3 Examples

s:esempi

Our definition of sub-Riemannian manifold is quite general. In the following we list some classical
geometric structures which are included in our setting.

1. Riemannian structures.
Classically a Riemannian manifold is defined as a pair (M, (-|-)), where M is a smooth manifold
and (-|-) o 1s a family of s dalar product on T, M, smoothly depending on ¢ € M. This definition
is included in Definition v taking U = T M endowed with the Fuclidean structure induced
by (:|-) and f: TM — TM the identity map.

s:riemannian Exercise 2.23. Show that every Riemannian manifold in the sense of Deﬁnitio% iﬁ& indeed

equivalent to a Riemannian structure in the classical sense above (cf. Exercise

Ysomorphism of bundles in the broad sense, it is fiberwise but is not obliged to send fiber in the same fiber.
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4.

Constant rank sub-Riemannian structures.

Classically a constant rank sub-Riemannian manifold is a triple (M, D, (-|-)), where D is a
vector subbundle of TM and (-|-) o 1s a family of scagz%r 1]raﬂroduct on Dy, smoothly depending
on ¢ € M. This definition is included in Definition v taking U = D, endowed with its
Euclidean structure, and f : D < TM the canonical inclusion.

Almost-Riemannian structures.
An almost-Riemannian structure on M is a sub-Riemannian structure (U, f) on M such that
its local minimal bundle rank is equal to the dimension of the manifold, at every point.

Free sub-Riemannian structures.
Let U = M x R™ be the trivial Euclidean bundle of rank m on M. A point in U can be
written as (q,u), where ¢ € M and u = (uq,...,uy) € R™.

If we denote by {e1,...,e,} an orthonormal basis of R™, then we can define globally m
smooth vector fields on M by f;(q) := f(q,e;) for i =1,...,m. Then we have

flau)=f (qzuzez) =Y wifile), qeM (2.17)
=1 i=1

In this case, the problem of finding an admissible curve joining two fixed points qg,q1 € M
and with minimal length is rewritten as the optimal control problem

() =D wil) fi(y(2))
i=1

/T [u(t)|dt — min (2.18)
0

¥(0) =qo, Y(T)=q

For a free sub-Riemannian structure, the set of vector fields fi,..., f;, build as above is called
a generating family. Notice that, in general, a generating family is not orthonormal when f
is not injective.

. Surfaces in R? as free sub-Riemannian structures

Due to topological constraints, in general it not possible to regard a surface as a free sub-
Riemannian structure of rank 2, i.e. defined by a pair of globally defined orthonormal vector
fields. However, it is always possible to regard it as a free sub-Riemannian structure of rank
3.

Indeed, for an embedded surface M in R3, consider the trivial Euclidean bundle U = M x R3,
where points are denoted as usual (g,u), with u € R3, ¢ € M, and the map

f:U—=TM, flg,u) = 7qu(u) e T,M. (2.19)
where 7TqL : R3 — T,M C R? is the orthogonal projection.

Notice that f is a surjective bundle map and the set of vector fields {7qu (0z), w;(ay), 7qu (0,)}
is a generating family for this structure.

. . e :M d . . .
Exercise 2.24. Show that (U, f) defined in ms equivalent to the Riemannian structure
on M induced by the embedding in R3.
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2.1.4 Every sub-Riemannian structure is equivalent to a free one

The purpose of this section is to show that every sub-Riemannian structure (U, f) on M is equiva-
lent to a sub-Riemannian structure (U’, f) where U’ is a trivial bundle with sufficiently big rank.

Lemma 2.25. Let M be a n-dimensional smooth manifold and 7w : E — M a smooth vector bundle
of rank m. Then, there exists a vector bundle my : EFy — M with rank Ey < 2n + m such that
E & Ey is a trivial vector bundle.

Proof. Remember that E, as a smooth manifold, has dimension
dim F =dim M +rank £ =n+ m.

Consider the map ¢ : M — E which embeds M into the vector bundle F as the zero section Mj.
If we denote with Ty E the vector bundle i*(T'E), i.e. the restriction of TE to the section My, we
have the isomorphism (as vector bundles on M)

TwE ~E & TM. (2.20)

eg:isovb X X
Eq. (@31‘5 a consequence of the fact that the tangent to every fibre E,, being a vector space, is
canonically isomorphic to its tangent space T, F, so that

TWE=T,E,®T,M ~ E, ® T, M, Yqge M.
By Whitney theorem we have a (nonlinear on fibers, in general) immersion
U:FE— RV, U, : TyE Cc TE — TRY,

for N = 2(n+m), and ¥, is injective as bundle map, i.e. Th/FE is a sub-bundle of TRYN ~ RN xRN,
Thus we can choose as a complement E’, the orthogonal bundle (on the base M) with respect to
the Euclidean metric in RV, i.e.

E'=|]JE, E,=(T,E,oT,M)",
qeEM

and considering Ejy ::eTl\/l[Lgv@ E’ we have that Ej is trivial since its fibers are sum of orthogonal

complements and by MW are done.
O

Corollary 2.26. FEvery sub-Riemannian structure (U, f) on M is equivalent to a sub-Riemannian
structure (U, f') where U’ is a trivial bundle.

l:trivial ~
Proof. By Lemma im—t"hﬁe exists a vector bundle U’ such that the direct sum U := U @ U’ is
a trivial bundle. Endow U’ with any metric structure g/ . Define a metric on U in such a way
that g(u +u',v +v') = g(u,v) + ¢'(v',v") on each fiber U, = U, @ U;. Notice that U, and Uy are
orthogonal. B
Let us define the sub-Riemannian structure (INJ, f) on M by

f:f]%TM7 f::fopb
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nianldistance  where p; : U@ U’ — U denotes the projection on the first factor. By construction, the diagram
atheodory
U (2.21)
27N

UagU TM
U

. . e . Mdefiiso . ~
is commutative. Moreover condition (ii) of Definition lhjﬂ—l?satlsﬁed since for every u = u + v/,
with u € Uy and o € U}, we have [u]* = [u]® 4 |[v/|?, hence |u| = min{|a], p1 (@) = u}. O

Since every sub-Riemannian structure is equivalent to a free one, in what follows we can assume
that there exists a global generating family, i.e., a family of fi,..., f; of vector fields globally
defined on M such that every admissible curve of the sub-Riemannian structure satisfies

m

Y(t) =D wt) fi(v(1)), (2.22)

i=1

Moreover, by the classical Gram-Schmidt procedure, we can assu Sge;célmati fi are the image of an
orthonormal frame defined on the fiber. (cf. Example I@_éFSection ,
Hence the length of an admissible curve « is given by

T T m
() = /O l* (4)]dt = /O S ur(t)2t,
=1

where u*(t) is the minimal control.
Notice that Corollary lﬁﬁ implies that the modulus of horizontal vector fields D is globally
generated by fi,..., fn.

Remark 2.27. Notice that the integral curve y(t) = e/i, defined on [0,T], of an element f; of a
generating family F = {f1,..., f} is admissible and ¢(y) < T. If F = {f1,..., fm} are linearly
independent then they are an orthonormal frame and ¢(y) = T.

2.2 Sub-Riemannian distance and Chow-Rashevskii Theorem

sec:chow

In this section we introduce the sub-Riemannian distance between two points as the infimum of
the length of admissible curves joining them.

Recall that, in the definition of sub—RiemasptiIag iIaqulanifold, M is assumed to be connected.
Moreover, thanks to the construction of Section E .4l in what follows we can assume that the sub-
Riemannian structure is free, with generating family F = {fi,..., f;n}. Notice that, by definition,
F is assumed to be bracket generating.

Definition 2.28. Let M be a sub-Riemannian manifold and qg,q1 € M. The sub-Riemannian
distance (or Carnot-Caratheodory distance) between g and ¢ is

d(qo, q1) = inf{€(y), 7 admissible, 7(0) = go, ¥(T) = ¢}, (2.23)
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. Q%gc of the purpose of this section is to show that, thanks to the bracket generating condition, theorem!/Chow-
dﬁ%‘ls well-defined since, for every qg,q1 € M, there exists an admissible curve that joins gg to
q1 and d(qo,q1) < 0.

Theorem 2.29 (Chow-Raschevskii). Let M be a sub-Riemannian manifold. Then
(i) (M,d) is a metric space,
(ii) the topology induced by (M,d) is equivalent to the manifold topology.
In particular, d : M x M — R is continuous.

In what follows B(g,r) denotes the (open) sub-Riemannian ball of radius r and center ¢
B(g,r) :={q' € M|d(q,q) <r}.

th: chow ith: chow
The rest of this section is devoted to the proof of Theorem im_To prove Theorem m have
to show that d is actually a distance, i.e.,

(a) 0 <d(qo,q1) < +oo for all go,q1 € M,
(b) d(qo0,q1) = 0 if and only if go = g1,
(c) d(q0,q1) = d(q1,q0) and d(qo,q2) < d(qo,q1) + d(q1,q2) for all qo,q1,92 € M,
and the equivalence between the metric and the manifold topology: for every qo € M we have
(d) for every € > 0 there exists a neighborhood Oy, of gy such that Oy C B(qo,¢),

(e) for every neighborhood Oy, of o there exists § > 0 such that B(go,d) C Og,.

2.2.1 Proof of Chow-Raschevskii Theorem

The symmetry of d is a direct consequence of the fact that if v : [0,7] — M is admissible, then
the curve 7 : [0,7] — M defined by 7(t) = (T — t) is admissible and ¢(5) = ¢(v). The triangular
inequality follows from the fact that the concatenation of two admissible curves is still admissible.
This proves (c).

We divide the rest of the proof of the Theorem in the following steps.

S1. We prove that, for every qo € M, there exists a neighborhood O, of ¢p such that d(qo, ) is
finite and continuous in Ogy,. This proves (d).

S2. We prove that d is finite on M x M. This proves (a).
S3. We prove (b) and (e).
To prove Step 1 we first need the following lemmas:

Lemma 2.30. Let N C M be a submanifold and F C Vec(M) be a family of vector fields tangent
to N, i.e. X(q) € TyN,Vqe€ N,X € F. Then for all ¢ € N we have Lie,F C T,N. In particular
dim Lie, /7 < dim N.
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r:no0

Proof. Let X € F. As a consequence of the local existence and uniqueness of the two Cauchy
problems

¢=X(q), qeM, and ¢=X|y(@), qeN,
q(0) = qo, g0 € N. q(0) = qo, qo € N.

it follows that e (¢) € N for every ¢ € N and ¢ small enough. 0a: 1iebrtutto

This property, together with the definition of Lie bracket (see formula m)ﬁplﬁs that, if
X,Y are tangent to N, the vector field [X,Y] is tangent to N as well.

Iterating this argument we get that Lie,/ C TN for every ¢ € N, from which the conclusion
follows. O

Lemma 2.31. Let M be an n-dimensional sub-Riemannian manifold with generating family F =
{fi,---s fm}. Then, for every qo € M and every neighborhood V of the origin in R™ there exist
S=(51,...,8,) €V, and a choice of n vector fields fi,,..., fi, € F, such that s is a reqular point
of the map

PR = M, V(s1,. .., 8n) = efin o0 estfin (gp).

Remark 2.32. Notice that, if Dy, # T, M, then s = 0 cannot be a regular point of the map .
Indeed in this case, for each choice of the vector fields f;,, ..., fi, € F, the image of the differential
of Y at s =0 1is spanqo{fij,j =1,...,n} C Dy, and the differential of v is not surjective.

We stress that, in the choice of f;,..., fi, € F, a vector field can appear more than once, as
for instance in the case m < n.

1:lemmachow
Proof of Lemma m._Wﬁ)rove the lemma by steps.

1. There exists a vector field f;, € F such that f;,(qo) # 0, otherwise all vector fields in F vanish
at go and dim Lieg, F = 0, which contradicts the bracket generating condition. Then, for |s]
small enough, the map

¢1 1 51> i1 (qp),

is a local diffeomorphism onto its image ;. If dim M = 1 the Lemma is proved.

2. Assume dim M > 2. Then there exist t1 € R, with |t}| small enough, and f;, € F such that,
if we denote by ¢ = et1fin (qo), the vector f;,(q1) is not tangent to ¥;. Otherwise, by Lemma
dim Lie,F = 1, which contradicts the bracket generating condition. Then the map

ba : (51,82) > 52012 0 51511 (gp),

is a local diffeomorphism near (#],0) onto its image X9. Indeed the vectors

0o D2

equzl, :fiz(ql)u

951 {11 ,0) 952 |(11.0)

are linearly independent by construction. If dim M = 2 the Lemma is proved.

3. Assume dim M > 3. Then there exist ¢, ¢2, with |t} — t}| and |t3| small enough, and f;, € F
such thaf, if g2 = et2fiz o ef2fin (qo) we have that fi,(g2) is not tangent to 3g. Otherwise, by
Lemma ﬂ[ dim Liey, D = 2, which contradicts the bracket generating condition. Then the
map

3 1 (51,52, 83) > €313 0 e%2fi2 0 5101 (g),
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is a local diffeomorphism near (t%, t%, 0). Indeed the vectors

O3 093 0d3
sl szl © Y Os
S1l.,00 992 1(t,63.0) 53 1(¢1,42,0)

fig (q2)7

are linearly independent since the last one is transversal to 77,32 by construction, while the
first two are linearly independent since ¢3(s1, s2,0) = ¢a(s1, s2) and ¢g is a local diffeomor-
phisms at (t3,¢2) which is close to (t1,0).

