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Application fields of quantum control methodologies

1. Quantum control: state transitions, laser induced chemistry,
magnetic and optical trapping.

Quantum computing: qubits, data operations.

Quantum transport, superfluids of atoms, vortices.
Construction of barriers, channels, etc. for few atoms.
Amplification of material waves: laser of atoms.
Semiconductor nanostructures.
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New challenges from quantum control problems

The possibility to manipulate states of atoms and molecules by
means of laser pulses or magnetic fields opens new technological
perspectives.

The solution of quantum control problems poses new challenges
involving optimal control theory, numerical analysis, and scientific

computing.

Quantum control models define an important class of nonlinear
control mechanisms.
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Quantum mechanical models
> One-particle Schrédinger equation, 1 = ¥(x, t) or ¥ = ¥(t)

.0
! ad} = (HO + VO + Vcontrol)w
> BEC Condensate Gross-Pitaevskii equation, 1 = ¥(x, t)
2
ot
> Time-dependent Kohn-Sham equation, ¢; = ¥;(x, t)
2
ot
where 1;, i = 1,..., N are the K-S orbitals; p = Z,N:l []? is the
one-electron density.
> Multi-particle (n) Schrédinger equation, ¥ = ¥(x1, X2, . . ., Xn, t)
P =15 Z v2 Z Vi + Z Uu + Veontrol | ¥ L‘L‘Q}’%{fﬁ
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1
— (_2V2 + Vo + Veontrol + & |¢|2> G

1
wi = (_2V2 + Vext + VHartree(p) + VGXC(p) + VCO”"°’> wi
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Quantum mechanics structure and objectives
Dynamically stable systems exist with confining potentials Vg
{-V2+ Wo(x) - E} dj(x) =0, j=1.2,...,

where ¢; € H represent the eigenstates and E; represent the
energy. Here, H is a complex Hilbert space.

Control may be required to drive state transitions ¢; — ¢;.

The expectation value of a physical observable A when the system
is in a state 1) is given by (v, AY).

Control may be required to maximize observable expectation.

An Hermitian operator O may represent a transformation
regardless of initial and final states (e.g., quantum gates).

Control may be required to obtain best performance of O. S
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Quantum control mechanisms

Laser pulses, electric fields, and magnetic fields represent physically
meaningful control mechanisms. They are represented by
potentials that sum up to the stationary one

V(X, t) = VO(X) + Vcontro/(X7 t)

The dipole approximation of the electric control field modeling a
laser pulse results in the form

Vcontrol(X7 t) - u(t) X
where v : (0, T) — R is the modulating control amplitude.

A magnetic potential for manipulating a BEC is given by

2 42
u(t) - d 1
8C c Universita
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Vcontro/ (X> u( t)) =

where u is a parameter control function.

Alfio Borzi Advanced computational methodologies for solving quantum cc



Mathematical issues of quantum control problems

» Finite- and infinite-dimensional quantum systems
Finite-level systems are characterized by Hg, V € C"*", while
Ho is unbounded in oo-dim systems and V : Q x (0, T) — R.

» Existence and uniqueness of quantum optimal control
Existence of optimal solutions can usually be proven.
Uniqueness usually does not occur: for dipole control, if u(t)
is a minimizer, then so is —u(t).

» Exact and approximate controllability
A finite-level system is controllable iff Lie{i Hy, i V} = su(n),
the Lie algebra of zero-trace skew-Hermitian n x n matrices;
see, e.g., Dirr & Helmke. For infinite-dimensional systems, see
Beauchard & Coron, Chambrion, Mason, Sigalotti & Boscain,
and Turinici.

» Accurate and fast solution schemes for optimal control
Gradient schemes, monotonic schemes, Newton schemes, andlmvgral}ﬁ
multigrid schemes.
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Optimal control of finite-level

quantum systems
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Optimal control of a finite-level quantum system

Quantum systems with a finite number of states model artificial atoms
(semiconductor quantum dots) and quantum devices (quantum gates).

Consider a A-type three-level system with two stable states ; and ),
(conservative), and one unstable state 13 (dissipative).

Y3
R

(&
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Finite-level quantum models

Governed by Schrodinger-type equations for a n-component wave
function 1 : [0, T] — C" as follows

ip(t) = H(u(t) ¥(t),  ¥(0) = v,
for t € [0, T] and T > 0 is a given terminal time.

