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Preface

These lecture notes contain the first part of the lectures about sub-Riemannian geodesics given by
the first author at the IHP Trimester “Geometry, Analysis and Dynamics on sub-Riemannian man-
ifolds”, Paris, Sept - Dec 2014. The point of view is the one of geometric control and Hamiltonian
systems.

In Chapter
c:geodiffc:geodiff
1, we recall some preliminaries of differential geometry, with special attention to

vector fields and, Lie brackets and vector bundles. This material is classical, but it is presented for
self-containedness and to introduce the notation used in the following chapters.

Chapter
c:srbasicc:srbasic
2 is devoted to sub-Riemannian structures. We introduce the general framework and we

prove three fundamental results: the finiteness and the continuity of the sub-Riemannian distance
(under the bracket generating condition); the existence of length-minimizers; the infinitesimal char-
acterization of length-minimizers. The first is the classical Chow-Rashevski theorem, the second
is a version of the Filippov existence theorem and the third is the Pontryagin maximum principle
proved for the special case of systems that in linear the control with quadratic cost.

In Chapter
c:hamiltonianc:hamiltonian
3, we introduce the language of symplectic geometry. The presentation of the sym-

plectic structure, or equivalently the Poisson bracket, is not classical, but it is naturally introduced
to give a geometric description of extremals characterized in the previous chapter. We define the
sub-Riemannian Hamiltonian flow, and we specify it for an interesting class of three-dimensional
problems. Finally we prove that small pieces of normal trajectories are length-minimizer.

Andrei Agrachev, Davide Barilari, Ugo Boscain.
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tangent!vector
tangent!space
vector field

Chapter 1

Vector fields and vector bundles

c:geodiff

In this chapter we collect some basic definitions of differential geometry, in order to recall some
useful results and to fix the notation. We assume the reader to be familiar with the definitions of
smooth manifold and smooth map between manifolds.

1.1 Differential equations on smooth manifolds

1.1.1 Tangent vectors and vector fields

Let M be a smooth n-dimensional manifold and γ1, γ2 : (−ε, ε) → M two smooth curves based at
q = γ1(0) = γ2(0) ∈ M . We say that γ1 and γ2 are equivalent if, in some coordinate chart, they
have the same 1-st order Taylor polynomial in some (or, equivalently, in any) coordinate chart.
This defines an equivalence relation on the space of smooth curves based at a fixed point.

Definition 1.1. Let M be a smooth n-dimensional manifold and let γ : I →M is a smooth curve
such that γ(0) = q ∈M . Its tangent vector at q = γ(0), denoted by

d

dt

∣∣∣∣
t=0

γ(t), or γ̇(0), (1.1)

is the equivalence class in the space of all smooth curves in M such that γ(0) = q.

It is easy to check, using the chain rule, that this is a well-defined object (i.e., it does not depend
on the representative curve).

Definition 1.2. Let M be a smooth n-dimensional manifold. The tangent space at a point q ∈M
is the set

TqM :=

{
d

dt

∣∣∣∣
t=0

γ(t), γ : (−ε, ε) →M smooth, γ(0) = q

}
.

It is a standard fact that TqM has a natural structure of n-dimensional vector space.

Definition 1.3. A vector field on a smooth manifold M is a smooth map

X : q 7→ X(q) ∈ TqM,

that associates to every point q inM a tangent vector at q. We denote by Vec(M) the set of smooth
vector fields on M .
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curve
field!complete

In coordinates we can write X =
∑n

i=1X
i(x) ∂

∂xi
, and the vector field is smooth if and only if

its components Xi(x) are smooth functions. The value of a vector field X at a point q is denoted
both with X(q) and X

∣∣
q
.

Definition 1.4. Let M be a smooth manifold and X ∈ Vec(M). The equation

q̇ = X(q), q ∈M, (1.2) eq:odeb

is called an ordinary differential equation (or ODE ) on M . A solution of (
eq:odebeq:odeb
1.2) is a smooth curve

γ : I →M , where I ⊂ R is an interval, such that

γ̇(t) = X(γ(t)), ∀ t ∈ I. (1.3)

We also say that γ is an integral curve of the vector field X.

A standard theorem on ODE ensures that, for every initial condition, there exists a unique
integral curve of a smooth vector field, defined on some interval.

t:ode Theorem 1.5. Let X ∈ Vec(M) and consider the Cauchy problem

{
q̇(t) = X(q(t))

q(0) = q0
(1.4) eq:odeb2

For any point q0 ∈ M there exists δ > 0 and γ : (−δ, δ) → M a unique solution of (
eq:odeb2eq:odeb2
1.4), denoted

by γ(t; q0). Moreover the map (t, q) 7→ γ(t; q) is smooth on a neighborhood of (0, q0).

A vector field X ∈ Vec(M) is called complete if, for every q0 ∈ M , the solution γ(t; q0) of the
equation (

eq:odebeq:odeb
1.2) can be extended for all t ∈ R.

Remark 1.6. Standard results from ODE ensure completeness of the vector field X ∈ Vec(M) in
the following cases:

(i) M is a compact manifold (or more generally X has compact support in M),

(ii) M = R
n and X is sub-linear, i.e. there exists C1, C2 > 0 such that

|X(x)| ≤ C1|x|+C2, ∀x ∈ R
n.

where | · | denotes the Euclidean norm in R
n.

When we are interested in the behavior of the trajectories of a vector field X ∈ Vec(M) in a
compact subset K of M , the assumption of completeness is not restrictive.

Indeed consider an open neighborhood OK with compact closure of a compact K in M . There
exists a smooth cut-off function a : M → R that is identically 1 on K, and that vanishes out of
OK . Then the vector field aX is complete, since it has compact support in M . Moreover, inside
K, the vector fields X and aX coincide, hence the integral curves of the two vector fields coincide
too.
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vector field!flow
flow
vector
field!nonautonomous

1.1.2 Flow of a vector field

Given a complete vector field X ∈ Vec(M) we can consider the family of maps

φt : M →M, φt(q) = γ(t; q), t ∈ R. (1.5) eq:flow

In other words, φt(q) is the shift for time t along the integral curve of X that starts from q. By
Theorem

t:odet:ode
1.5 it follows that the map

φ : R×M →M, φ(t, q) = φt(q),

is smooth in both variables and the family {φt, t ∈ R} is a one parametric subgroup of Diff(M),
namely, it satisfies the following identities:

φ0 = Id,

φt ◦ φs = φs ◦ φt = φt+s, ∀ t, s ∈ R, (1.6) eq:flow3

(φt)
−1 = φ−t, ∀ t ∈ R,

Moreover, by construction, we have

∂φt(q)

∂t
= X(φt(q)), φ0(q) = q, ∀ q ∈M. (1.7) eq:flow2

The family of maps φt defined by (
eq:floweq:flow
1.5) is called the flow generated by X. For the flow φt of a

vector field X it is convenient to use the exponential notation φt := etX , for every t ∈ R. Following
the exponential notation, the group properties (

eq:flow3eq:flow3
1.6) take the form:

e0X = Id, etX ◦ esX = esX ◦ etX = e(t+s)X , (etX )−1 = e−tX , (1.8) eq:flow4

d

dt
etX = XetX . (1.9)

Remark 1.7. When X is a linear vector field on R
n, then X(x) = Ax for some n× n matrix A. In

this case the corresponding flow φt is the matrix exponential φt(x) = etA(x).

1.1.3 Nonautonomous vector fields

A family of smooth vector fields {Xt}t∈R, where Xt ∈ Vec(M) for every t ∈ R, is said to be
measurable and locally bounded with respect to t if for every smooth function a ∈ C∞(M) the
function ϕX : R → R defined by ϕX(t) = Xta is measurable and locally bounded.

d:nonautonomous Definition 1.8. A nonautonomous vector field is family of smooth vector fields {Xt}t∈R that is
measurable and locally bounded with respect to t.

Now we consider a nonautonomous ODE, i.e. an equation of the form

q̇ = Xt(q), q ∈M, (1.10) eq:oden

where Xt is a nonautonomous vector field. If we consider local coordinates x = (x1, . . . , xn) in an
open set O on the manifold M , the equation (

eq:odeneq:oden
1.10) is written in coordinates as

ẋ = f(t, x), x ∈ R
n,

where the map (t, x) 7→ f(t, x) is defined on a subset of R× R
n and satisfies

9



em!Caratheodory (i) f is measurable and locally bounded with respect to t, for any fixed x ∈ O,

(ii) f is smooth in x for every fixed t ∈ R,

(iii) f has locally bounded derivatives, i.e.,

∣∣∣∣
∂fi
∂x

(t, x)

∣∣∣∣ ≤ CI,K , I ⊂ R, K ⊂ O compact, i = 1, . . . , n.

where we denote with f = (f1, . . . , fn) the components of the vector function f .

The existence and uniqueness of the solution in the nonautonomous case is guaranteed by the
following theorem (see

bressanpiccoli
[?]).

t:cara Theorem 1.9 (Carathéodory theorem). Assume that f : R × R
n → R

n satisfies (i)-(iii). Then
the Cauchy problem

ẋ(t) = f(t, x(t)), x(t0) = x0, (1.11) eq:nncauchy

has locally a unique solution x(t; t0, x0) such that (
eq:nncauchyeq:nncauchy
1.11) is satisfied for almost every t and x(t0; t0, x0) =

x0. Moreover the map (t, x0) 7→ x(t; t0, x0) is Lipschitz with respect to t and smooth with respect to
x0.

Let us assume now that the equation (
t:carat:cara
1.9) is complete, i.e. for all t0 ∈ R and x0 ∈ R

n the
solution x(t; t0, x0) is defined for all t ∈ R. Let us denote by Pt0,t(x0) = x(t; t0, x0). The family of
maps Pt0,t is the nonautonomous flow generated by Xt. It satisfies

∂

∂t

∂Pt0,t
∂x

(x) =
∂f

∂x
(t, Pt0,t(x0))Pt0,t(x)

Moreover the following algebraic identities are satisfied

Pt,t = Id,

Pt2,t3 ◦ Pt1,t2 = Pt1,t3 , ∀ t1, t2, t3 ∈ R, (1.12) eq:flow4

(Pt1,t2)
−1 = Pt2,t1 , ∀ t1, t2 ∈ R,

Conversely, to every family of smooth diffeomorphism Pt,s : M → M satisfying the relations
(
eq:flow4eq:flow4
1.12) one can define its infinitesimal generator Xt as follows:

Xt(q) =
d

ds

∣∣∣∣
s=0

Pt,t+s(q), ∀ q ∈M. (1.13)

The following lemma characterizes the flows whose generator is autonomous.

l:nonautaut Lemma 1.10. Let {Pt,s}t,s∈R be a family of smooth diffeomorphisms satisfying (
eq:flow4eq:flow4
1.12). Its infinites-

imal generator is an autonomous vector field if and only if

P0,t ◦ P0,s = P0,t+s, ∀ t, s ∈ R.
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differential of a1.1.4 Vector fields as operators on functions

A vector field X ∈ Vec(M) induces an action on the algebra C∞(M) of the smooth functions on
M , defined as follows

X : C∞(M) → C∞(M), a 7→ Xa, a ∈ C∞(M), (1.14)

where

(Xa)(q) =
d

dt

∣∣∣∣
t=0

a(etX(q)), q ∈M. (1.15) eq:Xa

In other words it computes the derivative of the function a restricted on integral curves of the
vector field X.

r:at Remark 1.11. Let us denote at := a ◦ etX . Clearly the map t 7→ at is smooth and from (
eq:Xaeq:Xa
1.15) it

immediately follows that Xa represents the first order term in the expansion of at:

at = a+ tXa+O(t2).

Exercise 1.12. Let a ∈ C∞(M) and X ∈ Vec(M), and denote at = a ◦ etX . Prove the following
formulas

d

dt
at = Xat, (1.16)

at = a+ tXa+
t2

2!
X2a+

t3

3!
X3a+ . . .+

tk

k!
Xka+O(tk+1). (1.17)

It is easy to see also that the following Leibnitz rule is satisfied

X(ab) = (Xa)b+ a(Xb), ∀ a, b ∈ C∞(M), (1.18) eq:leibvf

that means that X, as an operator on functions, is a derivation of the algebra C∞(M).

Remark 1.13. Notice that, in coordinates, if a ∈ C∞(M) and X =
∑

iXi(x)
∂
∂xi

then Xa =∑
iXi(x)

∂a
∂xi

. In particular, when X is applied to the coordinate functions ai(x) = xi then
Xai = Xi, which shows that a vector field is completely charactherized by its action on func-
tions.

ex:tangent Exercise 1.14. Let f1, . . . , fk ∈ C∞(M) and assume that N = {f1 = . . . = fk = 0} ⊂ M where
df1 ∧ . . . ∧ dfk 6= 0 on N . Show that X ∈ Vec(M) is tangent to the smooth submanifold N if and
only if Xfi = 0 for every i = 1, . . . , k.

1.2 Differential of a smooth map

A smooth map between manifolds induces a map between their tangent spaces, simply by trans-
forming the smooth curves.

Definition 1.15. Let ϕ : M → N a smooth map between smooth manifolds and q ∈ M . The
differential of ϕ at the point q is the linear map

ϕ∗,q : TqM → Tϕ(q)N, (1.19)
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ard defined as follows:

ϕ∗,q(v) =
d

dt

∣∣∣∣
t=0

ϕ(γ(t)), if v =
d

dt

∣∣∣∣
t=0

γ(t), q = γ(0).

It is easily checked that this definition depends only on the equivalence class of γ.

Remark 1.16. Applying the definition, one immediately verifies that, if ϕ : M → N , ψ : N → Q
are two smooth maps between manifolds, then the differential of the composition ψ ◦ ϕ : M → Q
satisfies (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

The differential ϕ∗,q of a smooth map ϕ : M → N , also called its pushforward, is sometimes
denoted by the symbols Dqϕ or dqϕ,

As we said, a smooth map induces a transformation of tangent vectors. If we deal with diffeo-
morphisms, we can also pushforward a vector field.

Definition 1.17. Let X ∈ Vec(M) and ϕ : M → N be a diffeomorphism. The pushforward
ϕ∗X ∈ Vec(N) is the vector field on N defined by

(ϕ∗X)(ϕ(q)) := ϕ∗(X(q)), ∀ q ∈M. (1.20) eq:star

If P ∈ Diff(M) is a diffeomorphism of M , we can rewrite the previous identity as

(P∗X)(q) = P∗(X(P−1(q))), ∀ q ∈M. (1.21) eq:diff

Notice that, in general, if ϕ is a smooth map, the pushforward of a vector field is not defined.

Remark 1.18. From this definition it follows the useful formula for X,Y ∈ Vec(M)

(etX∗ Y )
∣∣
q
= etX∗

(
Y
∣∣
e−tX(q)

)
=

d

ds

∣∣∣∣
s=0

etX ◦ esY ◦ e−tX(q).

The following lemma shows that P∗X is the vector field whose integral curves are the image
under P of integral curves of X. Moreover it shows how the pushforward of a vector field acts on
functions:

l:l Lemma 1.19. Let P ∈ Diff(M), X ∈ Vec(M) and a ∈ C∞(M) then

etP∗X = P ◦ etX ◦ P−1, (1.22) eq:relfl

(P∗X)a = (X(a ◦ P )) ◦ P−1. (1.23) eq:pstarf

Proof. From the formula

d

dt

∣∣∣∣
t=0

P ◦ etX ◦ P−1(q) = P∗(X(P−1(q))) = (P∗X)(q),

it follows that t 7→ P ◦ etX ◦ P−1(q) is an integral curve of P∗X, from which (
eq:relfleq:relfl
1.22) follows. To

prove (
eq:pstarfeq:pstarf
1.23) let us compute

(P∗X)a
∣∣
q
=

d

dt

∣∣∣∣
t=0

a(etP∗X(q)).

Using (
eq:relfleq:relfl
1.22) this is equal to

d

dt

∣∣∣∣
t=0

a(P (etX (P−1(q))) =
d

dt

∣∣∣∣
t=0

(a ◦ P )(etX (P−1(q))) = (X(a ◦ P )) ◦ P−1.
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Lie bracketRemark 1.20. From this lemma it follows the following formula: for every X,Y ∈ Vec(M)

(etX∗ Y )a = Y (a ◦ etX ) ◦ e−tX . (1.24) eq:pstarX

1.3 Lie brackets

Now we introduce a fundamental notion of all our theory, the Lie bracket of two vector fields X
and Y . Geometrically it is defined as the infinitesimal version of the pushforward of the second
vector field along the flow of the first one. As expalined below, it measures how much Y is modified
by the flow of X.

Definition 1.21. Let X,Y ∈ Vec(M). We define their Lie bracket as the vector field

[X,Y ] :=
∂

∂t

∣∣∣∣
t=0

e−tX∗ Y. (1.25) eq:commutator

Remark 1.22. The geometric meaning of the Lie bracket can be understood by writing explicitly

[X,Y ]
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ Y
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ (Y
∣∣
etX(q)

) =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tX ◦ esY ◦ etX(q). (1.26) eq:liebrtutto

We recover its algebraic properties in the following

p:la Proposition 1.23. As derivations on functions we have

[X,Y ] = XY − Y X. (1.27) eq:comm

Proof. By definition of Lie bracket we have [X,Y ]a = ∂
∂t

∣∣
t=0

(e−tX∗ Y )a. Hence we have to compute
the first order term in the expansion, with respect to t, of the map

t 7→ (e−tX∗ Y )a.

Using formula (
eq:pstarXeq:pstarX
1.24) we have

(e−tX∗ Y )a = Y (a ◦ e−tX) ◦ etX .

By Remark
r:atr:at
1.11 we have a ◦ e−tX = a−t = a− tXa+O(t2), hence

(e−tX∗ Y )a = Y (a− tXa+O(t2)) ◦ etX

= (Y a− t Y Xa+O(t2)) ◦ etX .

Denoting b = Y a− t Y Xa+O(t2), bt = b ◦ etX , and using again the expansion above we get

(e−tX∗ Y )a = (Y a− t Y Xa+O(t2)) + tX(Y a− t Y Xa+O(t2)) +O(t2)

= Y a+ t(XY − Y X)a+O(t2).

Hence the first order term is (XY − Y X)a.
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From this proposition it easily follows also the coordinate expression of the Lie bracket. Indeed
if

X =

n∑

i=1

Xi
∂

∂xi
, Y =

n∑

j=1

Yj
∂

∂xj
,

we have

[X,Y ] =

n∑

i,j=1

(
Xi
∂Yj
∂xi

− Yi
∂Xj

∂xi

)
∂

∂xj
.

Proposition
p:lap:la
1.23 shows that Vec(M), being an associative algebra with commutator as multiplica-

tion, is a Lie algebra with the Lie bracket.
Now we prove that every diffeomorphism induces a Lie algebra homomorphism on Vec(M).

Proposition 1.24. Let P ∈ Diff(M). Then P∗ is a Lie algebra homomorphism of Vec(M), i.e.

P∗[X,Y ] = [P∗X,P∗Y ], ∀X,Y ∈ Vec(M).

Proof. We show that the two terms are equal as derivations on functions. Let a ∈ C∞(M), prelim-
inarly we see, using (

eq:pstarfeq:pstarf
1.23), that

P∗X(P∗Y a) = P∗X(Y (a ◦ P ) ◦ P−1)

= X(Y (a ◦ P ) ◦ P−1 ◦ P ) ◦ P−1

= X(Y (a ◦ P )) ◦ P−1,

and using twice this property and (
eq:commeq:comm
1.27)

[P∗X,P∗Y ]a = P∗X(P∗Y a)− P∗Y (P∗Xa)

= XY (a ◦ P ) ◦ P−1 − Y X(a ◦ P ) ◦ P−1

= (XY − Y X)(a ◦ P ) ◦ P−1

= P∗[X,Y ]a.

To end this section, we want to show that the Lie bracket of two vector fields is zero, that means
that they commute as operators, if and only if the same holds for their flows.

p:liebflow Proposition 1.25. Let X,Y ∈ Vec(M). The following properties are equivalent:

(i) [X,Y ] = 0,

(ii) etX ◦ esY = esY ◦ etX , ∀ t, s ∈ R.

Proof. We start the proof with the following

Claim. [X,Y ] = 0 =⇒ e−tX∗ Y = Y .

Proof of the Claim. Let us show that [X,Y ] = d
dt

∣∣∣∣
t=0

e−tX∗ Y = 0 implies that d
dte

−tX
∗ Y = 0 for

all t ∈ R. Indeed we have

d

dt
e−tX∗ Y =

d

dε

∣∣∣∣
ε=0

e
−(t+ε)X
∗ Y =

d

dε

∣∣∣∣
ε=0

e−tX∗ e−εX∗ Y

= e−tX∗

d

dε

∣∣∣∣
ε=0

e−εX∗ Y = e−tX∗ [X,Y ] = 0,

14



and the Claim is proved.

(i) ⇒ (ii). Let us show that Ps := e−tX ◦ esY ◦ etX is the flow generated by Y . Indeed we have

∂

∂s
Ps =

∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ e(s+ε)Y ◦ etX

=
∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ eεY ◦ etX ◦ e−tX ◦ esY ◦ etX︸ ︷︷ ︸
Ps

= e−tX∗ Y ◦ Ps = Y ◦ Ps.

where in the last equality we used the Claim. Using uniqueness of the flow generated by a vector
field we get

e−tX ◦ esY ◦ etX = esY , ∀ t, s ∈ R,

which is equivalent to (ii).
(ii) ⇒ (i). For every function a ∈ C∞ we have

XY a =
d2

dtds

∣∣∣
t=s=0

a ◦ esY ◦ etX =
d2

dsdt

∣∣∣
t=s=0

a ◦ etX ◦ esY = Y Xa.

Then (i) follows from (
eq:commeq:comm
1.27).