Repeating the same argument n times (with n = dim M), the lemma is proved. O

; achow -~ R .
Proof of Step 1. Thanks to Lemma hﬁ%}me igt z%ﬂmggli:%hborhood V C V of 5 such that ¢ is
a diffeomorphism from V to zﬁg/ see Figure é::%[ We stress that in general gg = (0) is not

contained ¥(V), cf. Remarkm

l lemmachow
Figure 2.3: Proof of Lemma

J

To build a local diffeomorphism whose image contains qg, we consider the map

z/b\: R™ — M, z/b\(sl, ceeySp) = e 5fii oo 0 e nfin o(S1,. .., Sn),

which has the following property: 1)/[)\ is a diffeomorphism from a neighborhood of s €V, that we
still denote V, to a neighborhood of 1 (3) = qo.

Fix now € > 0 and apply the construction above where V is the neighborhood of the origin
in R™ defined by V = {s € R",>""" 1 ]31] < €}. Let us show that the claim of Step 1 holds with

Oy = QJJ(V) Indeed, for every ¢q € 1[)( ), let s = (s1,...,8,) such tl]gt gy mnz(b{s% and denote by ~y

the admissible curve joining gg to ¢, built by 2n-pieces, as in Figure
In other words 7 is the concatenation of integral curves of the vector fields f;;, i.e. admissible

curves of the form ¢ el ( ) defined on some interval [0,77], whose length is less or equal than T

(cf. Remark %nce s,5 € V. C V, it follows that:
d(qo,q) < L(7) < [saf 4 ...+ [snl + [51] + ... + [5n] < 26,

which ends the proof of Step 1. O
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Figure 2.4: The map 1Z

Proof of Step 2. To prove that d is finite on M x M let us consider the equivalence classes of points
in M with respect to the relation

qir ~ g2 if d(ql, QQ) < +00. (2.24)

From the triangular inequality and the proof of Step 1, it follows that each equivalence class is open.
Moreover, by definition, the equivalence classes are disjoint. Since M is connected, it cannot be
the union of open disjoint and nonempty subsets. It follows that there exists only one equivalence
class. O

Lemma 2.33. Let g9 € M and K C M a compact set with qy € int K. Then there exists 6 > 0
such that every admissible curve vy starting from qo and with {(y) < 6k is contained in K.

Proof. Without loss of generality we can assume that K is contained in a coordinate chart of M,
where we denote by | - | the Euclidean norm in the coordinate chart. Let us define

m 1/2
Ck = max <; |fi(33)|2) (2.25)

and fix i > 0 such that dist(qp, 0K) > Ckdx (here dist is the Euclidean distance in coordinates).

Let us show that for any admissible curve v : [0,7] — M such that v(0) = gy and () < g
we have v([0,7]) C K. Indeed, if this is not true, there exists an admissible curve 7 : [0,7] — M
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s:filippov

with £(y) < 0k and t* := sup{t € [0,7],7([0,¢]) C K}, with t* <T. Then

t* t* m

(%) —7(0)] < /0 5 (1) dt = / > lui OGO (2.26)
< / INIAGIONE Zu 02 dt (2.27)
0 i=0

m

t*
< CK/ Zu £)2dt < Crl() (2.28)
0
< Cgég < dist(qo, OK). (2.29)
which contradicts the fact that, at t*, the curve v leaves the compact K. Thus t* =1T. O

Proof of Step 8. Let us prove that Lemma I&ﬁ%%{plies property (b). Indeed the only nontrivial
implication is that d(qo, ¢1) > 0 wheneyer xd0 7 q1. To prove this, fix a compact neighborhood K of
qo such that ¢; ¢ K. By Lemma %llﬁch admissible curve joining qg and ¢; has length greater
than 0, hence d(qo,q1) > 0 > 0.

Let us now prove rQperty (e). Fix ¢ > 0 and a a compact neighborhood K of qy. Define Cx
and Jx as in Lemma and set § := min{dx,e/Ck}. Let us show that |¢ — qo| < € whenever
d(qo,q) < ¢, where again | - | is the Euclidean norm in a coordinate chart.

Consider a minimizing sequence 7, : [0, 7] — M of admissible trajectories joining gy and ¢ such
that £(vy,) — {ggé@aﬁor n — oo. Without loss of generality, we can assume that ¢(~,) < ¢ for all
- By Lemma 235 5,10, 7)), J6 g ll

We can repeat estimates (Z.20)- B85 proving that |¢ — qo| = [ (T) — 1(0)| < Crl(~yy,) for all
n. Passing to the limit for n — oo, one gets

lg — qol < Ckd(qo,q) < Ckd <e. (2.30)
]

Corollary 2.34. The metric space (M, d)_z's locally compact, i.e., for any q € M there exists € > 0
such that the closed sub-Riemannian ball B(q,r) is compact for all0 < r < e.

Proof. By the continuity of d, the set B(q,7) = {d(g,-) < r} is closed for all ¢ € M and r > 0.
Moreover the sub-Riemannian metric d induces the manifold topology on M. Hence, for radius small
enough, the sub-Riemannian ball is bounded. Thus small sub-Riemannian balls are compact. [

2.3 Existence of minimizers

In this section we want to discuss the existence of minimizers of the distance.

Definition 2.35. Let v: [0,7] — M be an admissible curve. We say that ~ is a length-minimizer
if it minimizes the length among admissible curves with same endpoints, i.e., £(y) = d(v(0),v(T)).

Remark 2.36. The example M = R?\ {0} endowed with the Euclidean distance shows that in
general there may be no minimizers between two points. However there may be several minimizers
between two fixed points, as it happens for two antipodal points on the sphere S2.
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Before proving the existence of length minimizers we show a general property of the length
functional.

Theorem 2.37. Let 7, be a sequence of admissible curves on M such that v, — v uniformly.

Then
((y) < liminf ((y,,). (2.31)
If moreover liminf, o €(y,) < 400, then 7y is also admissible.

Proof. Without loss of generality we assume that v, and ~ are parametrized with constant speed
on the interval [0, 1]. Moreover, denote L := liminf ¢(-y,) and choose a subseq encgﬁlivgglggh we still
denote by the same symbol, such that ¢(v,) — L. If L = +o0o the inequality (mmarly true,
thus assume L < +o0.

Fix 6 > 0. By uniform convergence, it is not restrictive to assume that, for n large enough,
l(vy) < L+ ¢ and that the image of 7, are all contained in a common compact set K. Since 7, is
parametrized by constant speed on [0, 1] we have that 4,(t) € V,, ) where

Vo={ful@)lul <L 46} CT,M,  fulg) =D uifi(e).
=1

Noti.ce ‘that Vy is convex for every q € M , thar.lks tg the linez.mrijcy of. fin u. Let us prove tha‘gﬂciosnt
admissible and satisfies £(y) < L 4 4. Since 0 is arbitrary, this implies ¢(vy) < L, that is (iﬁ'ﬁl ).
In local coordinates, we have for every ¢ > 0

1 t+e

1
2Ot +2) =0 =2 [ funi () € con{V, ), 7 € [t 2]} (2.32)

Moreover, for n sufficiently large, we have for 7 € [t,t + €]

() = (0] < bt) = (D] + bnt) = (8)] < C'e, (2:33)

where C' is ind pendent on n, e. Indeed |7, (¢) —7(t)| < & (by uniform convergence) and an estimate
similar to (i@'égi gives for T € [t,t + €]

|7 (t) — (7)) < /tT [4n(s)|ds < Cx (L + d)e. (2.34) |eq:stimaequi

: :esttt
where Ck is the constant (%g defined by the compact K. From the estimate (ﬁsﬁd the
equivalence of the manifold and metric topology we have that, for all 7 € [t,t 4+ ¢] and n big
enough, v,(7) € By (7<), where r. — 0 for € — 0. In particular

conv{V,, (r), T € [t,t + €]} C conv{Vy,q € By (re)}, (2.35) |eq:inclfiliy

) inclfikimfilippov . o
Plugging n and passing to the limit for n — oo we get:

1
g(’y(t +¢e) —~(t)) € conv{V,,q € B (re)}. (2.36) |eq:inclusior

:inclusion2
Assume now that ¢ € [0, 1] is a differentiability point of v. Then the limit for & — 0 in (iﬁ'gé icg;leelso .
Y(t) € conv V() = V,(y). For every such ¢ we can define the unique solution u*(t) to_the problem
F(t) = f(y(t),u*(t)) and |u*(t)| = ||7(¢)|. Using the argument contained in Appendixﬁ'ﬁ_ﬂiﬂﬁws
that w*(t) is measurable in ¢. Moreover it is bounded since, by construction, |u*(¢)| < L+ 4. Hence

~ is admissible. Moreover ¢(y) < L + 0 since « is parametrized on [0, 1].
O
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Corollary 2.38 (Existence of minimizers). Let M be a sub-Riemannian manifold and qo € M. theorem!exister
Assume that the ball By, (r) is compact, for some r > 0. Then for all ¢1 € By, (r) there exists a e
length minimizer joining qo and q1, i.e., we have

d(qo, 1) = min{£(v),y admissible,v(0) = qo, v(T') = q1}.

Proof. Fix q1 € By,(r) and consider a minimizing sequence of admissible trajectories 7, : [0,1] —
M, parametrized with constant speed, joining gy and ¢; and such that ¢(,) — d(qo,q1)-
Since d(qo, q1) < r, we have £(~y,) < r for all n large enough, hence we can assume without loss

of generality that the image of ~, is cont inedtilﬁaghgiﬁ)mmon compact K = qu (r) for all n. In
particular, the same argument leading to <E‘Bi) shows fﬂat for all n

t
() = y(7)] < / Fn(s)lds < Crerlt— 7, Vi 7e[0,1]. (2.37) [q:stimasqu

In other words all trajectories in the sequence {7,}nen are Lipschitz with the same Lipschitz
constant. Thus the sequence is equicontinuous and uniformly bounded.

By the classical Ascoli-Arzela Theorem there exist a subsequence of ~,,, which we still denote by
the same symbol " gs%gi%%lg)schitz curve 7 : [0,7] — M such that we have uniform convergence ~,, —
~. By Theorem e curve v is admissible and has length ¢(v) < liminf ¢(vy,) = d(g0,q1). O

. t:filippov .
Corollary 2.39. Let qo € M. Under the hypothesis of Corollary m—t‘%‘éﬁ exists € > 0 such that
for all m < e and q1 € By, (r) there exists a minimizing curve joining qo and qi.

. X :filippov :smallballscpt
Proof. 1t is a direct consequence of Corollary and Corollary Eﬁﬂ[ O

Remark 2.40. It is well known that a length space is complete if and only if all closed balls are
compact, see [7, Ch. 2]. In particular, if (M,d) is complete with respect to the sub-Riemannian
distance, then for every qg,q1 € M there exists a length minimizer joining gg and ¢;.

2.4 Pontryagin extremals

In this section we want to give necessary conditions to characterize the length minimizers. To begin
with, we would like to motivate our Hamiltonian approach that we develop in the sequel.

In classical Riemannian geometry geodesics are local (in time) length-minimizers, appropriately
parametrized. They satisfy a second order differential equation in M, which can be reduced to a
first-order differential equation in T'M. Hence the set of all geodesics can be parametrized by initial
position and velocity.

In our setting (which includes Riemannian and sub-Riemannian geometry) we cannot use the
initial velocity to parametrize geodesics. This can be easily understood by a dimensional argument.
If the rank of the sub-Riemannian structure is smaller than the dimension of the manifold, the initial
velocity 4(0) of an admissible curve (t) starting from qg, belongs to the proper subspace Dy, of the
tangent space Ty, M. Hence the set of admissible velocities form a set whose dimension is smaller
than the dimension of M, even if, by the Chow and Filippov theorems, geodesics starting from a
point go cover a full neighborhood of ¢q.

The right approach is to parametrize the geodesics by their initial point and an initial cov-
ector Ao € Ty M, which can be thought as the linear form annihilating the “front”, i.e. the set
{Vq(€), where 7, is a geodesic starting from ¢} on the corresponding geodesic for € — 0.
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Next theorem is the first version of Pontryagin maximum principle, whose proof is given in the

rmal next section.

normal

th Theorem 2.41 (Characterization of Pontryagin extremals). Let v : [0,T] — M be an admissible
curve which is a length-minimizer, parametrized by constant speed. Let u(-) be the corresponding
minimal control, i.e.,

m T
$(6) =D _wm®fi(v(1), () = /0 [u(t)|dt = d(v(0),v(T)),  [u(t)] = const. a.e.
=1

Denote with Py the flouﬁ of the nonautonomous vector field fz;) = Zle w;(t) fi. Then there exists

Ao € T;(O)M such that defining
At) :== (PO_’tl)*/\o, A(t) € T::(t)M, (2.38) |eq:pmplambde

we have that one of the following conditions is satisfied:
(N) () = A0, fi(0), Vi=1,...,m,
(A) 0= (A1), fi(v(1))), Vi=1,....m.

