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1. Outline

I Motivation: QHE, adiabatic transport in open q-system

I Control and Response

I Geometry: ω Symplectic structure, g metric

I Main result: f −1 = γg + ω, γ = dephasing

I Lindbladians and dephasing

I Adiabatic evolutions

I Kähler structure

I Examples



2. Motivation: Quantum Hall effect

I Ill characterized microscopically

I Quantized Hall resistivity h
e2n
, n ∈ Z

I Accurate to 12 significant digits

I Resolution: Integer is a Chern
number of g.s bundle P(φ) in Hilbert space

I Assumption: ερ̇ = −i [H(φ), ρ]
Unitary evolution

I Adiabatic theory: ρ ≈ P

I What about open q-system?
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Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to
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Figure 10: Hall resistance and longitudinal resistivity data as a function of the
magnetic field for a GaAs/AlGaAs heterostructures at 1.5 K .

3 Physics of Quantum Hall Effect

The textbook explanation of the QHE is based on the classical Hall effect dis-
covered 125 years ago [27]. A magnetic field perpendicular to the current I in a
metallic sample generates a Hall voltage UH perpendicular to both, the magnetic
field and the current direction:

UH = (B · I)/(n · e · d)

with the three-dimensional carrier density n and the thickness d of the sample.
For a two-dimensional electron gas the product of n · d can be combined as a
two-dimensional carrier density ns. This leads to a Hall resistance

RH = UH/I = B/(ns · e)

Such a two-dimensional electron gas can be formed at the semiconductor/insulator
interface, for example at the Si−SiO2 interface of a MOSFET (Metal Oxid Semi-
conductor Field Effect Transistor) or at the interface of a GaAs−AlGaAs HEMT
(High Electron Mobility Transistor) as shown in Fig. 9. In these systems the elec-
trons are confined within a very thin layer of few nanometers so that similar to
the problem of “particle in a box” only quantized energies Ei(i = 1, 2, 3 · · ·) for
the electron motion perpendicular to the interface exist (electric subbands).

A strong magnetic field perpendicular to the two-dimensional layer leads to
Landau quantization and therefore to a discrete energy spectrum:

E0,N = E0 + (N + 1/2)h̄ωc (N = 0, 1, 2, ...)

The cyclotron energy h̄ωc = h̄eB/mc is proportional to the magnetic field B and
inversely proportional to the cyclotron mass mc and equal to 1.16 meV at 10 Tesla
for a free electron mass m0.



3. Response and control
I Controls: φ = (φp, φx);

I Driving= control rates φ̇

I Response: ∇φH = (∂φpH, ∂φxH)

I Example 1: Harmonic oscillator
H(φ) = 1

2(p − φp)2 + 1
2(x − φx)2

controls=(momentum, position), response=(velocity,force)

I Example 2: Spin in magnetic field φ = B̂, H(B) = B̂ · σ
I Control=Orientation of B̂,

Response= Magnetic moment

x

Φ

p



4. Geometry: Metric and symplectic structure
I Suppose P(φ) is the ground state bundle of H(φ)

I Example spin 1/2: P(φ) = 1−B̂·σ
2 , φ = B̂

I Fubini-Study metric on control space

gµν(φ) = Tr P⊥
{
∂νP, ∂µP

}
I Symplectic structure on control space

ωµν(φ) = i Tr P⊥
[
∂νP, ∂µP

]
I Endows control space with geometry

I Geometry of q-origin

Θ

Ψ

Ψ¢



5. Adiabatic transport coefficients

I Adiabatic evolutions ερ̇ = L(ρ), ε→ 0

I Transport coefficients fµν
I Response & driving: Tr(ρ∂µH) = · · ·+ fµν φ̇ν + . . .

I Geometry of q-origin


