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CLASSIFICATION OF STABLE TIME-OPTIMAL CONTROLS
ON 2-MANIFOLDS

U. Boscain, I. Nikolaev, and B. Piccoli UDC 517.977.1, 517.977.5

Abstract. In this paper, we provide a topological classification via graphs of time-optimal flows for
generic control systems of the form ẋ = F (x) + uG(x), x ∈ M , |u| ≤ 1, on two-dimensional orientable
compact manifolds, also proving the structural stability of generic optimal flows. More precisely, adding
some additional structure to topological graphs, more precisely, rotation systems, and owing to a theorem
of Heffter, dating back to the 19th century, we prove that there is a one-to-one correspondence between
graphs with rotation systems and couples formed by a system and the 2-D manifold of minimal genus in
which the system can be embedded.
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1. Introduction

The aim of this paper is to provide a topological classification of optimal flows for the following geometric
problem. Consider a smooth two-dimensional manifold M and a pair X, Y of smooth vector fields on M .
Given a point x0, we want to reach every point of M from this point at a minimum time, gluing together
trajectories of these two vector fields X and Y .

It may happen that the minimum time is obtained only by a trajectory γ whose velocity γ̇(t) belongs
to the segment joining X(γ(t)) and Y (γ(t)) (not being an extreme point). Thus, for existence purposes,
we consider the set of velocities {vX(x) + (1 − v)Y (x) : 0 ≤ v ≤ 1} which does not change the value of
the infimum time.

This natural geometric problem can be restated as the minimum-time problem for the following control

system. Defining F =
Y + X

2
and G =

Y − X

2
, we can write this control system

ẋ = F (x) + uG(x), x ∈ M, |u| ≤ 1, (1)

where F and G are C∞ vector fields on M .
This problem (with the additional hypothesis F (x0) = 0 guaranteeing the local controllability) was

studied for M = R
2 in [5, 6, 16, 17]. In these papers, under generic assumptions, was proved the

existence of an optimal synthesis in the sense of Boltyanskii–Brunovsky (see [3, 7, 8]) i.e., a collection
of optimal trajectories, one for each point of the plane, representing the “optimal dynamics.” Moreover,
their structural stability was proved and a complete classification via some topological graphs was given.
The classification program consists in finding a open dense set Π in the space of pairs of vector fields Ξ,
an equivalence relation ∼ on Ξ, and a class of topological graphs G such that the following holds. For
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every pair in Π, there exists an “optimal dynamics.” Two systems are equivalent if the corresponding
“optimal dynamics” are topologically equivalent and the following conditions hold:

1. There is a bijective correspondence between the set of equivalence classes of ∼ in Π and the set of
graphs G.

2. There are admissibility conditions that individualize the graphs corresponding to some pair.
3. The pairs of Π are structurally stable, i.e., a small perturbation does not change the equivalence

class.

This research was inspired by the classical work of Peixoto on the classification of dynamical systems
on two-dimensional manifolds. We recall that for two-dimensional smooth dynamical systems, the set G
consists of topological graphs and the equivalence relation ∼ is an orbital equivalence (see [2]). Let us
explain this in more detail.

The set V r(M) of Cr-smooth vector fields on a manifold M can be transformed into a metric space
in which X, Y ∈ V r(M) are ε-close whenever X, Y and their derivatives up to the order r are ε-close.
Recall that set V0 ⊂ V r(M) is said to be “generic” if V0 is open and dense in V r(M).

A dynamical system is structurally stable (or Morse–Smale) if every ε-small perturbation does not
affect the (local and global) qualitative pattern of its trajectories. We identify V r(M) with continuous
one-parameter dynamical systems (or flows) on M .

One of the most beautiful and deep results in low-dimensional topology (due to M. M. Peixoto) says
that Morse–Smale flows are “generic” in V r(M), provided M is a closed oriented 2-manifold. Note that
if M is a nonoriented surface, e.g., the Klein bottle, or dim M ≥ 3, then the above statement is no longer
true. Peixoto’s theorem illustrates how profoundly the topology and the dynamics depend on each other.

Historically, the structural stability in case of simply connected domains was introduced in 1937 by
Andronov and Pontryagin. Influenced by Morse and advised by Lefschetz, M. M. Peixoto generalized the
structural stability to the case of 2-manifolds [14]. Peixoto described in geometric terms the Morse–Smale
flows as those having only “rough” limit cycles and fixed points.

Let V0 ⊂ V r(M) be the set of Morse–Smale vector fields on M . In [15], Peixoto sets up a classification
scheme for V0 based on the concept of “distinguished graph.” Peixoto’s classification theorem establishes
a bijection between equivalence classes of V0 and G, where G is the set of distinguished graphs. From now
on, the classification of the Morse–Smale flows reduces to a problem of graph theory, precisely, find and
classify all distinguished graphs. A simplification of Peixoto’s graphs can be attained using the concept
of “rotation systems” due to Heffter [10].

The aim of this paper is to extend the results of [5, 6, 16, 17] to a more general setting of a two-
dimensional smooth manifold. Using the local analysis of [5, 16, 17] and some ideas coming from the
topology of two-dimensional manifolds (see [12, 13]), we provide a complete classification of “optimal
dynamics.”

There are various concepts of solution for the minimum-time problem from x0 for (1). The classical
concept of solution is a feedback control. An optimal feedback control for the above problem is a function
u : M → [−1, 1] such that the corresponding trajectories are time-optimal connecting x0 to the points
of the manifold M . In general, an optimal feedback for this problem is discontinuous but has enough
regularity to give a good definition of weak solution and ensure forward existence and backward uniqueness
of trajectories. Another way of finding a solution is to construct an optimal synthesis, i.e., a collection of
trajectories for (1) of the form Γ = {γx : x ∈ M} such that γx steers x0 to x at a minimum time. The
concept of synthesis was discussed in [18], where the main advantages are illustrated.

