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The Bloch equation
An ensemble of non interacting spins, in a magnetic field
B(t) := (u(t), v(t),B0), with dispersion in the Larmor frequency
ω = γB0 ∈ (ω∗, ω

∗) (=rotation speed around z).

one spin : M(t , ω) ∈ S2

∂M
∂t

(t , ω) =
[
u(t)e1 + v(t)e2 + ωe3

]
∧M(t , ω), ω ∈ (ω∗, ω

∗)

State : M Controls : u, v

controllability of an ODE, simultaneously w.r.t. ω ∈ (ω∗, ω
∗)

Li-Khaneja(06)

Application : Nuclear Magnetic Resonance
K. Beauchard
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Controllability question for the Bloch equation

∂M
∂t

(t , ω) =
[
u(t)e1+v(t)e2+ωe3

]
∧M(t , ω), (t , ω) ∈ [0,+∞)×(ω∗, ω

∗)

Ex : M0(ω) ≡ −e3, Mf (ω) ≡ +e3,
But spins with different ω have different dynamics !

Goal : Use the control to compensate for the dispersion in ω.

Rk : If ω is fixed, the controllability of one ODE on S2 is trivial.

K. Beauchard
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A prototype for infinite dimensional bilinear systems
with continuous spectrum

∂M
∂t

(t , ω) =
[
u(t)e1 + v(t)e2 + ωe3

]
∧M(t , ω), ω ∈ (ω∗, ω

∗)

AM := ωe3∧M(ω) → Sp(A) = −i(ω∗, ω∗)
⋃

i(ω∗, ω∗)

λ = ±iω̃ → Mλ(ω) =

 1
∓i
0

 δω̃(ω)

⇒ Toy model i∂tψ = (−∆ + V )ψ − u(t)µ(x)ψ

K. Beauchard
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State of the art : bilinear control for Schrödinger PDEs

Quite well understood :
exact controllability 1D

negative results : Ball-Marsden-Slemrod(82), Turinici(00),
Ilner-Lange-Teismann(06), Mirrahimi-Rouchon(04)
Nersesyan(10).

positive local results with discrete spectrum + gap (1D) : KB(05),
KB-Laurent(09).

positive global results : KB-Coron(06), Nersesyan(09).

approximate controllability with discrete spectrum
Chambrion-Mason-Sigalotti-Boscain(09), Nersesyan(09),
Ervedoza-Puel(09).

Not well understood : with continuous spectrum : Mirrahimi(09)

K. Beauchard
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Linearized system around (M ≡ e3,u ≡ v ≡ 0) :
non exact controllability, approximate controllability

M = (x , y , z), Z(t , ω) := (x + iy)(t , ω), w(t) := (v − iu)(t)

Z(T , ω) =
(
Z0(ω) +

∫ T

0
w(t)e−iωtdt

)
eiωT

T > 0, the reachable set from Z0 = 0 is F [L1(−T ,0)]
the Z0 asymptotically zero controllable are F [L1(0,+∞)]
∀Z0 in that space, the control is unique
∀T > 0, approximate controllability in C0[ω∗, ω

∗] with
C∞c (0,T )-controls.

We will see that the NL syst has better controllability properties.
K. Beauchard
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Whole space : structure of the reachable set

∂M
∂t

(t , ω) =
[
u(t)e1 + v(t)e2 + ωe3

]
∧M(t , ω), (t , ω) ∈ (0,T )× R

Theorem : Let T > 0 and R := 1/(8
√

3T ).

∀u, v ∈ BR[L2(0,T )],∃!M = (x , y , z) solution with
Z := x + iy ∈ C0([0,T ],L2(R)) ∩ C0

b ([0,T ]× R),

the image of

FT : BR[L2(0,T )]2 → L2 ∩ C0
b (R)

(u, v) 7→ Z(T , .)

is a non flat submanifold of L2 ∩ C0
b (R), with∞ codim.

