Control and stabilization of the Bloch equation

Karine Beauchard (CNRS, CMLA, ENS Cachan)

joint works with Jean-Michel Coron (LJLL, Paris 6) Pierre Rouchon (CAS, Mines de Paris) Paulo Sergio Pereira da Silva (Sao Polo)

IHP, December, 8, 2010

▲ @ ▶ ▲ ⊇ ▶

K. Beauchard

- 2 Linearized system
- 3 Non exact controllability with bounded controls
- Approximate controllability with unbounded controls
- 5 Explicit controls for the asymptotic exact controllability

< 🗇 > < 🖻 > .

6 Feedback stabilization

The Bloch equation

An ensemble of non interacting spins, in a magnetic field $B(t) := (u(t), v(t), B_0)$, with dispersion in the Larmor frequency $\omega = \gamma B_0 \in (\omega_*, \omega^*)$ (=rotation speed around *z*).

one spin : $M(t, \omega) \in S^2$

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)\boldsymbol{e}_1 + v(t)\boldsymbol{e}_2 + \omega \boldsymbol{e}_3 \right] \wedge \boldsymbol{M}(t,\omega), \ \omega \in (\omega_*,\omega^*)$$

・ロト ・ ア・ ・ ヨト ・ ヨト

State : *M* Controls : *u*, *v*

controllability of an ODE, simultaneously w.r.t. $\omega \in (\omega_*, \omega^*)$

Li-Khaneja(06)

Application : Nuclear Magnetic Resonance

K. Beauchard

The Bloch equation

Linearized system Non exact controllability with bounded controls Approximate controllability with unbounded controls Explicit controls for the asymptotic exact controllability Feedback stabilization

Controllability question for the Bloch equation

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)\boldsymbol{e}_1 + v(t)\boldsymbol{e}_2 + \omega \boldsymbol{e}_3 \right] \wedge \boldsymbol{M}(t,\omega), \ (t,\omega) \in [0,+\infty) \times (\omega_*,\omega^*)$$

Ex : $M_0(\omega) \equiv -e_3$, $M_f(\omega) \equiv +e_3$, But spins with different ω have different dynamics !

Goal : Use the control to compensate for the dispersion in ω .

Rk : If ω is fixed, the controllability of one ODE on S^2 is trivial.

イロト イ理ト イヨト イヨト

The Bloch equation

Linearized system Non exact controllability with bounded controls Approximate controllability with unbounded controls Explicit controls for the asymptotic exact controllability Feedback stabilization

 \Rightarrow Toy model

A prototype for infinite dimensional bilinear systems with continuous spectrum

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)\boldsymbol{e}_1 + v(t)\boldsymbol{e}_2 + \omega \boldsymbol{e}_3 \right] \wedge \boldsymbol{M}(t,\omega), \ \omega \in (\omega_*,\omega^*)$$

$$\mathcal{A}M := \omega e_3 \wedge M(\omega) \quad \rightarrow \quad \operatorname{Sp}(\mathcal{A}) = -i(\omega_*, \omega^*) \bigcup i(\omega_*, \omega^*)$$
$$\lambda = \pm i\widetilde{\omega} \quad \rightarrow \quad M_{\lambda}(\omega) = \begin{pmatrix} 1 \\ \pm i \end{pmatrix} \delta_{\widetilde{\omega}}(\omega)$$

$$\lambda = \pm i\omega \qquad \rightarrow \qquad i M_{\lambda}(\omega) = \begin{pmatrix} +i \\ 0 \end{pmatrix} \delta_{\omega}^{\omega}(\omega)$$

 $i\partial_t \psi = (-\Delta + V)\psi - u(t)\mu(x)\psi$

ヘロト ヘワト ヘビト ヘビト

State of the art : bilinear control for Schrödinger PDEs

Quite well understood : exact controllability 1D

- negative results : Ball-Marsden-Slemrod(82), Turinici(00), Ilner-Lange-Teismann(06), Mirrahimi-Rouchon(04) Nersesyan(10).
- positive local results with discrete spectrum + gap (1D) : KB(05), KB-Laurent(09).
- positive global results : KB-Coron(06), Nersesyan(09).

approximate controllability with discrete spectrum Chambrion-Mason-Sigalotti-Boscain(09), Nersesyan(09), Ervedoza-Puel(09).