Exercise 1.26. Let X,Y ∈ Vec(M) and q ∈M . Consider the curve on M

γ(t) = e−tY ◦ e−tX ◦ etY ◦ etX(q).

Prove that tangent vector to the curve γ(
√
t) is exactly [X,Y ](q).

Exercise 1.27. Let X,Y ∈ Vec(M). Using the semigroup property of the flow, prove the following
expansion

e−tX∗ Y = Y + t[X,Y ] +
t2

2
[X, [X,Y ]] +

t3

6
[X, [X, [X,Y ]]] + . . . (1.28) eq:espcar

Exercise 1.28. Let X,Y ∈ Vec(M) and a ∈ C∞(M). Prove the following Leibnitz rule for the Lie
bracket:

[X, aY ] = a[X,Y ] + (Xa)Y.

Exercise 1.29. Let X,Y,Z ∈ Vec(M). Prove that the Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (1.29) eq:liejacobi

Hint: Differentiate the identity etX∗ [Y,Z] = [etX∗ Y, etX∗ Z].

1.4 Cotangent space

In this section we introduce tangent covectors, that are linear functionals on the tangent space.
The space of all covectors at a point q ∈ M , called cotangent space is, in algebraic terms, simply
the dual space to the tangent space.
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tial form

Definition 1.30. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q ∈M is the set

T ∗
qM := (TqM)∗ = {λ : TqM → R, λ linear}.

If λ ∈ T ∗
qM and v ∈ TqM , we will denote by 〈λ, v〉 := λ(v) the action of the covector λ on the

vector v.

As we have seen, a smooth map yields a linear map between tangent spaces. Dualizing this
map, we get a linear map on cotangent spaces going in the opposite direction.

Definition 1.31. Let ϕ :M → N be a smooth map and q ∈M . The pullback of ϕ at point ϕ(q),
where q ∈M , is the map

ϕ∗ : T ∗
ϕ(q)N → T ∗

qM, λ 7→ ϕ∗λ,

defined by duality in the following way

〈ϕ∗λ, v〉 := 〈λ, ϕ∗v〉 , ∀ v ∈ TqM, ∀λ ∈ T ∗
ϕ(q)M.

Example 1.32. Let a : M → R be a smooth function and q ∈ M . The differential dqa of the
function a at the point q ∈M is an element of T ∗

qM since we have a well defined linear action

〈dqa, v〉 :=
d

dt

∣∣∣∣
t=0

a(γ(t)), v ∈ TqM.

where γ(t) is any smooth curve such that γ(0) = q and γ̇(0) = v.

Definition 1.33. A differential 1-form on a smooth manifold M is a smooth map

ω : q 7→ ω(q) ∈ T ∗
qM,

that associates to every point q in M a cotangent vector at q. We denote by Λ1(M) the set of
differential forms on M .

Since differential forms are dual objects to vector fields, it is well defined the action of ω ∈ Λ1M
on X ∈ Vec(M) pointwise, defining a function on M .

〈ω,X〉 : q 7→ 〈ω(q),X(q)〉 . (1.30)

The differential form ω is smooth if and only if, for every smooth vector field X ∈ Vec(M), the
function 〈ω,X〉 ∈ C∞(M)

Definition 1.34. Let ϕ : M → N be a smooth map and a : N → R be a smooth function. The
pullback ϕ∗a is the smooth function on M defined by

ϕ∗a(q) = a(ϕ(q)), q ∈M.

In particular, if π : T ∗M →M is the canonical projection and a ∈ C∞(M), then

π∗a(λ) = a(π(λ)), λ ∈ T ∗M,

which is constant on fibers.

16
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1.5 Vector bundles

Heuristically, a smooth vector bundle on a manifold M , is a smooth family of vector spaces
parametrized by points in M .

Definition 1.35. Let M be a n-dimensional manifold. A smooth vector bundle of rank k over M
is a smooth manifold E with a surjective smooth map π : E →M such that

(i) the set Eq := π−1(q), the fiber of E at q, is a k-dimensional vector space

(ii) for every q ∈M there exist a neighborhood Oq of q and a linear-on-fiber diffeomorphism (also
called local trivialization) ψ : π−1(Oq) → Oq ×R

k such that the following diagram commutes

π−1(Oq)

π
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲

ψ
// Oq × R

k

π1

��
Oq

(1.31) eq:diagr0

The space E is called total space and M is the base of the vector bundle. We will refer at π as the
canonical projection and rank E will denote the rank of the bundle.

Remark 1.36. The existence of local trivialization maps ψ says that E, as smooth manifold, has
dimension

dimE = dimM + rank E = n+ k.

In the case when there exists a global trivialization map, i.e. a local trivialization with Oq = M ,
then E ≃M × R

k and we say that E is trivializable.

Example 1.37. For any smooth n-dimensional manifold M , the tangent bundle TM , defined as
the disjoint union of the tangent spaces at all points of M ,

TM =
⋃

q∈M

TqM,

has a natural structure of 2n-dimensional smooth manifold, equipped with the vector bundle struc-
ture (of rank n) induced by the canonical projection map

π : TM →M, π(v) = q if v ∈ TqM.

In the same way one can consider the cotangent bundle T ∗M , defined as

T ∗M =
⋃

q∈M

T ∗
qM.

Again, it is a 2n-dimensional manifold, and the canonical projection map

π : T ∗M →M, π(λ) = q if λ ∈ T ∗
qM,

endows T ∗M with a structure of rank n vector bundle.
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Let O ⊂M be a coordinate neighborhood where

ψ : O → R
n, ψ(q) = (x1, . . . , xn),

define a local coordinate system. The differentials of the coordinate functions

dxi
∣∣
q
, i = 1, . . . , n, q ∈ O,

form a basis of the cotangent space T ∗
qM . The dual basis in the tangent space TqM is defined by

the vectors

∂

∂xi

∣∣∣∣
q

∈ TqM, i = 1, . . . , n, q ∈ O, (1.32)

〈
dxi,

∂

∂xj

〉
= δij , i, j = 1, . . . , n. (1.33)

Thus any tangent vector v ∈ TqM and any covector λ ∈ T ∗
qM can be decomposed in these basis

v =
n∑

i=1

vi
∂

∂xi

∣∣∣∣
q

, λ =
n∑

i=1

pidxi
∣∣
q
,

and the maps

ψv : v 7→ (x1, . . . , xn, v1, . . . , vn), ψλ : λ 7→ (x1, . . . , xn, p1, . . . , pn), (1.34)

define local coordinates on TM and T ∗M respectively, which we call canonical coordinates induced
by the coordinates ψ on M .

Definition 1.38. A morphism f : E → E′ between two vector bundles E,E′ on the base M (also
called a bundle map) is a smooth map such that the following diagram is commutative

E

π
  ❆

❆❆
❆❆

❆❆
❆

f
// E′

π′

��
M

(1.35) eq:diagr1

where f is linear on fibers. Here π and π′ denote the canonical projections.

Definition 1.39. Let π : E →M be a smooth vector bundle over M . A section of E is a smooth
map1 σ : A ⊂ M → E satisfying π ◦ σ = IdA. In other words σ(q) belongs to Eq for each q ∈ A,
smoothly with respect to q. If σ is defined on all M it is said to be a global section.

ex:zerosec Example 1.40. Let π : E →M be a smooth vector bundle over M . The zero section of E is the
global section

ζ :M → E, ζ(q) = 0 ∈ Eq, ∀ q ∈M.

We will denote by M0 := ζ(M) ⊂ E.

1as a map between manifolds.
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induced bundleRemark 1.41. Notice that vector fields and differential forms are, by definition, sections of the
vector bundles TM and T ∗M respectively.

def:inducedbundle Definition 1.42. Let ϕ :M → N be a smooth map between smooth manifolds and E be a vector
bundle on N , with fibers {Eq′ , q′ ∈ N}. The induced bundle ϕ∗E is a vector bundle on the base M
defined by

ϕ∗E := {(q, v) | q ∈M,v ∈ Eϕ(q)} ⊂M × E.

Notice that rankϕ∗E = rankE, hence dimϕ∗E = dimM + rankE.

ex:sphb Example 1.43. (i). Let M be a smooth manifold and TM its tangent bundle, endowed with an
Euclidean structure. The spherical bundle SM is the vector subbundle of TM defined as follows

SM =
⋃

q∈M

SqM, SqM = {v ∈ TqM | |v| = 1}.

(ii). Let E,E′ be two vector bundles over a smooth manifold M . The direct sum E ⊕ E′ is the
vector bundle over M defined by

(E ⊕ E′)q := Eq ⊕ E′
q.

1.6 Submersions and level sets of smooth maps

If ϕ :M → N is a smooth map, we define the rank of ϕ at q ∈M to be the rank of the linear map
ϕ∗,q : TqM → Tϕ(q)N . It is of course just the rank of the matrix of partial derivatives of ϕ in any
coordinate chart, or the dimension of Im (ϕ∗,q) ⊂ Tϕ(q)N . If ϕ has the same rank k at every point,
we say ϕ has constant rank, and write rankϕ = k.

An immersion is a smooth map ϕ :M → N with the property that ϕ∗ is injective at each point
(or equivalently rankϕ = dimM). Similarly, a submersion is a smooth map ϕ :M → N such that
ϕ∗ is surjective at each point (equivalently, rankϕ = dimN).

Theorem 1.44 (Rank Theorem). . Suppose M and N are smooth manifolds of dimensions m andt:constrank

n, respectively, and ϕ :M → N is a smooth map with constant rank k in a neighborhood of q ∈M .
Then there exist coordinates (x1, . . . , xm) centered at q and (y1, . . . , yn) centered at ϕ(q) in which
ϕ has the following coordinate representation:

ϕ(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0). (1.36)

Remark 1.45. The previous theorem can be rephrased in the following more invariant way. Let
ϕ :M → N be a smooth map between two smooth manifolds. Then the following are equivalent:

(i) ϕ has constant rank in a neighborhood of q ∈M .

(ii) There exist coordinates near q ∈ M and ϕ(q) ∈ N in which the coordinate representation of
ϕ is linear.

In the case of a submersion, from Theorem
t:constrankt:constrank
1.44 on can deduce the following result

t:submersionc Corollary 1.46. Assume ϕ : M → N is a smooth submersion at q. Then ϕ admits a local right
inverse at ϕ(q). Moreover ϕ is open at q. More precisely it exist ε > 0 and C > 0 such that

Bϕ(q)(C
−1r) ⊂ ϕ(Bq(r)), ∀ r ∈ [0, ε[. (1.37) eq:submersionc
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Remark 1.47. The constant C appearing in (
eq:submersionceq:submersionc
1.37) is the norm of the differential of the local right

inverse. In the case when ϕ is a diffeomorphism it can be taken as the norm of the differential of
the inverse of ϕ and we recover the well known statement of the inverse function theorem.

Using these results, one can give some very general criteria for level sets of smooth maps (or
smooth functions) to be submanifolds.

t:crlst Theorem 1.48 (Constant Rank Level Set Theorem). Let M and N be smooth manifolds, and let
ϕ : M → N be a smooth map with constant rank k. Each level set ϕ−1(y), for y ∈ N is a closed
embedded submanifold of codimension k in M .

Remark 1.49. It is worth to specify the following two important sub cases of Theorem
t:crlstt:crlst
1.48:

(a) If ϕ : M → N is a submersion at every q ∈ ϕ−1(y) for some y ∈ N , then ϕ−1(y) is a closed
embedded submanifold whose codimension is equal to the dimension of N .

(b) If a :M → R is a smooth function such that dqa 6= 0 for every q ∈ a−1(c), where c ∈ R, then
the level set a−1(c) is a smooth hypersurface of M

r:isamanifold Exercise 1.50. Let a : M → R be a smooth function. Assume that c ∈ R is a regular value of
a, i.e., dqa 6= 0 for every q ∈ a−1(c). Then Nc = a−1(c) = {q ∈ M | a(q) = c} ⊂ M is a smooth
submanifold. Prove that for every q ∈ Nc

TqNc = ker dqa = {v ∈ TqM | 〈dqa, v〉 = 0}.

Bibliographical notes

The material presented in this chapter is classical and covered by many textbook in differential
geometry, as for instance

boothby,lee,docarmo,chavel,spivak
[?, ?, ?, ?, ?]
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Chapter 2

Sub-Riemannian structures

c:srbasic

2.1 Basic definitions

In this section we introduce a definition of sub-Riemannian structure which is quite general. In-
deed, this definition includes all the classical notions of Riemannian structure, constant-rank sub-
Riemannian structure, rank-varying sub-Riemannian structure, almost-Riemannian structure etc.

Definition 2.1. Let M be a smooth manifold and let F ⊂ Vec(M) be a family of smooth vector
fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M) containing F , namely

LieF := span{[X1, . . . , [Xj−1,Xj ]],Xi ∈ F , j ∈ N}. (2.1) eq:brgen

We will say that F is bracket-generating (or that satisfies the Hörmander condition) if

LieqF := {X(q),X ∈ LieF} = TqM, ∀ q ∈M.

Definition 2.2. (sub-Riemannian manifold) Let M be a connected smooth manifold. A sub-d:srm

Riemannian structure on M is a pair (U, f) where:

(i) U is an Euclidean bundle with base M and Euclidean fiber Uq, i.e. for every q ∈ M , Uq is
a vector space equipped with a scalar product gq, smooth with respect to q. For u ∈ Uq we
denote the norm of u as |u| =

√
(u|u)q.

(ii) f : U → TM is a smooth map that is a morphism of vector bundles, i.e. the following
diagram is commutative (here πU : U →M and π : TM →M are the canonical projections)

U

πU ""❉
❉❉

❉❉
❉❉

❉

f
// TM

π
��
M

(2.2) eq:diagr2

and f is linear on fibers.

(iii) The set of horizontal vector fields D := {f(σ), σ smooth section of U}, is a bracket-generating
family of vector fields.
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When the vector bundle U admits a global trivialization we say that (M,U, f) is a free sub-
Riemannian structure.

A smooth manifold endowed with a sub-Riemannian structure (i.e. the triple (M,U, f)) is
called a sub-Riemannian manifold. When the map f : U → TM is fiberwise surjective, (M,U, f))
is called a Riemannian manifold (cf. Exercise

es:riemannianes:riemannian
2.23).

def:iso0 Definition 2.3. Let (M,U, f) be a sub-Riemannian manifold. The distribution is the family of
subspaces

{Dq}q∈M , where Dq := f(Uq) ⊂ TqM.

We call k(q) := dimDq the rank of the sub-Riemannian structure at q ∈ M . We say that the
sub-Riemannian structure (U, f) on M has constant rank if k(q) is constant.

The set of horizontal vector fields D ⊂ Vec(M) has the structure of a finitely generated C∞(M)-
module, whose elements are vector fields tangent to the distribution at each point, i.e.

Dq = {X(q)|X ∈ D}.

The rank of a sub-Riemannian structure (M,U, f) satisfies

k(q) ≤ m, where m = rankU, (2.3)

k(q) ≤ n, where n = dimM. (2.4)

In what follows we denote points in U as pairs (q, u), where q ∈ M is an element of the base
and u ∈ Uq is an element of the fiber. Following this notation we can write the value of f at this
point as

f(q, u) or fu(q).

We prefer the second notation to stress that, for each q ∈M , fu(q) is a vector in TqM .

Definition 2.4. (Admissible Curves) A Lipschitz curve γ : [0, T ] →M is said to be admissible
(or horizontal) for a sub-Riemannian structure if there exists a measurable essentially bounded
function

u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t), (2.5)

called the control function, such that

γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. (2.6) eq:intcurve

In this case we say that u(·) is a control corresponding to γ. Notice that different controls could
correspond to the same trajectory.

Remark 2.5. Once we have chosen a local trivialization Oq × R
m for the vector bundle U, where

Oq is a neighborhood of a point q ∈ M , we can choose a basis in the fibers and the map f is
written f(q, u) =

∑m
i=1 uifi(q), where m is the rank of U. In this trivialization, a Lipschitz curve

γ : [0, T ] →M is admissible if there exists u = (u1, . . . , um) ∈ L∞([0, T ],Rm) such that

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ]. (2.7) eq:cs2

Thanks to this local characterization and Theorem
t:carat:cara
1.9, for each initial condition q ∈ M and

u ∈ L∞([0, T ],Rm) there exists an admissible curve γ, defined on a sufficiently small interval, such
that u is the control associated with γ and γ(0) = q.
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Dq

Figure 2.1: An horizontal curve f-1-distr

r:noequiv Remark 2.6. Notice that, for a curve to be admissible, it is not sufficient to satisfy γ̇(t) ∈ Dγ(t) for
almost every t ∈ [0, T ]. Take for instance the two free sub-Riemannian structures on R

2 having
rank two and defined by

f(x, y, u1, u2) = (x, y, u1, u2x), f ′(x, y, u1, u2) = (x, y, u1, u2x
2). (2.8)

and let D and D′ the corresponding moduli of horizontal vector fields. It is easily seen that the
curve γ : [−1, 1] → R

2, γ(t) = (t, t2) satisfies γ̇(t) ∈ Dγ(t) and γ̇(t) ∈ D′
γ(t) for every t ∈ [−1, 1].

Moreover, γ is admissible for f , since its corresponding control is (u1, u2) = (1, 2) for a.e.
t ∈ [−1, 1], but it is not admissible for f ′, since its corresponding control is uniquely determined as
(u1(t), u2(t)) = (1, 2/t) for a.e. t ∈ [−1, 1], which is not essentially bounded.

This example shows that, for two different sub-Riemannian structures (U, f) and (U′, f ′) on
the same manifold M , one can have Dq = D′

q for every q ∈ M , but D 6= D′. Notice however that,
in the case of constant rank distribution, we have that Dq = D′

q for every q ∈ M if and only if
D = D′.

2.1.1 The minimal control and the length of an admissible curve

We start by defining a norm for vectors that belong to the distribution.

Definition 2.7. Let v ∈ Dq. We define the sub-Riemannian norm of v as follows

‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}. (2.9) eq:mincontr

Notice that since f is linear with respect to u, the minimum in (
eq:mincontreq:mincontr
2.9) is always attained at a unique

point. Indeed the condition f(q, ·) = v defines an affine subspace of Uq (which is nonempty since
v ∈ Dq) and the minimum (

eq:mincontreq:mincontr
2.9) is uniquely attained at the orthogonal projection of the origin onto

this subspace (see Figure
f-3-affinef-3-affine
2.2).

es:inner Exercise 2.8. Show that ‖ · ‖ is a norm in Dq. Moreover prove that it satisfies the parallelogram
law, i.e. it is induced by a scalar product 〈·|·〉q on Dq, that can be recovered by the polarization
identity

〈v|w〉q =
1

4
‖v + w‖2 − 1

4
‖v − w‖2, v, w ∈ Dq. (2.10)
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u1 + u2 = v

u1

u2

‖v‖

Figure 2.2: The norm of a vector v for f(x, u1, u2) = u1 + u2 f-3-affine

Exercise 2.9. Let u1, . . . , um ∈ Uq be an orthonormal basis for Uq. Define vi = f(q, ui). Show
that if f(q, ·) is injective then v1, . . . , vm is an orthonormal basis for Dq.

An admissible curve γ : [0, T ] → M is Lipschitz, hence differentiable at almost every point.
Hence it is well defined the unique control t 7→ u∗(t) associated with γ and realizing the minimum.

d:ustar Definition 2.10. Given an admissible curve γ : [0, T ] → M , we say that the control t 7→ u∗(t) is
the minimal control associated with γ.

The proof of the following crucial Lemma is postponed to the Section
s:measlemmas:measlemma
2.A.

l:measlemma Lemma 2.11. Let γ : [0, T ] → M be an admissible curve. Then its minimal control u∗(·) is
measurable and essentially bounded.

We stress that u∗(t) is pointwise defined for a.e. t ∈ [0, T ]. In particular, if the admissible curve
γ : [0, T ] →M is C1, the minimal control is defined everywhere on [0, T ].

r:nocont Remark 2.12. Notice that, even if an admissible curve is smooth, its minimal control could be not
continuous. Consider, as in Remark

r:noequivr:noequiv
2.6 the free sub-Riemannian structure on R

2

f(x, y, u1, u2) = (x, y, u1, u2x), (2.11)

and let γ : [−1, 1] → R
2, γ(t) = (t, t2). Its minimal control u∗(t) satisfies (u∗1(t), u

∗
2(t)) = (1, 2)

when t 6= 0, while (u∗1(0), u
∗
2(0)) = (1, 0), hence is not continuous.

Thanks to Lemma
l:measlemmal:measlemma
2.11 we are allowed to introduce the following definition.

def:mincontr Definition 2.13. Let γ : [0, T ] →M be an admissible curve. We define the sub-Riemannian length
of γ as

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (2.12) eq:deflength

We say that γ is length-parametrized if ‖γ̇(t)‖ = 1 for a.e. t ∈ [0, T ]. For a length-parametrized
curve we have that ℓ(γ) = T .
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Notice that (
eq:deflengtheq:deflength
2.12) says that the length of an admissible curve is the integral of the norm of its

minimal control.

ℓ(γ) =

∫ T

0
|u∗(t)|dt. (2.13) eq:deflength2

In particular any admissible curve has finite length.

l:linvariant Lemma 2.14. The length of an admissible curve is invariant by Lipschitz reparametrization.

Proof. Let γ : [0, T ] →M be an admissible curve and ϕ : [0, T ′] → [0, T ] a Lipschitz reparametriza-
tion, i.e. a Lipschitz and monotone surjective map. Consider the reparametrized curve

γϕ : [0, T ′] →M, γϕ := γ ◦ ϕ.

First observe that γϕ is a composition of Lipschitz functions, hence Lipschitz. Moreover γϕ is
admissible since, by the linearity of f , it has minimal control (u∗ ◦ ϕ)ϕ̇ ∈ L∞, where u∗ is the
minimal control of γ. Using the change of variables t = ϕ(s), one gets

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
|u∗(ϕ(s))||ϕ̇(s)|ds =

∫ T

0
|u∗(t)|dt =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ). (2.14) eq:chvar

l:reparam Lemma 2.15. Every admissible curve of positive length is a Lipschitz reparametrization of a
length-parametrized admissible one.

