
Partial Differential Equations. — Gaussian estimates for hypoellip-
tic operators via optimal control. Nota di Ugo Boscain e Sergio Poli-
doro.

Abstract. — We obtain Gaussian lower bounds for the fundamental solution of a

class of hypoelliptic equations, by using repeatedly an invariant Harnack inequality. Our

main result is given in terms of the value function of a suitable optimal control problem.
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Sunto. — Stime Gaussiane per operatori ipoellittici mediante controllo ottimo. Si

dimostrano stime Gaussiane dal basso della soluzione fondamentale per una classe di

equazioni ipoellittiche, mediante l’uso ripetuto di una disuguaglianza di Harnack invari-

ante. Il nostro principale risultato è espresso in termini della funzione valore di un

opportuno problema di controllo ottimo.

1 Introduction

We consider a class of linear second order operators in RN+1 of the form

L :=

m∑

k=1

X2
k +X0 − ∂t. (1.1)

In (1.1) the Xk’s are smooth vector fields on RN , i.e. denoting z = (x, t)
the point in RN+1

Xk(x) =
N∑

j=1

akj (x)∂xj , k = 0, . . . ,m.

In the sequel we will also consider the Xk’s as vector fields in RN+1 and
denote

Y = X0 − ∂t. (1.2)

Our main assumption on the operators L is the invariance with respect to
a homogeneous Lie group structure, and a controllability condition:

Hypothesis [H] There exists a homogeneous Lie group G =
(
RN+1, ◦, δλ

)

such that

(i) X1, . . . , Xm, Y are left translation invariant on G;
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(ii) X1, . . . , Xm are δλ-homogeneous of degree one and Y is δλ-homogeneous
of degree two.

Hypothesis [C] For every (x, t), (y, s) ∈ RN+1 with t > s, there exists an
absolutely continuous path γ : [0, t− s]→ RN such that





γ̇(τ) =
m∑

k=1

ωk(τ)Xk(γ(τ)) +X0(γ(τ))

γ(0) = x, γ(t− s) = y,

(1.3)

with ω1, . . . , ωm ∈ L∞([0, t− s]).

In the sequel, the solution of (1.3) will be denoted by γ((x, t), (y, s), ω).

Operators of the form (1.1), verifying hypotheses [C] and [H], have been
considered by Kogoj and Lanconelli in [10] and [11]. An invariant Harnack
inequality for the postive solutions of Lu = 0 is proved in [10], a general
procedure for the construction of sequences of operator satisfying assump-
tions [C] and [H], is given in [11]. We next give some comments about
these assumptions. We first compare the controllability property [C], with
some properties of the commutators of X1, . . . , Xm, Y . It is known that
condition [H] implies that the coefficients akj ’s of the Xk’s are polynomial
functions, hence we can rely on a classical results (see Derridj and Zuily [5]
and Olěınik and Radkevič [16], Chap. II, Sec. 8) to see that [C] yields

rank Lie{X1, . . . , Xm, Y }(z) = N + 1, ∀z ∈ RN+1. (1.4)

Note that it is not true that [C] is a consequence of (1.4), nevertheless it is
well known that the condition

rank Lie
{
X1, . . . , Xm

}
(x) = N, ∀x ∈ RN , (1.5)

(which is stronger than (1.4)) implies [C] (see for instance the books of
Agrachev and Sachkov [1] and Jurdjevic [9]).

In the theory of the partial differential equations, the above properties
are strongly related to the regularity problem for L. Specifically, condition
(1.4) is the well known sufficient condition for the hypoellipticity of L intro-
duced by Hörmander in [7]. In [10] it is proved that L has a fundamental
solution Γ which is invariant with respect to the group operation, is smooth
out of its poles and δλ-homogeneous of degree 2−Q:

Γ (z, ζ) = Γ(ζ−1 ◦ z, 0), Γ (δλz, 0) = λ2−QΓ(z, 0), (1.6)
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for every z, ζ ∈ RN+1 and λ > 0 (here Q denotes the homogeneous di-
mension of the Lie group G, see Section 2). Moreover, Γ (x, t, ξ, τ) > 0 for
t > τ , and Γ (x, t, ξ, τ) = 0 for t ≤ τ .

