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1 Introduction

By a switched system, we mean a family of continuous–time dynamical systems and a rule that determines
at each time which dynamical system is responsible of the time evolution. More precisely, let {fu : u ∈ U}
(where U is a subset of Rm) be a finite or infinite set of sufficiently regular vector fields on a manifold M , and
consider the family of dynamical systems,

ẋ = fu(x), x ∈ M. (1)

The rule is given by assigning the so-called switching function, i.e., a function u(.) : [0,∞[→ U ⊂ Rm. Here, we
consider the situation in which the switching function is not known a priori and represents some phenomenon
(e.g., a disturbance) that is not possible to control. Therefore, the dynamics defined in (1) also fits into the
framework of uncertain systems (cf. for instance [6]). In the sequel, we use the notations u ∈ U to label a
fixed individual system and u(.) to indicate the switching function. These kind of systems are sometimes called
“n-modal systems”, “dynamical polysystems”, “input systems”. The term “switched system” is often reserved
to situations in which the switching function u(.) is piecewise continuous or the set U is finite. For the purpose
of this paper, we only require u(.) to be a measurable function. When all the vector fields fu, u ∈ U are linear,
the switched system is called multilinear. For a discussion of various issues related to switched systems, we
refer the reader to [5, 13, 14, 17].

A typical problem for switched systems goes as follows. Assume that, for every fixed u ∈ U , the dynamical
system ẋ = fu(x) satisfies a given property (P). Then one can investigate conditions under which property (P)
still holds for ẋ = fu(t)(x), where u(.) is an arbitrary switching function. In this paper, we focus on multilinear
systems and (P) is the asymptotic stability property.

The structure of the paper is the following. In Section 2 we give the definitions of stability we need, we state
the stability problem and we recall some sufficient conditions for stability in dimension n due to Agrachev,
Hespanha, Liberzon and Morse [1, 7, 16]. In Section 3 we discuss the problem of existence of Lyapunov
functions in certain functional classes (in particular in the class of polynomials). This problem was first studied
by Molchanov and Pyatnitskii [19, 20, 21]. More recently new results were obtained by Dayawansa, Martin,
Blanchini, Miani [4, 5, 13], and in [18] in collaboration with Chitour and Mason. In Section 4, we discuss
the necessary and sufficient conditions for asymptotic stability for bidimensional single input systems (bilinear
systems) that were found in [7] (see also [18]) and, in collaboration with Balde, in [8].

In Section 5 we state an open problem.

2 General properties of multilinear systems

By a multilinear switched systems (that more often are simply called switched linear systems) we mean a
system of the form,

ẋ(t) = Au(t)x(t), x ∈ R
n, {Au}u∈U ⊂ R

n×n, (2)

here U ⊂ Rm is a compact set, u(.) : [0,∞[→ U is a (measurable) switching function, and the map u 7→ Au

is continuous (so that {Au}u∈U is a compact set of matrices). For these systems, the problem of asymptotic
stability of the origin, uniformly with respect to switching functions was investigated, in [1, 7, 8, 13, 16].

A particular interesting class is the one of bilinear (or single-input) systems,

ẋ(t) = u(t)Ax(t) + (1 − u(t))Bx(t), x ∈ R
n, A, B ∈ R

n×n. (3)

Here the set U is equivalently [0, 1] or {0, 1} (see Remark 2 below).
Let us state the notions of stability that are used in the following.

Definition 1 For δ > 0 let Bδ be the unit ball of radius δ, centered in the origin. Denote by U the set of
measurable functions defined on [0,∞[ and taking values on the compact set U . Given x0 ∈ Rn, we denote by
γx0,u(.)(.) the trajectory of (2) based in x0 and corresponding to the control u(.). The accessible set from x0,
denoted by A(x0), is

A(x0) = ∪u(.)∈USupp(γx0,u(.)(.)) .