Proof. Let ψ : [0, T ] →M be an admissible curve with minimal control u∗. Consider the Lipschitz
monotone function ϕ : [0, T ] → [0, ℓ(ψ)] defined by

ϕ(t) :=

∫ t

0
|u∗(τ)|dτ.

Notice that if ϕ(t1) = ϕ(t2), the monotonicity of ϕ ensures ψ(t1) = ψ(t2). Hence we are allowed to
define γ : [0, ℓ(ψ)] →M by

γ(s) := ψ(t), if s = ϕ(t) for some t ∈ [0, T ].

In other words, it holds ψ = γ ◦ ϕ. To show that γ is Lipschitz let us first show that there exists
a constant C > 0 such that, for every t0, t1 ∈ [0, T ] one has, in some local coordinates (where | · |
denotes the Euclidean norm in coordinates)

|ψ(t1)− ψ(t0)| ≤ C

∫ t1

t0

|u∗(τ)|dτ

Indeed

|ψ(t1)− ψ(t0)| ≤
∫ t1

t0

m∑

i=1

|u∗i (t)fi(ψ(t))| dt

≤
∫ t1

t0

√√√√
m∑

i=1

|u∗i (t)|2
√√√√

m∑

i=1

|fi(ψ(t))|2dt

≤ C

∫ t1

t0

|u∗(t)|dt
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Riemannian!structure!equivalentwhere K is a compact set such that ψ([0, T ]) ⊂ K and C = max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

. Then if

s1 = ϕ(t1) and s0 = ϕ(t0) one has

|γ(s1)− γ(s0)| = |ψ(t1)− ψ(t0)| ≤ C

∫ t1

t0

|u∗(τ)|dτ = C|s1 − s0|,

hence γ is Lipschitz. It follows that γ̇(s) exists for a.e. s ∈ [0, ℓ(ψ)].

We are going to prove that γ is admissible and its minimal control has norm one. Define for
every s such that s = ϕ(t), ϕ̇(t) exists and ϕ̇(t) 6= 0, the control

v(s) :=
u∗(t)

ϕ̇(t)
=

u∗(t)

|u∗(t)| .

By Exercise
es:mis0es:mis0
2.16 the control v is defined for a.e. s. Moreover, by construction, |v(s)| = 1 for a.e. s

and v is the minimal control associated with γ.

es:mis0 Exercise 2.16. Show that for a Lipschitz and monotone function ϕ : [0, T ] → R, the Lebesgue
measure of the set {s ∈ R | s = ϕ(t), ϕ̇(t) exists, ϕ̇(t) = 0} is zero.

By the previuos discussion, in what follows, it will be often convenient to assume that admissible
curves are length-parametrized (or parametrized such that ‖γ̇(t)‖ = const).

2.1.2 Equivalence of sub-Riemannian structures

In this section we discuss the notion of equivalence for sub-Riemannian structures on the same base
manifold M and the notion of isometry between sub-Riemannian manifolds.

def:iso Definition 2.17. Let (U, f), (U′, f ′) be two sub-Riemannian structures on a smooth manifold M .
They are said to be equivalent if the following conditions are satisfied

(i) there exist an Euclidean bundle V and two surjective vector bundle morphisms p : V → U
and p′ : V → U′ such that the following diagram is commutative

U
f

""❊
❊❊

❊❊
❊❊

❊

V

p′   ❆
❆❆

❆❆
❆❆

❆

p
>>⑤⑤⑤⑤⑤⑤⑤⑤

TM

U′
f ′

<<②②②②②②②②

(2.15) eq:diagr3

(ii) the projections p, p′ are compatible with the scalar product, i.e. it holds

|u| = min{|v|, p(v) = u}, ∀u ∈ U,

|u′| = min{|v|, p′(v) = u′}, ∀u′ ∈ U′,

Remark 2.18. Notice that if (U, f), (U′, f ′) are equivalent sub-Riemannian structures on M , then:
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rank

sub-Riemannian!isometry

(a) the distributions Dq and D′
q defined by f and f ′ coincide, since f(Uq) = f ′(U ′

q) for all q ∈M .

(b) for each w ∈ Dq we have ‖w‖ = ‖w‖′, where the norms are induced by (U, f) and (U′, f ′)
respectively.

In particular the length of an admissible curve for two equivalent sub-Riemannian structures is the
same.

Remark 2.19. Notice that (i) is satisfied, with the vector bundle V possibly non Euclidean, if and
only if the two moduli of horizontal vector fields D and D′ defined by U and U′ (cf. Definition

d:srmd:srm
2.2)

are equal.

Definition 2.20. Let M be a sub-Riemannian manifold. We define the minimal bundle rank of
M as the infimum of rank of bundles that induce equivalent structures on M . Given q ∈ M the
local minimal bundle rank of M at q is the minimal bundle rank of the structure restricted on a
sufficiently small neighborhood Oq of q.

Exercise 2.21. Prove that the free sub-Riemannian structure on R
2 defined by f : R2×R

3 → TR2

defined by

f(x, y, u1, u2, u3) = (x, y, u1, u2x+ u3y)

has non constant local minimal bundle rank.

For equivalence classes of sub-Riemannian structures we introduce the following definition.

Definition 2.22. Two equivalent classes of sub-Riemannian manifolds are said to be isometric
if there exist two representatives (M,U, f), (M ′,U′, f ′), a diffeomorphism φ : M → M ′ and an
isomorphism1 of Euclidean bundles ψ : U → U′ such that the following diagram is commutative

U

ψ
��

f
// TM

φ∗
��

U′

f ′
// TM ′

(2.16) eq:diagr4

2.1.3 Examples
s:esempi

Our definition of sub-Riemannian manifold is quite general. In the following we list some classical
geometric structures which are included in our setting.

1. Riemannian structures.
Classically a Riemannian manifold is defined as a pair (M, 〈·|·〉), whereM is a smooth manifold
and 〈·|·〉q is a family of scalar product on TqM , smoothly depending on q ∈M . This definition
is included in Definition

d:srmd:srm
2.2 by takingU = TM endowed with the Euclidean structure induced

by 〈·|·〉 and f : TM → TM the identity map.

es:riemannian Exercise 2.23. Show that every Riemannian manifold in the sense of Definition
d:srmd:srm
2.2 is indeed

equivalent to a Riemannian structure in the classical sense above (cf. Exercise
es:inneres:inner
2.8).

1isomorphism of bundles in the broad sense, it is fiberwise but is not obliged to send fiber in the same fiber.
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2. Constant rank sub-Riemannian structures.
Classically a constant rank sub-Riemannian manifold is a triple (M,D, 〈·|·〉), where D is a
vector subbundle of TM and 〈·|·〉q is a family of scalar product on Dq, smoothly depending
on q ∈ M . This definition is included in Definition

d:srmd:srm
2.2 by taking U = D, endowed with its

Euclidean structure, and f : D →֒ TM the canonical inclusion.

3. Almost-Riemannian structures.
An almost-Riemannian structure on M is a sub-Riemannian structure (U, f) on M such that
its local minimal bundle rank is equal to the dimension of the manifold, at every point.

ex:tr 4. Free sub-Riemannian structures.
Let U = M × R

m be the trivial Euclidean bundle of rank m on M . A point in U can be
written as (q, u), where q ∈M and u = (u1, . . . , um) ∈ R

m.

If we denote by {e1, . . . , em} an orthonormal basis of R
m, then we can define globally m

smooth vector fields on M by fi(q) := f(q, ei) for i = 1, . . . ,m. Then we have

f(q, u) = f

(
q,

m∑

i=1

uiei

)
=

m∑

i=1

uifi(q), q ∈M. (2.17)

In this case, the problem of finding an admissible curve joining two fixed points q0, q1 ∈ M
and with minimal length is rewritten as the optimal control problem





γ̇(t) =
m∑

i=1

ui(t)fi(γ(t))

∫ T

0
|u(t)|dt → min

γ(0) = q0, γ(T ) = q1

(2.18) c-GSR-oc

For a free sub-Riemannian structure, the set of vector fields f1, . . . , fm build as above is called
a generating family. Notice that, in general, a generating family is not orthonormal when f
is not injective.

5. Surfaces in R
3 as free sub-Riemannian structures

Due to topological constraints, in general it not possible to regard a surface as a free sub-
Riemannian structure of rank 2, i.e. defined by a pair of globally defined orthonormal vector
fields. However, it is always possible to regard it as a free sub-Riemannian structure of rank
3.

Indeed, for an embedded surfaceM in R
3, consider the trivial Euclidean bundle U =M×R

3,
where points are denoted as usual (q, u), with u ∈ R

3, q ∈M , and the map

f : U → TM, f(q, u) = π⊥q (u) ∈ TqM. (2.19) eq:M3d

where π⊥q : R3 → TqM ⊂ R
3 is the orthogonal projection.

Notice that f is a surjective bundle map and the set of vector fields {π⊥q (∂x), π⊥q (∂y), π⊥q (∂z)}
is a generating family for this structure.

Exercise 2.24. Show that (U, f) defined in (
eq:M3deq:M3d
2.19) is equivalent to the Riemannian structure

on M induced by the embedding in R
3.
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2.1.4 Every sub-Riemannian structure is equivalent to a free one
s:trivial

The purpose of this section is to show that every sub-Riemannian structure (U, f) on M is equiva-
lent to a sub-Riemannian structure (U′, f ′) where U′ is a trivial bundle with sufficiently big rank.

l:trivial Lemma 2.25. Let M be a n-dimensional smooth manifold and π : E →M a smooth vector bundle
of rank m. Then, there exists a vector bundle π0 : E0 → M with rankE0 ≤ 2n + m such that
E ⊕E0 is a trivial vector bundle.

Proof. Remember that E, as a smooth manifold, has dimension

dim E = dim M + rank E = n+m.

Consider the map i : M →֒ E which embeds M into the vector bundle E as the zero section M0.
If we denote with TME the vector bundle i∗(TE), i.e. the restriction of TE to the section M0, we
have the isomorphism (as vector bundles on M)

TME ≃ E ⊕ TM. (2.20) eq:isovb

Eq. (
eq:isovbeq:isovb
2.20) is a consequence of the fact that the tangent to every fibre Eq, being a vector space, is

canonically isomorphic to its tangent space TqEq so that

TqE = TqEq ⊕ TqM ≃ Eq ⊕ TqM, ∀ q ∈M.

By Whitney theorem we have a (nonlinear on fibers, in general) immersion

Ψ : E → R
N , Ψ∗ : TME ⊂ TE →֒ TRN ,

for N = 2(n+m), and Ψ∗ is injective as bundle map, i.e. TME is a sub-bundle of TRN ≃ R
N×R

N .
Thus we can choose as a complement E′, the orthogonal bundle (on the base M) with respect to
the Euclidean metric in R

N , i.e.

E′ =
⋃

q∈M

E′
q, E′

q = (TqEq ⊕ TqM)⊥,

and considering E0 := TME ⊕ E′ we have that E0 is trivial since its fibers are sum of orthogonal
complements and by (

eq:isovbeq:isovb
2.20) we are done.

c:tr Corollary 2.26. Every sub-Riemannian structure (U, f) on M is equivalent to a sub-Riemannian
structure (U′, f ′) where U′ is a trivial bundle.

Proof. By Lemma
l:triviall:trivial
2.25 there exists a vector bundle U′ such that the direct sum Ũ := U ⊕U′ is

a trivial bundle. Endow U′ with any metric structure g′. Define a metric on Ũ in such a way
that g̃(u + u′, v + v′) = g(u, v) + g′(u′, v′) on each fiber Ũq = Uq ⊕ U ′

q. Notice that Uq and U ′
q are

orthogonal.

Let us define the sub-Riemannian structure (Ũ, f̃) on M by

f̃ : Ũ → TM, f̃ := f ◦ p1,
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where p1 : U⊕U′ → U denotes the projection on the first factor. By construction, the diagram

Ũ
f̃

!!❇
❇❇

❇❇
❇❇

❇❇

U⊕U′

p1
##❍

❍❍
❍❍

❍❍
❍❍

Id

;;✇✇✇✇✇✇✇✇✇
TM

U
f

==④④④④④④④④④

(2.21) eq:diagr5

is commutative. Moreover condition (ii) of Definition
def:isodef:iso
2.17 is satisfied since for every ũ = u + u′,

with u ∈ Uq and u′ ∈ U ′
q, we have |ũ|2 = |u|2 + |u′|2, hence |u| = min{|ũ|, p1(ũ) = u}.

Since every sub-Riemannian structure is equivalent to a free one, in what follows we can assume
that there exists a global generating family, i.e., a family of f1, . . . , fm of vector fields globally
defined on M such that every admissible curve of the sub-Riemannian structure satisfies

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), (2.22) eq:global

Moreover, by the classical Gram-Schmidt procedure, we can assume that fi are the image of an
orthonormal frame defined on the fiber. (cf. Example

ex:trex:tr
4 of Section

s:esempis:esempi
2.1.3)

Hence the length of an admissible curve γ is given by

ℓ(γ) =

∫ T

0
|u∗(t)|dt =

∫ T

0

√√√√
m∑

i=1

u∗i (t)
2dt,

where u∗(t) is the minimal control.
Notice that Corollary

c:trc:tr
2.26 implies that the modulus of horizontal vector fields D is globally

generated by f1, . . . , fm.

r:menodiT Remark 2.27. Notice that the integral curve γ(t) = etfi , defined on [0, T ], of an element fi of a
generating family F = {f1, . . . , fm} is admissible and ℓ(γ) ≤ T . If F = {f1, . . . , fm} are linearly
independent then they are an orthonormal frame and ℓ(γ) = T .

2.2 Sub-Riemannian distance and Chow-Rashevskii Theorem
sec:chow

In this section we introduce the sub-Riemannian distance between two points as the infimum of
the length of admissible curves joining them.

Recall that, in the definition of sub-Riemannian manifold, M is assumed to be connected.
Moreover, thanks to the construction of Section

s:trivials:trivial
2.1.4, in what follows we can assume that the sub-

Riemannian structure is free, with generating family F = {f1, . . . , fm}. Notice that, by definition,
F is assumed to be bracket generating.

def:dist Definition 2.28. Let M be a sub-Riemannian manifold and q0, q1 ∈ M . The sub-Riemannian
distance (or Carnot-Caratheodory distance) between q0 and q1 is

d(q0, q1) = inf{ℓ(γ), γ admissible, γ(0) = q0, γ(T ) = q1}, (2.23) eq:dist
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theorem!Chow-ROne of the purpose of this section is to show that, thanks to the bracket generating condition,
(
eq:disteq:dist
2.23) is well-defined since, for every q0, q1 ∈ M , there exists an admissible curve that joins q0 to
q1 and d(q0, q1) < +∞.

th:chow Theorem 2.29 (Chow-Raschevskii). Let M be a sub-Riemannian manifold. Then

(i) (M, d) is a metric space,

(ii) the topology induced by (M, d) is equivalent to the manifold topology.

In particular, d :M ×M → R is continuous.

In what follows B(q, r) denotes the (open) sub-Riemannian ball of radius r and center q

B(q, r) := {q′ ∈M | d(q, q′) < r}.

The rest of this section is devoted to the proof of Theorem
th:chowth:chow
2.29. To prove Theorem

th:chowth:chow
2.29 we have

to show that d is actually a distance, i.e.,

(a) 0 ≤ d(q0, q1) < +∞ for all q0, q1 ∈M ,

(b) d(q0, q1) = 0 if and only if q0 = q1,

(c) d(q0, q1) = d(q1, q0) and d(q0, q2) ≤ d(q0, q1) + d(q1, q2) for all q0, q1, q2 ∈M ,

and the equivalence between the metric and the manifold topology: for every q0 ∈M we have

(d) for every ε > 0 there exists a neighborhood Oq0 of q0 such that Oq0 ⊂ B(q0, ε),

(e) for every neighborhood Oq0 of q0 there exists δ > 0 such that B(q0, δ) ⊂ Oq0 .

2.2.1 Proof of Chow-Raschevskii Theorem

The symmetry of d is a direct consequence of the fact that if γ : [0, T ] → M is admissible, then
the curve γ̃ : [0, T ] → M defined by γ̃(t) = γ(T − t) is admissible and ℓ(γ̃) = ℓ(γ). The triangular
inequality follows from the fact that the concatenation of two admissible curves is still admissible.
This proves (c).

We divide the rest of the proof of the Theorem in the following steps.

S1. We prove that, for every q0 ∈ M , there exists a neighborhood Oq0 of q0 such that d(q0, ·) is
finite and continuous in Oq0 . This proves (d).

S2. We prove that d is finite on M ×M . This proves (a).

S3. We prove (b) and (e).

To prove Step 1 we first need the following lemmas:

l:ugo Lemma 2.30. Let N ⊂M be a submanifold and F ⊂ Vec(M) be a family of vector fields tangent
to N , i.e. X(q) ∈ TqN, ∀ q ∈ N,X ∈ F . Then for all q ∈ N we have LieqF ⊂ TqN . In particular
dimLieqF ≤ dimN .
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Proof. Let X ∈ F . As a consequence of the local existence and uniqueness of the two Cauchy
problems {

q̇ = X(q), q ∈M,

q(0) = q0, q0 ∈ N.
and

{
q̇ = X

∣∣
N
(q), q ∈ N,

q(0) = q0, q0 ∈ N.

it follows that etX (q) ∈ N for every q ∈ N and t small enough.
This property, together with the definition of Lie bracket (see formula (

eq:liebrtuttoeq:liebrtutto
1.26)) implies that, if

X,Y are tangent to N , the vector field [X,Y ] is tangent to N as well.
Iterating this argument we get that LieqF ⊂ TqN for every q ∈ N , from which the conclusion

follows.

l:lemmachow Lemma 2.31. Let M be an n-dimensional sub-Riemannian manifold with generating family F =
{f1, . . . , fm}. Then, for every q0 ∈ M and every neighborhood V of the origin in R

n there exist
ŝ = (ŝ1, . . . , ŝn) ∈ V , and a choice of n vector fields fi1 , . . . , fin ∈ F , such that ŝ is a regular point
of the map

ψ : Rn →M, ψ(s1, . . . , sn) = esnfin ◦ · · · ◦ es1fi1 (q0).

r:no0 Remark 2.32. Notice that, if Dq0 6= Tq0M , then ŝ = 0 cannot be a regular point of the map ψ.
Indeed in this case, for each choice of the vector fields fi1 , . . . , fin ∈ F , the image of the differential
of ψ at s = 0 is spanq0{fij , j = 1, . . . , n} ⊂ Dq0 and the differential of ψ is not surjective.

We stress that, in the choice of fi1 , . . . , fin ∈ F , a vector field can appear more than once, as
for instance in the case m < n.

Proof of Lemma
l:lemmachowl:lemmachow
2.31. We prove the lemma by steps.

1. There exists a vector field fi1 ∈ F such that fi1(q0) 6= 0, otherwise all vector fields in F vanish
at q0 and dimLieq0F = 0, which contradicts the bracket generating condition. Then, for |s|
small enough, the map

φ1 : s1 7→ es1fi1 (q0),

is a local diffeomorphism onto its image Σ1. If dimM = 1 the Lemma is proved.

2. Assume dimM ≥ 2. Then there exist t11 ∈ R, with |t11| small enough, and fi2 ∈ F such that,

if we denote by q1 = et
1

1
fi1 (q0), the vector fi2(q1) is not tangent to Σ1. Otherwise, by Lemma

l:ugol:ugo
2.30, dim LieqF = 1, which contradicts the bracket generating condition. Then the map

φ2 : (s1, s2) 7→ es2fi2 ◦ es1fi1 (q0),

is a local diffeomorphism near (t11, 0) onto its image Σ2. Indeed the vectors

∂φ2
∂s1

∣∣∣∣
(t1

1
,0)

∈ Tq1Σ1,
∂φ2
∂s2

∣∣∣∣
(t1

1
,0)

= fi2(q1),

are linearly independent by construction. If dimM = 2 the Lemma is proved.

3. Assume dimM ≥ 3. Then there exist t12, t
2
2, with |t12 − t11| and |t22| small enough, and fi3 ∈ F

such that, if q2 = et
2

2
fi2 ◦ et12fi1 (q0) we have that fi3(q2) is not tangent to Σ2. Otherwise, by

Lemma
l:ugol:ugo
2.30, dim Lieq1D = 2, which contradicts the bracket generating condition. Then the

map
φ3 : (s1, s2, s3) 7→ es3fi3 ◦ es2fi2 ◦ es1fi1 (q0),
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is a local diffeomorphism near (t12, t
2
2, 0). Indeed the vectors

∂φ3
∂s1

∣∣∣∣
(t1

2
,t2
2
,0)

,
∂φ3
∂s2

∣∣∣∣
(t1

2
,t2
2
,0)

∈ Tq2Σ2,
∂φ3
∂s3

∣∣∣∣
(t1

2
,t2
2
,0)

= fi3(q2),

are linearly independent since the last one is transversal to Tq2Σ2 by construction, while the
first two are linearly independent since φ3(s1, s2, 0) = φ2(s1, s2) and φ2 is a local diffeomor-
phisms at (t12, t

2
2) which is close to (t11, 0).

Repeating the same argument n times (with n = dimM), the lemma is proved.

Proof of Step 1. Thanks to Lemma
l:lemmachowl:lemmachow
2.31 there exists a neighborhood V̂ ⊂ V of ŝ such that ψ is

a diffeomorphism from V̂ to ψ(V̂ ), see Figure
f-3-lemma-chf-3-lemma-ch
2.3. We stress that in general q0 = ψ(0) is not

contained ψ(V̂ ), cf. Remark
r:no0r:no0
2.32.