Proof : Inverse mapping dFT (0,0).(U,V ) ∼ F(U + iV ) + 2nd order
K. Beauchard
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On a bounded interval : analyticity argument

∂M
∂t

(t , ω) =
[
u(t)e1 +v(t)e2 +ωe3

]
∧M(t , ω), (t , ω) ∈ (0,T )×(ω∗, ω

∗)

T > 0,u, v ∈ L2(0,T )⇒ Z(T , .) analytic
T > 0, R := 1/(8

√
3T ).

There exists arbitrarily small analytic targets that cannot
be reached exactly in time T with controls in BR[L2(0,T )].

The non controllability is not a question of regularity.

K. Beauchard
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Solutions associated to Dirac controls

∂M
∂t

(t , ω) =
[
u(t)e1 +v(t)e2 +ωe3

]
∧M(t , ω), (t , ω) ∈ (0,T )×(ω∗, ω

∗)

Classical solution for u, v ∈ L1
loc(R).

If u = αδa and v = 0 then

M(a+, ω) = exp(αΩx )M(a−, ω)

→ instantaneous rotation of angle α around the x-axis, ∀ω

Rk : limit [ε→ 0] of solutions associated to u = α
ε 1[a,a+ε].

K. Beauchard
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Approximate controllability result −∞ < ω∗ < ω∗ < +∞

∂M
∂t

(t , ω) =
[
u(t)e1+v(t)e2+ωe3

]
∧M(t , ω), (t , ω) ∈ [0,+∞)×(ω∗, ω

∗)

Theorem : Let M0 ∈ H1((ω∗, ω
∗),S2). There exist

(tn)n∈N ∈ [0,+∞)N, (un)n∈N, (vn)n∈N finite sums of Dirac
masses such that

U[t+n ; un, vn,M0]→ e3 weakly in H1.

Rk : Same result with u, v ∈ L∞loc[0,+∞) : αδa ← α
ε 1[a,a+ε]

Approximate controllability in Hs, ∀s < 1, in L∞...

K. Beauchard
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First step : Li-Khaneja ’s non commutativity result

∂M
∂t

(t , ω) =
[
u(t)e1+v(t)e2+ωe3

]
∧M(t , ω), (t , ω) ∈ [0,+∞)×(ω∗, ω

∗)

Theorem : Let P,Q ∈ R[X ]. ∀ε > 0,∃τ∗ > 0 such that
∀τ ∈ (0, τ∗), ∃T > 0,u, v ∼ Dirac such that∥∥∥U[T+; u, v , .]−

(
I + τ [P(ω)Ωx + Q(ω)Ωy ]

)∥∥∥
H1(ω∗,ω∗)

6 ετ.

Proof : Explicit controls→ cancel the drift term, Lie brackets.

Rk : It is not sufficient for the global approximate controllability.
τωN needs TN ∼ 2Nτ

1
N and more than 2N N-S.

K. Beauchard



The Bloch equation
Linearized system

Non exact controllability with bounded controls
Approximate controllability with unbounded controls

Explicit controls for the asymptotic exact controllability
Feedback stabilization

Second step : Variationnal method

Let M0 ∈ H1((ω∗, ω
∗),S2) be such that M0 6= e3.

Goal : Find U[t+n ; un, vn,M0] ⇀ e3 in H1 when n→ +∞

K :=
{

M̃ ; ∃U[t+n ; un, vn,M0] ⇀ M̃ in H1
}

m := inf
{
‖M̃ ′‖L2 ; M̃ ∈ K

}
1) ∃e ∈ K such that m = ‖e′‖L2

2) m = 0. Otherwise, one may decrease more : ∃P,Q ∈ R[X ] st∥∥∥ d
dω

[(
I + τ [P(ω)Ωx + Q(ω)Ωy ]

)
e
]∥∥∥

L2
< ‖e′‖L2

3) e3 ∈ K ∩ S2

K. Beauchard
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Conclusion

Theorem : Let M0 ∈ H1((ω∗, ω
∗),S2). There exist

(tn)n∈N ∈ [0,+∞)N, (un)n∈N, (vn)n∈N finite sums of Dirac
masses such that

U[t+n ; un, vn,M0]→ e3 weakly in H1.