We say that the system (2) is
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• unbounded if there exist x0 ∈ Rn and u(.) ∈ U such that γx0,u(.)(t) goes to infinity as t → ∞;

• uniformly stable if, for every ε > 0, there exists δ > 0 such that A(x0) ⊂ Bε for every x0 ∈ Bδ;

• globally uniformly asymptotically stable (GUAS, for short) if it is uniformly stable and globally
uniformly attractive, i.e., for every δ1, δ2 > 0, there exists T > 0 such that γx0,u(.)(T ) ∈ Bδ1

for every
u(.) ∈ U and every x0 ∈ Bδ2

;

In this paper we focus on the following problem.

Problem 1 For the system (2) (resp. for the system (3)), find under which conditions on the compact set
{Au}u∈U (resp. on the pair (A, B)) the system is GUAS.

Next we always assume the following hypothesis,

(H0) for the system (2) (resp. for the system (3)) all the matrices of the compact set {Au}u∈U (resp. A, and
B) have eigenvalues with strictly negative real part (Hurwitz in the following),

otherwise Problem 1 is trivial.

Remark 1 Under our hypotheses (multilinearity and compactness) there are many notions of stability equiv-
alent to the ones of Definition 1. More precisely since the system is multilinear, local and global notions of
stability are equivalent. Moreover, since {Au}u∈U is compact, all notions of stability are automatically uniform
with respect to switching functions (see for instance [3]). Finally, thanks to the multilinearity, the GUAS
property is equivalent to the more often quoted property of GUES (global exponential stability, uniform with
respect to switching), see for example [2] and references therein.

Remark 2 Whether systems of type (3) are GUAS or not is independent on the specific choice U = [0, 1] or
U = {0, 1}. In fact, this is a particular instance of a more general result stating that the stability properties of
systems (2) depend only on the convex hull of the set {Au}u∈U ; see for instance [18].

Example One can find many examples of systems such that each element of the family {Au}u∈U is GUAS,
while the switched system is not. Consider for instance a bidimensional system of type (3) where,

A =

(

−.03 −2
1/2 −.03

)

, B =

(

−.03 −1/2
2 −.03

)

. (4)

Notice that both A and B are Hurwitz. However it is easy to build trajectories of the switched systems that
are unbounded, as shown in Figure 1.

Let us recall some results about stability of systems of type (2), subject to (H0). In [1, 16], it is shown
that the structure of the Lie algebra generated by the matrices Au,

g = {Au : u ∈ U}L.A.,

is crucial for the stability of the system (2). For instance one can easily prove that if all the matrices of the
family {Au}u∈U commute, then the switched system is GUAS. The main result of [16] is the following.

Theorem 1 (Hespanha, Morse, Liberzon) If g is a solvable Lie algebra, then the switched system (2) is
GUAS.

In [1] a generalization was given. Let g = r n s be the Levi decomposition of g in its radical (i.e., the
maximal solvable ideal of g) and a semi–simple sub–algebra, where the symbol n indicates the semidirect sum.

Theorem 2 (Agrachev, Liberzon) If s is a compact Lie algebra then the switched system (2) is GUAS.

Theorem 2 contains Theorem 1 as a special case. Anyway the converse of Theorem 2 is not true in general: if
s is non compact, the system can be stable or unstable. This case was also investigated. In particular, if g has
dimension at most 4 as Lie algebra, Agrachev and Liberzon were able to reduce the problem of the asymptotic
stability of the system (2) to the problem of the asymptotic stability of an auxiliary bidimensional system. We
refer the reader to [1] for details. For this reason the bidimensional problem assumes particularly interest and,
for the single input case, was solved in [7] (see also [18]) and, in collaboration with Balde, in [8].

Before stating the stability conditions found in [7, 8, 18], let us recall the advantages and disadvantage of
the most used method to check stability, i.e. the method of common Lyapunov functions.
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Figure 1: For a system of type (3), where A and B are given by formula (4), this picture shows an integral
curve of Ax, an integral curve of Bx, and a trajectory of the switched system, that is unbounded.

3 Common Lyapunov functions

For a system (2), it is well known that the GUAS property is a consequence of the existence of a common
Lyapunov function.