Not well understood : with continuous spectrum : Mirrahimi(09)

The Bloch equation Linearized system

Non exact controllability with bounded controls Approximate controllability with unbounded controls Explicit controls for the asymptotic exact controllability Feedback stabilization

Linearized system around ($M \equiv e_3, u \equiv v \equiv 0$) : non exact controllability, approximate controllability

$$M = (x, y, z), \quad \mathcal{Z}(t, \omega) := (x + iy)(t, \omega), \quad w(t) := (v - iu)(t)$$

$$\mathcal{Z}(T,\omega) = \left(\mathcal{Z}_0(\omega) + \int_0^T w(t) e^{-i\omega t} dt\right) e^{i\omega T}$$

- T > 0, the reachable set from $\mathcal{Z}_0 = 0$ is $\mathcal{F}[L^1(-T, 0)]$
- the \mathcal{Z}_0 asymptotically zero controllable are $\mathcal{F}[L^1(0, +\infty)]$
- $\forall \mathcal{Z}_0$ in that space, the control is unique
- $\forall T > 0$, approximate controllability in $C^0[\omega_*, \omega^*]$ with $C^{\infty}_c(0, T)$ -controls.

We will see that the NL syst has better controllability properties.

K. Beauchard

Whole space : structure of the reachable set

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)e_1 + v(t)e_2 + \omega e_3 \right] \wedge M(t,\omega), \ (t,\omega) \in (0,T) \times \mathbb{R}$$

Theorem : Let T > 0 and $R := 1/(8\sqrt{3T})$.

- $\forall u, v \in B_R[L^2(0, T)], \exists ! M = (x, y, z)$ solution with $\mathcal{Z} := x + iy \in C^0([0, T], L^2(\mathbb{R})) \cap C_b^0([0, T] \times \mathbb{R}),$
- the image of

$$\begin{array}{rccc} F_T: & B_R[L^2(0,T)]^2 & \to & L^2 \cap C^0_b(\mathbb{R}) \\ & (u,v) & \mapsto & \mathcal{Z}(T,.) \end{array}$$

is a non flat **submanifold** of $L^2 \cap C_b^0(\mathbb{R})$, with ∞ codim.

Proof : Inverse mapping $dF_T(0,0).(U,V) \sim \mathcal{F}(U + iV)$, + 2nd order \sim

On a bounded interval : analyticity argument

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)\boldsymbol{e}_1 + v(t)\boldsymbol{e}_2 + \omega \boldsymbol{e}_3 \right] \wedge \boldsymbol{M}(t,\omega), \ (t,\omega) \in (0,T) \times (\omega_*,\omega^*)$$

• $T > 0, u, v \in L^2(0, T) \Rightarrow \mathcal{Z}(T, .)$ analytic

イロト イポト イヨト イヨト

The non controllability is not a question of regularity.

Solutions associated to Dirac controls

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)e_1 + v(t)e_2 + \omega e_3\right] \wedge M(t,\omega), \quad (t,\omega) \in (0,T) \times (\omega_*,\omega^*)$$

Classical solution for $u, v \in L^1_{loc}(\mathbb{R})$.

If $u = \alpha \delta_a$ and v = 0 then

$$M(a^+,\omega) = \exp(\alpha \Omega_x) M(a^-,\omega)$$

 \rightarrow instantaneous rotation of angle α around the x-axis, $\forall \omega$

Rk : limit $[\epsilon \rightarrow 0]$ of solutions associated to $u = \frac{\alpha}{\epsilon} \mathbf{1}_{[a,a+\epsilon]}$.