ψ(V̂ )

V

V̂

ŝ

ψ

q0

Figure 2.3: Proof of Lemma
l:lemmachowl:lemmachow
2.31 f-3-lemma-ch

To build a local diffeomorphism whose image contains q0, we consider the map

ψ̂ : Rn →M, ψ̂(s1, . . . , sn) = e−ŝ1fi1 ◦ · · · ◦ e−ŝnfin ◦ ψ(s1, . . . , sn),

which has the following property: ψ̂ is a diffeomorphism from a neighborhood of ŝ ∈ V , that we
still denote V̂ , to a neighborhood of ψ̂(ŝ) = q0.

Fix now ε > 0 and apply the construction above where V is the neighborhood of the origin
in R

n defined by V = {s ∈ R
n,
∑n

i=1 |si| < ε}. Let us show that the claim of Step 1 holds with

Oq0 = ψ̂(V̂ ). Indeed, for every q ∈ ψ̂(V̂ ), let s = (s1, . . . , sn) such that q = ψ̂(s), and denote by γ
the admissible curve joining q0 to q, built by 2n-pieces, as in Figure

f-3-lemma-ch2f-3-lemma-ch2
2.4.

In other words γ is the concatenation of integral curves of the vector fields fij , i.e. admissible

curves of the form t 7→ etfij (q) defined on some interval [0, T ], whose length is less or equal than T
(cf. Remark

r:menodiTr:menodiT
2.27). Since s, ŝ ∈ V̂ ⊂ V , it follows that:

d(q0, q) ≤ ℓ(γ) ≤ |s1|+ . . .+ |sn|+ |ŝ1|+ . . .+ |ŝn| < 2ε,

which ends the proof of Step 1.
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s

V

V̂

ψ̂

ψ(s)

q0

ψ̂(s)

ψ̂(V̂ )

Figure 2.4: The map ψ̂ f-3-lemma-ch2

Proof of Step 2. To prove that d is finite on M×M let us consider the equivalence classes of points
in M with respect to the relation

q1 ∼ q2 if d(q1, q2) < +∞. (2.24)

From the triangular inequality and the proof of Step 1, it follows that each equivalence class is open.
Moreover, by definition, the equivalence classes are disjoint. Since M is connected, it cannot be
the union of open disjoint and nonempty subsets. It follows that there exists only one equivalence
class.

l:deltaK Lemma 2.33. Let q0 ∈ M and K ⊂ M a compact set with q0 ∈ intK. Then there exists δK > 0
such that every admissible curve γ starting from q0 and with ℓ(γ) ≤ δK is contained in K.

Proof. Without loss of generality we can assume that K is contained in a coordinate chart of M ,
where we denote by | · | the Euclidean norm in the coordinate chart. Let us define

CK := max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

(2.25) eq:CK

and fix δK > 0 such that dist(q0, ∂K) > CKδK (here dist is the Euclidean distance in coordinates).

Let us show that for any admissible curve γ : [0, T ] → M such that γ(0) = q0 and ℓ(γ) ≤ δK
we have γ([0, T ]) ⊂ K. Indeed, if this is not true, there exists an admissible curve γ : [0, T ] → M
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with ℓ(γ) ≤ δK and t∗ := sup{t ∈ [0, T ], γ([0, t]) ⊂ K}, with t∗ < T . Then

|γ(t∗)− γ(0)| ≤
∫ t∗

0
|γ̇(t)|dt =

∫ t∗

0

m∑

i=1

|u∗i (t)fi(γ(t))| dt (2.26) eq:deltaK1

≤
∫ t∗

0

√√√√
m∑

i=0

|fi(γ(t))|2
√√√√

m∑

i=0

u∗i (t)
2 dt (2.27)

≤ CK

∫ t∗

0

√√√√
m∑

i=0

u∗i (t)
2 dt ≤ CKℓ(γ) (2.28) eq:deltaK2

≤ CKδK < dist(q0, ∂K). (2.29)

which contradicts the fact that, at t∗, the curve γ leaves the compact K. Thus t∗ = T .

Proof of Step 3. Let us prove that Lemma
l:deltaKl:deltaK
2.33 implies property (b). Indeed the only nontrivial

implication is that d(q0, q1) > 0 whenever q0 6= q1. To prove this, fix a compact neighborhood K of
q0 such that q1 /∈ K. By Lemma

l:deltaKl:deltaK
2.33, each admissible curve joining q0 and q1 has length greater

than δK , hence d(q0, q1) ≥ δK > 0.
Let us now prove property (e). Fix ε > 0 and a a compact neighborhood K of q0. Define CK

and δK as in Lemma
l:deltaKl:deltaK
2.33, and set δ := min{δK , ε/CK}. Let us show that |q − q0| < ε whenever

d(q0, q) < δ, where again | · | is the Euclidean norm in a coordinate chart.
Consider a minimizing sequence γn : [0, T ] →M of admissible trajectories joining q0 and q such

that ℓ(γn) → d(q0, q) for n → ∞. Without loss of generality, we can assume that ℓ(γn) ≤ δ for all
n. By Lemma

l:deltaKl:deltaK
2.33, γn([0, T ]) ⊂ K for all n.

We can repeat estimates (
eq:deltaK1eq:deltaK1
2.26)-(

eq:deltaK2eq:deltaK2
2.28) proving that |q − q0| = |γn(T )− γn(0)| ≤ CKℓ(γn) for all

n. Passing to the limit for n→ ∞, one gets

|q − q0| ≤ CKd(q0, q) ≤ CKδ < ε. (2.30)

c:smallballscpt Corollary 2.34. The metric space (M, d) is locally compact, i.e., for any q ∈M there exists ε > 0
such that the closed sub-Riemannian ball B(q, r) is compact for all 0 ≤ r ≤ ε.

Proof. By the continuity of d, the set B(q, r) = {d(q, ·) ≤ r} is closed for all q ∈ M and r ≥ 0.
Moreover the sub-Riemannian metric d induces the manifold topology onM . Hence, for radius small
enough, the sub-Riemannian ball is bounded. Thus small sub-Riemannian balls are compact.

2.3 Existence of minimizers
s:filippov

In this section we want to discuss the existence of minimizers of the distance.

Definition 2.35. Let γ : [0, T ] →M be an admissible curve. We say that γ is a length-minimizer
if it minimizes the length among admissible curves with same endpoints, i.e., ℓ(γ) = d(γ(0), γ(T )).

Remark 2.36. The example M = R
2 \ {0} endowed with the Euclidean distance shows that in

general there may be no minimizers between two points. However there may be several minimizers
between two fixed points, as it happens for two antipodal points on the sphere S2.
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Before proving the existence of length minimizers we show a general property of the length
functional.

t:semicont Theorem 2.37. Let γn be a sequence of admissible curves on M such that γn → γ uniformly.
Then

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn). (2.31) eq:semicont

If moreover lim infn→∞ ℓ(γn) < +∞, then γ is also admissible.

Proof. Without loss of generality we assume that γn and γ are parametrized with constant speed
on the interval [0, 1]. Moreover, denote L := lim inf ℓ(γn) and choose a subsequence, which we still
denote by the same symbol, such that ℓ(γn) → L. If L = +∞ the inequality (

eq:semiconteq:semicont
2.31) is clearly true,

thus assume L < +∞.
Fix δ > 0. By uniform convergence, it is not restrictive to assume that, for n large enough,

ℓ(γn) ≤ L+ δ and that the image of γn are all contained in a common compact set K. Since γn is
parametrized by constant speed on [0, 1] we have that γ̇n(t) ∈ Vγn(t) where

Vq = {fu(q), |u| ≤ L+ δ} ⊂ TqM, fu(q) =
m∑

i=1

uifi(q).

Notice that Vq is convex for every q ∈ M , thanks to the linearity of f in u. Let us prove that γ is
admissible and satisfies ℓ(γ) ≤ L+ δ. Since δ is arbitrary, this implies ℓ(γ) ≤ L, that is (

eq:semiconteq:semicont
2.31).

In local coordinates, we have for every ε > 0

1

ε
(γn(t+ ε)− γn(t)) =

1

ε

∫ t+ε

t
fun(τ)(γn(τ))dτ ∈ conv{Vγn(τ), τ ∈ [t, t+ ε]}. (2.32) eq:filippov

Moreover, for n sufficiently large, we have for τ ∈ [t, t+ ε]

|γn(τ)− γ(t)| ≤ |γn(t)− γn(τ)|+ |γn(t)− γ(t)| ≤ C ′ε, (2.33) eq:esttt

where C ′ is independent on n, ε. Indeed |γn(t)−γ(t)| < ε (by uniform convergence) and an estimate
similar to (

eq:deltaK2eq:deltaK2
2.28) gives for τ ∈ [t, t+ ε]

|γn(t)− γn(τ)| ≤
∫ τ

t
|γ̇n(s)|ds ≤ CK(L+ δ)ε. (2.34) eq:stimaequilip

where CK is the constant (
eq:CKeq:CK
2.25) defined by the compact K. From the estimate (

eq:esttteq:esttt
2.33) and the

equivalence of the manifold and metric topology we have that, for all τ ∈ [t, t + ε] and n big
enough, γn(τ) ∈ Bγ(t)(rε), where rε → 0 for ε→ 0. In particular

conv{Vγn(τ), τ ∈ [t, t+ ε]} ⊂ conv{Vq, q ∈ Bγ(t)(rε)}, (2.35) eq:inclfilip

Plugging (
eq:inclfilipeq:inclfilip
2.35) in (

eq:filippoveq:filippov
2.32) and passing to the limit for n→ ∞ we get:

1

ε
(γ(t+ ε)− γ(t)) ∈ conv{Vq, q ∈ Bγ(t)(rε)}. (2.36) eq:inclusion2

Assume now that t ∈ [0, 1] is a differentiability point of γ. Then the limit for ε→ 0 in (
eq:inclusion2eq:inclusion2
2.36) gives

γ̇(t) ∈ conv Vγ(t) = Vγ(t). For every such t we can define the unique solution u∗(t) to the problem
γ̇(t) = f(γ(t), u∗(t)) and |u∗(t)| = ‖γ̇(t)‖. Using the argument contained in Appendix

s:measlemmas:measlemma
2.A it follows

that u∗(t) is measurable in t. Moreover it is bounded since, by construction, |u∗(t)| ≤ L+ δ. Hence
γ is admissible. Moreover ℓ(γ) ≤ L+ δ since γ is parametrized on [0, 1].
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theorem!existenc
minimizers

t:filippov Corollary 2.38 (Existence of minimizers). Let M be a sub-Riemannian manifold and q0 ∈ M .
Assume that the ball Bq0(r) is compact, for some r > 0. Then for all q1 ∈ Bq0(r) there exists a
length minimizer joining q0 and q1, i.e., we have

d(q0, q1) = min{ℓ(γ), γ admissible , γ(0) = q0, γ(T ) = q1}.

Proof. Fix q1 ∈ Bq0(r) and consider a minimizing sequence of admissible trajectories γn : [0, 1] →
M , parametrized with constant speed, joining q0 and q1 and such that ℓ(γn) → d(q0, q1).

Since d(q0, q1) < r, we have ℓ(γn) ≤ r for all n large enough, hence we can assume without loss
of generality that the image of γn is contained in the common compact K = Bq0(r) for all n. In
particular, the same argument leading to (

eq:stimaequilipeq:stimaequilip
2.34) shows that for all n

|γn(t)− γn(τ)| ≤
∫ t

τ
|γ̇n(s)|ds ≤ CKr|t− τ |, ∀ t, τ ∈ [0, 1]. (2.37) eq:stimaequilip2

In other words all trajectories in the sequence {γn}n∈N are Lipschitz with the same Lipschitz
constant. Thus the sequence is equicontinuous and uniformly bounded.

By the classical Ascoli-Arzelà Theorem there exist a subsequence of γn, which we still denote by
the same symbol, and a Lipschitz curve γ : [0, T ] →M such that we have uniform convergence γn →
γ. By Theorem

t:semicontt:semicont
2.37 the curve γ is admissible and has length ℓ(γ) ≤ lim inf ℓ(γn) = d(q0, q1).

Corollary 2.39. Let q0 ∈M . Under the hypothesis of Corollary
t:filippovt:filippov
2.38 there exists ε > 0 such that

for all r ≤ ε and q1 ∈ Bq0(r) there exists a minimizing curve joining q0 and q1.

Proof. It is a direct consequence of Corollary
t:filippovt:filippov
2.38 and Corollary

c:smallballscptc:smallballscpt
2.34.

Remark 2.40. It is well known that a length space is complete if and only if all closed balls are
compact, see

burago
[?, Ch. 2]. In particular, if (M, d) is complete with respect to the sub-Riemannian

distance, then for every q0, q1 ∈M there exists a length minimizer joining q0 and q1.

2.4 Pontryagin extremals

In this section we want to give necessary conditions to characterize the length minimizers. To begin
with, we would like to motivate our Hamiltonian approach that we develop in the sequel.

In classical Riemannian geometry geodesics are local (in time) length-minimizers, appropriately
parametrized. They satisfy a second order differential equation in M , which can be reduced to a
first-order differential equation in TM . Hence the set of all geodesics can be parametrized by initial
position and velocity.

In our setting (which includes Riemannian and sub-Riemannian geometry) we cannot use the
initial velocity to parametrize geodesics. This can be easily understood by a dimensional argument.
If the rank of the sub-Riemannian structure is smaller than the dimension of the manifold, the initial
velocity γ̇(0) of an admissible curve γ(t) starting from q0, belongs to the proper subspace Dq0 of the
tangent space Tq0M . Hence the set of admissible velocities form a set whose dimension is smaller
than the dimension of M , even if, by the Chow and Filippov theorems, geodesics starting from a
point q0 cover a full neighborhood of q0.

The right approach is to parametrize the geodesics by their initial point and an initial cov-
ector λ0 ∈ T ∗

q0M , which can be thought as the linear form annihilating the “front”, i.e. the set
{γq0(ε), where γq0 is a geodesic starting from q0} on the corresponding geodesic for ε→ 0.
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extremal!normal
extremal!abnormal
extremal!path

Next theorem is the first version of Pontryagin maximum principle, whose proof is given in the
next section.

p:pmp Theorem 2.41 (Characterization of Pontryagin extremals). Let γ : [0, T ] → M be an admissible
curve which is a length-minimizer, parametrized by constant speed. Let ũ(·) be the corresponding
minimal control, i.e.,

γ̇(t) =

m∑

i=1

ũi(t)fi(γ(t)), ℓ(γ) =

∫ T

0
|ũ(t)|dt = d(γ(0), γ(T )), |ũ(t)| = const. a.e.

Denote with P0,t the flow2 of the nonautonomous vector field fũ(t) =
∑k

i=1 ũi(t)fi. Then there exists
λ0 ∈ T ∗

γ(0)M such that defining

λ(t) := (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (2.38) eq:pmplambda

we have that one of the following conditions is satisfied:

(N) ũi(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m.

Moreover in case (A) one has λ0 6= 0.

Notice that, by definition, the curve λ(t) is Lipschitz continuous. Moreover the conditions (N)
and (A) are mutually exclusive, unless ũ(t) ≡ 0 a.e., i.e., γ is the trivial trajectory.

Definition 2.42. Let γ : [0, T ] →M be an admissible curve with minimal control ũ ∈ L∞([0, T ],Rm).
Fix λ0 ∈ T ∗

γ(0)M \ {0}, and define λ(t) by (
eq:pmplambdaeq:pmplambda
2.38).

- If λ(t) satisfies (N) then it is called normal extremal (and γ(t) a normal extremal trajectory).

- If λ(t) satisfies (A) then it is called abnormal extremal (and γ(t) a abnormal extremal trajec-
tory).

Remark 2.43. In the Riemannian case there are no abnormal extremals. Indeed, since the map f
is fiberwise surjective, we can always find m vector fields f1, . . . , fm on M such that

spanq0{f1, . . . , fm} = Tq0M,

and (A) would imply that 〈λ0, v〉 = 0, for all v ∈ Tq0M , that gives the contradiction λ0 = 0.

Remark 2.44. If the sub-Riemannian structure is not surjective at q0, i.e., spanq0{f1, . . . , fm} 6=
Tq0M , then the trivial trajectory, corresponding to ũ(t) ≡ 0, is always normal and abnormal.

Notice that even a nontrivial admissible trajectory γ can be both normal and abnormal, since
there may exist two different lifts λ(t), λ′(t) ∈ T ∗

γ(t)M , such that λ(t) satisfies (N) and λ′(t) satisfies

(A).

Exercise 2.45. Prove that condition (N) of Theorem
eq:pmplambdaeq:pmplambda
2.38 implies that the minimal control ũ(t)

is smooth. In particular normal extremals are smooth.

At this level it seems not obvious how to use Theorem
p:pmpp:pmp
2.41 to find the explicit expression of

extremals for a given problem. In the next chapter we provide another formulation of Theorem
p:pmpp:pmp
2.41 which gives Pontryagin extremals as solutions of a Hamiltonian system.

The rest of this section is devoted to the proof of Theorem
p:pmpp:pmp
2.41.

2defined for t ∈ [0, T ] and in a neighborhood of γ(0)
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energy functional2.4.1 The energy functional

Let γ : [0, T ] →M be an admissible curve. We define the energy functional J as follows

J(γ) =
1

2

∫ T

0
‖γ̇(t)‖2dt.

Remark 2.46. Notice that, while ℓ is invariant by reparametrization (see Remark
l:linvariantl:linvariant
2.14), J is not.

Indeed consider, for every α > 0, the reparametrized curve

γα : [0, T/α] →M, γα(t) = γ(αt).

Using that γ̇α(t) = α γ̇(αt), we have

J(γα) =
1

2

∫ T/α

0
‖γ̇α(t)‖2dt =

1

2

∫ T/α

0
α2‖γ̇(αt)‖2dt = αJ(γ).

Thus, if the final time is not fixed, the infimum of J , among admissible curves joining two fixed
points, is always zero. The following lemma relates minimizers of J with fixed final time with
minimizers of ℓ.

l:Jell Lemma 2.47. Fix T > 0 and let Ωq0,q1 be the set of admissible curves joining q0, q1 ∈ M . An
admissible curve γ : [0, T ] → M is a minimizer of J on Ωq0,q1 if and only if it is a minimizer of ℓ
on Ωq0,q1 and has constant speed.

Proof. Applying the Cauchy-Schwarz inequality

(∫ T

0
f(t)g(t)dt

)2

≤
∫ T

0
f(t)2dt

∫ T

0
g(t)2dt, (2.39) eq:cs0

with f(t) = ‖γ̇(t)‖ and g(t) = 1 we get

ℓ(γ)2 ≤ 2J(γ)T. (2.40) eq:cs

Moreover in (
eq:cs0eq:cs0
2.39) equality holds if and only if f is proportional to g, i.e. ‖γ̇(t)‖ = const. in (

eq:cseq:cs
2.40).

Since, by Lemma
l:reparaml:reparam
2.15, every curve is a Lipschitz reparametrization of a length-parametrized one,

the minima of J are attained at admissible curves with constant speed, and the statement follows.

2.4.2 Proof of Theorem
p:pmpp:pmp

2.41

By Lemma
l:Jelll:Jell
2.47 we can assume that γ is a minimizer of the functional J among admissible curves

joining q0 = γ(0) and q1 = γ(T ) in fixed time T > 0. In particular, if we define the functional

J̄(u(·)) := 1

2

∫ T

0
|u(t)|2dt, (2.41) eq:costugo

on the space of controls u(·) ∈ L∞([0, T ],Rm), the minimal control ũ(·) of γ is a minimizer for the
energy functional J̄

J̄(ũ(·)) ≤ J̄(u(·)), ∀u ∈ L∞([0, T ],Rm),
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where trajectories corresponding to u(·) join q0, q1 ∈M . In the following we denote the functional
J̄ by J .