Moreover in case (A) one has \g # 0.

Notice that, by definition, the curve A(¢) is Lipschitz continuous. Moreover the conditions (N)
and (A) are mutually exclusive, unless u(t) = 0 a.e., i.e., v is the trivial trajectory.

Definition 2.42. Let v : [0,7] — M be an admissjble curve with minimal control u € L>*([0,T],R™).
Fix Ao € Ty M \ {0}, and define A(t) by «FH%;

- If \(t) satisfies (IV) then it is called normal extremal (and (t) a normal extremal trajectory).

- If A(t) satisfies (A) then it is called abnormal extremal (and ~y(t) a abnormal extremal trajec-
tory).

Remark 2.43. In the Riemannian case there are no abnormal extremals. Indeed, since the map f
is fiberwise surjective, we can always find m vector fields fi,..., fi, on M such that

spang {f1,.. ., fm} = Ty M,
and (A) would imply that (\g,v) = 0, for all v € T, M, that gives the contradiction Ao = 0.

Remark 2.44. If the sub-Riemannian structure is not surjective at qo, i.e., span, {f1,..., fm} #

Ty M, then the trivial trajectory, corresponding to u(t) = 0, is always normal and abnormal.
Notice that even a nontrivial admissible trajectory v can be both normal and abnormal, since

there may exist two different lifts A(¢), ' (¢) € T3y M, such that A(t) satisfies (V) and X' (t) satisfies

(A).

eq:pmplambda
Exercise 2.45. Prove that condition (N) of Theorem iﬁéﬁ mnplies that the minimal control ()
is smooth. In particular normal extremals are smooth.

At this level it seems not obvious how to use Theorem %Eto find the explicit expression of
e}:ctlllflemals for a given problem. In the next chapter we provide another formulation of Theorem
which gives Pontryagin extremals as solutions of a Hamiltonian system.
The rest of this section is devoted to the proof of Theorem

2defined for t € [0,7] and in a neighborhood of ~v(0)
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2.4.1 The energy functional

Let v : [0,T] — M be an admissible curve. We define the energy functional J as follows

T
ﬂw=%AHﬂw%t

:linvariant
Remark 2.46. Notice that, while ¢ is invariant by reparametrization (see Remark % lii, J 1S not.
Indeed consider, for every a > 0, the reparametrized curve

Yo : [0,T/a] = M, Ya(t) = y(at).

Using that 44 (t) = a¥(at), we have

1 T/« ‘ ) 1 T/« - )
Tow =5 [ e@Pa =5 [ a?tan i = a 1),

Thus, if the final time is not fixed, the infimum of J, among admissible curves joining two fixed
points, is always zero. The following lemma relates minimizers of J with fixed final time with
minimizers of £.

Lemma 2.47. Fix T' > 0 and let Qg 4, be the set of admissible curves joining qo,q1 € M. An
admissible curve v : [0,T] — M is a minimizer of J on Qg 4, if and only if it is a minimizer of ¢
on Qqy.q. and has constant speed.

Proof. Applying the Cauchy-Schwarz inequality

</0T f(t)g(t)dt>2 < /OTf(t)zdt/OTg(t)2dt, (2.39)

with f(¢) = ||¥(¢)]| and g(t) = 1 we get
()% < 2J())T. (2.40)

eg:csO eq:c
Moreover in (@L equality holds if and only if f is proportional to g, i.e. [|4(¢)]| = const. in m !
Since, by Lemma ,&tﬁry curve is a Lipschitz reparametrization of a length-parametrized one,
the minima of .J are attained at admissible curves with constant speed, and the statement follows.
O

2.4.2 Proof of Theorem ﬂ%

1:Jell
By Lemma @Vve can assume that v is a minimizer of the functional J among admissible curves
joining go = v(0) and ¢; = y(7T') in fixed time T' > 0. In particular, if we define the functional

_ 1 [T
Ta()) =5 [ lu)Pa, (2.41)
0
on the space of controls u(-) € L>(][0,7],R™), the minimal control u(-) of v is a minimizer for the
energy functional J

J@()) < J(u(), YueL=(0,T],R™),
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where trajectories corresponding to u(-) join go,q1 € M. In the following we denote the functional
J by J.

Consider now a variation u(-) = @(-) +v(-) of the control u(-), and its associated trajectory ¢(t),
solution of the equation

Q(t) = fuwy(a(®)),  a(0) = qo, (2.42)
Recall that Py denotes the local flow associated with the optimal control u(-) and that v(t) =

Py +(qo) is the optimal admissible curve. We stress that in general, for ¢ different from g, the curve
t — Py +(q) is not optimal. Let us introduce the curve z(t) defined by

aft) = Paa(t). (2.43

In other words z(t) = F, Ha(t)) is obtamed by applying the inverse of the flow of u(-) to the solution
associated with the new control u(-) (see Figure %}‘pﬁﬁbmce that if v(-) = 0, then z(t) = qo.

Figure 2.5: The trajectories ¢(t), associated with u(-) = u(-) + v(+), and the corresponding x(t).

eq:change0
The next step is to write an ODE satisfied by z(t). Differentiating dﬂfﬁgi we get

Q) = Fa(a(®) + (Po)a(@(1)) (2.44)
= Fato) (Poa(e(t)) + (Po)al(1)) (2.45)

and using that §(t) = fu1)(¢(t)) = fuw)(FPos(x(t)) we can invert (l%smgvith respect to @(t) and

rewrite it as follows

() = (Po )« [(Fuqey — faw) (Pos(z()))]
= [Bs)-(fuy = fa)] ()
= [(Bs)- a5 ()

= [(Ba)etu] (=) (2.46)

eq:ausl

If we define the nonautonomous vector field gz(t) = (POT tl)* Jo(t) we finally obtain by he

following Cauchy problem for z(t)

#(t) = gy (@(®),  2(0) = . (247
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Notice that the vector field ¢! is linear with respect to v, since f,, is linear with respect to u. Now
we fix the control v(t) and consider the map

J(u+ sv)
seER— (a;(T;ﬂJrsv)) ERxM
where x(T;u + sv) denote the solution at time T of . uf’vsa arting from ¢g, corresponding to

control u(-) + sv(+), and J(u + sv) is the associated cost.

Lemma 2.48. There exists A € (R ® Ty, M)*, with A # 0, such that for all v € L>°([0, T],R™)

AL <a‘](a + 5v) s:o> . (2.48)

0x(T;u+ sv)
s=0 0s

Js

1:pm H
Proof of Lemma ‘@B We argue by contradiction: if (%EI% not true then there exist vg, ..., v, €
L>(]0,T],R™) such that the vectors in R & Ty, M

0J(u + svp) 0J(u + svy)
s 5=0 0s 5=0
.. 2.49
9z(T;u + svp) ’ " 0x(T; U + svy,) (249)
0s s=0 Os s=0

are linearly independent. Let us now consider the map

(2.50)

J%I—F ?_ S;U;
3R SR x M, @(so,...,sn)=< (20 )>.
X

(Tya+ Y5 sivi)

ey:%ﬁf(fg%]ua;mabﬂlty propert1e§ of solution of Sgl(:)?tslv ODEs with respect to paljameteljs, the map
1s smooth. Moreover, since the vectors (m%re the components of the differential of ® and

they are independent, then the inverse function theorem implies that ® is a local diffeomorphism
sending a neighborhood of 0 in R™™! in a neighkjp_r 100d of (J(u), qo) in R x M. As a result we can
find v(-) = >_, sivi(+) such that (see also Figure X4,

z(T;u +v) = qo, J(u+v) < J(w).

(T, u)

In other words the curve t — ¢(¢t;u + v) join ¢(0,u + v) = qo to
q(Tyu+v) = Por(z(T;u+v)) = Por(qo) = a1,

with a cost smaller that the cost of v(t) = q(¢,u), which is a contradiction O
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Notice that if A satisfies (I%%%hen for every a € R, with o # 0, a\ satisfies m_r‘goo Thus
we can normalize X to be (=1, Ag) or (0, Ag), with Ag € T3 M, and Ag # 0 in the second case (since
A is non zero).

Hence condition (I%)_E mplies that there exists A\g € T, M such that one of the following
identities is satisfied for all v € L*°([0, T],R™):

dJ(u + sv) 0x(T;u+ sv)
—_— =( A, ——— 2.51 :1lpmpl
I T 250 [eaost
0x(T;u + sv)
0= <)\0, B Pa— S:0> . (2.52) |eq:lpmp2
: 1 H 2
with A9 # 0 in the second case. To end the proof we have to show that identities (l%ﬂjﬂf%nd (‘%SEL
are equivalent to conditions (N) and (A) of Theorem Let us show that
0J (u + sv) TS
s o= /0 ;ui(t)vi(t)dt, (2.53) |eq:opmpl
dr(Tiatsv)  _ (", [T d 2.54) [eq:
P o ), Gu(t) (q0)dt = ; ;(( 0.4 )+ fi)(q0)vi(t)dt. (2.54) | eq:opmp2

;opmp1
Identity (ﬁﬂ%lows from the definition of J
. 1T
J(u+ sv) = 3 / U + sv|?dt, (2.55)
0

. mp2 M ova
while (%clan be proved in coordinates. Indeed by (md the linearity of g, with respect to

v we have

T
z(T;u+ sv) = qo + S/ gf)(t) (x(t;uw + sv))dt,
0

m 2
and differentiating Wlth reslg)ect to s at s = 0 one gets omon
Let us show that iSe ufval nt to ) of Theor m Slmllarly, one gets that 1S
equivalent to (A). Using and equatlon s rewritten as

/OZUZ vi(t)dt = /Z Ao, (( Ot fz)(Q0)>vZ()
- [1 Y 00 s60) o, (256)
=1

where we used, for every i = 1,...,m, the identities

(0 (B )ef)a0) ) = (Nos (B o fi1(8) ) = ((Poi Y Moy fily(8)) ) = (A®), Fil2(1))) -
Since v;(+) € L>®([0,T],R™) are arbitrary, we get w;(t) = (A(t), fi(v(t))) for a.e. t € [0,T].
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2.A Measurability of the minimal control

In this appendix we prove a technical lemma about measurability of solutions to minimization
problems. This lemma when specified to the sub-Riemannian context, implies that the minimal
control associated with an admissible curve is measurable.

Let us fix an interval I = [a,b] C R and a compact set U C R™. Consider two functions
g: I xU —R" v:I— R"such that

(M1) g(t,u) is measurable with respect to ¢ and continuous with respect to w.

(M2) v(t) is measurable with respect to t.

Moreover we assume that

(M3) for every fixed t € I, the problem min{|u| : g(t,u) = v(t),u € U} has a unique solution.
Let us denote by u*(t) the solution of (M3) for fixed ¢ € I.

Lemma 2.49. The scalar function t — |u*(t)| is measurable on I.

Proof. Denote o(t) := |u*(t)|. To prove the lemma we show that for every fixed r > 0 the set
A={tel:p(t)<r}
is measurable in R. By our assumptions
A={tel:JuelUst. |u <rg(t,u) =v(t)}

Let us fix r > 0 and a countable dense set {u;};cy in the ball of radius r in U. Let show that

A=) 4= U 4in (2.57)

neN neN ieN
=A,
where

Aipi={tel: |g(t,u;) —v(t)] <1/n}

Notice that the set A; , is measurable by construction and if (l%)ﬁ) is true, A is also measurable.

C inclusion. Let t € A. This means that there exists @ € U such that |u| < r and g(t,u) = v(t).
Since g is continuous with respect to u and {u; };en is a dense, for each n we can find u;, such that
lg(t,u;,) —v(t)] < 1/n, that is t € A, for all n.

D inclusion. Assume ¢ € (), .y An. Then for every n there exists i, such that the corresponding
w;, satisfies |g(t,u;,) — v(t)] < 1/n. From the sequence w;,, by compactness, it is possible to
extract a convergent susequence u;, — @. By continuity of g with respect to u one easily gets that
g(t,u) =v(t). That is t € A. O

Next we exploit the fact that the function ¢(t) := |u*(¢)| is measurable to show that the vector
function u*(t) is measurable.
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ble curve Lemma 2.50. The vector function t — u*(t) is measurable on I.

Proof. Tt is sufficient to prove that, for every closed ball O in R™ the set
B:={tel:u*(t) e O}
is measurable. Since the minimum in (M3) is uniquely determined, this is equivalent to
B={tel:3ueO0 s.t. |ul =¢t),g(t,u) =uv(t)}

Let us fix the ball O and a countable dense set {u;};en in O. Let show that

B=()Bn=() Bim (2.58) [eq:2

neN neN ieN
=B,

where
Bip:={tel: |u| <o(t)+1/n,|g(t,u)—v(t)] <1/n;}

eq:2
Notice that the set B; , is measurable by construction and if (iﬁﬁl) is true, B is also measurable.