Approximate controllability result $-\infty < \omega_* < \omega^* < +\infty$

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)\boldsymbol{e}_1 + v(t)\boldsymbol{e}_2 + \omega \boldsymbol{e}_3 \right] \wedge \boldsymbol{M}(t,\omega), \quad (t,\omega) \in [0,+\infty) \times (\omega_*,\omega^*)$$

Theorem : Let $M_0 \in H^1((\omega_*, \omega^*), S^2)$. There exist $(t_n)_{n \in \mathbb{N}} \in [0, +\infty)^{\mathbb{N}}$, $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ finite sums of Dirac masses such that

$$U[t_n^+; u_n, v_n, M_0] \rightarrow e_3$$
 weakly in H^1 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Rk : Same result with $u, v \in L^{\infty}_{loc}[0, +\infty)$: $\alpha \delta_a \leftarrow \frac{\alpha}{\epsilon} \mathbf{1}_{[a,a+\epsilon]}$ Approximate controllability in H^s , $\forall s < 1$, in L^{∞} ...

First step : Li-Khaneja 's non commutativity result

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)\boldsymbol{e}_1 + v(t)\boldsymbol{e}_2 + \omega \boldsymbol{e}_3 \right] \wedge M(t,\omega), \ (t,\omega) \in [0,+\infty) \times (\omega_*,\omega^*)$$

Theorem : Let $P, Q \in \mathbb{R}[X]$. $\forall \epsilon > 0, \exists \tau^* > 0$ such that $\forall \tau \in (0, \tau^*), \exists T > 0, u, v \sim \text{Dirac such that}$

$$\left\| U[T^+; u, v, .] - \left(I + \tau [P(\omega)\Omega_X + Q(\omega)\Omega_y] \right) \right\|_{H^1(\omega_*, \omega^*)} \leqslant \epsilon \tau.$$

 $\textbf{Proof}: \textbf{Explicit controls} \rightarrow \textbf{cancel the drift term, Lie brackets.}$

Rk : It is not sufficient for the global approximate controllability. $\tau \omega^N$ needs $T_N \sim 2^N \tau^{\frac{1}{N}}$ and more than 2^N N-S.

ヘロト ヘアト ヘヨト

Second step : Variationnal method

Let $M_0 \in H^1((\omega_*, \omega^*), S^2)$ be such that $M_0 \neq e_3$.

Goal : Find $U[t_n^+; u_n, v_n, M_0] \rightarrow e_3$ in H^1 when $n \rightarrow +\infty$

$$\begin{aligned} \mathcal{K} &:= \left\{ \widetilde{M} \; ; \; \exists U[t_n^+; u_n, v_n, M_0] \rightharpoonup \widetilde{M} \; \text{in} \; H^1 \right\} \\ m &:= \inf \left\{ \|\widetilde{M}'\|_{L^2}; \; \widetilde{M} \in K \right\} \end{aligned}$$

1) $\exists e \in K$ such that $m = ||e'||_{L^2}$ **2)** m = 0. Otherwise, one may decrease more : $\exists P, Q \in \mathbb{R}[X]$ st

$$\left\|\frac{d}{d\omega}\left[\left(\boldsymbol{I}+\tau[\boldsymbol{P}(\omega)\Omega_{\boldsymbol{x}}+\boldsymbol{Q}(\omega)\Omega_{\boldsymbol{y}}]\right)\boldsymbol{e}\right]\right\|_{L^{2}}<\|\boldsymbol{e}'\|_{L^{2}}$$

イロト イポト イヨト イヨト

3) *e*₃ ∈ *K* ∩ *S*²

Conclusion

Theorem : Let $M_0 \in H^1((\omega_*, \omega^*), S^2)$. There exist $(t_n)_{n \in \mathbb{N}} \in [0, +\infty)^{\mathbb{N}}$, $(u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}$ finite sums of Dirac masses such that

$$U[t_n^+; u_n, v_n, M_0] \rightarrow e_3$$
 weakly in H^1 .