Consider now a variation u(·) = ũ(·)+v(·) of the control ũ(·), and its associated trajectory q(t),
solution of the equation

q̇(t) = fu(t)(q(t)), q(0) = q0, (2.42)

Recall that P0,t denotes the local flow associated with the optimal control ũ(·) and that γ(t) =
P0,t(q0) is the optimal admissible curve. We stress that in general, for q different from q0, the curve
t 7→ P0,t(q) is not optimal. Let us introduce the curve x(t) defined by

q(t) := P0,t(x(t)). (2.43) eq:change0

In other words x(t) = P−1
0,t (q(t)) is obtained by applying the inverse of the flow of ũ(·) to the solution

associated with the new control u(·) (see Figure
f-3-pmp1f-3-pmp1
2.5). Notice that if v(·) = 0, then x(t) ≡ q0.

x(t)

q(t) P0,t

q0

Figure 2.5: The trajectories q(t), associated with u(·) = ũ(·) + v(·), and the corresponding x(t). f-3-pmp1

The next step is to write an ODE satisfied by x(t). Differentiating (
eq:change0eq:change0
2.43) we get

q̇(t) = fũ(t)(q(t)) + (P0,t)∗(ẋ(t)) (2.44)

= fũ(t)(P0,t(x(t)) + (P0,t)∗(ẋ(t)) (2.45) eq:pmpp

and using that q̇(t) = fu(t)(q(t)) = fu(t)(P0,t(x(t)) we can invert (
eq:pmppeq:pmpp
2.45) with respect to ẋ(t) and

rewrite it as follows

ẋ(t) = (P−1
0,t )∗

[
(fu(t) − fũ(t))(P0,t(x(t)))

]

=
[
(P−1

0,t )∗(fu(t) − fũ(t))
]
(x(t))

=
[
(P−1

0,t )∗(fu(t)−ũ(t))
]
(x(t))

=
[
(P−1

0,t )∗fv(t)

]
(x(t)) (2.46) eq:aus1

If we define the nonautonomous vector field gtv(t) = (P−1
0,t )∗fv(t) we finally obtain by (

eq:aus1eq:aus1
2.46) the

following Cauchy problem for x(t)

ẋ(t) = gtv(t)(x(t)), x(0) = q0. (2.47) eq:nuova
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Notice that the vector field gtv is linear with respect to v, since fu is linear with respect to u. Now
we fix the control v(t) and consider the map

s ∈ R 7→
(
J(ũ+ sv)
x(T ; ũ+ sv)

)
∈ R×M

where x(T ; ũ + sv) denote the solution at time T of (
eq:nuovaeq:nuova
2.47), starting from q0, corresponding to

control ũ(·) + sv(·), and J(ũ+ sv) is the associated cost.

l:pmp Lemma 2.48. There exists λ̄ ∈ (R⊕ Tq0M)∗, with λ̄ 6= 0, such that for all v ∈ L∞([0, T ],Rm)

λ̄ ⊥
(
∂J(ũ+ sv)

∂s

∣∣∣
s=0

,
∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

)
. (2.48) eq:perp

Proof of Lemma
l:pmpl:pmp
2.48 . We argue by contradiction: if (

eq:perpeq:perp
2.48) is not true then there exist v0, . . . , vn ∈

L∞([0, T ],Rm) such that the vectors in R⊕ Tq0M



∂J(ũ+ sv0)

∂s

∣∣∣
s=0

∂x(T ; ũ+ sv0)

∂s

∣∣∣
s=0


 , . . . ,




∂J(ũ+ svn)

∂s

∣∣∣
s=0

∂x(T ; ũ+ svn)

∂s

∣∣∣
s=0


 (2.49) eq:indv

are linearly independent. Let us now consider the map

Φ : Rn+1 → R×M, Φ(s0, . . . , sn) =

(
J(ũ+

∑n
i=0 sivi)

x(T ; ũ+
∑n

i=0 sivi)

)
. (2.50) eq:maplemma

By differentiability properties of solution of smooth ODEs with respect to parameters, the map
(
eq:maplemmaeq:maplemma
2.50) is smooth. Moreover, since the vectors (

eq:indveq:indv
2.49) are the components of the differential of Φ and

they are independent, then the inverse function theorem implies that Φ is a local diffeomorphism
sending a neighborhood of 0 in R

n+1 in a neighborhood of (J(ũ), q0) in R×M . As a result we can
find v(·) =∑i sivi(·) such that (see also Figure

f-3-megliof-3-meglio
2.4.2)

x(T ; ũ+ v) = q0, J(ũ+ v) < J(ũ).

x(T, ū)

J(ū)

J

x

f-3-meglio

In other words the curve t 7→ q(t; ũ+ v) join q(0, ũ+ v) = q0 to

q(T ; ũ+ v) = P0,T (x(T ; ũ+ v)) = P0,T (q0) = q1,

with a cost smaller that the cost of γ(t) = q(t, ũ), which is a contradiction
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Notice that if λ̄ satisfies (
eq:perpeq:perp
2.48), then for every α ∈ R, with α 6= 0, αλ̄ satisfies (

eq:perpeq:perp
2.48) too. Thus

we can normalize λ̄ to be (−1, λ0) or (0, λ0), with λ0 ∈ T ∗
q0M , and λ0 6= 0 in the second case (since

λ̄ is non zero).

Hence condition (
eq:perpeq:perp
2.48) implies that there exists λ0 ∈ T ∗

q0M such that one of the following
identities is satisfied for all v ∈ L∞([0, T ],Rm):

∂J(ũ+ sv)

∂s

∣∣∣
s=0

=

〈
λ0,

∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

〉
, (2.51) eq:lpmp1

0 =

〈
λ0,

∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

〉
. (2.52) eq:lpmp2

with λ0 6= 0 in the second case. To end the proof we have to show that identities (
eq:lpmp1eq:lpmp1
2.51) and (

eq:lpmp2eq:lpmp2
2.52)

are equivalent to conditions (N) and (A) of Theorem
p:pmpp:pmp
2.41. Let us show that

∂J(ũ+ sv)

∂s

∣∣∣
s=0

=

∫ T

0

m∑

i=1

ũi(t)vi(t)dt, (2.53) eq:opmp1

∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

=

∫ T

0
gtv(t)(q0)dt =

∫ T

0

m∑

i=1

((P−1
0,t )∗fi)(q0)vi(t)dt. (2.54) eq:opmp2

Identity (
eq:opmp1eq:opmp1
2.53) follows from the definition of J

J(ũ+ sv) =
1

2

∫ T

0
|ũ+ sv|2dt, (2.55)

while (
eq:opmp2eq:opmp2
2.54) can be proved in coordinates. Indeed by (

eq:nuovaeq:nuova
2.47) and the linearity of gv with respect to

v we have

x(T ; ũ+ sv) = q0 + s

∫ T

0
gtv(t)(x(t; ũ+ sv))dt,

and differentiating with respect to s at s = 0 one gets (
eq:opmp2eq:opmp2
2.54).

Let us show that (
eq:lpmp1eq:lpmp1
2.51) is equivalent to (N) of Theorem

p:pmpp:pmp
2.41. Similarly, one gets that (

eq:lpmp2eq:lpmp2
2.52) is

equivalent to (A). Using (
eq:opmp1eq:opmp1
2.53) and (

eq:opmp2eq:opmp2
2.54), equation (

eq:lpmp1eq:lpmp1
2.51) is rewritten as

∫ T

0

m∑

i=1

ũi(t)vi(t)dt =

∫ T

0

m∑

i=1

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
vi(t)dt

=

∫ T

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt, (2.56) eq:

where we used, for every i = 1, . . . ,m, the identities

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
=
〈
λ0, (P

−1
0,t )∗fi(γ(t))

〉
=
〈
(P−1

0,t )
∗λ0, fi(γ(t))

〉
= 〈λ(t), fi(γ(t))〉 .

Since vi(·) ∈ L∞([0, T ],Rm) are arbitrary, we get ũi(t) = 〈λ(t), fi(γ(t))〉 for a.e. t ∈ [0, T ].
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2.A Measurability of the minimal control
s:measlemma

In this appendix we prove a technical lemma about measurability of solutions to minimization
problems. This lemma when specified to the sub-Riemannian context, implies that the minimal
control associated with an admissible curve is measurable.

Let us fix an interval I = [a, b] ⊂ R and a compact set U ⊂ Rm. Consider two functions
g : I × U → R

n, v : I → R
n such that

(M1) g(t, u) is measurable with respect to t and continuous with respect to u.

(M2) v(t) is measurable with respect to t.

Moreover we assume that

(M3) for every fixed t ∈ I, the problem min{|u| : g(t, u) = v(t), u ∈ U} has a unique solution.

Let us denote by u∗(t) the solution of (M3) for fixed t ∈ I.

Lemma 2.49. The scalar function t 7→ |u∗(t)| is measurable on I.

Proof. Denote ϕ(t) := |u∗(t)|. To prove the lemma we show that for every fixed r > 0 the set

A = {t ∈ I : ϕ(t) ≤ r}

is measurable in R. By our assumptions

A = {t ∈ I : ∃u ∈ U s.t. |u| ≤ r, g(t, u) = v(t)}

Let us fix r > 0 and a countable dense set {ui}i∈N in the ball of radius r in U . Let show that

A =
⋂

n∈N

An =
⋂

n∈N

⋃

i∈N

Ai,n

︸ ︷︷ ︸
:=An

(2.57) eq:1

where

Ai,n := {t ∈ I : |g(t, ui)− v(t)| < 1/n}
Notice that the set Ai,n is measurable by construction and if (

eq:1eq:1
2.57) is true, A is also measurable.

⊂ inclusion. Let t ∈ A. This means that there exists ū ∈ U such that |ū| ≤ r and g(t, ū) = v(t).
Since g is continuous with respect to u and {ui}i∈N is a dense, for each n we can find uin such that
|g(t, uin)− v(t)| < 1/n, that is t ∈ An for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N An. Then for every n there exists in such that the corresponding
uin satisfies |g(t, uin) − v(t)| < 1/n. From the sequence uin , by compactness, it is possible to
extract a convergent susequence uin → ū. By continuity of g with respect to u one easily gets that
g(t, ū) = v(t). That is t ∈ A.

Next we exploit the fact that the function ϕ(t) := |u∗(t)| is measurable to show that the vector
function u∗(t) is measurable.
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admissible curve Lemma 2.50. The vector function t 7→ u∗(t) is measurable on I.

Proof. It is sufficient to prove that, for every closed ball O in R
n the set

B := {t ∈ I : u∗(t) ∈ O}

is measurable. Since the minimum in (M3) is uniquely determined, this is equivalent to

B = {t ∈ I : ∃u ∈ O s.t. |u| = ϕ(t), g(t, u) = v(t)}

Let us fix the ball O and a countable dense set {ui}i∈N in O. Let show that

B =
⋂

n∈N

Bn =
⋂

n∈N

⋃

i∈N

Bi,n

︸ ︷︷ ︸
:=Bn

(2.58) eq:2

where

Bi,n := {t ∈ I : |ui| < ϕ(t) + 1/n, |g(t, ui)− v(t)| < 1/n; }
Notice that the set Bi,n is measurable by construction and if (

eq:2eq:2
2.58) is true, B is also measurable.

⊂ inclusion. Let t ∈ B. This means that there exists ū ∈ O such that |ū| = ϕ(t) and
g(t, ū) = v(t). Since g is continuous with respect to u and {ui}i∈N is a dense in O, for each n we
can find uin such that |g(t, uin)− v(t)| < 1/n and |uin | < ϕ(t) + 1/n, that is t ∈ Bn for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N Bn. Then for every n it is possible to find in such that the
corresponding uin satisfies |g(t, uin )− v(t)| < 1/n and |uin | < ϕ(t) + 1/n. From the sequence uin ,
by compactness of the closed ball O, it is possible to extract a convergent susequence uin → ū. By
continuity of f in u one easily gets that g(t, ū) = v(t). Moreover |ū| ≤ ϕ(t). Hence |ū| = ϕ(t).
That is t ∈ B.

2.A.1 Proof of Lemma
l:measlemmal:measlemma

2.11

Consider an admissible curve γ : [0, T ] →M and set g(t, u) = f(γ(t), u), v(t) = γ̇(t).
Notice that assumptions (M1)-(M3) are satisfied. Indeed (M1) and (M2) follow from the fact

that g(t, u) is linear with respect to u and measurable in t. Moreover (M3) is also satisfied by
linearity with respect to u of f .

2.B Lipschitz vs Absolutely continuous admissible curves

In these lecture notes sub-Riemannian geometry is developed in the framework of Lipschitz admissi-
ble curves (that correspond to the choice of L∞ controls). However, the theory can be equivalently
developed in the framework of H1 admissible curves (corresponding to L2 controls) or in the frame-
work of absolutely continuous admissible curves (corresponding to L1 controls).

Definition 2.51. An absolutely continuous curve γ : [0, T ] → M is said to be AC-admissible if
there exists an L1 function u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t) such that γ̇(t) = f(γ(t), u(t)), for a.e.
t ∈ [0, T ]. We define H1-admissible curves similarly.
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Being the set of absolutely continuous curve bigger than the set of Lipschitz ones, one could
expect that the sub-Riemannian distance between two points is smaller when computed among all
absolutely continuous admissible curves. However this is not the case thanks to the invariance by
reparametrization. Indeed Lemmas

l:linvariantl:linvariant
2.14 and

l:reparaml:reparam
2.15 can be rewritten in the absolutely continuous

framework in the following form.

l:linvariantAC Lemma 2.52. The length of an AC-admissible curve is invariant by AC reparametrization.

l:reparamAC Lemma 2.53. Any AC-admissible curve of positive length is a AC reparametrization of a length-
parametrized admissible one.

The proof of Lemma
l:linvariantACl:linvariantAC
2.52 differs from the one of Lemma

l:linvariantl:linvariant
2.14 only by the fact that, if u∗ ∈ L1

is the minimal control of γ then (u∗ ◦ ϕ)ϕ̇ is the minimal control associated with γ ◦ ϕ. Moreover
(u∗ ◦ ϕ)ϕ̇ ∈ L1, using the monotonicity of ϕ. Under these assumptions the change of variables
formula (

eq:chvareq:chvar
2.14) still holds.

The proof of Lemma
l:reparamACl:reparamAC
2.53 is unchanged. Notice that the statement of Exercise

es:mis0es:mis0
2.16 remains true

if we replace Lipschitz with absolutely continuous. We stress that the curve γ built in the proof is
Lipschitz (since it is length-parametrized).

As a consequence of these results, if we define

dAC(q0, q1) = inf{ℓ(γ), γ AC -admissible, γ(0) = q0, γ(T ) = q1}, (2.59) def:dist

we have the following proposition.

p:ddac Proposition 2.54. dAC(q0, q1) = d(q0, q1)

Since L2([0, T ]) ⊂ L1([0, T ]), Lemmas
l:linvariantACl:linvariantAC
2.52,

l:reparamACl:reparamAC
2.53 and Proposition

p:ddacp:ddac
2.54 are valid also in the

framework of admissible curves associated with L2 controls.
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Chapter 3

Characterization and local minimality

of Pontryagin extremals

c:hamiltonian
This chapter is devoted to the study of geometric properties of Pontryagin extremals. To this
purpose we first rewrite Theorem

p:pmpp:pmp
2.41 in a more geometric setting, which permits to write a

differential equation in T ∗M satisfied by Pontryagin extremals and to show that they do not
depend on the choice of a generating family. Finally we prove that small pieces of normal extremal
trajectories minimize the length.

To this aim, all along this chapter we develop the language of symplectic geometry, starting by
the key concept of Poisson bracket.

3.1 Geometric characterization of Pontryagin extremals

In the previuos chapter we proved that if γ : [0, T ] →M is a length minimizer on a sub-Riemannian
manifold, associated with a control u(·), then there exists λ0 ∈ T ∗

γ(0)M such that defining

λ(t) = (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (3.1) eq:lambatH

we have that one of the following conditions is satisfied:

(N) ui(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m, λ0 6= 0.

Here P0,t denotes the flow associated with the nonautonomous vector field fu(t) =
∑m

i=1 ui(t)fi and

(P−1
0,t )

∗ : T ∗
qM → T ∗

P0,t(q)
M. (3.2) eq:inducedflow

is the induced flow on the cotangent space.

The goal of is section is to characterize the curve (
eq:lambatHeq:lambatH
3.1) as the integral curve of a suitable (non-

autonomous) vector field on T ∗M . To this purpose, we first show that a vector field on T ∗M is
completely characterized by its action on function that are affine on fibers. To fix the ideas, we
first focus on the case in which P0,t : M → M is the flow associated with an autonomous vector
field X ∈ Vec(M), namely P0,t = etX .
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3.1.1 Lifting a vector field from M to T ∗M
sec:sympl

We start by some preliminary considerations on the algebraic structure of smooth functions on
T ∗M . As usual π : T ∗M →M denotes the canonical projection.

Functions in C∞(M) are in a one-to-one correspondence with functions in C∞(T ∗M) that are
constant on fibers via the map α 7→ π∗α = α ◦ π. In other words we have the isomorphism of
algebras

C∞(M) ≃ C∞
cst(T

∗M) := {π∗α |α ∈ C∞(M)} ⊂ C∞(T ∗M). (3.3)

In what follows, with abuse of notation, we often identify the function π∗α ∈ C∞(T ∗M) with the
function α ∈ C∞(M).

In a similar way smooth vector fields onM are in a one-to-one correspondence with functions in
C∞(T ∗M) that are linear on fibers via the map Y 7→ aY , where aY (λ) := 〈λ, Y (q)〉 and q = π(λ).

Vec(M) ≃ C∞
lin(T

∗M) := {aY |Y ∈ Vec(M)} ⊂ C∞(T ∗M). (3.4)

Notice that this is an isomorphism as modules over C∞(M). Indeed, as Vec(M) is a module over
C∞(M), we have that C∞

lin(T
∗M) is a module over C∞(M) as well. For any α ∈ C∞(M) and

aX ∈ C∞
lin(T

∗M) their product is defined as αaX := (π∗α)aX = aαX ∈ C∞
lin(T

∗M).

Definition 3.1. We say that a function a ∈ C∞(T ∗M) is affine on fibers if there exists two functions
α ∈ C∞

cst(T
∗M) and aX ∈ C∞

lin(T
∗M) such that a = α+ aX . In other words

a(λ) = α(q) + 〈λ,X(q)〉 , q = π(λ).

We denote by C∞
aff(T

∗M) the set of affine function on fibers.

r:affine0 Remark 3.2. Linear and affine functions on T ∗M are particularly important since they reflects the
linear structure of the cotangent bundle. In particular every vector field on T ∗M , as a derivation
of C∞(T ∗M), is completely characterized by its action on affine functions,

Indeed for a vector field V ∈ Vec(T ∗M) and f ∈ C∞(T ∗M), one has that

(V f)(λ) =
d

dt

∣∣∣∣
t=0

f(etV (λ)) = 〈dλf, V (λ)〉 , λ ∈ T ∗M. (3.5) eq:fVfV

which depends only on the differential of f at the point λ. Hence, for each fixed λ ∈ T ∗M ,
to compute (

eq:fVfVeq:fVfV
3.5) one can replace the function f with any affine function whose differential at λ

coincide with dλf . Notice that such a function is not unique.

Let us now consider the generator of the flow (P−1
0,t )

∗ = (e−tX)∗. Since it satisfies the group law

(e−tX)∗ ◦ (e−sX)∗ = (e−(t+s)X )∗ ∀ t, s ∈ R,

by Lemma
l:nonautautl:nonautaut
1.10 its generator is an autonomous vector field VX on T ∗M . In other words we have

(e−tX)∗ = etVX for all t.
Let us then compute the right hand side of (

eq:fVfVeq:fVfV
3.5) when V = VX and f is either a function

constant on fibers or a function linear on fibers.
The action of VX on functions that are constant on fibers, of the form β ◦ π with β ∈ C∞(M),

coincides with the action of X. Indeed we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

β ◦ π((e−tX)∗λ)) = d

dt

∣∣∣∣
t=0

β(etX (q)) = (Xα)(q), q = π(λ). (3.6) eq:V1
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Poisson bracketFor what concerns the action of VX on functions that are linear on fibers, of the form aY (λ) =
〈λ, Y (q)〉, we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

aY ((e
−tX )∗λ) =

d

dt

∣∣∣∣
t=0

〈
(e−tX )∗λ, Y (etX(q))

〉

=
d

dt

∣∣∣∣
t=0

〈
λ, (e−tX∗ Y )(q)

〉
= 〈λ, [X,Y ](q)〉 (3.7) eq:V2

= a[X,Y ](λ).

Hence, by linearity, one gets that the action of VX on functions of C∞
aff(T

∗M) is

VX(β + aY ) = Xβ + a[X,Y ]. (3.8) eq:V3

As explained in Remark
r:affine0r:affine0
3.2, formula (

eq:V3eq:V3
3.8) characterizes completely the generator VX of (P−1

0,t )
∗.

To find its explicit form we introduce the notion of Poisson bracket.

3.1.2 The Poisson bracket

The purpose of this section is to introduce an operation {·, ·} on C∞(T ∗M), called Poisson bracket.
First we introduce it in C∞

lin(T
∗M), where it can be seen as the Lie bracket of vector fields in

Vec(M), seen as elements of C∞
lin(T

∗M). Then it is uniquely extended to C∞
aff(T

∗M) and C∞(T ∗M)
by requiring that it is a derivation of the algebra C∞(T ∗M) in each argument.

More precisely we start by the following definition.

Definition 3.3. Let aX , aY ∈ C∞
lin(T

∗M) be associated with vector fields X,Y ∈ Vec(M). Their
Poisson bracket is defined by

{aX , aY } := a[X,Y ], (3.9) eq:poisslin

where a[X,Y ] is the function in C∞
lin(T

∗M) associated with the vector field [X,Y ].

Remark 3.4. Recall that the Lie bracket is a bilinear, skew-symmetric map defined on Vec(M),
that satisfies the Leibnitz rule for X,Y ∈ Vec(M):

[X,αY ] = α[X,Y ] + (Xα)Y, ∀α ∈ C∞(M). (3.10) eq:lieleibnitz

As a consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies the following relation

{aX , α aY } = {aX , aαY } = a[X,αY ] = αa[X,Y ] + (Xα) aY , ∀α ∈ C∞(M). (3.11) eq:b1

Notice that this relation makes sense since the product between α ∈ C∞
cst(T

∗M) and aX ∈ C∞
lin(T

∗M)
belong to C∞

lin(T
∗M), i.e. αaX = aαX .

Now we extend this definition on the whole C∞(T ∗M).

p:expoisson Proposition 3.5. There exists a unique bilinear and skew-simmetric map

{·, ·} : C∞(T ∗M)× C∞(T ∗M) → C∞(T ∗M)

that extends (
eq:poisslineq:poisslin
3.9) on C∞(T ∗M), and that is a derivation in each argument, i.e. it satisfies

{a, bc} = {a, b}c + {a, c}b, ∀ a, b, c ∈ C∞(T ∗M). (3.12) eq:poissder0

We call this operation the Poisson bracket on C∞(T ∗M).
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Proof. We start by proving that, as a consequence of the requirement that {·, ·} is a derivation in
each argument, it is uniquely extended to C∞

aff(T
∗M).

By linearity and skew-symmetry we are reduced to compute Poisson brackets of kind {aX , α}
and {α, β}, where aX ∈ C∞

lin(T
∗M) and α, β ∈ C∞

cst(T
∗M). Using that aαY = αaY and (

eq:poissder0eq:poissder0
3.12) one

gets

{aX , aαY } = {aX , α aY }
= α{aX , aY }+ {aX , α}aY . (3.13) eq:b2

Comparing (
eq:b1eq:b1
3.11) and (

eq:b2eq:b2
3.13) one gets

{aX , α} = Xα (3.14) eq:poisson11

Next, using (
eq:poissder0eq:poissder0
3.12) and (

eq:poisson11eq:poisson11
3.14), one has

{aαY , β} = {α aY , β} = α{aY , β} + {α, β}aY (3.15) eq:b3

= αY β + {α, β}aY . (3.16)

Using again (
eq:poisson11eq:poisson11
3.14) one also has {aαY , β} = αY β, hence {α, β} = 0.