The main purpose of this paper is to adapt a method due to Moser [14]
and used by Aronson and Serrin [2], [3], in order to prove a Gaussian lower
bound of Γ. We recall that the method by Moser has been introduced in
the study of uniformly parabolic operators and is based on the repeated
use of an invariant Harnack inequality. In that framework, the Gaussian
bound reads as follows: let h be the fundamental solution of an uniformly
parabolic operator. Then there exists a positive constant c such that

h(x− y, t− s) ≥ c

(t− s)N/2
e
− |x−y|2

c (t−s) , (1.7)

for every (x, t), (y, s) ∈ RN+1 with t > s. In order to adapt the method to
operators of type (1.1), we rely on the following invariant Harnack inequal-
ity proved by Kogoj and Lanconelli. Consider the sets Hr(z0) = z0◦δr(H1),
and Sr(z0) = z0 ◦ δr(S1), where

H1 =
{
(x, t) ∈ RN+1 | ‖(x, t)‖G ≤ 1, t ≤ 0

}
,

S1 = {(x, t) ∈ H1 | 1/4 ≤ −t ≤ 3/4} .

Then the following result holds (see [10], Theorem 7.1). Let Ω be an open
subset of RN+1 containing Hr(z0) for some z0 ∈ RN+1 and r > 0. Then,
there exist two positive constants θ and M , only depending on the operator
L, such that

sup
Sθr(z0)

u ≤M u(z0), (1.8)

for every non-negative solution u of Lu = 0 in Ω. Our first result is a non-
local lower bound for positive solutions to Lu = 0 obtained by the (local)
Harnack inequality (1.8).

Proposition 1.1 Let L be as defined in (1.1), satisfying assumptions [C]
and [H]. Then there exist three constants θ ∈]0, 1[, h > 0 and M > 1, only
depending on the operator L, such that the following statement is true.
If u : RN×]T0, T1] → R is a positive solution to Lu = 0, (x, t), (y, s) ∈
RN×]T0, T1] are two points such that T1 − θ2(T1 − T0) ≤ s < t ≤ T1, and
γ((x, t), (y, s), ω) is a solution to (1.3), then

u(y, s) ≤M1+
Φ(ω)
h u(x, t),
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where

Φ(ω) =

∫ t−s

0

(
ω2

1(τ) + · · ·+ ω2
m(τ)

)
dτ.

The above Proposition extends a previous result by Pascucci and Poli-
doro (Theorem 1.1 in [17]) and gives a bound for any solution γ of (1.3). In
order to obtain the best exponent we formulate the natural optimal control
problem: we consider the function ω1, . . . , ωm as the control of the path γ
in (1.3) and we look for the one minimizing the total cost Φ among the
paths γ satisfying (1.3). We then define the value function

V (x, t, y, s) = inf {Φ(ω) | γ((x, t), (y, s), ω) is a solution to (1.3) } . (1.9)

As a straightforward corollary of Proposition 1.1, we obtain that

u(y, s) ≤M1+
V (x,t,y,s)

h u(x, t), (1.10)

provided that u satisfies the assumptions of Proposition 1.1. A further di-
rect consequence is the following lower bound for the fundamental solution
Γ of L:

Theorem 1.2 Let L be as defined in (1.1), satisfying assumptions [C] and
[H]. Then there exist two constants C > 0 and θ ∈]0, 1[, only depending on
the operator L, such that

Γ(x, t, 0, 0) ≥ 1

C t
Q−2
2

e−CV (x,θ2t,0,0) ∀(x, t) ∈ RN × R+.

Thanks to (1.6), Theorem 1.2 provides a lower bound for Γ(x, t, y, s)
with t > s.

We next compare the above result with the known estimates of the
fundamental solution due to Jerison and Sánchez-Calle [8], Kusuoka and
Stroock [12], Varopoulos, Saloff-Coste and Coulhon [18], concerning oper-
ators in the form (1.1) without the drift term X0. The main result in [8],
[12], and in [18] is the bound

1

C
√
|Bt−s(x)|

e−
C d2(x,y)

t−s ≤ Γ(x, t, y, s) ≤ C√
|Bt−s(x)|

e
− d2(x,y)

C (t−s) , (1.11)

for every (x, t), (y, s) ∈ RN×]T0, T1] with t > s, where d(x, y) denotes
the Carnot-Carateodory distance associated to the problem (1.3), in which
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the vector field X0 is set to zero, (see [15]) and |Br(x)| is the volume of
the metric ball with center at x and radius r. The lower bound stated in
Theorem 1.2 agrees with the one stated in (1.11), since

V (x, t, y, s) =
d2(x, y)

t− s
when X0 = 0. (1.12)

The identity (1.12) fails when the drift term X0 is needed to fulfill
condition [C]. Consider for instance the Kolmogorov operators