イロト イポト イヨト イヨト

Advantages :

- global result
- strong cv in H^s , $\forall s < 1$, L^{∞}

Flaws : How to do? The strategy of the proof may

- not work,
- take a long time,
- cost a lot (N-S).

Explicit controls for the asymptotic exact controllability

Notations : - $(\omega_*, \omega^*) = (0, \pi), f : (0, \pi) \to \mathbb{C}$ identified with $\tilde{f} : \mathbb{R} \to \mathbb{R}, 2\pi$ periodic symmetric, $N(f) := \sum_{n \in \mathbb{Z}} |c_n(f)|$. - $M = (x, y, z), \qquad \mathcal{Z} := x + iy$

Theorem : $\exists \delta > 0 / \forall M_0 : (0, \pi) \rightarrow S^2$ with $N[\mathcal{Z}_0] < \delta$ and $z_0 > 1/2$, the solution of the Bloch equation with

$$u(t) := \pi \delta_k(t) - \sum_{\rho=1}^{2k-1} \Im \Big(c_{-k+\rho}(\mathcal{Z}_0) \Big) \delta_{k+\rho}(t) + \pi \delta_{3k}(t),$$

$$v(t) := -\sum_{\rho=1}^{2k-1} \Re \Big(c_{-k+\rho}(\mathcal{Z}_0) \Big) \delta_{k+\rho}(t),$$

where $k = k(\mathcal{Z}_0) / \sum_{|n| > k} |c_n(\mathcal{Z}_0)| < N(\mathcal{Z}_0)/4$ satisfies

$$N[\mathcal{Z}(3k^+)] < rac{N(\mathcal{Z}_0)}{2}$$
 and $z(3k^+) > 1/2$.

イロト イポト イヨト イヨト

Ideas of the proof

1) 'cancel' $c_n(\mathcal{Z}_0)$ for $n \leq 0$ with $w(t) = \sum_{k=0}^N c_{-k} \delta_k(t)$

$$\begin{aligned} \mathcal{Z}(N^+,\omega) &\sim \Big(\mathcal{Z}_0(\omega) - \int_0^N w(t) e^{-i\omega t} dt\Big) e^{i\omega N} \\ &\sim \Big(\sum_{n\in\mathbb{Z}} c_n e^{in\omega} - \sum_{k=0}^N c_{-k} e^{-ik\omega}\Big) e^{i\omega N} \end{aligned}$$

2) shift to the right with $u \equiv v \equiv 0$,

$$\mathcal{Z}(\pmb{\mathsf{N}},\omega)=\mathcal{Z}_{\pmb{\mathsf{0}}}(\omega)\pmb{e}^{\pmb{i}\pmb{\mathsf{N}}\omega}=\sum_{\pmb{n}\in\mathbb{Z}}\pmb{c}_{\pmb{n}}\pmb{e}^{\pmb{i}(\pmb{n}+\pmb{N})\omega}$$

3) reverse with $u(t) = \pi \delta_0(t), M(0^+) = \exp(\pi \Omega_x) M_0$

$$\mathcal{Z}(0^+,\omega) = \overline{\mathcal{Z}_0(\omega)} = \sum_{n \in \mathbb{Z}} \overline{c_n} e^{-in\omega}$$

Proof

K. Beauchard

Propose **explicit feedback laws** that stabilize the Bloch equation around a uniform state of spin +1/2 or -1/2.

$$M(t,\omega) \xrightarrow[t \to +\infty]{} e_3$$
 uniformly wrt $\omega \in (\omega_*, \omega^*)$