Advantages :
global result
strong cv in Hs, ∀s < 1, L∞

Flaws : How to do ? The strategy of the proof may
not work,
take a long time,
cost a lot (N-S).

K. Beauchard
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Explicit controls for the asymptotic exact controllability

Notations : - (ω∗, ω
∗) = (0, π), f : (0, π)→ C identified with

f̃ : R→ R, 2π periodic symmetric, N(f ) :=
∑

n∈Z |cn(f )|.
- M = (x , y , z), Z := x + iy

Theorem : ∃δ > 0 / ∀M0 : (0, π)→ S2 with N[Z0] < δ and
z0 > 1/2, the solution of the Bloch equation with

u(t) := πδk (t)−
∑2k−1

p=1 =
(

c−k+p(Z0)
)
δk+p(t) + πδ3k (t),

v(t) := −
∑2k−1

p=1 <
(

c−k+p(Z0)
)
δk+p(t),

where k = k(Z0) /
∑
|n|>k |cn(Z0)| < N(Z0)/4 satisfies

N[Z(3k+)] <
N(Z0)

2
and z(3k+) > 1/2.

K. Beauchard
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Ideas of the proof

1) ’cancel’ cn(Z0) for n 6 0 with w(t) =
∑N

k=0 c−kδk (t)

Z(N+, ω) ∼
(
Z0(ω)−

N∫
0

w(t)e−iωtdt
)

eiωN

∼
( ∑

n∈Z
cneinω −

N∑
k=0

c−ke−ikω
)

eiωN

2) shift to the right with u ≡ v ≡ 0,

Z(N, ω) = Z0(ω)eiNω =
∑
n∈Z

cnei(n+N)ω

3) reverse with u(t) = πδ0(t), M(0+) = exp(πΩx )M0

Z(0+, ω) = Z0(ω) =
∑
n∈Z

cne−inω

K. Beauchard
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Proof

0-k-2k k 2k

t=0 c(-2k) c(-k) c(0) c(k) c(2k)

u=v=0 : shift

t=k- c(-2k) c(-k) c(0) c(k)

u=πδ(k) : reverse

t=k+ c(k) c(0) c(-k) c(-2k)

cancel

t=3k 0 0 0 c(-2k)

K. Beauchard
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Goal

Propose explicit feedback laws that stabilize the Bloch
equation around a uniform state of spin +1/2 or −1/2.

M(t , ω) −−−−→
t→+∞

e3 uniformly wrt ω ∈ (ω∗, ω
∗)

Interest : less sensible to random perturbations than open loop
controls

K. Beauchard
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Strategy

Feedback design tool : control Lyapunov function

Convergence for ODEs : LaSalle invariance principle

Convergence for PDEs : several adaptions
- approximate stabilization : with discrete [KB-Mirrahimi(09)] or
continuous spectrum [Mirrahimi(09)]
- weak stabilization :
under a strong compactness assumption [Ball-Slemrod(79)]
without [this work, KB-Nersesyan(10)]
- strong stabilization :
with compact trajectories [d’Andréa-Novel-Coron(98)]
strict Lyapunov function [Coron-d’Andréa-Novel-Bastin(07)]

K. Beauchard
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The impulse train structure control
In view of the previous results, it is natural to consider

u = usmooth +
∞∑

k=1

πδ(t − kT )

x(kT+) = x(kT−) y(kT+) = −y(kT−) z(kT+) = −z(kT−)

With ε(t) = (−1)E(t/T ), the change of variables

(x , y , z)← (x , ε(t)y , ε(t)z), u ← u+
∞∑

k=1

πδ(t−kT ), v ← ε(t)v

transforms the Bloch equation into

∂M
∂t

(t , ω) =
[
u(t)e1 + v(t)e2 + ε(t)ωe3

]
∧M(t , ω)

K. Beauchard
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The impulse train structure reduces the dispersion

e1
M(0,.)

M(T,.)
M(2T,.)

e2

e3

Initial free system

∂M
∂t

(t , ω) = ωe3 ∧M(t , ω), M(0, ω) = e1
K. Beauchard
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The impulse train structure reduces the dispersion

e1

M(T,.)
e2

e3

M(0,.)=M(2T,.)