C inclusion. Let ¢ € B. This means that there exists u € O such that |u| = ¢(t) and
g(t,u) = v(t). Since g is continuous with respect to u and {u;}ien is a dense in O, for each n we
can find w;, such that |g(¢,u;,) —v(t)] < 1/n and |u;,| < ¢(t) + 1/n, that is t € B, for all n.

D inclusion. Assume t € (1, oy Bn. Then for every n it is possible to find i, such that the
corresponding w;, satisfies |g(¢,u;,) — v(t)| < 1/n and |u;,| < ¢(t) + 1/n. From the sequence u;,,
by compactness of the closed ball O, it is possible to extract a convergent susequence w;, — @. By
continuity of f in u one easily gets that g(¢,u) = v(t). Moreover |u| < ¢(t). Hence |a| = ¢(t).
That is t € B. O

1: 1
2.A.1 Proof of Lemma ‘szleals s

Consider an admissible curve v : [0,7] — M and set g(t,u) = f(y(t),uw), v(t) = Y(t).

Notice that assumptions (M1)-(M3) are satisfied. Indeed (M1) and (M2) follow from the fact
that g(t,u) is linear with respect to u and measurable in ¢t. Moreover (M3) is also satisfied by
linearity with respect to u of f.

2.B Lipschitz vs Absolutely continuous admissible curves

In these lecture notes sub-Riemannian geometry is developed in the framework of Lipschitz admissi-
ble curves (that correspond to the choice of L* controls). However, the theory can be equivalently
developed in the framework of H! admissible curves (corresponding to L? controls) or in the frame-
work of absolutely continuous admissible curves (corresponding to L' controls).

Definition 2.51. An absolutely continuous curve v : [0,7] — M is said to be AC-admissible if
there exists an L' function u : ¢ € [0,T] — u(t) € U,y such that 4(t) = f(y(t),u(t)), for a.e.
t € [0,T]. We define H'-admissible curves similarly.
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Being the set of absolutely continuous curve bigger than the set of Lipschitz ones, one could
expect that the sub-Riemannian distance between two points is smaller when computed among all
absolutely continuous admissible curyes.. nglgg yer tglllgm is not the case thanks to the invariance by
reparametrization. Indeed Lemmas iZf [4and i§1|§ can be rewritten in the absolutely continuous
framework in the following form.

linvariantAC| Lemma 2.52. The length of an AC-admissible curve is invariant by AC reparametrization.
Lemma 2.53. Any AC-admissible curve of positive length is a AC reparametrization of a length-

parametrized admissible one.

:linvariantAC :linvariant X 1
The proof of Lemma &éé differs from the one of Lemma & li only by the fact that, if u* € L

is the minimal control of v then (u* o ¢)¢ is the minimal control associated with v o . Moreover

(u* o ) € fgl using the monotonicity of ¢. Under these assumptions the change of variables

eq: chva:
formula )
es:mis0

still holdg, e
The proof of Lemma _mplsWhanged. Notice that the statement of Exercise remains true
if we replace Lipschitz with absolutely continuous. We stress that the curve « built in the proof is
Lipschitz (since it is length-parametrized).
As a consequence of these results, if we define

dac(q, 1) = inf{{(7), v AC-admissible, v(0) = qo, Y(T) = g1}, (2.59)
we have the following proposition.
Proposition 2.54. dac(qo,91) = d(g0, 1)

Since L2([0,T]) ¢ L'([0,T]), Lemmas 253
framework of admissible curves associated with L2 controls.

:ddac . .
mﬁre valid also in the
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:hamiltonian

Chapter 3

Characterization and local minimality
of Pontryagin extremals

This chapter is devoted to the study r(n)f geometric properties of Pontryagin extremals. To this
purpose we first rewrite Theorem in a more geometric setting, which permits to write a
differential equation in T*M satisfied by Pontryagin extremals and to show that they do not
depend on the choice of a generating family. Finally we prove that small pieces of normal extremal
trajectories minimize the length.

To this aim, all along this chapter we develop the language of symplectic geometry, starting by
the key concept of Poisson bracket.

3.1 Geometric characterization of Pontryagin extremals

In the previuos chapter we proved that if v : [0,7] — M is a length minimizer on a sub-Riemannian
manifold, associated with a control u(-), then there exists Ao € T;(O)M such that defining

At) = (Po )", A(t) € THpy M, (3.1)
we have that one of the following conditions is satisfied:
(N) wilt) = (A®), (1), Vi=1,...,m,
(A) 0= @), fi(y(®), Vi=1....,m, Ao #0.
Here Py denotes the flow associated with the nonautonomous vector field fu(t) = Zfll u;(t) fi and
(Po)* : Ty M — T (M. (3.2)

is the induced flow on the cotangent space. eq: Lambati

The goal of is section is to characterize the curve (@mﬁe integral curve of a suitable (non-
autonomous) vector field on T*M. To this purpose, we first show that a vector field on T*M is
completely characterized by its action on function that are affine on fibers. To fix the ideas, we
first focus on the case in which FPy; : M — M is the flow associated with an autonomous vector
field X € Vec(M), namely Py, = e*X.
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3.1.1 Lifting a vector field from M to T"M

We start by some preliminary considerations on the algebraic structure of smooth functions on
T*M. As usual 7w : T*M — M denotes the canonical projection.

Functions in C*°(M) are in a one-to-one correspondence with functions in C*°(7T*M) that are
constant on fibers via the map a +— 7m*a = a ox. In other words we have the isomorphism of

algebras
CO(M) =Cr(T*M) :={n"a|a € C*°(M)} C C®(T*M). (3.3)

In what follows, with abuse of notation, we often identify the function 7*a € C*°(1T* M) with the
function o € C*(M).

In a similar way smooth vector fields on M are in a one-to-one correspondence with functions in
C*>®(T*M) that are linear on fibers via the map Y + ay, where ay (\) := (\,Y(q)) and ¢ = w()\).

Vec(M) ~ Coo(T*M) :={ay | Y € Vec(M)} C C=(T*M). (3.4)

Notice that this is an isomorphism as modules over C*°(M ). Indeed, as Vec(M) is a module over
C>(M), we have that CRo(T*M) is a module over C*°(M) as well. For any o € C*°(M) and
ax € Coo(T*M) their product is defined as cax = (7*a)ax = anx € Con(T*M).

Definition 3.1. We say that a function a € C*°(T* M) is affine on fibers if there exists two functions
a € CH(T*M) and ax € C2(T*M) such that a = a + ax. In other words

cst lin
a(A) = alg) + (A X(q)),  q=7().
We denote by Cflﬁc(T*M ) the set of affine function on fibers.
Remark 3.2. Linear and affine functions on T*M are particularly important since they reflects the
linear structure of the cotangent bundle. In particular every vector field on T*M, as a derivation

of C°(T* M), is completely characterized by its action on affine functions,
Indeed for a vector field V' € Vec(T*M) and f € C°(T*M), one has that

d *
VNN == (7 O) = df,V),  AeT™M. (35)
t=0
which depends 9%}; on the differential of f at the point A. Hence, for each fixed \ € T*M,
to compute one can replace the function f with any affine function whose differential at A

coincide with dy f. Notice that such a function is not unique.

Let us now consider the generator of the flow (/7 1) = (e7*X)*. Since it satisfies the group law
(e—tX)* o (e—sX)* — (e—(t—l—s)X)* Vt, s € R,

by Lemma ﬁ%era‘cor is an autonomous vector field Vx on T*M. In other words we have
(e7tX)* = etVX for all t. FVEV
Let us then compute the right hand side of (Eﬁﬁhen V = Vx and f is either a function
constant on fibers or a function linear on fibers.
The action of Vx on functions that are constant on fibers, of the form /o 7w with 8 € C*(M),
coincides with the action of X. Indeed we have for all A € T*M
d d

— | Bom((e™) ) =

dt |,y Tt B (q)) = (Xa)(q), q=m(N). (3.6)

t=0
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p:expoisson

For what concerns the action of Vyx on functions that are linear on fibers, of the form ay(\) = Poisson bracke
(N, Y(q)), we have for all A\ € T*M

4 o= 4] e e o)
= % - (A (€% Y) (@) = (0 [X, Y](9)) (3.7)
::aLXﬁﬂ(A)

Hence, by linearity, one gets that the action of Vx on functions of C%‘%(T *M) is

Vx(B+ay)=XB+axy) (3.8)

r:affine0 eq:V3
As explained in Remark thZL formula (@7 characterizes completely the generator Vy of (I, H)*.
To find its explicit form we introduce the notion of Poisson bracket.

3.1.2 The Poisson bracket

The purpose of this section is to introduce an operation {-, -} on C*°(T*M), called Poisson bracket.

First we introduce it in C3:(7T*M), where it can be seen as the Lie bracket of vector fields in

Vec(M), seen as elements of Cg; (7*M). Then it is uniquely extended to Cgp(T" M) and C*°(T*M)
by requiring that it is a derivation of the algebra C°°(T*M) in each argument.
More precisely we start by the following definition.

Definition 3.3. Let ax,ay € CS(T*M) be associated with vector fields X,Y € Vec(M). Their

lin
Poisson bracket is defined by
fox.av) = ax @0

where a(x y) is the function in Cg5 (T M) associated with the vector field [X,Y].

lin
Remark 3.4. Recall that the Lie bracket is a bilinear, skew-symmetric map defined on Vec(M),
that satisfies the Leibnitz rule for X, Y € Vec(M):

[X,aY] =alX,Y] + (Xa)Y, VaeC®(M). (3.10) |eq:lieleibni
As a consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies the following relation
{ax,aay} = {ax, a0y} = ajx av) = aqix y] + (Xa) ay, VaeC®(M). (3.11)

Notice that this relation makes sense since the product between o € Co3(T* M) and ax € Co(T* M)

lin
belong to Coo(T*M), i.e. aax = aax.

Now we extend this definition on the whole C* (T M).
Proposition 3.5. There exists a unique bilinear and skew-simmetric map
{,}:C®(T*"M) xC®(T*M) — C=(T"M)
that extends (@%li%% (T*M), and that is a derivation in each argument, i.e. it satisfies
{a,bc} ={a,b}c+ {a,c}b, Va,b,ce C®(T*M). (3.12) I@

We call this operation the Poisson bracket on C*°(T*M).
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Proof. We start by proving that, as a consequence of the requirement that {-,-} is a derivation in
(o]

each argument, it is uniquely extended to Caﬁ(T*M ).

By linearity and skew-symmetry we are reduced to compute Poisson brackets of kind {a Xk o
and {a, 8}, where ax € Coo(T*M) and o, f € Co(T*M). Using that aqy = aay and one
gets

{ax,a0y} ={ax,aay}

= afax,ay} + {ax,atay. (3.13)
:bl :b2
Comparing (ﬁ) and m one gets

{ax,a} = X« (3.14) |eq:poissoni?

X :poissderfeq:poissonil
Next, using an , ON€ has

{aay, B} = {aay, B} = af{ay, B} + {«, S}ay (3.15)
=aY B+ {a,B}lay. (3.16)

. . :poissonil
Using again (E 145 one also has {aay, B} = aY 3, hence {a, 5} = 0.

Combining the previous formulas one obtains the following expression for the Poisson bracket
between two affine functions on T* M

{ax +a,ay + B} :=aixy) + X —Ya. (3.17) |eq:poissaffi

L eg:poissaffine X
From the explicit formula 1t3% | Ei 1t 1S easy to see that the Poisson bracket computed at a fixed
A € T*M depends only on the differential of the two functions ax + « and ay + 3 at A.
Next we extend this definition to C*°(T*M) in such a way that it is still a derivation. For

fog € C®(T*M) we define
{f, g} x = {agn agatia (3.18) |eq:newpoissc

where ay ) and ag4 ) are two functions in C;’%(T*M) such that dyf = dx(ay) and dyg = dx(ag,»).
:newpoisson

The definition is well posed, since if we take two different affine functions ay y and a’ﬁ A\

their difference satisfy dy(asx — a’f’ \) =dx(agy) —dy (a}7 ) = 0, hence by bilinearity of the Poisson

bracket

{ag, agatia = {d}x, aga}x
Let us now compute the coordinate expression of the Poisson bracket. In canonical coordinates
(p,x) in T*M, if

= 0 = 0

we have

ax(p, ) =Y piXi(x), ay(p,x)=>) pYi().
i=1 =1
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and, denoting f = ax + «, g = ay + 3 we have Hamiltonian!ve
vector field!Ha

{f,g} =axy) +XB-Ya
= Zp;( Xiol E-an> rx,22y e

F 0z; Op; Op;
oy, o8 0X;, o
N E%X ( api) i <p] Ox; - api)
Z af 9Jg af dg

Op; Ox;  Ox; Op;

From these computations we get the formula for Poisson brackets of two functions a,b € C*(T* M)

Ja 0b  Oa Ob ootk —
{a,b} = Z op; oz 8—%8—}%’ a,beC®(T*M). (3.19) |eq:poisscoor

:poisscoord
The explicit formula (E%!ﬁ)lsﬁows that the extension of the Poisson bracket to C*°(T™*M) is still a
derivation. O

:poisslambda| Remark 3.6. We stress that the value {a,b}|) at a point A € T*M depends only on dya and dyb.
Hence the Poisson bracket computed at the point A € T*M can be seen as a skew-symmetric and
nondegenerate bilinear form

{0t TH(T* M) x TS (T*M) — R.