Definition 2 A common Lyapunov function (LF for short) V : Rn −→ R+, for a switched system (S) of the
type (2), is a continuous function such that V is positive definite (i.e. V (x) > 0, ∀x 6= 0, V (0) = 0) and V is
strictly decreasing along nonconstant trajectories of (S).

Vice-versa, it is known that, given a GUAS system of the type (2) subject to (H0), it is always possible to
build a C∞ common Lyapunov function (see for instance [13, 19, 20, 21] and the bibliographical note in [14]).

Clearly is much more natural to use LFs to prove that a given system is GUAS (one has just to find one
LF), than to prove that a system is unstable (i.e. proving that a LF does not exist). Indeed this is the reason
why, usually, is much more easy to find (nontrivial) sufficient conditions for GUAS than necessary conditions.
(Notice that all stability results given in the previous section in terms of the Lie algebra g, are, in fact, sufficient
conditions for GUAS.)

Indeed the concept of LF is useful for practical purposes when one can prove that, for a certain class of
systems, if a LF exists, then it is possible to find one of a certain type and possibly as simple as possible (e.g.
polynomial with a bound on the degree, piecewise quadratic etc.). Typically one would like to work with a
class of functions identified by a finite number of parameters. Once such a class of functions is identified, then
in order to verify GUAS, one could use numerical algorithms to check (by varying the parameters) whether a
LF exists (in which case the system is GUAS) or not (meaning that the system is not GUAS).

The idea of identifying a class of function where to look for a LF (i.e. sufficient to check GUAS), was first
formalized by Blanchini and Miani in [5]. They called such a class a “universal class of Lyapunov functions.”

For instance, a remarkable result for a given class C of systems of type (2) (for instance the class of single
input system (3), in dimension n) could be the following.
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Claim: there exists a positive integer m (depending on n) such that, whenever a system of C admits a
LF, then it admits one that is polynomial of degree less than or equal to m. In other words, the class of
polynomials of degree at most m is sufficient to check GUAS (i.e. the class of polynomials of degree at most
m is universal, in the language of Blanchini and Miani).

The problem of proving if this claim is true or false attracted some attention from the community.
For single input bidimensional systems of type (3), with n = 2, Shorten and K. Narendra provided in [23] a

necessary and sufficient condition on the pair (A, B) for the existence of a quadratic LF, but it is known (see
for instance [13, 22, 11, 24]) that there exist GUAS bilinear bidimensional systems not admitting a quadratic
LF. See for instance the paper by Dayawansa and Martin [13] for a nice example.

In [13], for systems of type (3), Dayawansa and Martin assumed that the Claim above is true and posed
the problem of finding the minimum m. More precisely, the problem posed by Dayawansa and Martin is the
following:

Problem 2 (Dayawansa and Martin): Let Ξ be the set of systems of type (3) in dimension n satisfy-
ing (H0). Define ΞGUAS ⊂ Ξ as the set of GUAS systems. Find the minimal integer m such that every system
of ΞGUAS admits a polynomial LF of degree less or equal than m.

Remark 3 In the problem posed by Dayawansa and Martin, it is implicitly assumed that a GUAS system always
admits a polynomial common Lyapunov function. This fact was first proved by Molchanov and Pyatnitskii in
[19, 20], for systems of type 2, under the assumption that the set {Au}u∈U is of the form {(aij)i,j=1,...n : a−

ij ≤
aij ≤ a+

ij}. In [21] Molchanov and Pyatnitskii state the result, with no further details, under the more general
hypothesis {Au}u∈U just compact. In the case in which the convex hull of {Au}u∈U is finitely generated, the
existence of a polynomial common Lyapunov function for GUAS systems was proved by Blanchini and Miani
[4, 5], in the context of uncertain systems. In [18], in collaboration with Chitour and Mason, a simple proof for
a set {Au}u∈U satisfying the weaker hypothesis that its convex hull is compact, (without necessarily requiring
U to be compact) is provided.