Combining the previous formulas one obtains the following expression for the Poisson bracket
between two affine functions on T ∗M

{aX + α, aY + β} := a[X,Y ] +Xβ − Y α. (3.17) eq:poissaffine

From the explicit formula (
eq:poissaffineeq:poissaffine
3.17) it is easy to see that the Poisson bracket computed at a fixed

λ ∈ T ∗M depends only on the differential of the two functions aX + α and aY + β at λ.

Next we extend this definition to C∞(T ∗M) in such a way that it is still a derivation. For
f, g ∈ C∞(T ∗M) we define

{f, g}|λ := {af,λ, ag,λ}|λ (3.18) eq:newpoisson

where af,λ and ag,λ are two functions in C∞
aff(T

∗M) such that dλf = dλ(af,λ) and dλg = dλ(ag,λ).

The definition (
eq:newpoissoneq:newpoisson
3.18) is well posed, since if we take two different affine functions af,λ and a′f,λ

their difference satisfy dλ(af,λ− a′f,λ) = dλ(af,λ)− dλ(a
′
f,λ) = 0, hence by bilinearity of the Poisson

bracket

{af,λ, ag,λ}|λ = {a′f,λ, ag,λ}|λ.

Let us now compute the coordinate expression of the Poisson bracket. In canonical coordinates
(p, x) in T ∗M , if

X =

n∑

i=1

Xi(x)
∂

∂xi
, Y =

n∑

i=1

Yi(x)
∂

∂xi
,

we have

aX(p, x) =

n∑

i=1

piXi(x), aY (p, x) =

n∑

i=1

piYi(x).
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Hamiltonian!vector
vector field!Hamiltonian

and, denoting f = aX + α, g = aY + β we have

{f, g} = a[X,Y ] +Xβ − Y α

=
n∑

i,j=1

pj

(
Xi
∂Yj
∂xi

− Yi
∂Xj

∂xi

)
+Xi

∂β

∂pi
− Yi

∂α

∂pi

=

n∑

i,j=1

Xi

(
pj
∂Yj
∂xi

+
∂β

∂pi

)
− Yi

(
pj
∂Xj

∂xi
+
∂α

∂pi

)

=
n∑

i=1

∂f

∂pi

∂g

∂xi
− ∂f

∂xi

∂g

∂pi
.

From these computations we get the formula for Poisson brackets of two functions a, b ∈ C∞(T ∗M)

{a, b} =

n∑

i=1

∂a

∂pi

∂b

∂xi
− ∂a

∂xi

∂b

∂pi
, a, b ∈ C∞(T ∗M). (3.19) eq:poisscoord

The explicit formula (
eq:poisscoordeq:poisscoord
3.19) shows that the extension of the Poisson bracket to C∞(T ∗M) is still a

derivation.

r:poisslambda Remark 3.6. We stress that the value {a, b}|λ at a point λ ∈ T ∗M depends only on dλa and dλb.
Hence the Poisson bracket computed at the point λ ∈ T ∗M can be seen as a skew-symmetric and
nondegenerate bilinear form

{·, ·}λ : T ∗
λ (T

∗M)× T ∗
λ (T

∗M) → R.

3.1.3 Hamiltonian vector fields

By construction, the linear operator defined by

~a : C∞(T ∗M) → C∞(T ∗M) ~a(b) := {a, b} (3.20) eq:hvf

is a derivation of the algebra C∞(T ∗M), therefore can be identified with an element of Vec(T ∗M).

Definition 3.7. The vector field ~a on T ∗M defined by (
eq:hvfeq:hvf
3.20) is called the Hamiltonian vector field

associated with the smooth function a ∈ C∞(T ∗M).

From (
eq:poisscoordeq:poisscoord
3.19) we can easily write the coordinate expression of ~a for any arbitrary function a ∈

C∞(T ∗M)

~a =

n∑

i=1

∂a

∂pi

∂

∂xi
− ∂a

∂xi

∂

∂pi
. (3.21)

The following proposition gives the explicit form of the vector field V on T ∗M generating the flow
(P−1

0,t )
∗.

p:pmpaux1 Proposition 3.8. Let X ∈ Vec(M) be complete and let P0,t = etX . The flow on T ∗M defined by
(P−1

0,t )
∗ = (e−tX)∗ is generated by the Hamiltonian vector field ~aX , where aX(λ) = 〈λ,X(q)〉 and

q = π(λ).
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tautological form
form

Proof. To prove that the generator V of (P−1
0,t )

∗ coincides with the vector field ~aX it is sufficient to
show that their action is the same. Indeed, by definition of Hamiltonian vector field, we have

~aX(α) = {aX , α} = Xα

~aX(aY ) = {aX , aY } = a[X,Y ].

Hence this action coincides with the action of V as in (
eq:V1eq:V1
3.6) and (

eq:V2eq:V2
3.7).

Remark 3.9. In coordinates (p, x) if the vector field X is written X =
∑n

i=1Xi
∂
∂xi

then aX(p, x) =∑n
i=1 piXi and the Hamitonian vector field ~aX is written as follows

~aX =

n∑

i=1

Xi
∂

∂xi
−

n∑

i,j=1

pi
∂Xi

∂xj

∂

∂pj
. (3.22)

Notice that the projection of ~aX onto M coincides with X itself, i.e., π∗(~aX) = X.

This construction can be extended to the case of nonautonomous vector fields.

es:pmpaux2 Proposition 3.10. Let Xt be a nonautonomous vector field and denote by P0,t the flow of Xt on
M . Then the nonautonomous vector field on T ∗M

Vt :=
−→aXt , aXt(λ) = 〈λ,Xt(q)〉 ,

is the generator of the flow (P−1
0,t )

∗.

3.2 The symplectic structure

In this section we introduce the symplectic structure of T ∗M following the classical construction. In
subsection

ss:sfvspbss:sfvspb
3.2.1 we show that the symplectic form can be interpreted as the “dual” of the Poisson

bracket, in a suitable sense.

Definition 3.11. The tautological (or Liouville) 1-form s ∈ Λ1(T ∗M) is defined as follows:

s : λ 7→ sλ ∈ T ∗
λ (T

∗M), 〈sλ, w〉 := 〈λ, π∗w〉 , ∀λ ∈ T ∗M, w ∈ Tλ(T
∗M),

where π : T ∗M →M denotes the canonical projection.

The name “tautological” comes from its expression in coordinates. Recall that, given a system
of coordinates x = (x1, . . . , xn) on M , canonical coordinates (p, x) on T ∗M are coordinates for
which every element λ ∈ T ∗M is written as follows

λ =
n∑

i=1

pidxi.

For every w ∈ Tλ(T
∗M) we have the following

w =

n∑

i=1

αi
∂

∂pi
+ βi

∂

∂xi
=⇒ π∗w =

n∑

i=1

βi
∂

∂xi
,
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symplectic structurehence we get

〈sλ, w〉 = 〈λ, π∗w〉 =
n∑

i=1

piβi =

n∑

i=1

pi 〈dxi, w〉 =
〈

n∑

i=1

pidxi, w

〉
.

In other words the coordinate expression of the Liouville form s at the point λ coincides with the
one of λ itself, namely

sλ =
n∑

i=1

pidxi. (3.23) eq:tautcoord

Exercise 3.12. Let s ∈ Λ1(T ∗M) be the tautological form. Prove that

ω∗s = ω, ∀ω ∈ Λ1(M).

(Recall that a 1-form ω is a section of T ∗M , i.e. a map ω :M → T ∗M such that π ◦ ω = idM ).

Definition 3.13. The differential of the tautological 1-form σ := ds ∈ Λ2(T ∗M) is called the
canonical symplectic structure on T ∗M .

By construction σ is a closed 2-form on T ∗M . Moreover its expression in canonical coordinates
(p, x) shows immediately that is a nondegenerate two form

σ =
n∑

i=1

dpi ∧ dxi. (3.24) eq:symplcoord

rem:coord Remark 3.14 (The symplectic form in non-canonical coordinates). Given a basis of 1-forms ω1, . . . , ωn
in Λ1(M), one can build coordinates on the fibers of T ∗M as follows.

Every λ ∈ T ∗M can be written uniquely as λ =
∑n

i=1 hiωi. Thus hi become coordinates on the
fibers. Notice that these coordinates are not related to any choice of coordinates on the manifold,
as the p were. By definition, in these coordinates, we have

s =

n∑

i=1

hiωi, σ = ds =

n∑

i=1

dhi ∧ ωi + hidωi. (3.25)

Notice that, with respect to (
eq:symplcoordeq:symplcoord
3.24) in the expression of σ an extra term appears since, in general,

the 1-forms ωi are not closed.

3.2.1 The symplectic form vs the Poisson bracket
ss:sfvspb

Let V be a finite dimensional vector space and V ∗ denotes its dual (i.e. the space of linear forms
on V ). By classical linear algebra arguments one has the following identifications

{
non degenerate

bilinear forms on V

}
≃
{
linear invertible maps

V → V ∗

}
≃
{

non degenerate
bilinear forms on V ∗

}
. (3.26) eq:iso123

Indeed to every bilinear form B : V × V → R we can associate a linear map L : V → V ∗ defined
by L(v) = B(v, ·). On the other hand, given a linear map L : V → V ∗, we can associate with it
a bilinear map B : V × V → R defined by B(v,w) = 〈L(v), w〉, where 〈·, ·〉 denotes as usual the
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pairing between a vector space and its dual. Moreover B is non-degenerate if and only if the map
B(v·) is an isomorphism for every v ∈ V , that is if and only if L is invertible.

The previous argument shows how to identify a bilinear form on B on V with an invertible
linear map L from V to V ∗. Applying the same reasoning to the linear map L−1 one obtain a
bilinear map on V ∗.

Exercise 3.15. (a). Let h ∈ C∞(T ∗M). Prove that the Hamiltonian vector field ~h ∈ Vec(T ∗M)
satisfies the following identity

σ(·,~h(λ)) = dλh, ∀λ ∈ T ∗M.

(b). Prove that, for every λ ∈ T ∗M the bilinear forms σλ on Tλ(T
∗M) and {·, ·}λ on T ∗

λ (T
∗M) (cf.

Remark
r:poisslambdar:poisslambda
3.6) are dual under the identification (

eq:iso123eq:iso123
3.26). In particular show that

{a, b} = ~a(b) = 〈db,~a〉 = σ(~a,~b), ∀ a, b ∈ C∞(T ∗M). (3.27) eq:defpoiss

Remark 3.16. Notice that σ is nondegenerate, which means that the map w 7→ σλ(·, w) defines a
linear isomorphism between the vector spaces Tλ(T

∗M) and T ∗
λ (T

∗M). Hence ~h is the vector field

canonically associated by the symplectic structure with the differential dh. For this reason ~h is also
called symplectic gradient of h.

From formula (
eq:symplcoordeq:symplcoord
3.24) we have that in canonical coordinates (p, x) the Hamiltonian vector filed

associated with h is expressed as follows

~h =
n∑

i=1

∂h

∂pi

∂

∂xi
− ∂h

∂xi

∂

∂pi
,

and the Hamiltonian system λ̇ = ~h(λ) is rewritten as




ẋi =
∂h

∂pi

ṗi = − ∂h

∂xi

, i = 1, . . . , n.

We conclude this section with two classical but rather important results:

p:noether Proposition 3.17. A function a ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian
system associated with h ∈ C∞(T ∗M if and only if {h, a} = 0.

Proof. Let us consider a solution λ(t) = et
~h(λ0) of the Hamiltonian system associated with ~h, with

λ0 ∈ T ∗M . Let us prove the following formula for the derivative of the function a along the solution

d

dt
a(λ(t)) = {h, a}(λ(t)). (3.28) eq:derivham

By (
eq:derivhameq:derivham
3.28) it is easy to see that, if {h, a} = 0, then the derivative of the function a along the

flow vanishes for all t and then a is constant. Conversely, if a is constant along the flow then its
derivative vanishes and the Poisson bracket is zero.

The skew-simmetry of the Poisson brackets immediately implies the following corollary.

c:hconst Corollary 3.18. A function h ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian system
defined by ~h.
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3.3 Characterization of normal and abnormal extremals
sec:norabn

Now we can rewrite the Pontryagin Maximum Principle (see Theorem
p:pmpp:pmp
2.41) using the symplectic

language developed in the last section.

Given a sub-Riemannian structure on M with generating family {f1, . . . , fm}, and define the
fiberwise linear functions on T ∗M associated with these vector fields

hi : T
∗M → R, hi(λ) := 〈λ, fi(q)〉 , i = 1, . . . ,m.

p:hampmp Theorem 3.19 (PMP). Let γ : [0, T ] → M be an admissible curve which is a length-minimizer,
parametrized by constant speed. Let ũ(·) be the corresponding minimal control. Then there exists a
Lipschitz curve λ(t) ∈ T ∗

γ(t)M such that

λ̇(t) =
m∑

i=1

ũi(t)~hi(λ(t)), a.e. t ∈ [0, T ], (3.29) eq:hampmp

and one of the following conditions is satisfied:

(N) hi(λ(t)) ≡ ũi(t), i = 1, . . . ,m, ∀ t,

(A) hi(λ(t)) ≡ 0, i = 1, . . . ,m, ∀ t.

Moreover in case (A) one has λ(t) 6= 0 for all t ∈ [0, T ].

Proof. The statement is a rephrasing of Theorem
p:pmpp:pmp
2.41, combining Proposition

p:pmpaux1p:pmpaux1
3.8 and Exercise

es:pmpaux2es:pmpaux2
3.10.

Notice that Theorem
p:hampmpp:hampmp
3.19 says that normal and abnormal extremals appear as solution of an

Hamiltonian system. Nevertheless, this Hamiltonian system is non autonomous and depends on
the trajectory itself by the presence of the control ũ(t) associated with the extremal trajectory.

Moreover, the actual formulation of Theorem
p:hampmpp:hampmp
3.19 for the necessary condition for optimality

still does not clarify if the extremals depend on the generating family {f1, . . . , fm} for the sub-
Riemannian structure. The rest of the section is devoted to the geometric intrinsic description of
normal and abnormal extremals.

3.3.1 Normal extremals

In this section we show that normal extremals are characterized as solutions of an smooth au-
tonomous Hamiltonian system on T ∗M , where the Hamiltonian H is a function that encodes all
the informations on the sub-Riemannian structure.

Definition 3.20. Let M be a sub-Riemannian manifold. The sub-Riemannian Hamiltonian is the
smooth function on T ∗M defined as follows

H : T ∗M → R, H(λ) = max
u∈Uq

(
〈λ, fu(q)〉 −

1

2
|u|2
)
, q = π(λ). (3.30) eq:srham0
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Proposition 3.21. The sub-Riemannian Hamiltonian H is quadratic on fibers. Moreover, for every
generating family {f1, . . . , fm} of the sub-Riemannian structure, the sub-Riemannian Hamiltonian
H is written as follows

H(λ) =
1

2

k∑

i=1

〈λ, fi(q)〉2 , λ ∈ T ∗
qM, q = π(λ). (3.31) eq:Hfi2

Proof. In terms of a generating family {f1, . . . , fm}, the sub-Riemannian Hamiltonian (
eq:eq:
2.56) is

written as follows

H(λ) = max
u∈Rm

(
m∑

i=1

ui 〈λ, fi(q)〉 −
1

2

m∑

i=1

u2i

)
. (3.32) eq:srham1

Differentiating (
eq:srham1eq:srham1
3.32) with respect to ui, one gets that the maximum is attained at ui = 〈λ, fi(q)〉,

from which formula (
eq:Hfi2eq:Hfi2
3.31) follows. The fact that H is quadratic on fibers then easily follows from

(
eq:Hfi2eq:Hfi2
3.31).

Exercise 3.22. Prove that two equivalent sub-Riemannian structures (U, f) and (U′, f ′) on a
manifold M define the same Hamiltonian.

t:normalH Theorem 3.23. Every normal extremal is a solution of the Hamiltonian system λ̇(t) = ~H(λ(t)).
In particular, every normal extremal trajectory is smooth.

Proof. Denoting, as usual, hi(λ) = 〈λ, fi(q)〉 for i = 1, . . . ,m, the functions linear on fibers associ-

ated with a generating family and using the identity
−→
h2i = 2hi~hi (see (

eq:poissder0eq:poissder0
3.12)), it follows that

~H =
1

2

−−−→
m∑

i=1

h2i =

m∑

i=1

hi~hi.

In particular, since along a normal extremal hi(λ(t)) = ũi(t) by condition (N) of Theorem
p:hampmpp:hampmp
3.19,

one gets

~H(λ(t)) =

m∑

i=1

hi(λ(t))~hi(λ(t)) =

m∑

i=1

ũi(t)~hi(λ(t)).

rem:difflev Remark 3.24. In canonical coordinates λ = (p, x), H is quadratic with respect to p and

H(p, x) =
1

2

m∑

i=1

〈p, fi(x)〉2

The Hamiltonian system associated with H, in these coordinates, is written as follows





ẋ =
∂H

∂p
=
∑m

i=1 〈p, fi(x)〉 fi(x)

ṗ = −∂H
∂x

= −∑m
i=1 〈p, fi(x)〉 〈p,Dxfi(x)〉

(3.33) eq:sistH2

From here it is easy to see that if λ(t) = (p(t), x(t)) is a solution of (
eq:sistH2eq:sistH2
3.33) then also the rescaled

extremal αλ(αt) = (α p(αt), x(αt)) is a solution of the same Hamiltonian system, for every α > 0.
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characteristic curvLemma 3.25. Let λ(t) be a normal extremal and γ(t) = π(λ(t)) be the corresponding normal
extremal trajectory. Then for all t ∈ [0, T ]

1

2
‖γ̇(t)‖2 = H(λ(t)).

Proof. For every normal extremal λ(t) associated with the (minimal) control u(·) we have

1

2
‖γ̇(t)‖2 = 1

2
|u(t)|2 =

1

2

k∑

i=1

ui(t)
2 = H(λ(t)) (3.34) eq:fatto12

where we used the fact that, along a normal extremal, we have the relations for all t ∈ [0, T ]

ui(t) = 〈λ(t), fi(γ(t))〉 . (3.35)

Corollary 3.26. A normal extremal trajectory is parametrized by constant speed. In particular it
is length parametrized if and only if its extremal lift is contained in the level set H−1(1/2).

Proof. The fact that H is constant along λ(t), easily implies by (
eq:fatto12eq:fatto12
3.34) that ‖γ̇(t)‖2 is constant.

Moreover one easily gets that ‖γ̇(t)‖ = 1 if and only if H(λ(t)) ≡ 1/2.
Moreover, by Remark

rem:difflevrem:difflev
3.24, all normal extremal trajectories are reparametrization of length

parametrized ones.

Let λ(t) be a normal extremal such that λ(0) = λ0 ∈ T ∗
q0M . The corresponding normal extremal

path γ(t) = π(λ(t)) can be written in the exponential notation

γ(t) = π ◦ et ~H(λ0).

By the previous discussion length parametrized normal extremal trajectories corresponds to the
choice of λ0 ∈ H−1(1/2).

We end this section by characterizing normal extremal trajectory as characteristic curves of the
canonical symplectic form contained in the level sets of H.

Definition 3.27. Let M be a smooth manifold and Ω ∈ ΛkM a 2-form. A Lipschitz curve
γ : [0, T ] →M is said characteristic for Ω if for almost every t ∈ [0, T ] it holds

γ̇(t) ∈ KerΩγ(t), (i.e. Ωγ(t)(γ̇(t), ·) = 0) (3.36) eq:defcaratt

Notice that this notion is independent on the parametrization of the curve.

Proposition 3.28. Let H be the sub-Riemannian Hamiltonian and assume that c > 0 is a reg-
ular value of H. Then a curve γ is a characteristic curve of σ|H−1(c) if and only if it is the
reparametrization of a normal extremal on H−1(c).

Proof. Recall that if c is a regular value of H, then the set H−1(c) is a smooth (2n−1)-dimensional
manifold in T ∗M .1 For every λ ∈ H−1(c) let us denote by Eλ = TλH

−1(c) its tangent space at this

1by Sard Theorem almost every c > 0 is regular value.
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extremal!abnormal point. Notice that, by construction, Eλ is an hyperplane (i.e., dimEλ = 2n − 1) and dλH
∣∣
Eλ

= 0.

The restriction σ|H−1(c) is computed by σλ|Eλ
, for each λ ∈ H−1(c).

One one hand kerσλ|Eλ
is non trivial since the dimension of Eλ is odd. On the other hand the

symplectic 2-form σ is nondegenerate on T ∗M , hence the dimension of ker σλ|Eλ
cannot be greater

than one. It follows that dimkerσλ|Eλ
= 1.

We are left to show that ker σλ|Eλ
= ~H(λ). Assume that ker σλ|Eλ

= Rξ, for some ξ ∈ Tλ(T
∗M).

By construction, Eλ coincides with the subspace that is skew-orthogonal to ξ, namely

Eλ = {w ∈ Tλ(T
∗M)) |σλ(ξ, w) = 0} = ξ∠.

Since, by antisymmetricity, σλ(ξ, ξ) = 0, it follows that ξ ∈ Eλ. Moreover, by definition of Hamil-
tonian vector field σ(·, ~H) = dH, hence for the restriction to Eλ one has

σλ(·, ~H(λ))
∣∣
Eλ

= dλH
∣∣
Eλ

= 0.

es:Hamdistr Exercise 3.29. The sub-Riemannian Hamiltonian encodes all the informations about the distri-
bution and the metric defined on it.