3.1.3 Hamiltonian vector fields

By construction, the linear operator defined by

a:C*(IT*"M)— C>*(T*M) a(b) == {a,b} (3.20)
is a derivation of the algebra C*°(T*M ), therefore can be identified with an element of Vec(T*M).

:hvf
Definition 3.7. The vector field @ on T*M defined by M—is called the Hamiltonian vector field
associated with the smooth function a € C*(T*M).

;poisscoord
From (E%!ﬁ) we can easily write the coordinate expression of @ for any arbitrary function a €

C>®(T*M)
0
_ 3.21
Z opi axz 33:1 Ip;’ (3.21)
The following proposition gives the explicit form of the vector field V on T* M generating the flow
(Po )"

m Prop051t10n 3.8. Let X € Vec(M) be complete and let Py, = etX . The flow on T*M defined by
(P, 1 = (e7tX)* is generated by the Hamiltonian vector field dx, where ax(\) = (\, X(q)) and
qg=m(A).
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form

Proof. To prove that the generator V' of (PO_’tl)* coincides with the vector field dx it is sufficient to
show that their action is the same. Indeed, by definition of Hamiltonian vector field, we have

ix(a) ={ax,a} = Xa
dx(ay) = {ax,ay} = ajxy).
. . - . . X eq:V1 eq:V2
Hence this action coincides with the action of V' as in and (ﬁ)’ O

Remark 3.9. In coordinates (p, ) if the vector field X is written X = Y " | X28 then ax(p,x) =
> i1 piX; and the Hamitonian vector field @x is written as follows

aX—ZX Z 0X; 9 (3.22)

"dx; Op;
Notice that the projection of dx onto M coincides with X itself, i.e., m.(dx) = X.
This construction can be extended to the case of nonautonomous vector fields.

Proposition 3.10. Let X; be a nonautonomous vector field and denote by Py, the flow of X; on
M. Then the nonautonomous vector field on T* M

Vi = CL—XZ? aXt()‘) = <)‘7Xt(Q)>7

1s the gemerator of the flow (P(;tl)*-

3.2 The symplectic structure

In this Sect'gsp. e sinécroduce the symplectic structure of T* M following the classical construction. In
subsection ﬁﬁ%show that the symplectic form can be interpreted as the “dual” of the Poisson
bracket, in a suitable sense.

Definition 3.11. The tautological (or Liouville) 1-form s € AY(T*M) is defined as follows:
st A sy €Ty (T*M), (sn,w) := (A, maw), VAXeT*M,weT\(T*M),
where 7 : T*M — M denotes the canonical projection.

The name “tautological” comes from its expression in coordinates. Recall that, given a system
of coordinates = = (z1,...,x,) on M, canonical coordinates (p,z) on T*M are coordinates for
which every element A € T*M is written as follows

A= zn:pld:m
i=1

For every w € T\(T* M) we have the following

T

’LU—ZO(Z +ﬁz 0 — W*w:Zﬁi%7
i=1 ¢

52



rem:coord

hence we get symplectic stru

(sx,w) = (A, maw) = > pifi = > pi (dwi,w) = <Zpidﬂfz‘,w> :
i—1 i=1 i=1

In other words the coordinate expression of the Liouville form s at the point A coincides with the

one of A itself, namely
Sy = Zp,-dxi. (3.23) |eq:tautcoorc
=1

Exercise 3.12. Let s € A'(T*M) be the tautological form. Prove that
ws = w, Vwe AN (M).
(Recall that a 1-form w is a section of T*M, i.e. a map w: M — T*M such that 7 ow = idyy).

Definition 3.13. The differential of the tautological 1-form o := ds € A?(T*M) is called the
canonical symplectic structure on T*M.

By construction o is a closed 2-form on T* M. Moreover its expression in canonical coordinates
(p, z) shows immediately that is a nondegenerate two form

n
o= Z dp; A dz;. (3.24) |eq:symplcoor

i=1

Remark 3.14 (The symplectic form in non-canonical coordinates). Given a basis of 1-forms wy, ..., wy,
in A'(M), one can build coordinates on the fibers of T*M as follows.

Every A € T*M can be written uniquely as A = > | hjw;. Thus h; become coordinates on the
fibers. Notice that these coordinates are not related to any choice of coordinates on the manifold,
as the p were. By definition, in these coordinates, we have

n n
s=Y hw, o=ds=Y dhAw;+ hidw. (3.25)
i=1 i=1

: lcoord
Notice that, with respect to (@ﬁ?%ﬂqe* expression of ¢ an extra term appears since, in general,
the 1-forms w; are not closed.
3.2.1 The symplectic form vs the Poisson bracket

Let V be a finite dimensional vector space and V* denotes its dual (i.e. the space of linear forms
on V). By classical linear algebra arguments one has the following identifications

non degenerate .
- {bilinear forms on V*} ' (3.26)

Indeed to every bilinear form B : V' x V — R we can associate a linear map L : V — V* defined
by L(v) = B(v,-). On the other hand, given a linear map L : V — V*, we can associate with it
a bilinear map B : V x V — R defined by B(v,w) = (L(v),w), where (-,-) denotes as usual the

non degenerate __ Jlinear invertible maps
bilinear forms on V | — V-V
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pairing between a vector space and its dual. Moreover B is non-degenerate if and only if the map
B(v-) is an isomorphism for every v € V, that is if and only if L is invertible.

The previous argument shows how to identify a bilinear form on B on V with an invertible
linear map L from V to V*. Applying the same reasoning to the linear map L~! one obtain a
bilinear map on V*.

Exercise 3.15. (a). Let h € C>(T*M). Prove that the Hamiltonian vector field i € Vec(T*M)
satisfies the following identity

o(-,h(N) =dyh,  VAeT*M.
(b). Prove that, for every A € T*M the bilinear forms g on T\ (7" M) and {-, -} on T3 (T*M) (cf.

a isol
Remark thé) are dual under the identification (@S_lﬁ particular show that

=,

{a,b} = @(b) = (db,a@) = 0(d@,b),  Va,beC®(T*M). (3.27)

Remark 3.16. Notice that o is nondegenerate, which means that the map w — o)(-,w) defines a
linear isomorphism between the vector spaces T)\(T*M) and T} (T*M). Hence h is the vector field

canonically associated by the symplectic structure with the differential dh. For this reason h is also
called symplectic gradient of h.

eq:symplcoord
From formula 1t3[ﬁi we have that in canonical coordinates (p,x) the Hamiltonian vector filed
associated with A is expressed as follows
n
- oh 0 oh 0
h = E - ,

=1

and the Hamiltonian system A = h()\) is rewritten as

. _on

Z_api .

- on 1=1,...,n.
pi = o

We conclude this section with two classical but rather important results:

Proposition 3.17. A function a € C®(T*M) is a constant of the motion of the Hamiltonian
system associated with h € C*°(T*M if and only if {h,a} = 0.

Proof. Let us consider a solution A(t) = etﬁ()\o) of the Hamiltonian system associated with %, with
Ao € T*M. Let us prove the following formula for the derivative of the function a along the solution

Ca(\0) = {h (A1), (3.28)

;derivham
By 1E§;§§i 1t 1S easy to see that, if {h,a} = 0, then the derivative of the function a along the
flow vanishes for all ¢t and then «a is constant. Conversely, if a is constant along the flow then its
derivative vanishes and the Poisson bracket is zero. O

The skew-simmetry of the Poisson brackets immediately implies the following corollary.

Corollary 3.18. A function h € C>°(T*M) is a constant of the motion of the Hamiltonian system
defined by h.
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1 pm :pmpauxl
gﬁo%ag(]éle statement is a rephrasing of Theorem I%E combining Proposition ﬁ—gm_Exercise

3.3 Characterization of normal and abnormal extremals

Now we can rewrite the Pontryagin Maximum Principle (see Theorem %‘} using the symplectic
language developed in the last section.

Given a sub-Riemannian structure on M with generating family {fi,..., f,n}, and define the
fiberwise linear functions on T*M associated with these vector fields

h; : "M — R, h,()\) = <)\, f,(q)>, 1=1,...,m.

Theorem 3.19 (PMP). Let v : [0,T] — M be an admissible curve which is a length-minimizer,
parametrized by constant speed. Let u(-) be the corresponding minimal control. Then there exists a

Lipschitz curve \(t) € T5pyM such that
At) = wthi(A\(t),  ae te0,T], (3.29)
i=1

and one of the following conditions is satisfied:
(N) hi(At)) =u;(t), i=1,...,m, Vt,
(A) hi(A(t)) =0, i=1,...,m, Vt.

Moreover in case (A) one has A(t) # 0 for all t € [0,T].

O

Notice that Theorem 'hamsgys that normal and abnormal extremals appear as solution of an
Hamiltonian system. Nevertheless, this Hamiltonian system is non autonomous and depends on
the trajectory itself by the presence of the control u(#) associated with the extremal trajectory.

Moreover, the actual formulation of Theorem & 3 gr the necessary condition for optimality
still does not clarify if the extremals depend on the generating family {f1,..., fn} for the sub-
Riemannian structure. The rest of the section is devoted to the geometric intrinsic description of

normal and abnormal extremals.

3.3.1 Normal extremals

In this section we show that normal extremals are characterized as solutions of an smooth au-
tonomous Hamiltonian system on 7% M, where the Hamiltonian H is a function that encodes all
the informations on the sub-Riemannian structure.

Definition 3.20. Let M be a sub-Riemannian manifold. The sub-Riemannian Hamiltonian is the
smooth function on T*M defined as follows

H:T'M SR H() = max ((/\, Fulg)) — %|u|2> L g=r(\). (3.30)
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Proposition 3.21. The sub-Riemannian Hamiltonian H is quadratic on fibers. Moreover, for every
generating family {f1,..., fm} of the sub-Riemannian structure, the sub-Riemannian Hamiltonian
H is written as follows

1

k
=3 STNfie)?, AeTiM, g=m()). (3.31)
=1

Proof. In terms of a generating family {fi,..., fi}, the sub-Riemannian Hamiltonian (I%B]) is

written as follows
— 2 .
= max <§ u; (A, filg E Z) . (3.32) |eq:srhaml

2:1
eq:srhaml
Differentiating Wwith respect to u;, one gets that the maximum is attained at u; = (\, fi(q)),
from which formula m_follows. The fact that H is quadratic on fibers then easily follows from
<E3fﬂ§*' : O

Exercise 3.22. Prove that two equivalent sub-Riemannian structures (U, f) and (U’, f’) on a
manifold M define the same Hamiltonian.

Theorem 3.23. Every normal extremal is a solution of the Hamiltonian system A(t) = H(A(t)).
In particular, every normal extremal trajectory is smooth.

Proof. Denoting, as usual, h;(A) = (A, fi(¢q)) for i = 1,...,m, the functions linear on fibers associ-
j - eq:poissderQ
ated with a generating family and using the identity h? = 2h;h; (see (ﬁﬂﬁffﬁ[lows that
m m
L1 ) .
A= 1S =30
1=1 1=1
:h
In particular, since along a normal extremal h;(A(t)) = u;(t) by condition (N) of Theorem g
one gets
HA®) = > hANO)hs (A1) = Y w(t)hs (A1) O
i=1 i=1

Remark 3.24. In canonical coordinates A = (p,z), H is quadratic with respect to p and

m
5 Z b, fz
=1

The Hamiltonian system associated with H, in these coordinates, is written as follows

i = aH By = T o file) fi(a)

o 359

:sistH2
From here it is easy to see that if A(t) = (p(t), z(t)) is a solution of (ﬁi_sfhfen also the rescaled
extremal a\(at) = (ap(at),z(at)) is a solution of the same Hamiltonian system, for every a > 0.

N —
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Lemma 3.25. Let A\(t) be a normal extremal and v(t) = w(A(t)) be the corresponding normal
extremal trajectory. Then for all t € [0, T

SIAOI? = HO@®).

Proof. For every normal extremal \(¢) associated with the (minimal) control u(-) we have

1, o, 1 , 1 )
SIFO17 = Slu®)] =§Zuz-(t) = H(\(t)) (3.34)
=1

where we used the fact that, along a normal extremal, we have the relations for all ¢ € [0, T]

uit) = (A1), fi(+(1))) - (3.35)
O

Corollary 3.26. A normal extremal trajectory is parametrized by constant speed. In particular it
is length parametrized if and only if its extremal lift is contained in the level set H~1(1/2).

Proof. The fact that H is constant along A(t), easily implies by (%%ttl%% |%()||* is constant.
Moreover one easily gets that ||5(¢)|| = 1 if and only if H(A(t)) = 1/2.