The core of the paper [18] consists of showing that the Problem of Dayawansa and Martin does not have a
solution, i.e. the minimum degree of a polynomial LF cannot be uniformly bounded over the set of all GUAS
systems of the form (3). More precisely, we have the following:

Theorem 3 If (A, B) is a pair of n × n real matrices giving rise to a system of ΞGUAS, let m(A, B) be the
minimum value of the degree of any polynomial LF associated to that system. Then m(A, B) cannot be bounded
uniformly over ΞGUAS .

In other words the set of polynomials of fixed degree is not a universal class of Lyapunov functions. Finding
which is the right functional class where to look for LFs is indeed a very difficult task. Sometimes, it is even
easier to prove directly that a system is GUAS or unstable. Indeed this is the case for bidimensional single-input
switched systems.

4 Two-dimensional bilinear systems

In [7] (see also [18]) and [8], we studied conditions on A and B for the following property to be true:

(P) The switched system given by

ẋ(t) = u(t)Ax(t) + (1 − u(t))Bx(t), x ∈ R
2, A, B ∈ R

2×2, u(.) : [0,∞[→ {0, 1}, (5)

is GUES at the origin.

The idea (coming from optimal control, see for instance [9]) is that many information on the stability of (5)
are contained in the set Z where the two vector fields Ax and Bx are linearly dependent. This set is the set of
zeros of the function Q(x) := det(Ax, Bx). Since Q is a quadratic form, we have the following cases (depicted
in Figure 2):
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A. Z = {0} (i.e., Q is positive or negative definite). In this case the vector fields preserve always the same
orientation and the system is GUAS. This fact can be proved in several way (for instance building a
common quadratic Lyapunov function) and it is true in much more generality (even for nonlinear systems,
see the paper [10], in collaboration with Charlot and Sigalotti).

B. Z is the union of two noncoinciding straight lines passing through the origin (i.e., Q is sign indefinite).
Take a point x ∈ Z \ {0}. We say that Z is direct (respectively, inverse) if Ax and Bx have the same
(respectively, opposite) versus. One can prove that this definition is independent of the choice of x on Z .
Then we have the two subcases:

B1. Z is inverse. In this case one can prove that there exists u0 ∈]0, 1[ such that the matrix u0Ax +
(1 − u0)Bx has an eigenvalue with positive real part. In this case the system is unbounded since
it is possible to build a trajectory of the convexified system going to infinity with constant control.
(This type of instability is called static instability.)

B2. Z is direct. In this case one can reduce the problem of the stability of (5) to the problem of the
stability of a single trajectory called worst-trajectory. Fixed x0 ∈ R2 \ {0}, the worst-trajectory γx0

is the trajectory of (5), based at x0, and having the following property. At each time t, γ̇x0
(t) forms

the smallest angle (in absolute value) with the (exiting) radial direction (see Figure 3). Clearly the
worst-trajectory switches among the two vector fields on the set Z . If it does not rotate around
the origin (i.e., if it crosses the set Z a finite number of times) then the system is GUAS. On the
other side, if it rotates around the origin, the system is GUAS if and only if after one turn the
distance from the origin is decreased. (see Figure 2, Case B2). If after one turn the distance from
the origin is increased then the system is unbounded (in this case, since there are no trajectories
of the convexified system going to infinity with constant control, we call this instability dynamic
instability). If γx0

is periodic then the system is uniformly stable, but not GUAS.

C. In the degenerate case in which the two straight lines of Z coincide (i.e., when Q is sign semi-definite), one
see that the system is GUAS (resp. uniformly stable, but not GUAS) if and only if Z is direct (resp.
inverse). We call these cases respectively C2 and C1.

A consequence of these ideas is that the stability properties of the system (5), depend only on the shape of the
integral curves of Ax and Bx and not on the way in which they are parameterized. More precisely we have:
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Lemma 1 If the switched system ẋ = u(t)Ax + (1 − u(t))Bx, u(.) : [0,∞[→ {0, 1}, has one of the stability
properties given in Definition 1, then the same stability property holds for the system ẋ = u(t)(A/αA)x + (1−
u(t))(B/αB)x, for every αA, αB > 0.