The function u : [0, T] — C™ represents the external control field.
Alternatively u = (uq,...,um) and u; : [0, T] = R

The linear Hamiltonian H(u) = Hy + V/(u), consists of

A free Hamiltonian Hy € C™*" describing the unperturbed (uncontrolled)
system,

A control Hamiltonian V/(u) € C"™" modeling the coupling of the
quantum state to the control field u.
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The objective of the quantum control

Control is applied to reach a target state at t = T.

One needs to avoid population of dissipative states during the control
process, while having limited laser resources.

These modeling requirements may result in the following

1 2 g 2 o2
JW,u) =5 W(T) = Yalen + 5 ullizo, ey + 5 18li20,7:0)

1 2
+§ Z Q;j ”ijL?(O,T;C)
jed

where 14 is the desired terminal state; v > 0 and p, a; > 0 are weighting
factors; 1; denotes the j-th (dissipative) component of 1.
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First-order necessary optimality conditions

For the quantum optimal control problem
min J(¢, u), subject to i(t) = H(u(t))¥(t), (0) = to

Theorem
Suppose that x = (1, u) € X is a local solution to the optimal control

problem. Then there exist (unique) Lagrange multipliers
p € HY(0, T;C") (1 > 0) satisfying

i = H(u(-))y
ip=H(u(-))*p — a;j(¥),
i+ i = Re(p- (Vi (u)0)") + i Re(p - (V/(u))")

where

$(0) = o, ip(T) =(T) =g, u(T)=u(0)=0.

Universita
degli Studi
del Sannio

Alfio Borzi Advanced computational methodologies for solving quantum cc



Second-order optimality conditions

Consider the following optimal control problem

{ miny J(¢, u) 3|0(T) = val* + 3lul)?
c(v, u) i —ap—up=0

The solution of the SE for a given u provides 1) = ¢ (u). We obtain the
reduced objective J(u) = J(¢(u), u). The reduced Hessian

(V23 6u,0u) = (Weu)(Wéu)* + 2Re(p du, Wéu) + ~(du, du).
where W = W (¢ (u), u) = ¢y (¥(u), u) ™ cu(v(u), u).
Because of unitary of evolution, we have |p(t)| = |p(T)| = [¥(T) — ¥4
Therefore, we have that |Re(pdu, Wéu)| < C(|u]) |(T) — q| ||0ul|?.

For sufficiently small values of the tracking error [t)(T) — 14|
positiveness of the reduced Hessian is obtained.
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Control of a A-type three-level model
Free Hamiltonian

1 -5 0 0
0 0 —il,

where the term —il", accounts for environment losses (spontaneous
photon emissions, scattering of gamma rays from crystals).
The coupling to the external field is given by

1 0 0 U1 u
V(u) = —3 0 0 fou
mut pput 0

where p; and o describe the coupling strengths of states ¥; and ¥, to
the inter-connecting state 13 (e.g., optical dipole matrix elements).
Initial and final states are given by

1 0
— — —idT
wo - 0 and ’ll)d - e Universita
0 0 degli Studi
del Sannio
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Importance of optimization parameters

Smaller values of ~y result in smaller [¢)(T) — 9g]cs.

As p increases, |(T) — tg|cs increases: additional smoothness of the
control function (slightly) reduces the capability of tracking.

Larger ;1 makes the problem behaving better, resulting in a smaller
number of iterations.

By taking o = a3 > 0, dissipation is reduced and therefore better
tracking is achieved.

Y % a | [¥(T) — Ydlcs J CPU
107 1077 0.05 8.6-10°% 237-1003 196
1077 1079 0.05 3.7-107* 5.46-10"* 55.6
1007 0  0.05 6.9-107° 1.41-107* 4248
1007 0 0 1.2.1073 2.33.107°% 763.1
1074 100* 0.05 3.3.10°2 6.52-1072 473
10~ 107% 0.05 4.4.10°3 9.03-1073 423
1074 0 0.05 2.7-1073 5.68-10"3 17.2
10 0 0 8.3.-1073 3.34-100* 55
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Optimal solutions
With § =10, [p = 0.01, g3 = po = 1, and v = 1074, a3 = 0.01. We
have 11 = 0 (top) and p = 107° (bottom). Control (left) and state
evolution (right).
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Performance of NCG,Cascadic-NCG, and CNMS schemes

The NCG scheme provides better performance while refining the
computational mesh. There is a lack of robustness of the CNMS scheme

for small v = 1073 and severe convergence criteria ||VJ|| < tolps.