Moreover, by Remark [ all normal extremal trajectories are reparametrization of length
parametrized ones. O

Let A(t) be a normal extremal such that A(0) = A\g € T;y M. The corresponding normal extremal
path v(t) = w(A\(¢)) can be written in the exponential notation

() = 7o e (A).

By the previous discussion length parametrized normal extremal trajectories corresponds to the
choice of \g € H71(1/2).

We end this section by characterizing normal extremal trajectory as characteristic curves of the
canonical symplectic form contained in the level sets of H.

Definition 3.27. Let M be a smooth manifold and Q@ € A¥M a 2-form. A Lipschitz curve
v :10,T] — M is said characteristic for € if for almost every ¢ € [0,77] it holds

’y(t) € Ker Q'y(t)a (i.e. Q'y(t) (’y(t), ) = O) (336)
Notice that this notion is independent on the parametrization of the curve.

Proposition 3.28. Let H be the sub-Riemannian Hamiltonian and assume that ¢ > 0 is a reg-
ular value of H. Then a curve v is a characteristic curve of 0|H71(C) if and only if it is the
reparametrization of a normal extremal on H~'(c).

Proof. Recall that if ¢ is a regular value of H, then the set H~'(c) is a smooth (2n — 1)-dimensional
manifold in T*M Y For every A € H~(c) let us denote by E) = T\H ~!(c) its tangent space at this

by Sard Theorem almost every ¢ > 0 is regular value.

o7
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point. Notice that, by construction, E} is an hyperplane (i.e., dim E) = 2n — 1) and al;}[!EA =0.
The restriction o|y—1(. is computed by x|z, , for each A € H™!(c).

One one hand ker 0|, is non trivial since the dimension of E} is odd. On the other hand the
symplectic 2-form o is nondegenerate on T*M, hence the dimension of ker o |g, cannot be greater
than one. It follows that dimker oy|g, = 1.

We are left to show that ker oy |z, = H(\). Assume that ker oy|p, = RE, for some € € Ty (T*M).
By construction, E) coincides with the subspace that is skew-orthogonal to £, namely

By = {w € T\(T*M)) | 0x(&§,w) = 0} = £,

Since, by antisymmetricity, o(&,£) = 0, it follows that £ € E\. Moreover, by definition of Hamil-
tonian vector field o (-, H) = dH, hence for the restriction to E) one has

—

aA(-,H(AmEA = dAH\EA =0. O

Exercise 3.29. The sub-Riemannian Hamiltonian encodes all the informations about the distri-
bution and the metric defined on it.

(a) Prove that a vector v € T, M is sub-unit, i.e. it satisfies v € D, and |lv|| <1 if and only if
1 *
§y<A,u>\2 <H(\), VAET/M.

(b) Show that this implies the following characterization for the sub-Riemannian Hamiltonian

1
HQ) = SIIAI% A= Sup [l
vEDg,|v|=

When the structure is Riemannian, H is the “inverse” norm defined on the cotangent space.

3.3.2 Abnormal extremals

In this section we provide a geometric characterization of abnormal extremals. Even if for abnor-
mal extremals it is not possible to determine their a priori regularity, we show that they can be
characterized as characteristic curves of the symplectic form. This gives an unified point of view of
both class of extremals.

We recall that an abnormal extremal is a non zero solution of the following equations

A) = uwi®hi(A\1),  hi(A(#) =0, i=1,...,m.
i=1
where {f1,..., fm} is a generating family for the sub-Riemannian structure and hq,...,h,, are

the corresponding functions on T*M linear on fibers. In particular every abnormal extremal is
contained in the set

HY0)={AeT*M,(\ filq)) =0,i=1,...,m, g=n(\)}. (3.37)

:Hfi2
where H denotes the sub-Riemannian Hamiltonian

o8



bnormalsigma| Proposition 3.30. Let H be the sub-Riemannian Hamiltonian and assume that H=(0) is a sub- ,

. ) . . e Riemannian!s

smooth manifold. Then a curve v is a characteristic curve of o|g-1(g) if and only if it is the distributionldu
reparametrization of a normal extremal on H~1(0). '

Proof. In this proof we denote for simplicity N := H~1(0) € T*M. For every A € N we have the

entiy Keroy |y = TA\N* = span{hi(\), i = 1,...,m}. (3.38)
Indeed, from the definition of IV, it follows that
ThN = {w € T\(T*M)| (dzhi, w)y =0,1=1,...,m}
= {w e TZ(T*M)|o(w, h;(\) =0,i=1,...,m}
= span{h;(\), i=1,...,m}~.
and W’%ﬁﬁws by taking the skew-orthogonal. Thus w € TyH ~'(0) if and only if w is a linear

combination of the vectors ;(A). This implies that A(¢) is a characteristic curve for o H-1(0) if and
only if there exists controls u;(-) for ¢ = 1,...,m such that

At) = ui(®)hi(A()). O (3.39)
=1

: ormalsigma
The following exercise shows that the assumption of Proposition Biih 1S always satisfied in the
case of a regular sub-Riemannian structure.

Exercise 3.31. Assume that the sub-Riemannian structure is regular, namely the following as-

dim D, = dimspan,{fi,..., fm} = const. (3.40)
: 10
Shows that, under this assumption, the set H~'(0) defined by 1E§;E'§E %elvsea smooth submanifold of
T*M. Notice, however, that 0 is never a regular value of H.

. :abnormalsigma
Remark 3.32. From Proposition E%::ZU 1t follows that abnormal extremals do not depend on the
sub-Riemannian metric, but only on the distribution. Indeed the set H~1(0) is characterized as

the annihilator of the distribution

H N 0)={AeT*M| (A\,v) =0, Vv € Dy} =D+ C T*M,

sumption holds

Here the orthogonal is meant in the duality sense.

egular
Under the regularity assumption 1E§;§§ii we can select (at least locally) a basis of 1-forms
Wi,...,wny for the dual of the distribution

'D;‘ = span{w;(q), i =1,...,m}, (3.41) |eq:distrpery

Let us complete this set of 1-forms t(‘)c%g%%sis wWi,...,wn of T*M and consider the induced coordinates
hi,...,h, as defined in Remark%_lmhese coordinates the restriction of the symplectic structure
D+ to is expressed as follows

olpr =d(s|pL) = Z dh; A\ w; + hidw;, (3.42) |eq:sigmacoor
=1

We stress that the restriction o|pi can be written only in terms of the elements wy, ..., wy,, (and
not of a full basis of 1-forms) since the differential d commutes with the restriction.

99



3 3.3.3 Example: codimension one distribution and contact distributions
-Riemannian

Let M be a n-dimensional manifold endowed with a constant rank distribution D of codimension
one, i.e., dim Dy, = n —1 for every ¢ € M. In this case D and D+ are sub-bundles of TM and T*M
respectively and their dimension, as smooth manifolds, are

dim D = dim M + rankD = 2n — 1,
dim D+ = dim M + rank D+ = n + 1.

Since the symplectic form o is skew-symmetric, by a dimensional argument we easily get that for
n even, the restriction o|p1 has always a nontrivial kernel, hence there always exist chal;gg;clggﬂsa ic. o
curves of o|p1, that correspond to reparametrized abnormal extremals by Proposition

Let us consider in more detail the simplest case n = 3. Assume that there exists a one form
wo € A (M) such that D = kerw (this is not restrictive, at least for a local description). Consider

a basis of one forms wg,wi,ws such that wy := w and tl&e associated cgordinates ho, h1, ho the
. . rem: Coor: ed.silgmacoor
coordinate associated to these forms (see Remark . By y
0'|'DL = dhg N w + hg dw, (3.43)

and we can easily compute (recall that D+ is 4-dimensional)

o Ao|lpr =2hodho Aw A dw. (3.44)

1:sigmak| Lemma 3.33. Let N be a smooth 2k-dimensional manifold and Q € A>M. Then € is nondegen-
erate on N if and only if AFQ # 02

Definition 3.34. Let M be a three dimensional manifold. We say that a constant rank distribution
D on M of corank one is a contact distribution if w A dw # 0.

Since M is three dimensional, the differential form w A dw is a top dimensional form, hence it
is meaningful to consider the set, called Martinet set

M= {qgeM|(wAdw)|, =0} C M.

Corollary 3.35. Under the previous assumptions all nontrivial abnormal extremal trajectories are
contained in the Martinet set M. In particular if the structure is contact, there are mo nontrivial
abnormal extremal trajectories.

eq:sigma2
Proof. Assume that the structure s contact. Then w A dw # 0 and, thanks to m,g%t_follows that
o Aolpt # 0. By Lemma W%L is non degenerate (notice that dhg is always independent on
wAdw since they depend on coordinates on the fibers and on the manifold, respectively). This shows
that, under the contact assumption, the set 91 is empty and there exists no nontrivial characteristic
curve of o|pi. The first part of the statement follows by analogue arguments. O

Remark 3.36. Since M is three dimensional, we can write

wAdw=adV

2Here AFQ=QA...AQ.
—_———
k
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where a € C*®°(M) and dV is some smooth volume form on M, that is a never vanishing 3-form on 2D Riemanniar
M.

In particular the Martinet set is 91 = a~1(0) and the distribution is contact if and only if a
is never vanishing. If 0 is a regular value of a, the set a='(0) defines a two dimensional surface
on M, called the Martinet surface. Recall that this condition is true for a generic choice of the
distribution.

In this case abnormal extremal trajectories can be precisely characterized as the horizontal
curves that are contained in the Martinet surface 0. The intersection of the tangent bundle to
the surface 91 and the 2-dimensional distribution of admissible velocities defines, generically, a line
field on M. Abnormal extremal trajectories are exactly (reparametrized) integral curves of this line
field.

Exercise 3.37. Prove that if two smooth Hamiltonians hi,hy : T*M — R define the same level
set, i.e. B ={hy =c1} = {hy = ca} for some ¢y, co € R, then their Hamiltonian flow hq, hy coincide
on F, up to a reparametrization.

3.4 Examples

3.4.1 2D Riemannian Geometry

Let M be a 2-dimensional manifold and fy, fo € Vec(M) a local orthonormal frame for the Rieman-
nian structure. The problem of finding geodesics in M could be described as the optimal control
problem

¢ = u1 f1(q) +uaf2(q),

where length and energy are expressed as

T T
q(v)) = /0 \/u% +u% dt, J(q(+)) = %/0 (u% + u%) dt.

Equations of geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in
™M .
H=5(hi+h3),  h() = filg), =12

Now we consider coordinates (g, hi, hs) on T*M. Using the fact that u;(t) = h;(\) we find the

equation on the base
q=h1fi(q) + hafa(q). (3.45)

For the equation on the fiber we have (remember that along solutions @ = {H,a})
hi = {H,h} = —{h1, ha}ho
. (3.46) |eq:2dsist
o =
From here one can see directly that H is constant along solutions. Indeed

H= hlill + hghg =0.

If we require that extremals are parametrized by arclength w(t)? + us(t)? = 1, we have

1
H =g = hi+h=1
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: sphb
It is then convenient to restrict to the spherical bundle SM (see Example m_of coordinates (g, 6)
setting
h1 = cos®, ho = sin 6.

Then equations (%Slﬂ and (%gét%ome,
0 = {h1,h}
. . (3.47) |eq:sist2
{qzcos@fl(q)—i—sm@fg(q).

Now, since {h1, ha}(A) = (X, [f1, f2]) and setting

[f1, fa] = a1 f1 + az fa, ay,az € C™(M),
we have {h1,ha} = a1hy + aghs and,
{9 = a1(q) cos  + az(q)sin

. ) (3.48) |eq:sist3
G = cosBf1(q) + sinffa(q)

In other words we are saying that an arc-length parametrized curve on M (i.e. a curve which
satisfies the second equation) is a geodesic if and only if it satisfies the first! Heuristically this
suggests that the quantity

0 —ay(q)cosf — az(q)sind,

has some relation with the geodesic curvature on M.
Let 1, po the dual frame of f1, fo (so that dV = pj A ug) and consider the Hamiltonian field in
these coordinates

—

H = cos0f; +sinffa + (a1 cos 0 + ag sin6)dy. (3.49)

The Levi-Civita connection on M is expressed by some coefficients (see Chapter %ﬁm
w = df + byp1 + bapa,
where b; = b;(¢). On the other hand geodesics are projections of integral curves of H so that
<w,ﬁ> =0 = by =—ay, by=—as.
In particular if we apply w = df — ajp1 — agps to a generic curve (not necessarily a geodesic)
A = cosOf1 4 sinbfo + 0 8y,
which projects on v we find geodesic curvature
kig(7) = 6 — a1(q) cos O — az(q) sin 6,
as we infer above. To end this section we prove a useful formula for the Gaussian curvature of M

Corollary 3.38. If k denotes the Gaussian curvature of M we have

k= fi(az2) — fo(ar) — af — a3.
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eq:gausskappa . . .
Proof. From (77 }i we have dw = —rdV where dV = p1 A ps is the Riemannian volume form. On 1soperimetric p
the other hand, using the following identities

d/LZ‘ = —a;u1 N\ pa, da; = fl(ai)/il + fz(az‘)/iz, 1=1,2.
we caln COHlplltC

dw = —day A p1 — dag A po — ardp — asdps
= —(filaz) — fa(a1) — af — a3)py A pa.