The main point to get stability conditions is to translate the ideas above in terms of coordinate invariant
parameters. To this purpose one have first to find good normal forms for the two matrices A and B, in which
these parameters appear explicitly.

We treat separately the case in which the two matrices are diagonalizable (called diagonalizable case) and
the case in which one or both are not (called nondiagonalizable case).

4.1 The diagonalizable case

In the case in which both A and B are diagonalizable, we assume

H1: Let λ1, λ2 (resp., λ3, λ4) be the eigenvalues of A (resp., B). Then Re(λ1), Re(λ2), Re(λ3), Re(λ4) < 0.

H2: [A, B] 6= 0 (that implies that neither A nor B is proportional to the identity).

H3: A and B are diagonalizable in C. (Notice that if (H2) and (H3) hold, then λ1 6= λ2, λ3 6= λ4.)

H4: Let V1,V2 ∈ CP 1 (resp., V3,V4 ∈ CP 1) be the eigenvectors of A (resp., B). Then Vi 6= Vj for i ∈ {1, 2},
j ∈ {3, 4}. (Notice that, from (H2) and (H3), the Vi are uniquely defined, V1 6= V2 and V3 6= V4, and
(H4) can be violated only when both A and B have real eigenvalues.)

Condition (H1) is just the condition that A and B are Hurwitz (cf. condition (H0) in Section 2). Condition
(H2) is required otherwise the system is GUAS as a consequence of Theorem 1. The case in which (H1) and
(H2) hold but (H3) does not is treated in the next section. The case in which (H1), (H2) and (H3) hold
but (H4) does not can be treated with arguments similar to those of [7], and it possible to conclude that (P)
is true.

Theorem 4 below, gives necessary and sufficient conditions for the stability of the system (5) in terms of
three (coordinates invariant) parameters given in Definition 3 below. The first two parameters, ρA and ρB ,
depend on the eigenvalues of A and B, respectively, and the third parameter K depends on Tr(AB), which is a
Killing-type pseudoscalar product in the space of 2× 2 matrices. As explained in [7], the parameter K contains
the interrelation between the two systems ẋ = Ax and ẋ = Bx, and it has a precise geometric meaning. It is
in 1 : 1 correspondence with the cross ratio of the four points in the projective line CP 1 that corresponds to
the four eigenvectors of A and B. For more details, see [7].

Definition 3 Let A and B be two 2 × 2 real matrices and suppose that (H1), (H2), (H3), and (H4) hold.
Moreover, choose the labels (1) and (2) (resp., (3) and (4)) so that |λ2| > |λ1| (resp., |λ4| > |λ3|) if they are
real or Im(λ2) < 0 (resp., Im(λ4) < 0) if they are complex. Define
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ρA := −i
λ1 + λ2

λ1 − λ2
; ρB := −i

λ3 + λ4

λ3 − λ4
; K := 2

Tr(AB) − 1
2Tr(A)Tr(B)

(λ1 − λ2)(λ3 − λ4)
.

Moreover, define the following function of ρA, ρB ,K:

D := K2 + 2ρAρBK − (1 + ρ2
A + ρ2

B). (6)

Notice that ρA is a positive real number if and only if A has nonreal eigenvalues and ρA ∈ iR, ρA/i > 1 if and
only if A has real eigenvalues. The same holds for B. Moreover, D ∈ R.

4.1.1 Normal forms in the diagonalizable case

Under hypotheses (H1) to (H4), using a suitable 3-parameter changes of coordinates, it is always possible to
put the matrices A and B, up the their norm, in the normal forms given in the following Proposition, where
ρA, ρB ,K appear explicitly. (See [7] and [18] for the proof.) We will call, respectively, (CC) the case where
both matrices have nonreal eigenvalues, (RR) the case where both matrices have real eigenvalues, and (RC)
the case where one matrix has real eigenvalues and the other nonreal eigenvalues.