N = 2048 N = 4096
tol,;s | CPU(NCG) CPU(CNMS) | CPU(NCG) CPU(CNMS)
0% 1.17 1.28 2.32 1.39
105 432 12.63 9.26 15.92
106 5.01 48.00 17.21 no conv

Dramatic improvement with the Cascadic-NCG version

y=10"* v =10"%

N | CPU(NCG) CPU(C-NCG) | CPU(NCG) CPU(C-NCG)
4096 40.54 6.26 254.70 58.10
8192 112.57 12.71 319.46 134.00
16384 312.17 27.42 626.84 279.46

Computational effort to solve for tol,,s = 10~5; 0 = 0.01, a3z = 0.05; in C-NCG coarsest level N = 1024.
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Optimal control of infinite-dimensional

quantum systems
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Bose Einstein condensates model
Consider a bosonic gas (e.g. Rubidium) trapped in a magnetic field. By
lowering the confining potential, atoms with higher energy escape and
the remaining atoms condensate to a lower temperature.
The mean-field dynamics of the condensate is described by the
Gross-Pitaevskii equation (GPE)

;%w(x, t) = (—;Vz + V(x, u(t)) + g |1b(x, t)|2> W(x, )

Magnetic trap with optical plug

N

Escaping
atom

We consider V/(x, u(t)) is a poten-
tial produced by a magnetic mi- Radio

crotrap. The control function u(t) rcaton
parameterizes the variation of the

confining potential with time.

Trapped
atoms

Sirong
magnetic Universita
field degli Studi
del Sannio
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Control of matter at small scales

Trapping and coherent manipulation of cold neutral atoms in microtraps
near surfaces of atomic chips is the focus of the present research towards
control of matter at small scales.

This achievement has boosted developments in the atomic
interferometry, the construction of quantum gates, the microscopic
magnetic field imaging, quantum data encoding, etc..

At the base of all these developments is the ability to manipulate
Bose-Einstein condensates (BEC) subject to a control potential.

We consider the problem to split and transport a BEC being confined in
a single well V(x,0) at t =0 to a double well V(x,1) at time t = T.

We have (1) a2
u(t) d 1
%4 t) = ———— x>+ = x*
(xyu(t) = =S85 4 2 x
where ¢ = 40 and d is the width of the double well potential. v
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Optimal control formulation and optimality system
Consider a BEC at the initial state 19 and a target state 4.

g
S = 5 (1= |wale(MIF) +F [ (@)

Optimal control problem: Minimize the cost function J(1, u) subject to

the condition that 1 fulfills the Gross-Pitaevskii equation.
The optimal solution is characterized by the optimality system

o= (v Vo alel?) v

! ot
/ g — _lvz V 2 2 2 ok
i=p= +Vu+2[Y° | p+givp
ot 2
.. 8Vu
yu = _%e@/f p> )
where ( fQ x) dx. We have the initial and terminal
cond|t|ons
(0) = wo and ip(T) = —(wgl¢:(T)) Ya
dclbal’l.\'l.l()

u(0)=0, u(T)=1.
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The choice of the control space and the gradient

For a given potential V/(x, u(t)), we have a unique ¥(u) = ¢(x, t). In
terms of u we have the reduced objective J(u) = J(1(u), u).
The Taylor series of J(u) in a Hilbert space X is

Hute) = Iw) + ¢ (VIwe) +5 ((F2le)  +0()

For X = L2(0, T;R), the reduced gradient is given

BVU|>
au p7

In the case X = H(0, T;R) formulation, we have that

VI (u) = —v i — Re ()|

d2
dt?

[0 ()] = s~ Relw, 7).

with [VJ(u)](0) = 0 and [VJ(u)](T) = 0.

The H! gradient v.’]Hl(U) has the same regularity as u, while the L2 Universita
del Sannio

gradient does not.
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Optimal controls obtained on different X spaces

L? Gradient H' Gradient
1 12
1 1
Yy
08 08 7
/"/
506 206 4
<7 /, < P
Ve & o ﬁg'/
0.4 /’// 0.4 //
7) i /, R
/ e e
02t/ =0 024 wio!
7 —— =10 Y ——y=10
/ /]
/ —— =109 —— =10
)
0 [
0 2 4 8 0 2 4 6 8
t {time) t (time)

Figure: Dependence of the optimal control function on the regularization
parameter « for the L% and H' spaces. More oscillating controls are obtained
with smaller v. M = 3200 time steps with g =10 and T = 7.5.
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A nonlinear conjugate gradient on X space

Step 1.  Given k=1, uy, di = —g1, if ||g1]|x < tol then stop.
Step 2. Compute 74 > 0 satisfying the Armij-Wolfe conditions

Juk + 7rdi) < I(ug) + 8 7% (g, di)x
(g(ukJerdk),dk)x > O'(gk,dk)x, 0<§<0’<1/2

Step 3. Let Ug+1 = Uk + Tk d.
Step 4.  Compute gx+1 = ij(ukﬂ).