A first step for the global classification was the classification of local structurally stable singularities
(see [17]). This local classification remains valid for the case of a general two-dimensional manifold. The
equivalence relation used in [5, 6] is an orbital type equivalence preserving the topological structure of the
optimal synthesis. We use the same definition of equivalence in this paper. The classification obtained
in [6] is based on topological graphs with some additional structure. This additional structure is necessary
for obtaining a minimal set of invariants to individualize an optimal synthesis.
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A key ingredient to obtain a satisfactory classification is the structural stability. The structural stability
was guaranteed by a detailed study of singularities and ensured under generic conditions. The analysis of
systems of the form (1) can be pushed much further as explained in [4].

In this paper, we consider the whole set of systems on general two-dimensional orientable manifolds:
pairs (M, Σ), where M is a manifold and Σ a control system of the form (1) on M . Therefore, we
need to put more structure on graphs to individualize both the topology of the manifold and the system
corresponding to a graph. This is obtained by using the concept of rotation system on graph and Heffter’s
theorem (see [10]). Moreover, we replace the additional information on the topological graphs introduced
in [6] by some properties of the graph itself and of the dual graph that is naturally defined once one has
the rotation system. The obtained structure is called optgraph (see Definition 8) and is denoted by a pair
(G, R), where G is a topological graph and R is a rotation system on G. Also, we are able to provide a
complete description of the possible faces of a graph with the rotation system corresponding to a pair
manifold–system; see Sec. 4.2.

Assuming that the vector fields are complete, fixing a positive time τ , and restricting to trajectories
whose total time is less than or equal to τ , we can consider the case of a compact manifold. The
corresponding generic set of systems admitting an optimal synthesis is denoted by Πτ . The first main
result is the following.

Theorem 1. Let Σ1 and Σ2 be two control systems on a compact 2-dimensional orientable manifold M .
Assume that Σ1, Σ2 ∈ Πτ ; then Σ1 ∼ Σ2 if and only if the associated optgraphs (G1, R1) and (G2, R2) are
equivalent.

Moreover, the structural stability is established as for the planar case.
To complete the classification program, we introduce the definition of an admissible graph and prove

the following assertion.

Theorem 2. Let (G, R) be an arbitrary admissible optgraph. Then there exist a compact 2-dimensional
orientable manifold M and a system Σ on M such that there exists a cellular embedding of (G, R) in M
and the optgraph associated to Σ is equivalent to (G, R).

The paper is organized as follows. In Sec. 2, we introduce the optimal control problem associated
to our original problem and recall the notation and main results from [4–6, 16, 17]. Section 3 contains
an introduction to the topology of two-dimensional manifolds. In Sec. 4, we introduce the concept of
optgraph and prove our main results.

2. Classification of Time-Optimal Syntheses for Generic Planar Systems

In this section, we recall the results obtained in [5, 6, 16, 17] (see also [4]) for the problem of reaching
every point of R

2 starting from the origin for the control system

ẋ = F (x) + uG(x), x ∈ R
2, |u| ≤ 1, (2)

where F (0) = 0. In what follows, we will assume that the vector fields F and G are C∞ in the following
sense.

Definition 1 (C∞ vector fields). We say that a vector field is C∞ if its components admit partial deriva-
tives of any order that are bounded on the whole plane.

Let Ξ be the set of all couples of C∞ vector fields Σ = (F, G) such that F (0) = 0. From now on, we
endow Ξ with the C3 topology, i.e., the topology induced by the following norm:

‖(F, G)‖ = sup

{∣∣∣∣∂α1+α2Fi(x)
∂xα1

1 ∂xα2
2

∣∣∣∣ ,

∣∣∣∣∂α1+α2Gi(x)
∂xα1

1 ∂xα2
2

∣∣∣∣ : x ∈ R
2; i = 1, 2; α1, α2 ∈ N ∪ {0}; α1 + α2 ≤ 3

}
. (3)

We say that a subset of Ξ is generic if it contains an open and dense set. Analogously, a property P is
said to be generic if the set satisfying P is generic.
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Given a measurable function u : [a, b] → [−1, 1], a trajectory of (2) corresponding to u is an absolutely
continuous mapping γ : [a, b] → R

2 such that γ̇(t) = F (γ(t)) + u(t)G(γ(t)) for almost all t ∈ [a, b].
Since the system is autonomous, we can always assume that Dom(γ) = [0, a] for some a ∈ R, a > 0,
where Dom denotes the domain. Moreover, we denote by Supp(γ) the set γ([a, b]). A trajectory γ :
[0, a] → R

2 is (time) optimal if for every trajectory γ′ : [0, b] → R
2 with γ(a) = γ′(b), we have a ≤ b.

A trajectory γ corresponding to a constant control ±1 is called a bang arc. A bang-bang trajectory is a
finite concatenation of bang arcs, and a time at which the control changes sign is called a switching time
and the corresponding point is called a switching point . The symbols γ± indicate the curves starting at
the origin and corresponding to the constant control u = ±1.