Proposition 1 Let A, B be two 2 × 2 real matrices satisfying conditions (H1), (H2), (H3), and (H4) . In
the case in which one of the two matrices has real and the other nonreal eigenvalues (i.e., the (RC) case),
assume that A is the one having real eigenvalues. Then there exists a 3-parameter change of coordinates and
two constant αA, αB > 0 such that the matrices A/αA and B/αB (still denoted below by A and B) are in the
following normal forms.

Case in which A and B have both nonreal eigenvalues ((CC) case):

A =

(

−ρA −1/E
E −ρA

)

, B =

(

−ρB −1
1 −ρB

)

,

where ρA, ρB > 0, |E| > 1. In this case, K = 1
2 (E + 1

E ). Moreover, the eigenvalues of A and B are,
respectively, −ρA ± i and −ρB ± i.

Case in which A has real and B nonreal eigenvalues ((RC) case):

A =

(

−ρA/i + 1 0
0 −ρA/i − 1

)

, B =

(

−ρB −K/i −
√

1 −K2√
1 −K2 −ρB + K/i

)

,

where ρB > 0, ρA/i > 1, K ∈ iR. In this case, the eigenvalues of A and B are, respectively, −ρA/i ± 1
and −ρB ± i.

Case in which A and B have both real eigenvalues ((RR) case):

A =

(

−ρA/i + 1 0
0 −ρA/i− 1

)

, B =

(

K − ρB/i 1 −K
1 + K −K − ρB/i

)

,

where ρA/i, ρB/i > 1 and K ∈ R \ {±1}. In this case, the eigenvalues of A and B are, respectively,
−ρA/i ± 1 and −ρB/i± 1.

Using these normal forms, following the ideas presented at the beginning of this section, one gets the following
stability conditions (see [7, 18] for the proof).

4.1.2 Stability conditions in the diagonalizable case

Theorem 4 Let A and B be two real matrices such that (H1), (H2), (H3), and (H4), given in section 4,
hold and define ρA, ρB ,K,D as in Definition 3. We have the following stability conditions.
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Case (CC) If A and B have both complex eigenvalues, then

Case (CC.1). if D < 0, then (P) is true;

Case (CC.2). if D > 0, then

Case (CC.2.1). if K < −1, then (P) is false;

Case (CC.2.2). if K > 1, then (P) is true if and only if it holds the following condition:

ρCC := exp

[

−ρA arctan

(−ρAK + ρB√
D

)

(7)

−ρB arctan

(

ρA − ρBK√
D

)

− π

2
(ρA + ρB)

]

×
√

(ρAρB + K) +
√
D

(ρAρB + K) −
√
D

< 1.

Case (CC.3). If D = 0, then (P) holds true or false whether K > 1 or K < −1.

Case (RC). If A and B have one of them complex and the other real eigenvalues, define χ := ρAK − ρB ,
where ρA and ρB are chosen in such a way ρA ∈ iR, ρB ∈ R. Then

Case (RC.1). if D > 0, then (P) is true;

Case (RC.2). if D < 0, then χ 6= 0 and we have:

Case (RC.2.1). if χ > 0, then (P) is false. Moreover, in this case K/i < 0;

Case (RC.2.2). if χ < 0, then

Case (RC2.2.A). if K/i ≤ 0, then (P) is true;

Case (RC2.2.B). if K/i > 0, then (P) is true if and only if it holds the following condition:

ρRC :=
(m+

m−

)

− 1

2
(ρA/i−1)

e−ρB t̄ (8)

×
(

√

1 −K2 m− sin t̄ −
(

cos t̄ − K
i

sin t̄

))

< 1,

where

m± :=
−χ ±

√
−D

(−ρA/i− 1)K/i
, t̄ = arccos

−ρA/i + ρBK/i
√

(1 −K2)(1 + ρ2
B)

.

Case (RC.3). If D = 0, then (P) holds true whether χ < 0 or χ > 0.