Ku =

p0∑

i,j=1

ai,j∂xixju+
N∑

i,j=1

bi,jxi∂xju− ∂tu,

where A = (aij)i,j=1,...,p0
and B = (bij)i,j=1,...,N are real constant matrices,

A is symmetric and positive. We recall that assumptions [C] and [H] are
equivalent to some explicit conditions on the matrices A and B (see [13]).
Moreover, the explicit expression of the value function for this class of
operators is explicitly known (see [6]). In the simplest case, the Kolmogorov
equation reads

∂2
x1u+ x1∂x2u = ∂tu

and the value function related to the Kolmogorov group is

V (x, t, y, s) =
(x1 − y1)

2

t− s
+

3
(x1 − y1)(x2 + (t− s)y1 − y2)

(t− s)2
+ 3

(x2 + (t− s)y1 − y2)
2

(t− s)3
,

which clearly does not satisfy equation (1.12).
Aiming to show that the estimate given in Theorem 1.2 is sharp, we

remark that one can prove an analogous upper bound for the fundamental
solution. More specifically, under suitable conditions on the vector fields
X0, . . . , Xm, which guarantee the existence of global solutions of the prob-
lem (1.3), and assuming that there are no singular minimizers, then one
has

Γ(x, t, 0, 0) ≤ Cε

t
Q−2
2

e−
V ((0,εt)◦(x,t)◦(0,εt),0,0)

32 ∀(x, t) ∈ RN × R+,

for every positive ε. The above inequality is obtained by a suitable adap-
tation of the method introduced by Aronson in [2] (details are given in
[4]).
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We recall that in the case of Kolmogorov equations, for every c̃ > 1
there exists a positive constant C̃ such that V (x, t, 0, 0) ≤ C̃ V (x, c̃t, 0, 0) ≤
C̃ V (x, t, 0, 0), for every (x, t) ∈ RN × R+ (see formula (6.13) in [6]). As a
consequence, bounds analogous to (1.11) hold

1

C(t− s)
Q−2
2

e−CV (x,t,y,s) ≤ Γ(x, t, y, s) ≤ C

(t− s)
Q−2
2

e−
V (x,t,y,s)

C ,

for every (x, t), (y, s) ∈ RN+1 with t > s.

Acknowledgment We thank A. A. Agrachev and E. Lanconelli for their
interest in our work and for helpful discussions.

2 Proof of the main results

A Lie group G =
(
RN+1, ◦

)
is called homogeneous if a family of dilations

(δλ)λ>0 exists on G and δλ(z ◦ ζ) = (δλz) ◦ (δλζ) for every z, ζ ∈ RN+1 and
for any λ > 0. In our setting, hypotheses [C] and [H] imply that RN has a
direct sum decomposition

RN = V1 ⊕ · · · ⊕ Vn

such that, if x = x(1) + · · ·+ x(n) with x(k) ∈ Vk, then the dilations are

δλ(x
(1) + · · ·+ x(n), t) = (λx(1) + · · ·+ λnx(n), λ2t), (2.1)

for any (x, t) ∈ RN+1 and λ > 0. We may assume that

x(1) = (x1, . . . , xm1 , 0, . . . , 0) ∈ V1,

x(k) = (0, . . . , 0, x
(k)
1 , . . . , x(k)

mk
, 0, . . . , 0) ∈ Vk,

for some basis of RN , where

x
(k)
i = xm1+···+mk−1+i, i = 1, . . . ,mk ≡ dimVk.

The natural number

Q =
n∑

k=1

kmk + 2
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is usually called the homogeneous dimension of G with respect to (δλ). We
also introduce the following δλ-homogeneous norms on RN+1 and RN :

|x|G =max
{∣∣x(k)

i

∣∣ 1k | k = 1, . . . , n, i = 1, . . . ,mk

}
,

‖(x, t)‖G =max
{
|x|G, |t| 12

}
.

Since X1, . . . , Xm and Y are smooth vector fields which are δλ-homogeneous
respectively of degree one and two, then

Xk =

n∑

j=1

akj−1(x
(1), . . . , x(j−1)) · ∇(j), k = 1, . . . ,m,

Y =

n∑

j=2

bj−2(x
(1), . . . , x(j−2)) · ∇(j) − ∂t,

(2.2)

where
∇(j) =

(
0, . . . , 0, ∂

x
(j)
1

, . . . , ∂
x
(j)
mj

, 0, . . . , 0
)
.

and akj and bj are δλ−homogeneous polynomial functions of degree j with
values in Vj+1 and Vj+2 respectively. Let us explicitly note that for-
mula (2.2) says that span

{
X1(0), . . . , Xm(0)

}
= V1; then we may as-

sume m = m1 and Xj(0) = ej for j = 1, . . . ,m where {ei}1≤i≤N de-
notes the canonical basis of RN . Also note that from (2.2) it follows that
V2 = span

{
X0(0), [Xj , Xk](0), j, k = 1, . . . ,m

}
. Moreover, up to the linear

change of variable (x, t) 7→ (x − t b0, t), we may (and we do) assume that
b0 = X0(0) = 0.