If |lgks1llx < tolaps or ||gk+1llx < tolres||g1l|x or k = kmax then
stop.

Step 5. Compute Si by (Hager-Zhang)

Ok, )
ﬁk:M, O'k:yk_QdkM7 Yk = 8k+1 — 8k
(dk, yi)x (V> di)x
Step 6. Let dk+1 = —gk+1 + Bk dk. T
Step 7. Set k = k41, goto Step 2. innio
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BFGS on X space

With BFGS the search direction is given by px = —Hj Vj(uk).
By the Sherman-Morrison-Woodbury formula, we have

Hiyisy + skyi He
SJYk

S¢ Yk + vid Hicyk
(s yx)?

where s, = T, px. Supposing X is either L2(0, T;R) or H'(0, T;R), the
function space analog of the outer product is a dyadic operator

x®y : X — X. The action of this operator on a third element v € X
can be expressed in terms of the inner product (x ® y)v = (y,z)x v.
One obtains the descent directions

Hiy1 = Hi + (sksi ) —

k—1

pr = —Hogik — Z Gldi(sj, gk)x sj — (7. 8x)x 5; — (55, 8k )x 7]
j=0

where ¢; = (sj,yj);(l, di =1+ ¢j(y;, z), and for zx = Hiyk, we have.

k—1 :
zx = Hoyx + Z ¢ {1di(sj. yi)x — (zj yi)x] s; — (55, v )x i} - Universia
j=0 del Sannio
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Results with HZ-NCG and BFGS on H! space

T=10
"""" ——HZ-NCG
. —o—BFGS
10 E s | o Cascadio BGS)
107
107 : : : :
o 1o 200 80 400 500
CPU time (seconds)
mesh | J V] iterations  CPU time (sec)
400 1.6605 x 1072 1.4288 x 101 15 3.8407 x 10!
800 5.5063 x 10~* 4.5284 x 1072 62 2.8107 x 102
1600 | 2.9634 x 10~* 1.0733 x 1072 30 3.6334 x 102 et
3200 | 1.0562 x 10~* 3.6378 x 10=3 37 9.6153 x 102 ‘GiiSannio
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MultiGrid OPTimization framework

The MGOPT solution to the optimization problem min, .7(u) requires to
define a hierarchy of minimization problems

minJ(u)  k=1,2,...,L
ug

where u; € Xi and Ji(+) is the reduced objective.

Among spaces Xy, restriction operators I,f_l : Xk — Xk—1 and
prolongation operators I,f 11 Xk—1 = X are defined.

Require that (I Ly, v)k—1 = (u, Ik 1V)k forall u € Xi and v € Xi_1.

We also choose an optimization scheme as 'smoother’ (NCG, BFGS, ...)
= O (u ™)
That provides sufficient reduction

Te(Ox(up)) < I(uf) — nll V() |IP

Universita
degli Studi
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MGOPT Algorithm

Initialize UE. If k=1, solve min jk(uk) — (fk, uk)k and return. Else if
g
k>1,

1. Pre-optimization: uf = Ok(uf_l, ), L=1,2....m

2. Coarse grid problem
Restrict the solution: u* ;| = I" Ly ul*

Fine-to-coarse correction:  T4_1 = VJk,l(uzl_l) — I,ﬁ“lVJk(uZl)

foor =1 o+ Ty
Apply MGOPT to the coarse grid problem:

min J—1(uk—1) = (o1, Uk—1)k—1
k—1
3. Coarse grid correction
Prolongate the error:  d = I} | (uk—1 — u}* ;)
Perform a line search in the direction d to obtain a step length a.

. . 1
rse grid correction: u""" = u* + ax
Coarse grid correction: u}'™ = u)' + ayd

4. Post-optimization: uf = Ok(uk_ ), b= +2,....o1n+7+ ldcsh St

del Sannio
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Computational performance of CNCG and MGOPT

CNCG MGOPT
2 2
v (A [®@e (M) CPU 3(1— [{Wa,w(T))|") CPU
102 2.23-10 2 17 9.69-107 116
10~ 45410~ 202 6.01-10* 82
10-° 1.38-1072 14 8.78-10~* 78

Table: Computational performance of the CNCG and MGOPT schemes; T = 7.5 and g = 10.