We are interested in the reachable set within some fixed time τ > 0 from the origin, i.e.,

R(τ) :={x ∈ R
2 : there exist t ∈ [0, τ ] and a trajectory

γ : [0, t] → R
2 of (2) such thatγ(0) = 0, γ(t) = x}. (4)

The most important and powerful tool for the study of optimal trajectories is the well-known Pontryagin
Maximum Principle (in the following PMP; see, e.g., [1, 11, 19]). It is a first-order necessary condition for
optimality and generalizes the Euler–Lagrange equations and the Weierstrass conditions of the calculus
of variations to problems with nonholonomic constraints. For each optimal trajectory, the PMP provides
a lift to the cotangent bundle, i.e., a solution of a suitable pseudo-Hamiltonian system.

2.1. Properties of optimal trajectories and existence of an optimal synthesis. We first intro-
duce some definitions.

Definition 2 (stratification). A stratification of R(τ), τ > 0, is a finite collection {Mi} of connected
embedded C1 submanifolds of M , called strata, such that the following holds. If Mj ∩Clos(Mk) �= ∅ with
j �= k then Mj ⊂ Clos(Mk) and dim(Mj) < dim(Mk).

Definition 3 (regular optimal synthesis). A regular optimal synthesis for Σ ∈ Ξ on R(τ) is a collection
of trajectory-control pairs {(γx, ux) : x ∈ R(τ)} satisfying the following properties:

1. For every x ∈ R(τ), γx : [0, tx] → R
2 steers the origin to x at a minimum time.

2. If y = γx(t) for some t ∈ Dom(γx), then γy is the restriction of γx to [0, t].
3. There exists a stratification of R(τ) such that u(x) = ux(tx) is smooth on each stratum (assuming

each ux is left continuous).

Finally, we define the following two functions:

ΔA(x); = Det
(
F (x), G(x)

)
= F1(x)G2(x) − F2(x)G1(x),

ΔB(x); = Det
(
G(x), [F, G](x)

)
= G1(x)[F, G]2(x) − G2(x)[F, G]1(x)

that determines the structure of optimal trajectories as explained below. Using PMP and suitable second
order conditions one can prove the following theorem (see [16, 17] or [4]).

Theorem 3. Under generic conditions
• every optimal trajectory is a finite concatenation of bang arcs (corresponding to constant controls
±1) or singular arcs, i.e., running on the set Δ−1

B (0) and corresponding to the singular feedback

ϕ(x) = −∇ΔB(x) · F (x)
∇ΔB(x) · G(x)

; (5)

• there exists a regular optimal synthesis.

The optimal synthesis is constructed by an algorithm A that is defined by induction. At the step k, it
constructs all extremal trajectories (i.e., satisfying PMP) formed by k arcs each of which is either bang
or singular and then deletes those arcs that are not optimal.

To describe the algorithm A, we need the key definition of optimal strip. An optimal strip is essentially
a one-parameter continuous family of optimal trajectories formed by the same sequence of arcs.
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Fig. 1. Optimal strip.

Definition 4. Let a, b be two real numbers such that 0 ≤ a < b ≤ τ , x ∈ R(τ), and f : [a, b] → R be a
function such that f(α) ≥ α for every α ∈ [a, b]. A set of trajectories Sa,b,x,f = {γα : [0, f(α)] → R

2, α ∈
[a, b], γa(a) = x} is called an optimal strip if the following conditions hold:

(i) ∀α ∈ [a, b], γα : [0, f(α)] → R
2 is an optimal trajectory for the control problem (2). Moreover,

there exists ε > 0 such that γ|[α,α+ε] corresponds to a constant control ±1.
(ii) ∀α ∈]a, b[, γα does not switch on Δ−1

A (0) ∪ Δ−1
B (0) after time α.

(iii) The set Ba,b,x,f = {y ∈ R
2 : ∃α ∈]a, b[ and t ∈]α, f(α)[ such that y = γα(t), t is a switching time

for γα} is never tangent to X or Y .
(iv) The mapping η : α ∈ [a, b] �→ γα(α) ∈ M is a bang or singular arc, and for a ≤ α′ ≤ α ≤ b,

γα(t) = γα′(t) holds for t ∈ [0, α′].

The function η is called the base of the optimal strip. The concept of strip is illustrated in Fig. 1
The construction of the optimal synthesis is carried out in the following way. First, one constructs all

optimal strips bifurcating from γ±, i.e., having a part of Supp(γ±) as base. Then one studies the evolution
of each strip. It may happen that an optimal strip is divided into two strips when some trajectory of
the strip enters a singular arc. (This happens at frame points of kind (C, S)1 and (S, K)1 (see definitions
below); moreover, two strips with the singular arc as base start at these points.) A strip can terminate
on some curve reached optimally by different trajectories, called overlap curve, or on the boundary of the
reachable set. Finally, a strip can glue together with another strip. (This happens at frame points of kind
(Y, K)3, (C, K)1, and (S, K)2 (see definitions below); more precisely the strip is divided into two parts
one of which ends on the overlap curve and the other glues together with another strip.)

Let {Si
M}i∈I be the set of all the maximal strips, i.e., the strips with maximal base and maximal time

f(α). Clearly, we may split the synthesis Γ as

Γ =
⋃
i∈I

Si
M .

Note that if Sa,b,x,f is a maximal strip, then f(α) < τ for some α ∈]a, b[ if and only if there exists an
overlap curve K such that γα(f(α)) ∈ K. We can split the maximal strips in such a way that they satisfy
the following condition:

(v) either {γα(f(α)), α ∈ [a, b]} is an overlap curve or f(α) = τ for every α ∈ [a, b].
The optimal synthesis constructed by the algorithm corresponds to a feedback u(x) satisfying the following
condition:

• on strata of dimension 2, we have u(x) = ±1,
• on strata of dimension 1, called frame curves (in the following FCs), u(x) = ±1 or u(x) = ϕ(x).