As said in the introduction, our argument mainly relies on the Harnack
inequality (1.8) by Kogoj and Lanconelli ([10], Theorem 7.1). We first state
a corollary of it, we refer to Proposition 3.2 in [17] for the proof.

Proposition 2.1 Let Ω be an open set in RN+1 containing Hr(z0) for some
z0 ∈ RN+1 and r > 0. Then

u(z0 ◦ z) ≤M u(z0) (2.3)

for every non-negative solution u of Lu = 0 in Ω and for every z in the
positive cone

Pr =
{
(x,−t) ∈ RN+1 | |x|2G ≤ 2 t, 0 < t ≤ 2 θ2r2

}
. (2.4)
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In order to prove Proposition 1.1 we need a preliminary result.

Lemma 2.2 Let γ : [0, T ] → RN be a solution to (1.3), and let r =
√

2T
2θ .

There exists a positive constant h, only depending on the operator L, such
that (γ(s), t−s) ∈ (x, t)◦Pr for every s ∈ [0, T ] such that

∫ s
0 |ω(τ)|2dτ ≤ h.

Proof. We first prove the claim in the case (x, t) = (0, 0), namely

γ̇(τ) =
m∑

j=1

ωj(τ)Xj(γ(τ)) +X0(γ(τ)), γ(0) = 0. (2.5)

The result in the general case directly follows from the invariance of the
vector fields X1, . . . , Xm and Y with respect to the operation “◦”. We then
prove that, for sufficiently small s, (γ(s),−s) ∈ Pr, that is

∣∣∣γ(k)(s)
∣∣∣
2

G
= max

i=1,...,mk

∣∣∣γ(k)
i (s)

∣∣∣
2
k ≤ 2s, (2.6)

for any k = 1, . . . , n. To this aim, we consider the function

F (s) =

∫ s

0
|ω(τ)|2dτ, for 0 ≤ s ≤ T.

We claim that
∣∣∣γ(k)(s)

∣∣∣
2
≤ ck

(
F (s) + F (s)k

)
sk, for every s ∈ [0, T ], (2.7)

for k = 1, . . . , n, and for some positive constants c1, . . . , cn that only de-
pend on the operator L. Since F (0) = 0 and F is a continuous increasing
function, from (2.7) it follows that we can choose a positive h such that
condition (2.6) holds whenever F (s) ≤ h. Hence we only need to prove
(2.7).

We first consider γj(τ) for j = 1, . . . ,m. Since Xj(0) = ej for j =
1, . . . ,m, we have

|γj(s)| =
∣∣∣∣
∫ s

0
ωj(τ)d τ

∣∣∣∣ ≤
∫ s

0
|ωj(τ)| d τ ≤

(∫ s

0
|ω(τ)|2 d τ

) 1
2 √

s, (2.8)

so that condition (2.7) is satisfied for k = 1 with c1 = 1
2 .

Next, we have

γ̇(2)(τ) =
m∑

j=1

ωj(τ) a
j
1(γ

(1)(τ))
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where the a1
1, . . . , a

m
1 are linear functions (recall that b0 = 0). Then,

∣∣∣γ(2)(s)
∣∣∣ ≤ c′2

∫ s

0
|ω(τ)|

∣∣∣γ(1)(τ)
∣∣∣ d τ ≤ c′2

(∫ s

0
|ω(τ)|2 d τ

) 1
2

s
√

F (s)/2,

by (2.8), where the constant c′2 only depends on the coefficients aj1. Hence
the components γ(2)(s) satisfy condition (2.7) with c2 = (c′2)

2/2.
We also explicitly consider k = 3:

γ̇(3)(τ) =
m∑

j=1

ωj(τ) a
j
2(γ

(1)(τ), γ(2)(τ)) + b1(γ
(1)(τ))

where the aj2’s are δλ-homogeneous functions of degree 2 and b1 is linear.
Then,

∣∣∣γ(3)(s)
∣∣∣ ≤c′3

∫ s

0

(
|ω(τ)|

(∣∣∣γ(1)(τ)
∣∣∣
2
+
∣∣∣γ(2)(τ)