Case (RR). If A and B have both real eigenvalues, then

Case (RR.1). if D < 0, then (P) is true; moreover we have |K| > 1;

Case (RR.2). if D > 0, then K 6= −ρAρB (notice that −ρAρB > 1) and

Case (RR.2.1). if K > −ρAρB, then (P) is false;

Case (RR.2.2). if K < −ρAρB, then

Case (RR.2.2.A). if K > −1, then (P) is true;

Case (RR.2.2.B). if K < −1, then (P) is true if and only if the following condition holds:

ρRR := −fsym(ρA, ρB ,K)fasym(ρA, ρB ,K) (9)

×fasym(ρB , ρA,K) < 1,
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where

fsym(ρA, ρB ,K) :=
1 + ρA/i + ρB/i + K −

√
D

1 + ρA/i + ρB/i + K +
√
D

;

faym(ρA, ρB ,K) :=

(

ρB/i−KρA/i−
√
D

ρB/i−KρA/i +
√
D

)
1

2
(ρA/i−1)

.

Case (RR.3). If D = 0, then (P) holds true or false whether K < −ρAρB or K > −ρAρB.

Finally, if (P) is not true, then in case CC.2.2 with ρCC = 1, case (RC.2.2.B), with ρRC = 1, case (RR.2.2.B),
with ρRR = 1, case (CC.3) with K < −1, case (RC.3) with χ > 0 and case (RR.3) with K > −ρAρB, the origin
is just stable. In the other cases, the system is unstable.

Remark 4 Notice that cases (CC.2.1), (RC.2.1) and (RR.2.1) correspond to Z inverse, while cases (CC.2.2),
(RC.2.2) and (RR.2.2) correspond to Z direct.

4.2 The nondiagonalizable case

In the case in which one or both the matrices are nondiagonalizable, we assume

(H5) A and B are two 2 × 2 real Hurwitz matrices. Moreover A is nondiagonalizable and [A, B] 6= 0.

In this case new difficulties arises. The first is due to the fact that eigenvectors of A and B are at most 3
noncoinciding points on CP 1. As a consequence the cross ratio is not anymore the right parameter describing
the interrelation among the systems. It is either not defined or completely fixed. For this reason new coordinate-
invariant parameters should be identified and new normal forms for A and B should be constructed. These
coordinate invariant parameters are the three real parameters defined in Definition 4 below. One (η) is, up to
time reparametrization, the (only) eigenvalue of A, the second (ρ) depends on the eigenvalues of B and the
third (k) plays the role of the cross ratio of the diagonalizable case. For x ∈ R define

sign(x) =







+1 if x > 0
0 if x = 0
−1 if x < 0.

Definition 4 Assume (H5) and let δ be the discriminant of the equation det(B−λId) = 0. Define the following
invariant parameters:

η =















Tr(A)
√

|δ|
if δ 6= 0

Tr(A)

2
if δ = 0,

ρ =















Tr(B)
√

|δ|
if δ 6= 0

Tr(B)

2
if δ = 0,

k =











4

|δ|

(

Tr(AB) − 1

2
Tr(A)Tr(B)

)

if δ 6= 0

Tr(AB) − 1

2
Tr(A)Tr(B) if δ = 0.

Remark 5 Notice that δ = (λ1 − λ2)
2 ∈ R, where λ1 and λ2 are the eigenvalues of B. Notice moreover that B

has non real eigenvalues if and only if δ < 0. Finally observe that η, ρ < 0 and k ∈ R.

Definition 5 In the following, under the assumption (H5), we call regular case (R-case for short), the case
in which k 6= 0 and singular case (S-for short), the case in which k = 0.
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4.2.1 Normal forms in the nondiagonalizable case

We have the following (see [8] for the proof):

Lemma 2 (R-case) Assume (H5) and k 6= 0. Then it is always possible to find a linear change of coordinates
and a constant τ > 0 such that A/τ and B/τ (that we still call A and B) have the following form:

A =

(

η 1
0 η

)

, (10)

B =

(

ρ sign(δ)/k
k ρ

)

. (11)

Moreover in this case [A, B] 6= 0 is automatically satisfied.