The strata of dimension 0 are called frame points (in the following FPs). A complete classification of
generic types of FPs and FCs is found in [17]. The generic FCs are the following:

• FCs of kind Y (resp. X) correspond to subsets of Supp(γ+) (resp. subsets of Supp(γ−)),
• FCs of kind C, called switching curves, are curves made of switching points,
• FCs of kind S are singular arcs,
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• FCs of kind K, called overlaps, reached optimally by two different trajectories.
• FCs of kind F are subsets of the topological frontier of R(τ).
• FCs of kind γ0 are arcs of optimal trajectories (not of type X, Y ) that pass through FPs. These

trajectories “transport” a special information.
Every FP can be determined as the intersection of exactly two FCs of type Y , C, S, K, or F (with

possibly also some γ0, a curve passing through the point). A FP x that is the intersection of two frame
curves D1 and D2 is called a (D1, D2) frame point. 1 There are 24 topological equivalence classes of FPs:
(X, Y ), (Y, C)1,2,3, (Y, S), (Y, K)1,2,3, (C, C)1,2, (C, S)1,2, (C, K)1,2, (S, K)1,2,3, (K, K), (Y, F )1, (Y, F )2,
(S, F ), (C, F ), (K, F ), (F, F ). The optimal synthesis near each Frame Point is showed in Fig. 2.

2.2. Structural Stability. A key ingredient to obtaining a satisfactory classification is the structural
stability that guarantees persistence of syntheses of main features under small perturbations.

Denote by uF,G the optimal feedback corresponding to (F, G) ∈ Ξ. Introduce an equivalence relation
between couples of vector fields: (F, G) ∼ (F ′, G′) determined by the topological equivalence of the
corresponding flows

ẋ = F (x) + uF,G(x)G(x), (6)

and
ẋ = F ′(x) + uF ′,G′(x)G′(x). (7)

Roughly speaking, this equivalence requires the existence of a homeomorphism defined on a suitable subset
of the plane which maps oriented arcs of trajectories of (6) onto oriented arcs of trajectories of (7). We
need to exclude overlap curves from the domain of the homeomorphism to avoid the creation of very small
equivalence classes. This is well illustrated in Remark 4.

Consider a system Σ ∈ Ξ; let R be the reachable set for Σ at time τ , and let Γ be the corresponding
optimal synthesis. Now, if K1 and K2 are two frame curves of K type of Γ, then we set K1 ∼ K2 if they
have a point in common. Given an overlap curve K, the union of the elements of an equivalence class is
a connected curve denoted by [K]. Define

K =
{
x | x ∈ [K] \ ∂[K], K is an overlap curve of Γ

}
;

let R′ = R \ K. Recall that, for each x ∈ R, we denote by t �→ γx(t) the trajectory of Γ which reaches x
from the origin at a minimum time.

Definition 5 (equivalence of feedback flows). We say that the time-optimal feedback flows for Σ1 on R1

and Σ2 on R2 are equivalent, or simply that Σ1 ∼ Σ2, if there exists a homeomorphism Ψ : R′
1 �→ R′

2

such that the following conditions hold:
(E1) Ψ maps arcs of optimal trajectories for Σ1 onto arcs of optimal trajectories for Σ2. More precisely,

for every x ∈ R′
1, one has {Ψ(γ1

x(t)) : t ∈ Dom(γ1
x)} = {γ2

Ψ(x)(t) : t ∈ Dom(γ2
Ψ(x))}.

(E2) Ψ induces a bijection on frame curves that are not overlap curves, i.e., for each frame curve D1,
which occurs in the construction of the optimal feedback for Σ1 and is not a K-curve, we have that
Ψ(D1) is a frame curve of the same type corresponding to Σ2, and vice versa.

(E3) If A is an open region of R′
1 enclosed by frame curves and entirely covered by constant control +1

trajectories (constant control −1 trajectories), then Ψ(A) is enclosed by the corresponding frame
curves and is covered constant control +1 trajectories (constant control −1 trajectories).

1Here we need to distinguish three kind of these curves:

• curves of kind γA that are abnormal extremals,
• curves of kind γk that are curves starting at the terminal point of an overlap (i.e., that start at the FPs of kind

(Y, K)3, (S, K)2, (C, K)1 (see below)),
• curves of kind γ0 that are the other arcs of optimal trajectories that start at FPs.
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Fig. 2. FPs of the optimal synthesis.

Remark 1. The optimal synthesis is essentially unique in the following sense. Generically, there exists
finitely many embedded connected one-dimensional manifolds such that on the complement, the optimal
trajectories are uniquely determined. The nonuniqueness happens exactly on overlap curves and on γ0

curves starting at the terminal point of an overlap (i.e., that start at the FPs of kind (Y, K)3, (S, K)2,
(C, K)1; see above). The exclusion of overlap curves is performed so as not to have too small equivalence
classes and hence not too many of them (see [4, Remark 31, p. 89]).
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Definition 6 (structural stability). We say that a system Σ ∈ Ξ is structurally stable if there exists a
neighborhood N of Σ in the space Ξ (endowed with the C3 norm; see formula (3)) such that for every
Σ′ ∈ N , the feedback flows for Σ and Σ′ are equivalent.

To ensure the structural stability, we need to impose some conditions on the synthesis. First, we
introduce the following definition.