∣∣∣
)
+
∣∣∣γ(1)(τ)

∣∣∣
)

d τ ≤

c′′3

((∫ s

0
|ω(τ)|2 d τ

) 1
2

F (s)s
3
2 + F (s)

1
2 s

3
2

)
,

by the previous estimates of γ(1) and γ(2), where the constant c′3 only de-
pends on the coefficients of aj2 and b1, while c′′3 depends on c1 and c2. Hence
the components γ(3)(s) satisfy condition (2.7), for some c3 that depends on
L.

For k = 4, . . . , n, we have

γ̇(k)(τ) =
m∑

j=1

ωj(τ)a
j
k−1(γ

(1)(τ), . . . , γ(k−1)(τ))+

bk−2(γ
(1)(τ), . . . , γ(k−2)(τ)),

and, since ajk and bk are δλ-homogeneous functions of degree k, a straight-
forward inductive argument yields

∣∣∣γ(k)(s)
∣∣∣ ≤ c′k

∫ s

0

(
|ω(τ)| τ k−1

2

(
F (τ)

1
2 + F (τ)

k−1
2

)
+

τ
k−2
2

(
F (τ)

1
2 + F (τ)

k−2
2

))
d τ
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where the constant c′k depends on c1, . . . , ck−1 and on the coefficients ajk−1

and bk−2. By the Hölder inequality we then find

∣∣∣γ(k)(s)
∣∣∣ ≤ c′′k

((∫ s

0
|ω(τ)|2 d τ

) 1
2

·
(
F (s)

1
2 + F (s)

k−1
2

)
+
(
F (s)

1
2 + F (s)

k−2
2

))
s
k
2 ,

and the inequality (2.7) then follows for k. This concludes the proof. ¤

Proof of Proposition 1.1. Let h, θ and M be the constants of the
Lemma 2.2, let T = t − s and note that Hr(x, t) ⊂ RN×]T0, T1] for r =√
t− T0.
If
∫ t−s
0 |ω(τ)|2dτ ≤ h, then the result is an immediate consequence of

Lemma 2.2 and Proposition 2.1, since t− s < θ2r2, by our assumption.
If the above inequality is not satisfied, we set

k = max

{
j ∈ N : j h <

∫ t−s

0
|ω(τ)|2dτ

}
, (2.9)

and define

σj = inf
σ>0

∫ σ

0
|ω(τ)|2dτ > j h, tj = t− σj , j = 1, . . . , k.

Note that s < tk < · · · < t1 < t, so that

Hrj (γ(σj), tj)) ⊂ RN×]T0, T1] for rj =
√

tj − T0 j = 0, . . . , k, (2.10)

and tj − tj+1 < θ2r2
j for j = 0, . . . , k (here t0 = t), and tk − s < θ2r2

k .
By Lemma 2.2 (γ(σ1), t1) ∈ (x, t) ◦ Pr0 , then we can use Proposition

2.1 to get u(γ(σ1), t1) ≤ M u(x, t). We next repeat the above argument:
Lemma 2.2 ensures that (γ(σ2), t2) ∈ (γ(σ1), t1) ◦ Pr1 . We then recall
(2.10) and apply Proposition 2.1, that gives u(γ(σ2), t2) ≤Mu(γ(σ1), t1) ≤
M2 u(x, t). We iterate the argument until, at the (k + 1)-th step, we find

u(y, s) ≤Mu(γ(σk), tk) ≤Mk+1 u(x, t).

The thesis then follows from (2.9). ¤

Proof of Theorem 1.2. Let (x, t) ∈ RN × R+. Under the hypothesis
of Proposition 1.1, applied with T0 = 0, T1 = t and (y, s) =

(
0,
(
1− θ2

)
t
)
,

it follows from (1.10) that

Γ(x, t, 0, 0) ≥M−1− 1
h
V (x,t,0,(1−θ2)t)Γ

(
0,
(
1− θ2

)
t, 0, 0

)
.
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The proof then follows from the fact that

Γ
(
0,
(
1− θ2

)
t, 0, 0

)
=

Γ(0, 1, 0, 0)

(t(1− θ2))
Q−2
2

,

as a consequence of the second identity in (1.6), and that

V
(
x, t, 0, (1− θ2)t

)
= V

(
x, θ2t, 0, 0

)
.

¤
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