Interest : less sensible to random perturbations than open loop controls

イロト イポト イヨト イヨト

3

The Bloch equation
Linearized system
Non exact controllability with bounded controls
Approximate controllability with unbounded controls
Explicit controls for the asymptotic exact controllability
Feedback stabilization

Strategy

Feedback design tool : control Lyapunov function

Convergence for ODEs : LaSalle invariance principle

Convergence for PDEs : several adaptions

- approximate stabilization : with discrete [KB-Mirrahimi(09)] or continuous spectrum [Mirrahimi(09)]

- weak stabilization :

under a strong compactness assumption [Ball-Slemrod(79)] without [this work, KB-Nersesyan(10)]

- strong stabilization :

with compact trajectories [d'Andréa-Novel-Coron(98)] strict Lyapunov function [Coron-d'Andréa-Novel-Bastin(07)]

ヘロト ヘ戸ト ヘヨト ヘヨト

The impulse train structure control

In view of the previous results, it is natural to consider

$$u = u_{smooth} + \sum_{k=1}^{\infty} \pi \delta(t - kT)$$

$$x(kT^+) = x(kT^-)$$
 $y(kT^+) = -y(kT^-)$ $z(kT^+) = -z(kT^-)$

With $\epsilon(t) = (-1)^{E(t/T)}$, the change of variables $(x, y, z) \leftarrow (x, \epsilon(t)y, \epsilon(t)z), \qquad u \leftarrow u + \sum_{k=1}^{\infty} \pi \delta(t-kT),$

$$(\mathbf{y}, \mathbf{z}) \leftarrow (\mathbf{x}, \epsilon(t)\mathbf{y}, \epsilon(t)\mathbf{z}), \qquad \mathbf{u} \leftarrow \mathbf{u} + \sum_{k=1} \pi \delta(t - kT), \qquad \mathbf{v} \leftarrow \epsilon(t)\mathbf{v}$$

transforms the Bloch equation into

$$\frac{\partial M}{\partial t}(t,\omega) = \left[u(t)e_1 + v(t)e_2 + \epsilon(t)\omega e_3 \right] \wedge M(t,\omega)$$

K. Beauchard

The impulse train structure reduces the dispersion

Initial free system

≣⇒

The impulse train structure reduces the dispersion

≣⇒

New free system

K. Beauchard

The Bloch equation Non exact controllability with bounded controls Approximate controllability with unbounded controls Feedback stabilization

`

Driftless form

$$\begin{split} M &= (x, y, z) \qquad \mathcal{Z} := x + iy \qquad \Omega := v - iu \\ \begin{cases} \frac{\partial \mathcal{Z}}{\partial t}(t, \omega) &= i\epsilon(t)\omega\mathcal{Z}(t, \omega) + \Omega(t)\mathcal{Z}(t, \omega) \\ \frac{\partial \mathcal{Z}}{\partial t}(t, \omega) &= -\Re[\Omega(t)\overline{\mathcal{Z}(t, \omega)}] \end{cases} \\ \mathcal{Z}(t, \omega) \leftarrow \mathcal{Z}(t, \omega) e^{-i\omega\zeta(t)} \qquad \text{where} \qquad \zeta(t) := \int_0^t \epsilon(s) ds \\ \begin{cases} \frac{\partial \mathcal{Z}}{\partial t}(t, \omega) &= \Omega(t)\mathcal{Z}(t, \omega) e^{-i\omega\zeta(t)} \\ \frac{\partial \mathcal{Z}}{\partial t}(t, \omega) &= -\Re[\Omega(t)\overline{\mathcal{Z}(t, \omega)} e^{-i\omega\zeta(t)}] \end{cases} \end{split}$$