Definition 7. If x1, x2 are two frame points that are not of type (C, C)2, (K, K), (F, F ), we let x1 ∼ x2 if
and only if there exist some points y0 = x1, y2, . . . , yn = x2 such that the following holds. Each yi belongs
to a frame curve Di. If yi is a frame point, then it is not of (K, K) type; if yi is not a frame point, then Di

is not of K type. For every yi, i = 1, . . . , n−1, there exist a constructed trajectory γi and ai, bi ∈ Dom(γi)
verifying γi(ai) = yi, γi(bi) = yi+1, γi |[ai,bi] is an X or Y trajectory, and γi(]ai, bi[)∩Supp(γ±) = ∅. That
is, there exists a curve connecting x1 with x2, formed by X and Y arcs of the constructed trajectories, that
does not intersect the frame curves γ±, the relative interior of overlap curves, and (K,K) frame points.

A FC or FP is stable if, perturbing the system, it persists. This can be directly verified from the
nonsingularity of the functions defining them; see [4].

Theorem 4. Given τ > 0, the set Πτ ⊂ Ξ of the system satisfying the conditions
(A1) all frame curves and points satisfy the stability conditions;
(A2) if x1, x2 are two frame points and x1 ∼ x2, then x1 = x2,
is generic. Moreover, every Σ ∈ Πτ is structurally stable.

Since all definitions and proof techniques are local, the same result remains valid for a general two-
dimensional manifold M .

3. Topology of 2-Manifolds

In this section we recall the basics of graph theory and of topology of two dimensional manifolds; see [9,
12, 13].

A CW -complex is an ascending sequence

X0 ⊂ X1 ⊂ X2 ⊂ · · · (8)

of closed subspaces of a Hausdorff space X such that X0 is a discrete space and each Xn is obtained from
Xn−1 by an adjunction of cells of dimension n > 0. It is supposed that X = ∪∞

n=0X
n and X, together

with the subspaces Xn, have a weak topology: a subset A ⊂ X is closed if and only if A∩ ēq is closed for
each q-cell eq. An n-dimensional CW -complex is a CW -complex that admits no cells of dimension >n.

A 1-dimensional CW -complex K1(X) is called a graph. The topological structure on K1(X) consists
of a Hausdorff space X and a closed discrete subspace X0; a point of X0 is called a vertex of X. The
complementary set X\X0 is a disjoint union of open subsets ei; every ei is homeomorphic to an open
interval I ⊂ R and is called an edge of X. For each edge ei, its boundary ∂ei is a subset of X0 consisting
either of one or two points; in the case, where ∂ei consists of two points, the set ei is homeomorphic to a
closed interval I = [0, 1] ⊂ R; in the case where ∂ei consists of one point, the set ei is homeomorphic to
the unit circle S1.

Let X and X ′ be two finite graphs. A graph mapping f : X → X ′ consists of a vertex function
fV : VX → VX′ and an edge function fE : EX → EX′ such that the incidence structure is preserved. If
X is a directed graph (an orgraph), we also require that f preserves orientation at every edge. A graph
mapping f : X → X ′ between two graphs X and X ′ is called an isomorphism if both its vertex function
fV and edge function fE are one-to-one and onto (surjective). Two graphs X and X ′ are said to be
isomorphic if there exists an isomorphism f : X → X ′.

Let u, v ∈ V be the vertices of a graph X. A walk w on X from u to v of length n means an alternating
sequence of vertices and directed edges such that the initial vertex v0 = u and the final vertex vn = v for
i = 1, . . . , n. If u �= v, then the walk is said to be open, otherwise it is closed. An open walk is called a
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path if all its vertices are distinct. A path on X such that its initial vertex coincides with its final vertex
is called a cycle on X.

By a surface one usually understands a 2-dimensional (real) compact manifold. Further we mostly deal
with orientable surfaces. Orientable surfaces are described by a genus g ≥ 0 which counts a number of
‘handles’ glued to the sphere S2.

An embedding i : X → M of a graph X to a surface M is a 1-1 continuous map of the topological
space X, taken as a 1-complex K1(X), into the topological space M .1 Two embeddings i1 and i2 of X in
a surface M are equivalent if there exists a homeomorphism h : M → M such that h ◦ i1 = i2 (in other
words, h brings the image i1(X) to the image i2(X)).

If one takes an embedding i : X → M of a connected graph X in M , then the set M\i(X) is a union
of open regions Vm. Clearly, gluing up handles to each Vm, it is possible to obtain embeddings of X in
the surfaces of an arbitrary high genus. An embedding i : X → M is said to be 2-cell (or cellular) if all
open regions Vm are homeomorphic to an open disk. Further, we consider both cellular and noncellular
embeddings.

Denote by i : X → M a 2-cell embedding of an orgraph X in a surface M . Let N\i(X) = F1 ∪ · · · ∪Fm

be a union of open disk regions in M . A dual graph X# associated to i is a graph with the vertex set
VX# = {F1, . . . , Fm}. An edge e# ∈ EX# between Fi and Fj can be drawn (the case i = j is not excluded)
if and only if there is an edge e ∈ EX between Fi and Fj , i.e., e ⊆ F i ∩ F j .

A local rotation of a vertex v is an oriented cyclic order (defined up to a cyclic permutations) of all
edges incident to v. (The local rotation of 1-valent vertices is uniquely defined and is said to be trivial.)
A rotation system R (or, simply, a rotation) of a graph X is a union of all local rotations over all vertices
of X. Rotations give rise to a certain system of faces (≡ cycles) on X.