3.4.2 TIsoperimetric problem

soperimetric

Let M be a 2-dimensional orientable Riemannian manifold and v its volume form. Fix A € A1 M
and ¢ € R.
Problem. Fixed qo,q; € M, find (if exists) the minimum:

win {6):9(0) = a0 r () =an, [ 4=} (3.50
Y

Remark 3.39. Local minimizers depend only on dA, i.e. if we add an exact term to A we will find
same minima for the problem (with a different value of ¢).

Problem 1 can be reformulated as a sub-Riemannian problem on the extended manifold
M =R x M,

. . iiso2d . . . .
in the sense that solutions of the problem (%ﬁrns to be geodesics for a suitable sub-Riemannian
structure on M, that we are going to construct.

Define on the extended manifold the 1-form:

w:dy_Av MZ{(:U,(]),Z/GR,QGM}

Admissible curves are pairs z(t) = (y(t),7(t)) such that () € A, (), i.e. w(2(t)) = 0. This implies
w((t)) = y(t) — (A, 7(t)) = 0.
In other words v(t) is a curve on M and y(t) satisfies the identity

y(t) = yo + / A, where v, = /(g 4-
Yt

In particular we can recover a basis for the distribution

¥ =u1f1 +uzfo "Y>: ( bil ) ( f2 )
{y:u1<A,f1>8y+u2<A,f2>8y i(z} “\mo,) "\ po,) (351

and D = span(F1, ) where

F1:f1+<147f1>8y7 F2:f2+<14,f2>8y-
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Remark 3.40. Notice that the projection of the control system
z = ulFl(z) + UQFQ(Z),
on the manifold M is
¥ =ufi(y) +u2fa(v),

from which follows that the sub-Riemannian length on M coincides exactly with the Riemannian
length on M.

We denote with h; = (\, F;(¢)) the Hamiltonians linear on fibers of T*M and we want to com-
pute normal and abnormal geodesics of this problem.

Normal geodesics
With computations analogous to the 2D case we get MA QUI SIAMO SOTTO O SOPRA? defini-
amo pure H?

4 = cos 0F(q) + sin0F5(q)
. 3.52) |eq:sistiso
{1 ot (52) [setovss)

where we have to compute {hy, ho} = (A, [F1, F3]). We set, as in the previous paragraph:

[f1, fol = a1fir +azfa,  a1,a2 € CT(M). (3.53)

so that

[fl + <Aa f1> 8y’f2 + <Aa f2> ay]
= [f1, fo] + (f1 (A, f2) — f2 (4, f1))0,

[F1, F5]
(by EEFT22 0 (R — (A f1) + as(Fo — (A, fa) + f1 (A, fo) — fo (A, f1))0),
a1F1 + CLQFQ + dA(fl, fg)ay.

eq:cartandw
where in the last equality we use 1t3§5|;

Let p1, p2 be the dual forms to fi; and fo. We can write dA = buj A g, for some b € C°(M).
Then

[Fl, FQ] =a1F1 +asFs + bay.
Set now hg := (A, 0y). He have
{hl, hg} = <)\, [Fl, F2]> = a1hy + ashs + bhy.

It follows that

- (351)
ho=0= hg= const. METTIAMOILCALCOLETTO

{9:a1COSH+a2sin9+bho

In other words _
kg(7) = 0 — a1(q) cos 0 — az(q) sin 6 = hob. (3.55) |eq:curviso2c

C”E” CONFUZIONE TRA LA NOTAZIONE SOTTO E SOTTOSOPRA. MEGLIO PURE MET-
TERE AL DIPENDENZA DAL TEMPO Normal geodesics are curves with geodesic curvature
proportional to the function b at every point. mettiamo

64



Abnormal Extremals Abnormal geodesics are contained in the set of points where w A dw = 0.

wAdw= (dy — A) A (buy A p2)
=bdy A p1 A po.

In other words abnormal geodesics are connected components of b=1(0). They are independent on
the metric and, in general, they are not normal geodesics.
NON CAPISCO PERCHE’ USTAMO omega? viene da prima?

3.4.3 Heisenberg group

In the case M = R? and b = by costant we have that normal geodesics of this problem are circles
on M (and helix on ]\7)

The Heisenberg group is a basic example in sub-Riemannian geometry. It is classically defined
by the sub-Riemannian structure (R3, D, (-|-)) defined by the distribution D = span{Xi, X2} given
by

xz%—%%, &:%+%@

Another possibility is to introduce it as the sub-Riemannian structure defined by the ispoeri-
metric problem in M = R? endowed with the 1-form A = 3(zydxs — zadz1) (cf. previous section).
Notice that dA = dxy A dxs defines the area form on R2.

On the extended manifold

—

M =R = {(21,22,7)}

the one-form w takes the form )
w=dy— §(x1dx2 — xodzy)

Following the notation of the previous paragraph we can choose as an orthonormal frame for
the base R? the frame f; = 0z, and fo = 0., so that

X X
ﬂz%—g%, B:%+§%

together with
[F1, Fy] = 0y, b=1

Hence, defining h; = (\, F;(q)) the Hamiltonians linear on fibers of T*M.
{h1, ha} = ho.

The equation of normal geodesics

;— OF in O F:
i = cosOF()  sn0F (0 (350) [earmiveine?
0 = {h17h2} = h()

It follows that

i BN CORLER (857) [oxsovisoz
ho=0 hO(t) = h



ve Then u(t) = hi(t) = cos(fy + hot) and ug(t) = ha(t) = sin(fp + hot) and by integrating (z1,0 =
:Eg,o = 0)

x1(t) = hio(sin(eo + hot) — sin(6y)) xo(t) = hio(cos(eo + hot) — cos(6p)) (3.58)

and integrating to find y
formulapery

Normal geodesics are curves with constant geodesic curvature, ie., straight lines or circles on R?
(and helix on M). There are no non trivial abnormal geodesics since w A dwneq0 (b =1).

wAdw= (dy — A) A (buy A p2)
=bdy A p1 A po.

3.5 Lie derivative

sec:lieder

sgct.lglsovsrection we extend the notion of Lie derivative, already introduced for vector fields in Section
J, to differential forms. Recall that if X,Y € Vec(M) are two vector fields we define

LxY = 4 e XY = [X,Y].
dt|—g

If P: M — M is a diffeomorphism we can consider the pullback P* : TI’S(q)M — T/ M and extend
its action to k-forms. Let w € A*M, we define P*w € A*M in the following way:

(P*W)q(gly---,gk) = wP(q)(P*glv"wP*ék)) qc M7 él € TqM (359)
It is an easy check that this operation is linear and satisfies the two following properties

P*(w1 VAN LUQ) = P*w; A P*WQ, (3.60)
P*od=doP". (3.61)

Definition 3.41. Let X € Vec(M) and w € A¥M. We define the Lie derivative of w with respect
to X as

Lx:A*M — A*M, Lxw= 4
dt|,_

eq:propP* leq:propP*2
From m_é% 1t3[5i ], we easily deduce the following properties of the Lie derivative:

(i) £X(w1 A\ wg) = (ﬁxwl) ANwo + w1 A (,Cxwg),

(e w. (3.62)

(i) Lxod=do Lx.

The first of these properties can be also expressed by saying that Lx is a derivation of the exterior
algebra of k-forms.

The Lie derivative combines together a k-form and a vector field defining a new k-form. A second
way of combining these two object is to define their inner product, by defining a (k — 1)-form.
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Definition 3.42. Let X € Vec(M) and w € A¥M. We define the inner product of w and X as the Cartan’s formu
operator iy : AFM — AF='M, where we set

(Z'XCU)(Yl,...,Yk_l) = w(X7Y17"'7Yk—1)7 Y; GVGC(M)' (363)
One can show that the operator ix is an anti-derivation, in the following sense:
ix(wi Awy) = (ixwi) Awy + (—1)k1w1 A (ixws), w; € AkiM, 1=1,2. (3.64) |eq:innantide

We end this section proving two classical formulas linking together these notions, and usually
referred as Cartan’s formulas.

Proposition 3.43 (Cartan’s formula). The following identity holds true

Lx =ixod+doix. (3.65)

Proof. Define Dx :=ix od+ doix. It is easy to check that Dx is a derivation on the algebra of
k-forms, since ix and d are anti-derivations. Let us show that Dy commutes with d. Indeed, using
that d®> = 0, one can write

doDx =doixod=Dx od.

Moreover, since any k-form can be expressed in coordinates as w = > wj, 4, dz;, ...dx;,, it is
sufficient to prove that Lx coincide with Dx on functions. This last property is easily checked by

Dxf=ix(df)+d(ixf) =(df,X)=Xf=Lxf. 0
=0

Corollary 3.44. Let X,Y € Vec(M) and w € A'M, then

dw(X,Y) = X (w,Y) - Y (0, X) — (w,[X,Y]). (3.66)
-lied
Proof. On one hand Definition Biil ;I%Sﬁes, by Leibnitz rule

d
<£XW7 Y>q = a

<(€tX)*w, Y>q
t=0

_d tX
== » <w,e* Y>etX(q)
=X <W7Y> - (wv [Xv Y]> :
; L
On the other hand, Cartan’s formula 1E§;§§ ;rgla\?es

(Lxw,Y) = (ix(dw),Y) + (d(ixw),Y)
=dw(X,Y)+Y (w, X).

. X L :cartandw
Comparing the two identities one gets (E‘Bé ). O
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3.6 Symplectic geometry

In this section we generalize some of the construction we considered on the cotangent bundle T M
to the case of a general symplectic manifold.

Definition 3.45. A symplectic manifold (N, o) is a smooth manifold N endowed with a closed,
non degenerate 2-form o € A%2(N). A symplectomorphism of N is a diffeomorphism ¢ : N — N
such that ¢*o = 0.

Notice that a symplectic manifold N is necessarily even-dimensional. We stress that, in general,
the symplectic form o is not necessarily exact, as in the case of N = T*M.

The symplectic structure on a symplectic manifold N permits us to define the Hamiltonian
vector field h € Vec(N) associated with a function h € C®(N) by the formula iro = —dh, or

—

equivalently o (-, h) = dh.

Proposition 3.46. A diffeomorphism ¢ : N — N is a symplectomorphism if and only if for every

h e C>®(N): R
(¢ )h=hoo. (3.67)

Proof. Assume that ¢ is a symplectomorphism, namely ¢*c = 0. More precisely, this means that
for every A € N and every v, w € Th\IN one has

ox(v,w) = (¢* o)A (v, w) = og(r) (v, Prw),

where the second equality is the definition of ¢*o. If we apply the above equality at w = ¢, 11 one
gets, for every A € N and v € ThN

O-)\(Uv ¢*_1}_i) = (QS*O-))\(Uv ¢*_1]_7:) = 0p(N) (qb*v, }_i)
= (dgyh, $uv) = (¢"dypyh,v) -
= (d(h o ¢),v)

— <9 l
This shows that oy(-,¢7'h) = d(h o ¢), that is exactly e converse implication follows

analogously. O

Next we want to characterize those vector fields whose flow generates a one-parametric family
of symplectomorphisms.

Lemma 3.47. Let X € Vec(N) be a complete vector field on a symplectic manifold (N,o). The
following properties are equivalent

(i) (eX)*oc = o for every t € R,
(’l"i) ,CXa' = 0,

(iii) ixo is a closed 1-form on N.

Proof. By the group property e(tt5)X = ¢tX o ¢5X gne has the following identity for every ¢ € R:
i(etX)*O,:i (etX)*(CSX)*O':(etX)*EXU
dt ds|,_, '
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p:newpoisson

c:idcommpar

This proves the equivalence between (i) and (ii), since the map (e!*)* is invertible for every ¢ € R.
Recall now th ae .tglaert%%{nplectic form o is, by definition, a closed form. Then do = 0 and
Cartan’s formula ms as follows

Lxo =d(ixo)+ix(do) =d(ixo).
This proves the the equivalence between (ii) and (iii). O
Corollary 3.48. The flow of a Hamiltonian vector field defines a flow of symplectomorphisms.

—

Proof. This is a direct consequence of the fact that, for an Hamitonian vector field h, one has
ipo = —dh. Hence i;0 is a cloded form (actually exact) and property (iii) of Lemma f%lds. O

. Eii%FEl . . . .
Notice that the converse of Corollary 1S true when N is simply connected, since in this case
every closed form is exact.

Definition 3.49. Let (N,0) be a symplectic manifold and a,b € C*°(N). The Poisson bracket

-,

between a and b is defined as {a,b} = o(d,b).

We end this section by collecting some properties of the Poisson bracket that follow from the
previous results.