CNCG MGOPT
g (- [Wwaw(T)H[) CPU 1(1—[(wa,w(T)[) CPU
25 3.89-10°% 53 7.08-10°% 149
50 2.35.1073 80 9.84-103 76
75 5.54-103 90 1.85-103 163
100 4.94.101 50 5.44.1073 257

4 degli- §tudl
~ = 107", mesh 128 x 1250. del Sannio
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Time evolution for linear and optimized u control
The linear u(t) =t/ T is the standard choice for the optimal control

(left).
WY
H'E B

Tracking and control profile

FIgU re: The function ’\’w(x", t)| on the space-time domain (top) for the linear (left) and optimized (right)

control. The corresponding profiles at t = T (bottom, continuous line) compared to the desired state (dashed 3‘3}%{3&%
line). The tracking error %(1 — [(¥q, z/)(T)>|2) results 6.26 102 (lin) and 1.2210~3 (opt). MGOPT, Mesh deiSannio

128 x 1250; v = 10~ 4.
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Dipole quantum control
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Electronic states of a charged particle in a well potential

The control of quantum electronic states has a host of applications such
as control of photochemical processes and semiconductor lasers.

Consider a confining potential Vp(x) with a 'well’ envelope. The
eigenproblem

{=02+ Vo(x) — E} ¢;(x) j=1.2 ...,

defines eigenfunctions representing the eigenstates with energy E;.

A representative potential with applications in semiconductor
nanostructures is the infinite barrier well potential where V4(x) = 0 for
x € (0,¢) and V,(0) = +o0 and Vp(¥) =

The infinite barrier condition is equivalent to homogeneous Dirichlet
boundary conditions for the wavefunction and thus we have

j27T2 o
Ej = fT and ¢J(X) :S|n(_/’/TX/€).
Universita
degli Studi
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Electric dipole transitions and a GaAs quantum well

Tw ¥ T
%,
3
Tia ~
% .
A
3,
3 n
Ty 1
%
1
3 '
4y | A, v
afb.c) | x(a) b
Td cyy cg

Alfio Borzi

Six lowest wavefunctions in a 10 nm GaAs quantum well (“infinite barriers”)
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Electric dipole control

Consider a control field modeling a laser pulse. Using the dipole
approximation results in the following

V(x,t) = Vo(x) + u(t) x
where u: (0, T) — R is the modulating control amplitude.

The quantum state of a charged particle subject to this potential is
governed by the time-dependent Schrédinger equation (c(v, u) = 0)

.0 0
’8t¢(x7t)2{ Ewel + V(x, t)} (x, 1), (x,t) e Q=02 x(0,T),
Objective of the control
1
I 0) =5 (1= 1PeC TR + 2 lully

where the projector Py = (g, %) 3¢ V4. ’
We denote 3 = L2(Q; C), U = H}(0, T;R) and |[u|?, = ||u]]® + « ||“||2}1J°ré“yg{f’lﬁ

del Sannio
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Dipole control optimality system
Introduce the Lagrangian

L(¢,u,p) = J(¢,u) + %e//p*(x, t)c(v, u)(x, t) dxdt

where p is the Lagrange multiplier. The following first-order optimality
system characterizes the optimal solution

{18t+3 — Vo(x) — uf x}z/)x t)=0

{ide + 92 — Vo(x) — u(t)x} p(x,t) = 0

—7u+’yo¢i)+§]‘€e/p*(x,t)x¢(x,t)dx:O
Q

with homogeneous Dirichlet boundary conditions, and initial and terminal
conditions given by

pOx T) = i (Ya(), 9, T)ac balx)
u(0)=0, u(T)= o
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Discretization: modified Crank-Nicholson scheme

Our MCN scheme results in the following

Y — Yk_1 = *i(th[H(fk) + H(tk—1)][¥k + Yx-1]-

Spatial discretization Hy of the Hamiltonian H(tx) is by linear FEM.
We have that H, = HkT, which is important for preserving unitarity of
the time-stepping method. Let A, = % [Hk + Hi—4].