.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Control design : control Lyapunov function

$$\mathcal{L}(t) := \int_{\omega_*}^{\omega^*} \left[|\mathcal{Z}'(t,\omega)|^2 + z'(t,\omega)^2 + z(t,\omega) \right] d\omega$$
$$\frac{d\mathcal{L}}{dt}(t) = \Re \left[\Omega(t) \mathcal{H}(t) \right]$$

where

$$\mathcal{H}(t) := \int_{\omega_*}^{\omega^*} \left[i\zeta(t) [\overline{\mathcal{Z}} z' - \overline{\mathcal{Z}}' z] - \overline{\mathcal{Z}}(t, \omega) \right] e^{-i\omega\zeta(t)} d\omega$$

So we take

$$\Omega(t) := -\overline{\mathcal{H}(t)}$$
 then $\frac{d\mathcal{L}}{dt}(t) = -|\Omega(t)|^2$

Local stabilization

Theorem : There exists $\delta > 0$ such that, for every $M_0 \in H^1((\omega_*, \omega^*), \mathbb{S}^2)$ with $||M_0 + e_3||_{H^1} < \delta$, the solution of the closed loop system satisfies

 $M(t)
ightarrow -e_3$ in $H^1(\omega_*, \omega^*)$ when $t \to +\infty$.

Rk : $M(t, \omega) \rightarrow -e_3$ uniformly with respect to $\omega \in (\omega_*, \omega^*)$.

Proof : 1. Invariant set = $\{-e_3\}$ locally. **2.** $\Omega(t) \to 0$ a.e. **3.** $-e_3$ is the only possible weak H^1 -limit : If $M(t_n) \to M_{\infty}^0$ weakly in H^1 and strongly in $H^{1/2}$ then $M(t_n + \tau) \to M_{\infty}(\tau)$ strongly in $H^{1/2}$, $\forall \tau > 0$, thus $\Omega[M(t_n + \tau)] \to \Omega[M_{\infty}(\tau)]$. Therefore $\Omega[M_{\infty}] \equiv 0$. **Key point :** $\Omega(M)$ is well defined for M only in $H^{1/2}$

No global stabilization

Topological obstructions : $H^1((\omega_*, \omega^*), S^2)$ cannot be continuously deformed to one point.

Actually, there is an infinite number of invariant solutions, that may be expressed explicitly.

イロト イポト イヨト イヨト

Numerical simulations

Parameters :
$$(\omega_*, \omega^*) = (0, 1), T = 2\pi, G := 1/(2T^2)$$

$$\begin{pmatrix} x_0(\omega) \\ y_0(\omega) \\ z_0(\omega) \end{pmatrix} := \begin{pmatrix} \cos(\pi,\omega)\sqrt{1-z_0(\omega)^2} \\ \sin(\pi,\omega)\sqrt{1-z_0(\omega)^2} \\ 0.8 - 0.1\sin(4\pi\omega) \end{pmatrix}$$

Simulation until $T_f = 50T$

Conclusion : The convergence speed is rapid at the beginning but decreases at the end.

イロト イポト イヨト イヨト

Numerical simulations

K. Beauchard

프 🕨 🗆 프

Conclusion of the talk : Controllability

Linearized system :

- non exact controllability, L^1 controls : $\mathcal{F}[L^1(-T, 0)]$
- non asymptotic zero controllability
- uniqueness of the control
- approximate controllability, unbounded controls

Nonlinear system :

- non exact controllability, B_R[L²(0, T)]-controls : manifold
- approximate controllability in H^s, s < 1, unbounded controls : non commutativity + variationnal method
- explicit controls for the (local) asymptotic exact controllability to e₃: Fourier method, many controls work

The nonlinearity allows to recover controllability.

Conclusion of the talk : Stabilization

- impulse train control
- driftless form
- control Lyapunov function : H¹-distance to the target
- explicit damping feedback laws
- weak H¹ local stabilization

< ロ > < 同 > < 三 > .

Open problems, perspectives

- exact controllability in finite time with unbounded controls ?
- strong stabilization with the same feedback laws?
- explicit feedbacks for the semi-global stabilization
- convergence rates ? arbitrarily fast stabilization ?