The following face tracing algorithm allows us to determine all faces of a graph X corresponding to the
rotation R. Take an arbitrary vertex v1 ∈ V (X) and an edge av1 incident to v1. Let v2 be a vertex of
X connected with v1 by the edge av2 , and let bv2 be an edge of the vertex v2, which lies to the right2 in
the cyclic order from av1 . Moving along the edge bv2 to a vertex v3, we define an edge cv3 , which lies to
the right from bv2 . Proceeding inductively, we stop the process at an edge zvn if thenext two edges will
be again av1 and bv2 . Thereby a cycle av1 , bv2 , . . . , zvn of length n, which defines a face F1 on X, will be
traced. For tracing the next face F2, one must start with an edge which lies to the right of any edge of the
face F1 and such that a corner between them does not occur in F1 and then apply the above construction.
All faces F1, F2, . . . , Fm on X will be traced when no unused corners remain.

Theorem 5 (see [10]). Let X be a finite graph endowed with a rotation system R. Then there exists
a 2-cell embedding of X in an orientable surface M such that one of the two rotations induced by this
embedding coincides with R. Moreover, two embeddings are equivalent if and only if they have equivalent
rotation systems.

Each embedding i : X → M induces a pair of rotation systems R and R∗, where R∗ is a mirror image
of R (i.e, can be obtained from R by reversing the cyclic order of all local rotations). The corresponding
embeddings i(X) and i∗(X) are conjugate by a homeomorphism h : M → M , which is not close to idM .

4. Topological Classification of Optimal Syntheses

In this section, we describe a procedure to associate a topological graph with a rotation system (and
some additional structure) to every system in Πτ . The points and edges of this topological graph corre-
spond to frame points and curves of the synthesis. Then we provide a classification of optimal syntheses
via these topological graphs.

We treat the case of a general smooth two-dimensional oriented manifold M replacing the origin by a
fixed initial point x0 such that F (x0) = 0. All the geometric techniques used to prove results of Sec. 2 are

1That is, the CW-topology of K1(X) coincides with the induced topology on i(X).
2For the 1-valent vertices vi with the edge ei, the edge lying to the right of ei will be again ei. In other words, such a

rotation is trivial.
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local and, thus, it is possible to establish analogous results for a control system defined on a general smooth
two-dimensional manifold by a pair of complete vector fields. Since R(τ) is compact, for simplicity, we
restrict ourselves to an orientable compact smooth 2-D manifold.

We consider connected finite graphs G with oriented and nonoriented edges endowed by a rotation
system R; moreover, we introduce some additional structure as follows.

Definition 8. An optgraph is a pair (G, R), where G is a connected finite graph and R is a rotation
system on G satisfying the following. G presents edges of seven types: X, Y , C, S, K, F , and γ0. The
edges of types X, Y , S, and γ0 have an orientation. As explained in the previous section, with (G, R)
we can associate a finite number of faces A1, . . . , Am. We let the faces Ai that are not enclosed by edges
of type F have a sign ± (corresponding to the fact that the optimal feedback is equal to ±1). In other
words, we put a sign ±1 on some vertices of the dual graph G#.

We now describe a canonical way of associating an optgraph to a system Σ ∈ Πτ . For every FP, we
construct a vertex of G. For every FC D, ∂D = {x1, x2}, we construct an edge E of G of the same
type connecting the points of G corresponding to x1, x2. If D is an X, Y , S or γ0 FC, then D has
the orientation of increasing time, and we endow E with the corresponding orientation. At each FP,
there is an oriented cyclic order inherited by the manifold M , and we put the same local rotation at the
corresponding vertex. This defines a rotation system R. For every region A ⊂ R(τ) enclosed by frame
curves, there is a corresponding face A′ defined by the rotation system R. If A is covered by constant
control +1 trajectories, to A′ we assign the positive sign, otherwise we assign to A′ the negative sign.

We now give some examples that motivate the definition of optgraph.

4.1. Example of optgraphs.

Example A. Consider the system {
ẋ1 = 3x1 + u,

ẋ2 = x2
1 + x1.

For every time τ > ln(4)/3, the reachable set at time τ contains two switching curves starting from
γ−. There are two frame points of type (X, C) that are not topologically equivalent. See [4, Sec. 2.6.4,
Example 3] for an accurate description of this system. Figure 3, shows the reachable set of this example,
and Fig. 4, its associated optgraph GA.

Remark 2. If we do not specify a sign for every region of GA, then the two (X, C) frame points are
not distinguishable. Hence, for some system Σ with a frame point of type (X, C)1 or (X, C)2, we can
construct a system with the same graph, except for the signs of the regions, but not equivalent to Σ. This
show the necessity of specifying a sign for every region.

Example B. Consider ε, 0 < ε < 1, τ >
π√

1 − ε
and the system Σ:

{
ẋ1 = εx2 + ux2,

ẋ2 = u(1 − x1).
(9)

We obtain
ΔB(x1, x2) = −εx2

2 + ε(1 − x1)2. (10)

Hence every singular arc runs on S = {(x1, x2) : x2 = ±(1 − x1)}. It is easy to verify that the trajectory
γ+ intersects the set S at a point (x+

1 , x+
2 ) of the first quadrant. The algorithm A constructs the FC

S1 = {(x1, x2) : x2 = 1 − x1, x
+
1 ≤ x1 < 1}. The singular control ϕ1

S on S1 (see (5)) is

ϕ1
S(x1, x2) = − εx2

1 − x1 + x2
> −1. (11)
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Fig. 3. Reachable set of Example A.

Fig. 4. Graph corresponding to Example A.

From (11), we have

ẋ1(ϕ1
S) =

ε

2
(1 − x1);

hence the point (1, 0) is not reached at a finite time by a singular trajectory.
Similarly one can verify the presence of another FC S2 = {(x1, x2) : x2 = x1 − 1, x1 ≤ x−

1 }.
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Fig. 5. (Y, K)2 frame point.