_ I A
S
This gives the following representation of the equality constraint

ck(y,u) = Biyk —Bryk-1, yk = ( g;[[ﬁl;]] ) ’

where y is a compact notation for the set of state vectors at each time

step yi,...,Yyn, and similarly for u. S
del Sannio
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Discrete optimality system
Let S corresponds to multiplication by i. We have that

S= 0 (vg, )3 corresponds to ya'

In this representation, we can rewrite the objective in the form

J _1 T _s ydT b TK
(y,u)—2 1—er(yd Yd) yde YN, —|—2u u

The matrix K is the discretization of | — ad?. We have the Lagrangian

Nt

L(y,u,p) = J(y,u) + >_py ck(y,u)
k=1

Differentiating this Lagrangian with respect to its arguments and setting
the derivatives to zero gives the discrete optimality system

Bryk = By yk_1

o ]
By Pk = Bit1Pit1 st
degli Studi

'yKu = f del Sannio
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Results with globalized Newton method: optimal controls

50 T T T T T
—1-2
0 =153
1- 5
30- G ]
5 \

u’(t)

‘\
N
_o0F N -
30+ 1
_40 . . . . . .
0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 09 1

Optimal controls for transitions from the first state to the second, the
third, and the fifth states.
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Results with globalized Newton method: minimization

Iteration

Jsp — J*

Ince — J*

Ikn — J*

[y

© 00 N O G B~ W N

2.4969 x 101
1.3070 x 102
6.4184 x 1073
5.5337 x 1073
4.8170 x 1073
4.2081 x 103
3.6768 x 1073
3.2177 x 1073
2.8141 x 103

2.4969 x 1071
1.3070 x 1072
6.4184 x 103
5.3438 x 103
3.1011 x 1073
2.3384 x 1073
1.2475 x 1073
0.1869 x 10~°
5.9258 x 10~°

2.4969 x 10!
1.5346 x 1072
5.1099 x 103
2.2381 x 10~*
1.8383 x 10~*
1.6253 x 10~°
2.7534 x 1076
3.3921 x 10~
4.7022 x 1079

Table: Convergence of the steepest descent scheme, the nonlinear CG

scheme, and the Krylov-Newton scheme to reach the optimal cost

J* = J(u*).

Alfio Borzi

Advanced computational methodologies for solving quantum cc

Universita
degli Studi
del Sannio




Some references

1.

G. von Winckel and A.B., Optimal control of quantum well transitions
with uncertain potential, in preparation.

G. von Winckel, A.B., and S. Volkwein, A globalized Newton method for
the accurate solution of a dipole quantum control problem, SIAM J. Sci.
Comp., 31 (2009), 4176-4203 .

A. B. and G. von Winckel, Multigrid methods and sparse-grid collocation
techniques for parabolic optimal control problems with random
coefficients, SIAM J. Sci. Comp., 31 (2009), 2172-2192.

G. von Winckel and A. B., Computational techniques for a quantum
control problem with H'-cost, Inverse Problems, 24 (2008), 034007.

A. B. and U. Hohennester, Multigrid optimization schemes for solving
Bose-Einstein condensate control problems, SIAM J. Sci. Comp., 30
(2008), 441-462.

A. B., J. Salomon, and S. Volkwein, Formulation and numerical solution
of finite-level quantum optimal control problems, J. Comput. Appl.
Math., 216 (2008), 170-197.

A. B., G. Stadler, and U. Hohenester, Optimal quantum control in
nanostructures: Theory and application to a generic three-level system, Li‘;}’g{f;g
Phys. Rev. A 66, (2002) 053811. del Sannio

Alfio Borzi Advanced computational methodologies for solving quantum cc



Joint works with

Greg von Winckel (University of Graz), quantum modeling, Newton and
quasi-Newton methods, sparse grids, uncertainty.

Stefan Volkwein (University of Konstanz), theory of quantum control
problems.

Ulrich Hohenester (University of Graz), theoretical physics, quantum
optics, nanophysics.

Julien Salomon (University of Dauphine, Paris), monotonic schemes.

Georg Stadler (University of Texas, Austin), theory of quantum control
problems.

Partially funded by
FWF Austrian Science Fund SFB Project Fast multigrid methods for
inverse problems and FWF Project Quantum optimal control of

semiconductor nanostructures e
del Sannio

Alfio Borzi Advanced computational methodologies for solving quantum cc



1.
2.
3.
4,
5.

Work in progress

Solution of quantum control problems under uncertainty
Robust control strategies

Quantum control problems on lattices

Multi-particle control problems

Design of nano devices
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Thanks for your attention
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