(a) Prove that a vector v ∈ TqM is sub-unit, i.e. it satisfies v ∈ Dq and ‖v‖ ≤ 1 if and only if

1

2
|〈λ, v〉|2 ≤ H(λ), ∀λ ∈ T ∗

qM.

(b) Show that this implies the following characterization for the sub-Riemannian Hamiltonian

H(λ) =
1

2
‖λ‖2, ‖λ‖ = sup

v∈Dq ,|v|=1
|〈λ, v〉|.

When the structure is Riemannian, H is the “inverse” norm defined on the cotangent space.

3.3.2 Abnormal extremals
ss:abnextr

In this section we provide a geometric characterization of abnormal extremals. Even if for abnor-
mal extremals it is not possible to determine their a priori regularity, we show that they can be
characterized as characteristic curves of the symplectic form. This gives an unified point of view of
both class of extremals.

We recall that an abnormal extremal is a non zero solution of the following equations

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t)), hi(λ(t)) = 0, i = 1, . . . ,m.

where {f1, . . . , fm} is a generating family for the sub-Riemannian structure and h1, . . . , hm are
the corresponding functions on T ∗M linear on fibers. In particular every abnormal extremal is
contained in the set

H−1(0) = {λ ∈ T ∗M, 〈λ, fi(q)〉 = 0, i = 1, . . . ,m, q = π(λ)}. (3.37) eq:Hlevel0

where H denotes the sub-Riemannian Hamiltonian (
eq:Hfi2eq:Hfi2
3.31).
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p:abnormalsigma Proposition 3.30. Let H be the sub-Riemannian Hamiltonian and assume that H−1(0) is a
smooth manifold. Then a curve γ is a characteristic curve of σ|H−1(0) if and only if it is the
reparametrization of a normal extremal on H−1(0).

Proof. In this proof we denote for simplicity N := H−1(0) ⊂ T ∗M . For every λ ∈ N we have the
identity

Kerσλ|N = TλN
∠ = span{~hi(λ), i = 1, . . . ,m}. (3.38) eq:abniden

Indeed, from the definition of N , it follows that

TλN = {w ∈ Tλ(T
∗M)| 〈dλhi, w〉 = 0, i = 1, . . . ,m}

= {w ∈ Tλ(T
∗M)|σ(w,~hi(λ)) = 0, i = 1, . . . ,m}

= span{~hi(λ), i = 1, . . . ,m}∠.

and (
eq:abnideneq:abniden
3.38) follows by taking the skew-orthogonal. Thus w ∈ TλH

−1(0) if and only if w is a linear
combination of the vectors ~hi(λ). This implies that λ(t) is a characteristic curve for σ|H−1(0) if and
only if there exists controls ui(·) for i = 1, . . . ,m such that

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t)). (3.39)

The following exercise shows that the assumption of Proposition
p:abnormalsigmap:abnormalsigma
3.30 is always satisfied in the

case of a regular sub-Riemannian structure.

Exercise 3.31. Assume that the sub-Riemannian structure is regular , namely the following as-
sumption holds

dimDq = dim spanq{f1, . . . , fm} = const. (3.40) eq:regular

Shows that, under this assumption, the set H−1(0) defined by (
eq:Hlevel0eq:Hlevel0
3.37) is a smooth submanifold of

T ∗M . Notice, however, that 0 is never a regular value of H.

Remark 3.32. From Proposition
p:abnormalsigmap:abnormalsigma
3.30 it follows that abnormal extremals do not depend on the

sub-Riemannian metric, but only on the distribution. Indeed the set H−1(0) is characterized as
the annihilator of the distribution

H−1(0) = {λ ∈ T ∗M | 〈λ, v〉 = 0, ∀ v ∈ Dπ(λ)} = D⊥ ⊂ T ∗M,

Here the orthogonal is meant in the duality sense.

Under the regularity assumption (
eq:regulareq:regular
3.40) we can select (at least locally) a basis of 1-forms

ω1, . . . , ωm for the dual of the distribution

D⊥
q = span{ωi(q), i = 1, . . . ,m}, (3.41) eq:distrperpbasis

Let us complete this set of 1-forms to a basis ω1, . . . , ωn of T
∗M and consider the induced coordinates

h1, . . . , hn as defined in Remark
rem:coordrem:coord
3.14. In these coordinates the restriction of the symplectic structure

D⊥ to is expressed as follows

σ|D⊥ = d(s|D⊥) =
m∑

i=1

dhi ∧ ωi + hidωi, (3.42) eq:sigmacoord

We stress that the restriction σ|D⊥ can be written only in terms of the elements ω1, . . . , ωm (and
not of a full basis of 1-forms) since the differential d commutes with the restriction.
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3.3.3 Example: codimension one distribution and contact distributions

Let M be a n-dimensional manifold endowed with a constant rank distribution D of codimension
one, i.e., dimDq = n− 1 for every q ∈M . In this case D and D⊥ are sub-bundles of TM and T ∗M
respectively and their dimension, as smooth manifolds, are

dim D = dimM + rankD = 2n− 1,

dim D⊥ = dimM + rankD⊥ = n+ 1.

Since the symplectic form σ is skew-symmetric, by a dimensional argument we easily get that for
n even, the restriction σ|D⊥ has always a nontrivial kernel, hence there always exist characteristic
curves of σ|D⊥ , that correspond to reparametrized abnormal extremals by Proposition

p:abnormalsigmap:abnormalsigma
3.30.

Let us consider in more detail the simplest case n = 3. Assume that there exists a one form
ω0 ∈ Λ1(M) such that D = kerω (this is not restrictive, at least for a local description). Consider
a basis of one forms ω0, ω1, ω2 such that ω0 := ω and the associated coordinates h0, h1, h2 the
coordinate associated to these forms (see Remark

rem:coordrem:coord
3.14). By (

eq:sigmacoordeq:sigmacoord
3.42)

σ|D⊥ = dh0 ∧ ω + h0 dω, (3.43)

and we can easily compute (recall that D⊥ is 4-dimensional)

σ ∧ σ|D⊥ = 2h0 dh0 ∧ ω ∧ dω. (3.44) eq:sigma2

l:sigmak Lemma 3.33. Let N be a smooth 2k-dimensional manifold and Ω ∈ Λ2M . Then Ω is nondegen-
erate on N if and only if ∧kΩ 6= 0.2

Definition 3.34. LetM be a three dimensional manifold. We say that a constant rank distribution
D on M of corank one is a contact distribution if ω ∧ dω 6= 0.

Since M is three dimensional, the differential form ω ∧ dω is a top dimensional form, hence it
is meaningful to consider the set, called Martinet set

M = {q ∈M | (ω ∧ dω)|q = 0} ⊂M.

c:noabn Corollary 3.35. Under the previous assumptions all nontrivial abnormal extremal trajectories are
contained in the Martinet set M. In particular if the structure is contact, there are no nontrivial
abnormal extremal trajectories.

Proof. Assume that the structure is contact. Then ω∧dω 6= 0 and, thanks to (
eq:sigma2eq:sigma2
3.44), it follows that

σ ∧ σ|D⊥ 6= 0. By Lemma
l:sigmakl:sigmak
3.33 σ|D⊥ is non degenerate (notice that dh0 is always independent on

ω∧dω since they depend on coordinates on the fibers and on the manifold, respectively). This shows
that, under the contact assumption, the set M is empty and there exists no nontrivial characteristic
curve of σ|D⊥ . The first part of the statement follows by analogue arguments.

Remark 3.36. Since M is three dimensional, we can write

ω ∧ dω = adV

2Here ∧
kΩ = Ω ∧ . . . ∧ Ω

︸ ︷︷ ︸

k

.
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2D Riemannianwhere a ∈ C∞(M) and dV is some smooth volume form on M , that is a never vanishing 3-form on
M .

In particular the Martinet set is M = a−1(0) and the distribution is contact if and only if a
is never vanishing. If 0 is a regular value of a, the set a−1(0) defines a two dimensional surface
on M , called the Martinet surface. Recall that this condition is true for a generic choice of the
distribution.

In this case abnormal extremal trajectories can be precisely characterized as the horizontal
curves that are contained in the Martinet surface M. The intersection of the tangent bundle to
the surface M and the 2-dimensional distribution of admissible velocities defines, generically, a line
field on M. Abnormal extremal trajectories are exactly (reparametrized) integral curves of this line
field.

es:hlevel Exercise 3.37. Prove that if two smooth Hamiltonians h1, h2 : T ∗M → R define the same level
set, i.e. E = {h1 = c1} = {h2 = c2} for some c1, c2 ∈ R, then their Hamiltonian flow ~h1,~h2 coincide
on E, up to a reparametrization.

3.4 Examples

3.4.1 2D Riemannian Geometry

LetM be a 2-dimensional manifold and f1, f2 ∈ Vec(M) a local orthonormal frame for the Rieman-
nian structure. The problem of finding geodesics in M could be described as the optimal control
problem

q̇ = u1f1(q) + u2f2(q),

where length and energy are expressed as

ℓ(q(·)) =
∫ T

0

√
u21 + u22 dt, J(q(·)) = 1

2

∫ T

0

(
u21 + u22

)
dt.

Equations of geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in
T ∗M

H =
1

2
(h21 + h22), hi(λ) = 〈λ, fi(q)〉 , i = 1, 2.

Now we consider coordinates (q, h1, h2) on T
∗M . Using the fact that ui(t) = hi(λt) we find the

equation on the base
q̇ = h1f1(q) + h2f2(q). (3.45) eq:2dq

For the equation on the fiber we have (remember that along solutions ȧ = {H, a})
{
ḣ1 = {H,h1} = −{h1, h2}h2
ḣ2 = {H,h2} = {h1, h2}h1.

(3.46) eq:2dsist

From here one can see directly that H is constant along solutions. Indeed

Ḣ = h1ḣ1 + h2ḣ2 = 0.

If we require that extremals are parametrized by arclength u1(t)
2 + u2(t)

2 = 1, we have

H =
1

2
⇐⇒ h21 + h22 = 1.

61



It is then convenient to restrict to the spherical bundle SM (see Example
ex:sphbex:sphb
1.43) of coordinates (q, θ)

setting

h1 = cos θ, h2 = sin θ.

Then equations (
eq:2dqeq:2dq
3.45) and (

eq:2dsisteq:2dsist
3.46) become,

{
θ̇ = {h1, h2}
q̇ = cos θf1(q) + sin θf2(q).

(3.47) eq:sist2

Now, since {h1, h2}(λ) = 〈λ, [f1, f2]〉 and setting

[f1, f2] = a1f1 + a2f2, a1, a2 ∈ C∞(M),

we have {h1, h2} = a1h1 + a2h2 and,
{
θ̇ = a1(q) cos θ + a2(q) sin θ

q̇ = cos θf1(q) + sin θf2(q)
(3.48) eq:sist3

In other words we are saying that an arc-length parametrized curve on M (i.e. a curve which
satisfies the second equation) is a geodesic if and only if it satisfies the first! Heuristically this
suggests that the quantity

θ̇ − a1(q) cos θ − a2(q) sin θ,

has some relation with the geodesic curvature on M .

Let µ1, µ2 the dual frame of f1, f2 (so that dV = µ1 ∧ µ2) and consider the Hamiltonian field in
these coordinates

~H = cos θf1 + sin θf2 + (a1 cos θ + a2 sin θ)∂θ. (3.49) eq:hamfield

The Levi-Civita connection on M is expressed by some coefficients (see Chapter
ch:surfacesch:surfaces
??)

ω = dθ + b1µ1 + b2µ2,

where bi = bi(q). On the other hand geodesics are projections of integral curves of ~H so that

〈ω, ~H〉 = 0 =⇒ b1 = −a1, b2 = −a2.

In particular if we apply ω = dθ − a1µ1 − a2µ2 to a generic curve (not necessarily a geodesic)

λ = cos θf1 + sin θf2 + θ̇ ∂θ,

which projects on γ we find geodesic curvature

κg(γ) = θ̇ − a1(q) cos θ − a2(q) sin θ,

as we infer above. To end this section we prove a useful formula for the Gaussian curvature of M

Corollary 3.38. If κ denotes the Gaussian curvature of M we have

κ = f1(a2)− f2(a1)− a21 − a22.
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isoperimetric problemProof. From (
eq:gausskappaeq:gausskappa
??) we have dω = −κdV where dV = µ1 ∧ µ2 is the Riemannian volume form. On

the other hand, using the following identities

dµi = −aiµ1 ∧ µ2, dai = f1(ai)µ1 + f2(ai)µ2, i = 1, 2.

we can compute

dω = −da1 ∧ µ1 − da2 ∧ µ2 − a1dµ1 − a2dµ2

= −(f1(a2)− f2(a1)− a21 − a22)µ1 ∧ µ2.

3.4.2 Isoperimetric problem
ss:isoperimetric

Let M be a 2-dimensional orientable Riemannian manifold and ν its volume form. Fix A ∈ Λ1M
and c ∈ R.
Problem. Fixed q0, q1 ∈M , find (if exists) the minimum:

min

{
ℓ(γ) : γ(0) = q0, γ(T ) = q1,

∫

γ
A = c

}
. (3.50) eq:iso2d

Remark 3.39. Local minimizers depend only on dA, i.e. if we add an exact term to A we will find
same minima for the problem (with a different value of c).

Problem 1 can be reformulated as a sub-Riemannian problem on the extended manifold

M̂ = R×M,

in the sense that solutions of the problem (
eq:iso2deq:iso2d
3.50) turns to be geodesics for a suitable sub-Riemannian

structure on M̂ , that we are going to construct.
Define on the extended manifold the 1-form:

ω = dy −A, M̂ = {(y, q), y ∈ R, q ∈M}.

Admissible curves are pairs z(t) = (y(t), γ(t)) such that ż(t) ∈ ∆z(t), i.e. ω(ż(t)) = 0. This implies

ω(ż(t)) = ẏ(t)− 〈A, γ̇(t)〉 = 0.

In other words γ(t) is a curve on M and y(t) satisfies the identity

y(t) = y0 +

∫

γt

A, where γt = γ|[0,t].

In particular we can recover a basis for the distribution
{
γ̇ = u1f1 + u2f2

ẏ = u1 〈A, f1〉 ∂y + u2 〈A, f2〉 ∂y
⇒
(
γ̇
ẏ

)
= u1

(
f1

〈A, f1〉 ∂y

)
+ u2

(
f2

〈A, f2〉 ∂y

)
, (3.51)

and D = span(F1, F2) where

F1 = f1 + 〈A, f1〉 ∂y, F2 = f2 + 〈A, f2〉 ∂y.
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Remark 3.40. Notice that the projection of the control system

ż = u1F1(z) + u2F2(z),

on the manifold M is

γ̇ = u1f1(γ) + u2f2(γ),

from which follows that the sub-Riemannian length on M̂ coincides exactly with the Riemannian
length on M .

We denote with hi = 〈λ, Fi(q)〉 the Hamiltonians linear on fibers of T ∗M̂ and we want to com-
pute normal and abnormal geodesics of this problem.

Normal geodesics
With computations analogous to the 2D case we get MA QUI SIAMO SOTTO O SOPRA? defini-
amo pure H? {

q̇ = cos θF1(q) + sin θF2(q)

θ̇ = {h1, h2}
(3.52) eq:sistiso

where we have to compute {h1, h2} = 〈λ, [F1, F2]〉. We set, as in the previous paragraph:

[f1, f2] = a1f1 + a2f2, a1, a2 ∈ C∞(M). (3.53) eq:comma1a2

so that

[F1, F2] = [f1 + 〈A, f1〉 ∂y, f2 + 〈A, f2〉 ∂y]
= [f1, f2] + (f1 〈A, f2〉 − f2 〈A, f1〉)∂y

(by (
eq:comma1a2eq:comma1a2
3.53)) = a1(F1 − 〈A, f1〉) + a2(F2 − 〈A, f2〉) + f1 〈A, f2〉 − f2 〈A, f1〉)∂y

= a1F1 + a2F2 + dA(f1, f2)∂y.

where in the last equality we use (
eq:cartandweq:cartandw
3.66).

Let µ1, µ2 be the dual forms to f1 and f2. We can write dA = bµ1 ∧ µ2, for some b ∈ C∞(M).
Then

[F1, F2] = a1F1 + a2F2 + b∂y.

Set now h0 := 〈λ, ∂y〉. He have

{h1, h2} = 〈λ, [F1, F2]〉 = a1h1 + a2h2 + bh0.

It follows that
{
θ̇ = a1 cos θ + a2 sin θ + bh0

ḣ0 = 0 ⇒ h0 = const.METTIAMOILCALCOLETTO
(3.54) eq:sistiso2

In other words
κg(γ) = θ̇ − a1(q) cos θ − a2(q) sin θ = h0b. (3.55) eq:curviso2d

C”E” CONFUZIONE TRA LA NOTAZIONE SOTTO E SOTTOSOPRA. MEGLIO PURE MET-
TERE AL DIPENDENZA DAL TEMPO Normal geodesics are curves with geodesic curvature
proportional to the function b at every point. mettiamo
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Abnormal Extremals Abnormal geodesics are contained in the set of points where ω ∧ dω = 0.

ω ∧ dω = (dy −A) ∧ (bµ1 ∧ µ2)
= bdy ∧ µ1 ∧ µ2.

In other words abnormal geodesics are connected components of b−1(0). They are independent on
the metric and, in general, they are not normal geodesics.

NON CAPISCO PERCHE’ USIAMO omega? viene da prima?

3.4.3 Heisenberg group

In the case M = R
2 and b = b0 costant we have that normal geodesics of this problem are circles

on M (and helix on M̂).
The Heisenberg group is a basic example in sub-Riemannian geometry. It is classically defined

by the sub-Riemannian structure (R3,D, 〈·|·〉) defined by the distribution D = span{X1,X2} given
by

X1 = ∂x1 −
x2
2
∂y, X2 = ∂x2 +

x1
2
∂y.

Another possibility is to introduce it as the sub-Riemannian structure defined by the ispoeri-
metric problem in M = R

2 endowed with the 1-form A = 1
2(x1dx2 − x2dx1) (cf. previous section).

Notice that dA = dx1 ∧ dx2 defines the area form on R
2.

On the extended manifold

M̂ = R
3 = {(x1, x2, y)}

the one-form ω takes the form

ω = dy − 1

2
(x1dx2 − x2dx1)

Following the notation of the previous paragraph we can choose as an orthonormal frame for
the base R

2 the frame f1 = ∂x1 and f2 = ∂x2 so that

F1 = ∂x1 −
x2
2
∂y, F2 = ∂x2 +

x1
2
∂y.

together with

[F1, F2] = ∂y, b = 1

Hence, defining hi = 〈λ, Fi(q)〉 the Hamiltonians linear on fibers of T ∗M̂ .

{h1, h2} = h0.

The equation of normal geodesics

{
q̇ = cos θF1(q) + sin θF2(q)

θ̇ = {h1, h2} = h0
(3.56) eq:sistiso22

It follows that {
θ̇ = h0

ḣ0 = 0
⇔

{
θ(t) = θ0 + h0t

h0(t) = h0
(3.57) eq:sistiso222
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ative Then u1(t) = h1(t) = cos(θ0 + h0t) and u2(t) = h2(t) = sin(θ0 + h0t) and by integrating (x1,0 =
x2,0 = 0)

x1(t) =
1

h0
(sin(θ0 + h0t)− sin(θ0)) x2(t) =

1

h0
(cos(θ0 + h0t)− cos(θ0)) (3.58)

and integrating to find y

formulapery

Normal geodesics are curves with constant geodesic curvature, i.e., straight lines or circles on R
2

(and helix on M̂). There are no non trivial abnormal geodesics since ω ∧ dωneq0 (b = 1).

ω ∧ dω = (dy −A) ∧ (bµ1 ∧ µ2)
= bdy ∧ µ1 ∧ µ2.

3.5 Lie derivative
sec:lieder

In this section we extend the notion of Lie derivative, already introduced for vector fields in Section
sec:chowsec:chow
2.2), to differential forms. Recall that if X,Y ∈ Vec(M) are two vector fields we define

LXY =
d

dt

∣∣∣∣
t=0

e−tX∗ Y = [X,Y ].

If P : M →M is a diffeomorphism we can consider the pullback P ∗ : T ∗
P (q)M → T ∗

qM and extend

its action to k-forms. Let ω ∈ ΛkM , we define P ∗ω ∈ ΛkM in the following way:

(P ∗ω)q(ξ1, . . . , ξk) := ωP (q)(P∗ξ1, . . . , P∗ξk), q ∈M, ξi ∈ TqM. (3.59) eq:azionekforme

It is an easy check that this operation is linear and satisfies the two following properties

P ∗(ω1 ∧ ω2) = P ∗ω1 ∧ P ∗ω2, (3.60) eq:propP*

P ∗ ◦ d = d ◦ P ∗. (3.61) eq:propP*2

def:lieder Definition 3.41. Let X ∈ Vec(M) and ω ∈ ΛkM . We define the Lie derivative of ω with respect
to X as

LX : ΛkM → ΛkM, LXω =
d

dt

∣∣∣∣
t=0

(etX)∗ω. (3.62)

From (
eq:propP*eq:propP*
3.60) and (

eq:propP*2eq:propP*2
3.61), we easily deduce the following properties of the Lie derivative:

(i) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ (LXω2),

(ii) LX ◦ d = d ◦ LX .

The first of these properties can be also expressed by saying that LX is a derivation of the exterior
algebra of k-forms.

The Lie derivative combines together a k-form and a vector field defining a new k-form. A second
way of combining these two object is to define their inner product, by defining a (k − 1)-form.
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Cartan’s formulaDefinition 3.42. Let X ∈ Vec(M) and ω ∈ ΛkM . We define the inner product of ω and X as the
operator iX : ΛkM → Λk−1M , where we set

(iXω)(Y1, . . . , Yk−1) := ω(X,Y1, . . . , Yk−1), Yi ∈ Vec(M). (3.63)

One can show that the operator iX is an anti-derivation, in the following sense:

iX(ω1 ∧ ω2) = (iXω1) ∧ ω2 + (−1)k1ω1 ∧ (iXω2), ωi ∈ ΛkiM, i = 1, 2. (3.64) eq:innantider

We end this section proving two classical formulas linking together these notions, and usually
referred as Cartan’s formulas.