The trajectories γ± are very close to the circle A of radius 1 centered at (1, 0); γ+ runs clockwise and
γ− counterclockwise. We have that γ+ lies inside A, γ− outside, and

γ+ ∩ γ− ∩ A = {(0, 0), (2, 0)}.
However, the two trajectories γ± do not reach (2, 0) at the same time. Indeed,

(2, 0) = γ+

(
π√

1 + ε

)
= γ−

(
π√

1 − ε

)
.

An overlap curve K is generated, and γ± end on it. R(τ) is represented iIn Fig. 5.

Remark 3. In Example B, there is a region A that is a connected component of the complement of
the reachable set and is bounded. In the corresponding graph, we cannot give a sign to the region
corresponding to A. Otherwise, we would have equivalent systems corresponding to different graphs.
The regions enclosed by edges all of F type correspond exactly to the complement or to the holes of the
reachable set.

Remark 4. The exclusion of overlap curves is performed in order to have not too small equivalence classes
and hence not too many of them. Consider Example B; let γ1 and γ2 be the trajectory corresponding to
control −1, resp. +1, starting from the (X, S) point of the first, resp. fourth, orthant. If we include the
overlap curves in the definition of equivalence, then the relative position of the endpoints of γ1 and γ2 on
the K curve is an invariant of the equivalence class and the same for all relative positions of points that
can be obtained similarly from them concatenating arcs of X and Y trajectories (see the Definition 7).

4.2. Admissible faces. There is some more information we can get on an optgraph that is associated
to a system. More precisely, not every type of faces can occur, but only a finite number with 3 or 4 edges
of specified type. We first give the following definition.
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Fig. 6. Admissible faces in the case u = +1.

Definition 9. Let (G, R) be an optgraph, let Ai be a face, and let ∂Ai = {e1, . . . , en}. An edge e is called
a side if e is of type γ0 and of type X if the region has sign − and of type Y if the region has sign +.
The face Ai is said to be admissible if:

(i) n = 3 or 4;
(ii) if n = 3, then there is only one side; otherwise, there are two nonincident sides and there is no

orientation of ∂Ai compatible with both orientations of the sides;
(iii) the edge containing the initial point(s) of the side(s) is said to be the entrance and is of type X (if

the sign is +), Y (if the sign is −), S, or C;
(iv) the edge containing the terminal point(s) of the side(s) is said to be the exit and is of type C, K,

or F .

In Fig. 6, we represent all admissible faces.

Proposition 1. If (G, R) is an optgraph associated to a system, then every face not enclosed by F edges
is admissible.

Proof. The proof is worked out by induction following the algorithm A; see Sec. 2.1.
At the first step, the algorithm constructs the trajectories γ±. Then it constructs the strips having

subsets of Supp(γ±) as a base. New strips may be generated with only singular curves as a base. On the
other hand, all strips end on K or F curves.

As consequence of all these operations, we obtain optimal strips with Y or γ0 curves enclosing them.
Now it is sufficient to note that the optimal strips have only C curves in the interior. Finally, cutting
optimal strips along C curves one obtains only admissible faces.

4.3. Correspondence between systems and optgraphs. To ensure that the canonical way of as-
sociating an optgraph to a system is well defined, we have to prove that two systems are equivalent if and
only if the associated optgraphs are equivalent.

Since we have defined the equivalence between systems in a weak form excluding overlap curves, equiv-
alent systems may correspond to optgraphs having a different number of K-edges. Hence we need to
define an equivalence relation excluding K-edges.

Given two optgraphs (G1, R1), (G2, R2), we say that they are equivalent and we write (G1, R1) ∼ (G2, R2)
if there is a (possibly multivalued) graph mapping f (see definition in Sec. 3) between G1 and G2 such
that the following holds.
(H0) fV is a bijection between the sets of vertices not of type (Y, K)2, (K, K), and (K, F ). fE is the

mapping defined on edges, probably multivalued and not injective on the set of K-edges, but it is
bijective restricted to the edges not of K-type.

(H1) For every edge E1 of G1 not of K-type, fE(E1) is an edge of the same type.
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(H2) If K1 and K2 are the sets of equivalence classes of K-edges (for the incidence relation) of G1 and
G2, respectively, then fE induces a bijective correspondence between K1 and K2.

(H3) f preserves rotation systems.
(H4) If A′ is a region enclosed by edges E1, . . . , En of G1, then the region enclosed by fE(E1), . . . , fE(En)

has the same sign.

Proof of Theorem 1. First, assume that Σ1 ∼ Σ2; let Ψ be as in Definition 5, p. 3114. We use the symbols
Γ1 and Γ2 for the corresponding optimal syntheses. To prove the equivalence, we construct the required
graph mapping f in the following way. Given a frame curve D of Γ1 that is not a K-curve, let E1, and
E2 be the edges corresponding to D and Ψ(D), respectively. We define fE(E1) = E2. If we extend Ψ by
continuity, then, for every K1, the overlap curve Ψ([K1]) of Γ1 is the union of elements of an equivalence
class of K-curves of Γ2. Therefore, we can define fE on K1. In the same way, we define fV .

From (E1) and (E2), it follows that (H0), (H1), (H2), and (H3) hold, while from (E3), it follows (H4).
Now, assume that (G1, R1) ∼ (G2, R2). We note that condition (H3) is not necessary to prove the

conclusion.
Let E1 be an X, Y or S-edge of G1, E2 = fE(E1), and let D1, D2 be the frame curves corresponding to

E1, E2, respectively. From (H1), we have that D1, D2 are of the same type. We define Ψ on D1 in such
a way that Ψ is an homeomorphism and Ψ(D1) = D2.