New free system

∂M
∂t

(t , ω) = ε(t)ωe3 ∧M(t , ω), M(0, ω) = e1
K. Beauchard
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Driftless form

M = (x , y , z) Z := x + iy Ω := v − iu

{
∂Z
∂t (t , ω) = iε(t)ωZ(t , ω) + Ω(t)z(t , ω)
∂z
∂t (t , ω) = −<[Ω(t)Z(t , ω)]

Z(t , ω)← Z(t , ω)e−iωζ(t) where ζ(t) :=

∫ t

0
ε(s)ds

{
∂Z
∂t (t , ω) = Ω(t)z(t , ω)e−iωζ(t)

∂z
∂t (t , ω) = −<[Ω(t)Z(t , ω)e−iωζ(t)]

K. Beauchard
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Control design : control Lyapunov function

L(t) :=

∫ ω∗

ω∗

[
|Z ′(t , ω)|2 + z ′(t , ω)2 + z(t , ω)

]
dω

dL
dt

(t) = < [Ω(t)H(t)]

where

H(t) :=

∫ ω∗

ω∗

[
iζ(t)[Zz ′ −Z ′z]−Z(t , ω)

]
e−iωζ(t)dω

So we take

Ω(t) := −H(t) then
dL
dt

(t) = −|Ω(t)|2

K. Beauchard
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Local stabilization
Theorem : There exists δ > 0 such that, for every
M0 ∈ H1((ω∗, ω

∗),S2) with ‖M0 + e3‖H1 < δ, the solution of the closed
loop system satisfies

M(t) ⇀ −e3 in H1(ω∗, ω
∗) when t → +∞.

Rk : M(t , ω)→ −e3 uniformly with respect to ω ∈ (ω∗, ω
∗).

Proof : 1. Invariant set = {−e3} locally.
2. Ω(t)→ 0 a.e.
3. −e3 is the only possible weak H1-limit :

If M(tn)→ M0
∞ weakly in H1 and strongly in H1/2 then

M(tn + τ)→ M∞(τ) strongly in H1/2, ∀τ > 0, thus
Ω[M(tn + τ)]→ Ω[M∞(τ)]. Therefore Ω[M∞] ≡ 0.

Key point : Ω(M) is well defined for M only in H1/2

K. Beauchard
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No global stabilization

Topological obstructions : H1((ω∗, ω
∗),S2) cannot be

continuously deformed to one point.

Actually, there is an infinite number of invariant solutions, that
may be expressed explicitly.

K. Beauchard
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Numerical simulations

Parameters : (ω∗, ω
∗) = (0,1), T = 2π, G := 1/(2T 2) x0(ω)

y0(ω)
z0(ω)

 :=

 cos(π, ω)
√

1− z0(ω)2

sin(π, ω)
√

1− z0(ω)2

0.8− 0.1 sin(4πω)

 .

Simulation until Tf = 50T

Conclusion : The convergence speed is rapid at the beginning
but decreases at the end.

K. Beauchard
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Numerical simulations
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Conclusion of the talk : Controllability

Linearized system :

non exact controllability, L1 controls : F [L1(−T ,0)]

non asymptotic zero controllability
uniqueness of the control
approximate controllability, unbounded controls

Nonlinear system :

non exact controllability, BR[L2(0,T )]-controls : manifold
approximate controllability in Hs, s < 1, unbounded
controls : non commutativity + variationnal method
explicit controls for the (local) asymptotic exact
controllability to e3 : Fourier method, many controls work

The nonlinearity allows to recover controllability.
K. Beauchard
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Conclusion of the talk : Stabilization

impulse train control
driftless form
control Lyapunov function : H1-distance to the target
explicit damping feedback laws
weak H1 local stabilization

K. Beauchard
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Open problems, perspectives

exact controllability in finite time with unbounded
controls ?
strong stabilization with the same feedback laws ?
explicit feedbacks for the semi-global stabilization
convergence rates ? arbitrarily fast stabilization ?

K. Beauchard
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