Proposition 3.50. The Poisson bracket satisfies the identities
(i) {a,b}op={aoh,bog},  Va,beC¥(N),Vee Sympl(N),
(i1) {a,{b,c}} +{c.{a,b}} +{b,{c,a}} =0, Va,b,c € CP(N).

eq:idsympl =
Proof. Property (i) follows from mf%perty (i1) follows by considering ¢ = €® in (i), for some
¢ € C*(N),. and computing the derivative with respect to ¢ at t = 0. O

77
Finally we are able to prove the following generalization of (}7‘7)

Corollary 3.51. For every a,b € C*°(N) we have

{a,b} = (.5 (3.68)

:newpoisson
Proof. Property (ii) of PropositioanSU can be rewritten, by skew-symmetry of the Poisson bracket,
as follows

{{CL, b}7 C} = {CL, {b7 C}} - {b7 {CL, C}} (369)
- 1 poi 00
Using that {a,b} = o(a@,b) = @b one can rewrite again (Efbﬁ?lggm

{@.bie = a(be) — b(ac) = [a, ble. O
Remark 3.52. Property (ii) of Proposition E%::Snleiwsz;?g That {a, -} is a derivation of the algebra C*°(N).

Moreover, the space C*° (V) end ewgg gg%ltmh ai-, -} as a product is a Lie algebra isomorphic to a sub-
algebra of Vec(V). Indeed, by 1%[58%, the correspondence a — a is a Lie algebra homomorphism

between C*°(N) and Vec(N).
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3.7 Local minimality of normal trajectories

In this section we prove a fundamental result about local optimality of normal trajectories. More
precisely we show small pieces of a normal trajectory are length minimizers.

3.7.1 The Poincaré-Cartan one form

Fix a smooth function a € C>°(M) and consider the smooth submanifold of T*M defined by the
graph of its differential
Lo={dgalqge M} CT"M. (3.70)

Notice that the restriction of the canonical projection 7 : T*M — M to Ly defines a diffeomorphism
between Ly and M, hence dim Ly = n. Let us then consider the image L; of Ly under the
Hamiltonian flow

L= (Ly),  t>o0, (3.71)

and define the (n + 1)-dimensional manifold with boundary in T*M x R as follows
L={{t,\)eRXT*M|Ne L, 0<t<T} (3.72)
—{(t, e )g) e R x T*M |\ € Lo, 0 <t <T}. (3.73)

Here we assume that the Hamiltonian flow is defined on the interval [0, T].
Finally, let us introduce the Poincaré-Cartan 1-form on T*M x R ~ T*(M x R) defined by

s — Hdt € A" (T*M x R)

where s € A'(T*M) denotes, as usual, the tautological 1-form of T*M. We start by proving a
preliminary lemma.

Lemma 3.53. s|z, = d(aon)|g,

Proof. By definition of tautological 1-form sy(w) = (A, maw), for every w € T(T*M). If X € Ly
then A\ = dya, where ¢ = (). Hence for every w € T)\(T*M)

sy(w) = (N, maw) = (dga, mew) = (1"dga,w) = (dg(aom),w) . O
Proposition 3.54. The I-form (s — Hdt)| is ezxact.

Proof. We divide the proof in two steps: (i) we show that the restriction of the Poincare-Cartan
1-form (s — Hdt)|. is closed and (ii) that it is exact.
(i). To prove that the 1-form is closed we need to show that the differential

d(s — Hdt) = 0 — dH A dt, (3.74)

vanishes when applied to a pair of tangent vectors to £. Since, for each ¢ € [0,T], the set £; has
codimension 1 in £, there are only two possibilities for the choice of the two tangent vectors:

(a) both vectors are tangent to L, for some t € [0, 7.

(b) one vector is tangent to £; while the second one is transversal.
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Case (a). Since both tangent vectors are tangent to Ly, it is enough to show that the restriction of
the one form o — dH A dt to L; is zero. First let us notice that dt vanishes when applied to tangent
vectors to Ly, thus ¢ — dH A dt|z, = o|r,. Moreover, since by definition £; = ¢/ (L) one has

olee = olaun e,

(etH)*O-|E0 = 0|£0 = d8|£0 = d2(a © 7T)|£0 =0.

—

. i -
where in the last line we used Lemma lﬁ%nd the fact that (¢! )*o = o, since e is an Hamiltonian
flow and thus preserves the symplectic form.

Case (b). The manifold £ is, by construction, the image of the smooth mapping

U [0,T] % Lo — [0,T] x T*M,  W(t,\) > (£, e N),

Thus a tangent vector to £ that is transversal to £; can be obtained by differentiating the map ¥

with respect to t:
ov -

0
TN = HO) + o € Ty L. (3.75)

. . eq:tantr
It is then sufficient to show that the vector (@% in the kernel of the two form o — dH A dt. In

other words we have to prove
ifjyo,(0 —dH Adt) = 0. (3.76)

The last equality follows from the following identities
igo=o(H,)=—dH, ig,0 =0,
ig(dH Ndt) = (igdH) Ndt —dH A (igdt) =0,

0 0
ig,(dH Ndt) = (ig,dH) Ndt — dH A (ig,dt) = —dH.
—0 =1

where we used that i zdH = dH(H)={H,H} = 0.
(ii). Next we show that the form s — Hdt|, is exact. To this aim we have to prove that, for

every closed curve I' in £ one has
s— Hdt = 0. 3.77) |eq:exact

Every curve I' in £ can be written as follows
r:0,7]—L, I'(s)= (t(s),et(s)ﬁ)\(s)), where A(s) € L.

Moreover, it is easy to see that the continuous map defined by

—

K0T x L= L, K (e ) = (t—7,e071 )

defines an homotopy of £ such that K(0, (¢, etﬁ/\o)) = (¢, etﬁ)\o) and K(t, (t,etﬁ/\o)) = (0, A\g)-
Then the curve I' is homotopic to the curve I'g(s) = (0, A(s)). Since the 1-form s — Hdt is closed,
the integral is invariant under homotopy, namely

/S—Hdt:/ s — Hdt.
r To
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t:minimal

Moreover, the integral over 'y is computed as follows (recall that I'y C L and dt = 0 on Ly):

/S—Hdt:/ s = d(aom) =0,
To T'o T'o

1:sapi
where we useed.Igeg}%na m%nd the fact that the integral of an exact form over a closed curve is
zero. Then Mfﬁllows. O
3.7.2 Normal trajectories are geodesics

Now we are ready to prove a sufficient condition that ensures the optimality of small pieces of normal
trajectories. As a corollary we will get that small pieces of normal trajectories are geodesics.
Recall that normal trajectories for the problem

q= fu Zuzfz (378)

where f1,..., fm is a generating family for the sub-Riemannian structure are projections of integral
curves of the Hamiltonian vector fields associated with the sub-Riemannian Hamiltonian

A =HOAG), (e At) = e (\o), (3.79)
V(t) = 7(A®),  telo,T). (3.80)

where -
) = myx{ O 1@ 5P | = 330 00 ) (3.581)

1 =1

Theorem 3.55. Assume that there exists a € C>°(M) such that the restriction of the projection
7|z, is a diffeomorphism for every t € [0,T]. Then for any Ao € Lo the normal geodesic

) =moef (),  teloT), (3.82)
18 a strict length-minimizer among all admissible curves v with the same boundary conditions.

Proof. Let ~(t) be an admissible trajectory, different from 7(t), associated with the control w(t)
and such that y(0) = 4(0) and v(7") = 5(T). We denote by u(t) the control associated with the
curve ¥(t).

By assumption, for every ¢ € [0,T] the map 7|z, : £ — M is a local diffeomorphism, thus the
trajectory (t) can be uniquely lifted to a smooth curve A(¢) € £;. Notice that the corresponding
curves I and T in £ defined by

() = (L A1), D) = (6 A®)) (3.83)

have the same boundary conditions, since for ¢ = 0 and t = T they project to the same base point
on M and their lift is uniquely determined by the diffeomorphisms 7|z, and 7|z, respectively.
Recall now that, by definition of the sub-Riemannian Hamiltonian, we have

H(A(t)) < (A®), fuwy(¥(1))) = %IU(t)!27 V(1) = (A1), (3.84)
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c:normal

where A(f) is a lift of the trajectory 7(t) associated with a control u(t). Moreover, the equality
holds in (B.84]) if and only if A(¢) is a solution of the Hamiltonian system A(t) = H(A(t)). For this
reason we have the relations

1 2

HO®) < (AW, fu () = 5 () (3.85)
HW) = (30), fao (310)) — a0 (3.86)

since X(t)~is a solution of the Hamiltonian equation by assumptions, while A(¢) is not. Indeed
A(t) and A(t) have the same initial condition, hence, by uniqueness of the solution of the Cauchy
problem, it follows that A(t) = H(A(t)) if and only if A(t) = A(t), that implies that 5(¢) = v(¢).

Let us then show that the energy associated with the curve = is bigger than the one of the curve
~. Actually we prove the following chain of (in)equalities

1 /T 1 (T
—/ﬁwwﬁ:/Q—Hﬁ:/Q—Hﬁ<—/|mm%u (3.87)
2 Jo T r 2 Jo

where T and T Elje the curves in £ defined in W

By Lemma e 1-form s — Hdt is exact. Then the integral over the closed curve I' U r

vanishes, and one gets
/~s—Hdt:/s—Hdt.
r r

The last inequality in (%ﬁﬁ%ﬂnm%ne proved as follows
T
/@-Hﬁ:/<xmwm—ﬂuwmt
I 0

T

= [ Ot £y () ~ HO@)
T

< [ 00 g o)) = (N0 00) - P )@t 359

1 (7 )
:§/ymmdt
0
eq:hammax1 eq :hammax2
where we used (mmimilar computation gives computation, using 1t3%g§ ;, gives

T
ﬁg—Hﬁ:%A|mm%u (3.89)

T
;pormalmin
that ends the proof of 1E§%Z B O

As a corollary we state a local version of the same theorem, that can be proved by adapting
the above technique.

Corollary 3.56. Assume that there exists a € C*°(M) and neighborhoods Q of Y(t), such that
moeth o dalg, : Qo — QU is a diffeomorphism for every t € [0,T]. Then (ﬁ%mm
length-minimizer among all admissible trajectories v with same boundary conditions and such that
v(t) € Q¢ for all t €[0,T).
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nianlgeodesic We are in position to prove that small pieces of normal trajectories are global length minimizers.

Theorem 3.57. Let v : [0,T] — M be a sub-Riemannian normal trajectory. Then for every
7 € [0,T[ there exists € > 0 such that

(i) Virr+e) 18 a length minimizer, i.e., d(y(7), (T +¢€)) = (Y|}, r+2])-

(ii) ’y][ﬂﬂ_e] is the unique length minimizer joining v(T) and y(7 + €), up to reparametrization.

Proof. Without loss of generality we can assume that the curve is parametrized by length and prove
the theorem for 7 = 0. Let ~(¢) be a normal extremal trajectory, such that y(t) = w(e‘" ()\g)), for
t € [0,T]. Consider a smooth function a € C*°(M) Suc?ietl:lim& dqa = Ag and let £; be the family of
submanifold of T*M associated with this function by and . By construction, for the

extremal lift associated with  one has A(t) = €' (X\g) € L; for all t. Moreover the projection 7| o
is a diffeomorphism, since L is a section of T M.

Hence, for every fixed compact K C M containing the curve 7, by continuity there exists
to = to(K) such that the restriction on K of the map 7r| r, 18 also Egig%gylorphism, forall 0 <t < 1.

Let us now denote dx the positive constant defined in Lemma such that every curve starting
from 7(0) and leaving K is necessary longer than dg.

Then, defining & = £(K) := min{dx, to(K)} we have that the curve || is contained in K and .
is shorter than any other curve contained in K with the same boundary condition by Corollaryw
(applied to ; = K for all ¢ € [0,T]). Moreover £(v|jg.)) = € since 7 is length parametrized, hence
it is shorter than any admissible curve that is not contained in K. Thus 7| 0,¢] 18 a global minimizer.
Moreover it is unique up to reparamien‘gization by uniqueness of the solution of the Hamiltonian
equation (see proof of Theorem . O

Remark 3.58. When D, = T, M, as it is the case for a Riemannian structure, the level set of the
Hamiltonian

(H =1/2} = {\ € T, M|[H(\) = 1/2},

is diffeomorphic to an ellipsoid, hence compact. Under this assumption, for each A\g € {H = 1/2},
the corresponding geodesic (t) = m(e!’(\g)) is optimal up to a time € = £()\g), with g belonging
to a compact set. It follows that it is possible to find a common ¢ > 0 (depending only on ¢p) such
that each normal trajectory with base point ¢g is optimal on the interval [0, £].

Bibliographical notes

The Hamiltonian approach to sub-Riemannian geometry is nowadays classical. However the con-
struction of the symplectic structure, obtained by teéldqg%%rtel}e Poisson bracket from the space of
affine functions, is not standard and is inspired byj%‘.i

Historically, in the setting of PDE, the sub-Riemannian distance ( ls% ggﬂ)ed Carnot-Carathéodory
distance) is introduced by means of sub-unit curves, see fo instance %eferences therein. The
link between the two definition is clarified in Exercice E%iza

The proof that orglcqilegggggmal are geodesics is an adaptation of a more general condition for
optimality given inr%ﬁ!—mre general class of problems. This is inspired by the classical idea
of “fields of extremals” in classical Calculus of Variation.
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