For every y ∈ D1 consider the constructed trajectories γy ∈ Γ1 for which y = γy(by) is a switching
point. If D1 is of X or Y type, then there is at most one such trajectory; if D1 is of S type, then there
are two such trajectories. If D1 is of type X or Y and there exists γy, then from (H4), there exists a
trajectory γΨ(y) ∈ Γ2 having the same property. Let cy > by be the first time in which γy reaches another
frame curve; define bΨ(y), cΨ(y) similarly. We set

Ψ
(
γy(t)

)
=̇γΨ(y)

(
bΨ(y) +

cΨ(y) − bΨ(y)

cy − by
(t − by)

)
∀t ∈ [by, cy].

In this way, we have also defined Ψ on the frame curves that are reached by the trajectories γy. We
proceed in the same way defining Ψ on the images of the constructed trajectories that switch at the point
of these new frame curves. After a finite number of steps, we define Ψ on the whole reachable set R1 of
the system Σ1. Note that we can have two different definitions of Ψ on the K frame curves, but thanks
to (H2) Ψ restricted to R′

1 (see the Definition 5, p. 3114) is well defined. The condition (E1) follows by
construction.

Conditions (H0) and (H1) ensure that the corresponding trajectories have the same history, i.e., they
cross the same type of frame curves in the same order and are composed by the same elementary arcs.
Finally, from conditions (H0), (H1), (H2), and (H4), we have that Ψ satisfies (E1)–(E3).

4.4. Admissible graphs. To complete the classification program, we give some admissibility condi-
tions to characterize the class of optgraphs corresponding to the systems.

From the previous analysis, it follows that there exists a set of graphs E whose elements are defined
locally, and each of which corresponds to a type of frame point. A point x′ of an optgraph (G, R) is said
to be admissible if there exist a graph G′ ∈ E such that G contains a copy of G′ to which x′ belongs. We
use the same terminology for the points of G, e.g., the (X, Y ) point. The first condition is as follows:
(G1) All points of (G, R) are admissible.
We consider optgraphs that contain exactly one point of the type (X, Y ) and we call this point the

origin of the optgraph. Assume that (G1) holds. Let E be a Y -edge, and let x be the initial point of E.
If x is not the origin, then there exists a Y -edge E1 for which x is the terminal point. We consider the
initial point x1 of E1 and do the same considerations. Since G is finite, proceeding by induction, we find
a finite collection E1, . . . , En of Y -edges such that Ei is incident to Ei+1, i = 1, . . . , n − 1, and the initial
point of En is the origin. Then, since there is only one origin, the Y -edges form a set {E1, . . . , Em} such
that the initial point of E1 is the origin and for each i = 1, . . . , m − 1, the terminal point of Ei is the
initial point of Ei+1. We call η+ the union of these edges. Analogously, we define η− for the X-edges.
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All the possibilities for the sequence of frame points on a curve γ+ of a system Σ are described in [4]. We
say that η+ is admissible if there exists a system Σ such that the curve γ+ correspond to η+ canonically.
That is, there is a correspondence defined for points, edges of η+, and for the regions to which η+ belongs
that follows the rules of canonical correspondence. This happens exactly when η+ and γ+ have an ordered
sequence of corresponding points. The second condition is as follows:
(G2) G has exactly one (X, Y ) point called the origin. The collections of edges η± are admissible.
The incidence relation partitions the set of F -edges into a finite number of equivalence classes. For every

frame curve F , we indicate by [F ] the closed path consisting of the union of elements of corresponding
equivalence class.
(G3) All [F ] enclose a face of (G, R).
Finally,

(G4) Every face of (G, R) not enclosed by F -edges is admissible.

Remark 5. [F ] enclosing a face correspond to the complement and the holes of the reachable set, e.g.,
the system in Example B. Therefore, the conditions in (G4) is given only for regions not enclosed by F
edges.

Definition 10. If an optgraph (G, R) satisfies conditions (G1), . . . , (G4), then we say that (G, R) is ad-
missible.

Remark 6. It is easy to verify that if G corresponds to a system Σ then G is admissible.

Now assume that (G, R) is an admissible optgraph. We want to find a manifold M and a system Σ
on M such that G is associated to Σ in the canonical way, i.e., prove Theorem 2. This and Theorem 1
show that the correspondence (M, Σ) ↔ (G, R) is a bijection between the set of equivalence classes of
manifold-system couples and the set of equivalence classes of admissible optgraphs.

Remark 7. Note that the manifold M of Theorem 2 is unique up to diffeomorphism because of the
cellular embedding. The same system Σ can be put on a manifold with higher genus by adding an
arbitrary number of handles.

Proof of Theorem 2. From Theorem 5, it follows that there exists a compact 2-dimensional orientable
manifold M and a cellular embedding of (G, R) in M such that one of the two rotation systems induced
by the embedding coincides with R.

From condition (G1), it follows that the set of [F ]s partition M in a finite number of connected compo-
nents. By (G3), only one such component contain edges of the image of G. Indeed assume on the contrary
that there are two such components M1 and M2. If Clos(M1) ∩ Clos(M2) �= ∅, then the [F ] separating
them violates (G3). Otherwise, since G is connected, there are edges connecting ∂M1 and ∂M2 and we
obtain again a contradiction.

Due to (G1) and (G2), we can construct locally some systems around frame points and frame curves
using the explicit examples of [4] such that they correspond to G.

It remains to prove that we can glue these system in a smooth fashion, but this can be done, using
(G4), exactly as in [4, Appendix A.5] or [6].
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