Lemma 3 (S-case) Assume (H5) and k = 0. Then δ > 0 and it is always possible to find a linear change of
coordinates and a constant τ > 0 such that A/τ and B/τ (that we still call A and B) have the following form,

A =

(

η 1
0 η

)

, B =

(

ρ − 1 0
0 ρ + 1

)

, called S1-case, (12)

or the form,

A =

(

η 1
0 η

)

, B =

(

ρ + 1 0
0 ρ − 1

)

, called S−1-case. (13)

4.2.2 Stability conditions in the nondiagonalizable case

First we need to define some functions of the invariants η, ρ, k. Set ∆ = k2 − 4ηρk + sign(δ)4η2. By direct
computation one gets that if k = 2ηρ then ∆ = −4 detA det B < 0. It follows,

Lemma 4 Assume (H5). Then ∆ ≥ 0 implies k 6= 2ηρ.

Moreover, when ∆ > 0 and k < 0, define

R =







|(−k+
√

∆
−k−

√
∆

) 2kρ2−sign(δ)(k+2ηρ+
√

∆)

2k(ρ−sign(δ) η
k
)
√

ρ2−sign(δ)
| exp(

√
∆
k + ρθsign(δ)), if ρ − sign(δ) η

k 6= 0,

−2η√
k2+η2

exp(
√

∆
k + ρθ−1), if ρ − sign(δ) η

k = 0 (which implies sign(δ) = −1).
(14)

where

θ−1 =

{

arctan
√

∆
k(ρ+ η

k
)+η if k(ρ + η

k ) + η 6= 0

π/2 if k(ρ + η
k ) + η = 0,

θ1 = arctanh

√
∆

k(ρ − η
k ) − η

,

θ0 =

√
∆

kρ
.

Notice that when k < 0, then k(ρ − η
k ) − η > 0 and kρ > 0. Hence θ1 and θ0 are well defined.

The following Theorem states the stability conditions in the case in which A is nondiagonalizable. For the
proof see [8]. The letters A., B., and C. refer to the cases described at the beginning of this section and in
Figure 2. Recall Lemma 4.

Theorem 5 Assume (H5). We have the following stability conditions for the system (5).

A. If ∆ < 0, then the system is GUAS.
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B. If ∆ > 0, then:

B1. if k > 2ηρ, then the system is unbounded,

B2. if k < 2ηρ, then

• in the regular case (k 6= 0), the system is GUAS, uniformly stable (but not GUAS) or unbounded
respectively if

R < 1,R = 1,R > 1.

• In the singular case (k = 0), the system is GUAS.

C. If ∆ = 0, then:

C1 If k > 2ηρ, then the system is uniformly stable (but not GUAS),

C2 if k < 2ηρ, then the system is GUAS.

5 An Open problem

Many problems connected to the ideas presented in this paper as still open. In the following we present a
problem that, in our opinion, is of great interest.

Open Problem Find necessary and sufficient conditions for the stability of a bilinear switched system in
dimension 3. This problem seems to be quite difficult, and the techniques presented in this paper cannot
be applyed. (The reason is that these techniques use implicitly the Jordan separation lemma.) Even if
studying all possible cases is probably too complicated, one would like to see if the set of all pairs of 3×3
matrices giving rise to a a GUAS system can be defined with a finite number of inequalities involving
analytic functions, exponentials and logarithm. This was the case for bilinear planar systems, and it
would be already very interesting to see if the same holds in dimension 3.

Another formulation of this problem is to extend to bilinear systems in dimension 3 the following corollary
of the results given in the previous section.

Corollary 1 The set of all pairs of 2 × 2 real matrices giving rise to a GUAS system is a set in the
log-exp category.

For the precise definition of the log-exp category, see for instance [12, 15].

Remark 6 Notice that the topological boundary of the set described by Corollary 1 is related to the
problem of finding the right functional class where to look for LFs. Another interesting problem is to
clarify this relation. This problem is already interesting in dimension 2.
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