Proposition 3.43 (Cartan’s formula). The following identity holds true

LX = iX ◦ d+ d ◦ iX . (3.65) eq:cartanL

Proof. Define DX := iX ◦ d+ d ◦ iX . It is easy to check that DX is a derivation on the algebra of
k-forms, since iX and d are anti-derivations. Let us show that DX commutes with d. Indeed, using
that d2 = 0, one can write

d ◦DX = d ◦ iX ◦ d = DX ◦ d.

Moreover, since any k-form can be expressed in coordinates as ω =
∑
ωi1...ikdxi1 . . . dxik , it is

sufficient to prove that LX coincide with DX on functions. This last property is easily checked by

DXf = iX(df) + d(iXf)︸ ︷︷ ︸
=0

= 〈df,X〉 = Xf = LXf.

Corollary 3.44. Let X,Y ∈ Vec(M) and ω ∈ Λ1M , then

dω(X,Y ) = X 〈ω, Y 〉 − Y 〈ω,X〉 − 〈ω, [X,Y ]〉 . (3.66) eq:cartandw

Proof. On one hand Definition
def:liederdef:lieder
3.41 implies, by Leibnitz rule

〈LXω, Y 〉q =
d

dt

∣∣∣∣
t=0

〈
(etX )∗ω, Y

〉
q

=
d

dt

∣∣∣∣
t=0

〈
ω, etX∗ Y

〉
etX(q)

= X 〈ω, Y 〉 − 〈ω, [X,Y ]〉 .

On the other hand, Cartan’s formula (
eq:cartanLeq:cartanL
3.65) gives

〈LXω, Y 〉 = 〈iX(dω), Y 〉+ 〈d(iXω), Y 〉
= dω(X,Y ) + Y 〈ω,X〉 .

Comparing the two identities one gets (
eq:cartandweq:cartandw
3.66).
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symplectic!manifold
symplettomorphism

3.6 Symplectic geometry

In this section we generalize some of the construction we considered on the cotangent bundle T ∗M
to the case of a general symplectic manifold.

def:symman Definition 3.45. A symplectic manifold (N,σ) is a smooth manifold N endowed with a closed,
non degenerate 2-form σ ∈ Λ2(N). A symplectomorphism of N is a diffeomorphism φ : N → N
such that φ∗σ = σ.

Notice that a symplectic manifold N is necessarily even-dimensional. We stress that, in general,
the symplectic form σ is not necessarily exact, as in the case of N = T ∗M .

The symplectic structure on a symplectic manifold N permits us to define the Hamiltonian
vector field ~h ∈ Vec(N) associated with a function h ∈ C∞(N) by the formula i~hσ = −dh, or
equivalently σ(·,~h) = dh.

Proposition 3.46. A diffeomorphism φ : N → N is a symplectomorphism if and only if for every
h ∈ C∞(N):

(φ−1
∗ )~h =

−−−→
h ◦ φ. (3.67) eq:idsympl

Proof. Assume that φ is a symplectomorphism, namely φ∗σ = σ. More precisely, this means that
for every λ ∈ N and every v,w ∈ TλN one has

σλ(v,w) = (φ∗σ)λ(v,w) = σφ(λ)(φ∗v, φ∗w),

where the second equality is the definition of φ∗σ. If we apply the above equality at w = φ−1
∗
~h one

gets, for every λ ∈ N and v ∈ TλN

σλ(v, φ
−1
∗
~h) = (φ∗σ)λ(v, φ

−1
∗
~h) = σφ(λ)(φ∗v,~h)

=
〈
dφ(λ)h, φ∗v

〉
=
〈
φ∗dφ(λ)h, v

〉
.

= 〈d(h ◦ φ), v〉

This shows that σλ(·, φ−1
∗
~h) = d(h ◦ φ), that is exactly (

eq:idsympleq:idsympl
3.67). The converse implication follows

analogously.

Next we want to characterize those vector fields whose flow generates a one-parametric family
of symplectomorphisms.

l:sympl Lemma 3.47. Let X ∈ Vec(N) be a complete vector field on a symplectic manifold (N,σ). The
following properties are equivalent

(i) (etX )∗σ = σ for every t ∈ R,

(ii) LXσ = 0,

(iii) iXσ is a closed 1-form on N .

Proof. By the group property e(t+s)X = etX ◦ esX one has the following identity for every t ∈ R:

d

dt
(etX )∗σ =

d

ds

∣∣∣∣
s=0

(etX)∗(esX)∗σ = (etX )∗LXσ.
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This proves the equivalence between (i) and (ii), since the map (etX )∗ is invertible for every t ∈ R.

Recall now that the symplectic form σ is, by definition, a closed form. Then dσ = 0 and
Cartan’s formula (

eq:cartanLeq:cartanL
3.65) reads as follows

LXσ = d(iXσ) + iX(dσ) = d(iXσ).

This proves the the equivalence between (ii) and (iii).

c:sympl Corollary 3.48. The flow of a Hamiltonian vector field defines a flow of symplectomorphisms.

Proof. This is a direct consequence of the fact that, for an Hamitonian vector field ~h, one has
i~hσ = −dh. Hence i~hσ is a cloded form (actually exact) and property (iii) of Lemma

l:sympll:sympl
3.47 holds.

Notice that the converse of Corollary
c:symplc:sympl
3.48 is true when N is simply connected, since in this case

every closed form is exact.

Definition 3.49. Let (N,σ) be a symplectic manifold and a, b ∈ C∞(N). The Poisson bracket
between a and b is defined as {a, b} = σ(~a,~b).

We end this section by collecting some properties of the Poisson bracket that follow from the
previous results.

p:newpoisson Proposition 3.50. The Poisson bracket satisfies the identities

(i) {a, b} ◦ φ = {a ◦ φ, b ◦ φ}, ∀ a, b ∈ C∞(N),∀φ ∈ Sympl(N),

(ii) {a, {b, c}} + {c, {a, b}} + {b, {c, a}} = 0, ∀ a, b, c ∈ C∞(N).

Proof. Property (i) follows from (
eq:idsympleq:idsympl
3.67). Property (ii) follows by considering φ = et~c in (i), for some

c ∈ C∞(N),. and computing the derivative with respect to t at t = 0.

Finally we are able to prove the following generalization of (
????
??).

c:idcommpar Corollary 3.51. For every a, b ∈ C∞(N) we have

−−−→{a, b} = [~a,~b]. (3.68) eq:idcommpar

Proof. Property (ii) of Proposition
p:newpoissonp:newpoisson
3.50 can be rewritten, by skew-symmetry of the Poisson bracket,

as follows

{{a, b}, c} = {a, {b, c}} − {b, {a, c}}. (3.69) eq:poisson00

Using that {a, b} = σ(~a,~b) = ~ab one can rewrite again (
eq:poisson00eq:poisson00
3.69) as

−−−→{a, b}c = ~a(~bc)−~b(~ac) = [~a,~b]c.

Remark 3.52. Property (ii) of Proposition
p:newpoissonp:newpoisson
3.50 says that {a, ·} is a derivation of the algebra C∞(N).

Moreover, the space C∞(N) endowed with {·, ·} as a product is a Lie algebra isomorphic to a sub-
algebra of Vec(N). Indeed, by (

eq:idcommpareq:idcommpar
3.68), the correspondence a 7→ ~a is a Lie algebra homomorphism

between C∞(N) and Vec(N).
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3.7 Local minimality of normal trajectories

In this section we prove a fundamental result about local optimality of normal trajectories. More
precisely we show small pieces of a normal trajectory are length minimizers.

3.7.1 The Poincaré-Cartan one form

Fix a smooth function a ∈ C∞(M) and consider the smooth submanifold of T ∗M defined by the
graph of its differential

L0 = {dqa | q ∈M} ⊂ T ∗M. (3.70) eq:L0

Notice that the restriction of the canonical projection π : T ∗M →M to L0 defines a diffeomorphism
between L0 and M , hence dimL0 = n. Let us then consider the image Lt of L0 under the
Hamiltonian flow

Lt := et
~H(L0), t > 0, (3.71) eq:Lt

and define the (n+ 1)-dimensional manifold with boundary in T ∗M × R as follows

L = {(t, λ) ∈ R× T ∗M |λ ∈ Lt, 0 ≤ t ≤ T} (3.72)

= {(t, et ~Hλ0) ∈ R× T ∗M |λ0 ∈ L0, 0 ≤ t ≤ T}. (3.73)

Here we assume that the Hamiltonian flow is defined on the interval [0, T ].
Finally, let us introduce the Poincaré-Cartan 1-form on T ∗M × R ≃ T ∗(M × R) defined by

s−Hdt ∈ Λ1(T ∗M × R)

where s ∈ Λ1(T ∗M) denotes, as usual, the tautological 1-form of T ∗M . We start by proving a
preliminary lemma.

l:sapi Lemma 3.53. s|L0
= d(a ◦ π)|L0

Proof. By definition of tautological 1-form sλ(w) = 〈λ, π∗w〉, for every w ∈ Tλ(T
∗M). If λ ∈ L0

then λ = dqa, where q = π(λ). Hence for every w ∈ Tλ(T
∗M)

sλ(w) = 〈λ, π∗w〉 = 〈dqa, π∗w〉 = 〈π∗dqa,w〉 = 〈dq(a ◦ π), w〉 .

l:exact Proposition 3.54. The 1-form (s−Hdt)|L is exact.

Proof. We divide the proof in two steps: (i) we show that the restriction of the Poincare-Cartan
1-form (s−Hdt)|L is closed and (ii) that it is exact.

(i). To prove that the 1-form is closed we need to show that the differential

d(s −Hdt) = σ − dH ∧ dt, (3.74)

vanishes when applied to a pair of tangent vectors to L. Since, for each t ∈ [0, T ], the set Lt has
codimension 1 in L, there are only two possibilities for the choice of the two tangent vectors:

(a) both vectors are tangent to Lt, for some t ∈ [0, T ].

(b) one vector is tangent to Lt while the second one is transversal.
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Case (a). Since both tangent vectors are tangent to Lt, it is enough to show that the restriction of
the one form σ− dH ∧ dt to Lt is zero. First let us notice that dt vanishes when applied to tangent

vectors to Lt, thus σ − dH ∧ dt|Lt = σ|Lt . Moreover, since by definition Lt = et
~H(L0) one has

σ|Lt = σ|
et ~H (L0)

= (et
~H )∗σ|L0

= σ|L0
= ds|L0

= d2(a ◦ π)|L0
= 0.

where in the last line we used Lemma
l:sapil:sapi
3.53 and the fact that (et

~H)∗σ = σ, since et
~H is an Hamiltonian

flow and thus preserves the symplectic form.
Case (b). The manifold L is, by construction, the image of the smooth mapping

Ψ : [0, T ]× L0 → [0, T ]× T ∗M, Ψ(t, λ) 7→ (t, et
~Hλ),

Thus a tangent vector to L that is transversal to Lt can be obtained by differentiating the map Ψ
with respect to t:

∂Ψ

∂t
(t, λ) = ~H(λ) +

∂

∂t
∈ T(t,λ)L. (3.75) eq:tantr

It is then sufficient to show that the vector (
eq:tantreq:tantr
3.75) is in the kernel of the two form σ − dH ∧ dt. In

other words we have to prove
i ~H+∂t

(σ − dH ∧ dt) = 0. (3.76) eq:closed

The last equality follows from the following identities

i ~Hσ = σ( ~H, ·) = −dH, i∂tσ = 0,

i ~H(dH ∧ dt) = (i ~HdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i ~Hdt︸︷︷︸
=0

) = 0,

i∂t(dH ∧ dt) = (i∂tdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i∂tdt︸︷︷︸
=1

) = −dH.

where we used that i ~HdH = dH( ~H) = {H,H} = 0.
(ii). Next we show that the form s − Hdt|L is exact. To this aim we have to prove that, for

every closed curve Γ in L one has ∫

Γ
s−Hdt = 0. (3.77) eq:exact

Every curve Γ in L can be written as follows

Γ : [0, T ] → L, Γ(s) = (t(s), et(s)
~Hλ(s)), where λ(s) ∈ L0.

Moreover, it is easy to see that the continuous map defined by

K : [0, T ] ×L → L, K(τ, (t, et
~Hλ0)) = (t− τ, e(t−τ)

~Hλ0)

defines an homotopy of L such that K(0, (t, et
~Hλ0)) = (t, et

~Hλ0) and K(t, (t, et
~Hλ0)) = (0, λ0).

Then the curve Γ is homotopic to the curve Γ0(s) = (0, λ(s)). Since the 1-form s−Hdt is closed,
the integral is invariant under homotopy, namely

∫

Γ
s−Hdt =

∫

Γ0

s−Hdt.
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Moreover, the integral over Γ0 is computed as follows (recall that Γ0 ⊂ L0 and dt = 0 on L0):

∫

Γ0

s−Hdt =

∫

Γ0

s =

∫

Γ0

d(a ◦ π) = 0,

where we used Lemma
l:sapil:sapi
3.53 and the fact that the integral of an exact form over a closed curve is

zero. Then (
eq:exacteq:exact
3.77) follows.

3.7.2 Normal trajectories are geodesics

Now we are ready to prove a sufficient condition that ensures the optimality of small pieces of normal
trajectories. As a corollary we will get that small pieces of normal trajectories are geodesics.

Recall that normal trajectories for the problem

q̇ = fu(q) =

m∑

i=1

uifi(q), (3.78)

where f1, . . . , fm is a generating family for the sub-Riemannian structure are projections of integral
curves of the Hamiltonian vector fields associated with the sub-Riemannian Hamiltonian

λ̇(t) = ~H(λ(t)), (i.e. λ(t) = et
~H(λ0)), (3.79)

γ(t) = π(λ(t)), t ∈ [0, T ]. (3.80)

where

H(λ) = max
u∈Uq

{
〈λ, fu(q)〉 −

1

2
|u|2
}

=
1

2

m∑

i=1

〈λ, fi(q)〉2 . (3.81)

t:minimal Theorem 3.55. Assume that there exists a ∈ C∞(M) such that the restriction of the projection
π|Lt is a diffeomorphism for every t ∈ [0, T ]. Then for any λ0 ∈ L0 the normal geodesic

γ̃(t) = π ◦ et ~H(λ0), t ∈ [0, T ], (3.82) eq:normstrict

is a strict length-minimizer among all admissible curves γ with the same boundary conditions.

Proof. Let γ(t) be an admissible trajectory, different from γ̃(t), associated with the control u(t)
and such that γ(0) = γ̃(0) and γ(T ) = γ̃(T ). We denote by ũ(t) the control associated with the
curve γ̃(t).

By assumption, for every t ∈ [0, T ] the map π|Lt : Lt → M is a local diffeomorphism, thus the
trajectory γ(t) can be uniquely lifted to a smooth curve λ(t) ∈ Lt. Notice that the corresponding
curves Γ and Γ̃ in L defined by

Γ(t) = (t, λ(t)), Γ̃(t) = (t, λ̃(t)) (3.83) eq:Gammas

have the same boundary conditions, since for t = 0 and t = T they project to the same base point
on M and their lift is uniquely determined by the diffeomorphisms π|L0

and π|LT
, respectively.

Recall now that, by definition of the sub-Riemannian Hamiltonian, we have

H(λ(t)) ≤
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, γ(t) = π(λ(t)), (3.84) eq:hamiltmax
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where λ(t) is a lift of the trajectory γ(t) associated with a control u(t). Moreover, the equality
holds in (

eq:hamiltmaxeq:hamiltmax
3.84) if and only if λ(t) is a solution of the Hamiltonian system λ̇(t) = H(λ(t)). For this

reason we have the relations

H(λ(t)) <
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, (3.85) eq:hammax1

H(λ̃(t)) =
〈
λ̃(t), fũ(t)(γ̃(t))

〉
− 1

2
|ũ(t)|2. (3.86) eq:hammax2

since λ̃(t) is a solution of the Hamiltonian equation by assumptions, while λ(t) is not. Indeed
λ(t) and λ̃(t) have the same initial condition, hence, by uniqueness of the solution of the Cauchy
problem, it follows that λ̇(t) = H(λ(t)) if and only if λ(t) = λ̃(t), that implies that γ̃(t) = γ(t).

Let us then show that the energy associated with the curve γ is bigger than the one of the curve
γ̃. Actually we prove the following chain of (in)equalities

1

2

∫ T

0
|ũ(t)|2dt =

∫

Γ̃
s−Hdt =

∫

Γ
s−Hdt <

1

2

∫ T

0
|u(t)|2dt, (3.87) eq:normalmin

where Γ and Γ̃ are the curves in L defined in (
eq:Gammaseq:Gammas
3.83).

By Lemma
l:exactl:exact
3.54, the 1-form s − Hdt is exact. Then the integral over the closed curve Γ ∪ Γ̃

vanishes, and one gets ∫

Γ̃
s−Hdt =

∫

Γ
s−Hdt.

The last inequality in (
eq:normalmineq:normalmin
3.87) can be proved as follows

∫

Γ
s−Hdt =

∫ T

0
〈λ(t), γ̇(t)〉 −H(λ(t))dt

=

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−H(λ(t))dt

<

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−
(〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2

)
dt (3.88) eq:www

=
1

2

∫ T

0
|u(t)|2dt.

where we used (
eq:hammax1eq:hammax1
3.85). A similar computation gives computation, using (

eq:hammax2eq:hammax2
3.86), gives

∫

Γ̃
s−Hdt =

1

2

∫ T

0
|ũ(t)|2dt, (3.89) eq:www

that ends the proof of (
eq:normalmineq:normalmin
3.87).

As a corollary we state a local version of the same theorem, that can be proved by adapting
the above technique.

c:normal Corollary 3.56. Assume that there exists a ∈ C∞(M) and neighborhoods Ωt of γ̃(t), such that

π ◦ et ~H ◦ da|Ω0
: Ω0 → Ωt is a diffeomorphism for every t ∈ [0, T ]. Then (

eq:normstricteq:normstrict
3.82) is a strict

length-minimizer among all admissible trajectories γ with same boundary conditions and such that
γ(t) ∈ Ωt for all t ∈ [0, T ].
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iemannian!geodesic We are in position to prove that small pieces of normal trajectories are global length minimizers.

c:geodesic Theorem 3.57. Let γ : [0, T ] → M be a sub-Riemannian normal trajectory. Then for every
τ ∈ [0, T [ there exists ε > 0 such that

(i) γ|[τ,τ+ε] is a length minimizer, i.e., d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]).

(ii) γ|[τ,τ+ε] is the unique length minimizer joining γ(τ) and γ(τ + ε), up to reparametrization.

Proof. Without loss of generality we can assume that the curve is parametrized by length and prove

the theorem for τ = 0. Let γ(t) be a normal extremal trajectory, such that γ(t) = π(et
~H (λ0)), for

t ∈ [0, T ]. Consider a smooth function a ∈ C∞(M) such that dqa = λ0 and let Lt be the family of
submanifold of T ∗M associated with this function by (

eq:L0eq:L0
3.70) and (

eq:Lteq:Lt
3.71). By construction, for the

extremal lift associated with γ one has λ(t) = et
~H(λ0) ∈ Lt for all t. Moreover the projection π

∣∣
L0

is a diffeomorphism, since L0 is a section of T ∗M .
Hence, for every fixed compact K ⊂ M containing the curve γ, by continuity there exists

t0 = t0(K) such that the restriction onK of the map π
∣∣
Lt

is also a diffeomorphism, for all 0 ≤ t < t0.
Let us now denote δK the positive constant defined in Lemma

l:deltaKl:deltaK
2.33 such that every curve starting

from γ(0) and leaving K is necessary longer than δK .
Then, defining ε = ε(K) := min{δK , t0(K)} we have that the curve γ|[0,ε] is contained in K and

is shorter than any other curve contained in K with the same boundary condition by Corollary
c:normalc:normal
3.56

(applied to Ωt = K for all t ∈ [0, T ]). Moreover ℓ(γ|[0,ε]) = ε since γ is length parametrized, hence
it is shorter than any admissible curve that is not contained in K. Thus γ|[0,ε] is a global minimizer.
Moreover it is unique up to reparametrization by uniqueness of the solution of the Hamiltonian
equation (see proof of Theorem

t:minimalt:minimal
3.55).

Remark 3.58. When Dq0 = Tq0M , as it is the case for a Riemannian structure, the level set of the
Hamiltonian

{H = 1/2} = {λ ∈ T ∗
q0M |H(λ) = 1/2},

is diffeomorphic to an ellipsoid, hence compact. Under this assumption, for each λ0 ∈ {H = 1/2},
the corresponding geodesic γ(t) = π(et

~H(λ0)) is optimal up to a time ε = ε(λ0), with λ0 belonging
to a compact set. It follows that it is possible to find a common ε > 0 (depending only on q0) such
that each normal trajectory with base point q0 is optimal on the interval [0, ε].

Bibliographical notes

The Hamiltonian approach to sub-Riemannian geometry is nowadays classical. However the con-
struction of the symplectic structure, obtained by extending the Poisson bracket from the space of
affine functions, is not standard and is inspired by

chiediandrei
[?].

Historically, in the setting of PDE, the sub-Riemannian distance (also called Carnot-Carathéodory
distance) is introduced by means of sub-unit curves, see for instance

garofalo
[?] and references therein. The

link between the two definition is clarified in Exercice
es:Hamdistres:Hamdistr
3.29

The proof that normal extremal are geodesics is an adaptation of a more general condition for
optimality given in

agrachevbook
[?] for a more general class of problems. This is inspired by the classical idea

of “fields of extremals” in classical Calculus of Variation.
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