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Schrédinger Equation
°

Quantum systems

The state of a quantum system evolving in a space (€, i) can be
represented by its wave function 1). Under suitable hypotheses, the
dynamics for 1) is given by the Schrédinger equation :

.0y
’E(Xv t) = —Ay(x, t) + V(x)y(x, t)

Q : finite dimensional manifold, for instance a bounded domain of
RY or RY, or 50(3),...

Y € L?(Q,C) : wave function (state of the system)

V : Q2 — R : physical potential
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Quantum systems

The state of a quantum system evolving in a space (€, i) can be
represented by its wave function 1). Under suitable hypotheses, the
dynamics for 1) is given by the Schrédinger equation :

19 (e, £) = — b, £) £ V(e £) + u() W )

Q : finite dimensional manifold, for instance a bounded domain of
RY or RY, or 50(3),...

Y € L2(Q, C) : wave function (state of the system)

V : Q2 — R : physical potential

W : Q — R : control potential

The well-posedness is far from obvious. It may require to add
boundary conditions (1)j9q = 0 if Q is a bounded subspace of RY)
and hypotheses on V and W.
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Schrédinger Equation

Abstract form

W= Aw) +uB),  ueu (4.8.0)

with the assumptions
o H complex Hilbert space;
o UCR;
e A, B skew-adjoint operators on H (not necessarily bounded);
@ (¢n)nen orthonormal basis of H made from eigenvectors of A;
@ every eigenspace of A is finite-dimensional ;
@ ¢p € D(B) for every n € N;
e for every u in U, A+ uB has a unique self-adjoint extension.

Under these assumptions

Vu e U,3 etAHuB) . i H group of unitary transformations



Schrédinger Equation
°

Definition of solutions

9 (0, £) = —Bab(x,£) VO, O u(BW(x)(x, )

We choose piecewise constant controls

Definition

We call T4 (1ho) = etAtuB) o ... o ets(AT11B) (y) the solution of
the system starting from 1)y associated to the piecewise constant
control U1X[0,t1] T U2X[tr, 048] T -

If B is bounded, it is possible to extend this definition for controls u
that are only measurable bounded or locally integrable.



Schrédinger Equation
°

Controllability

Exact controllability

a4, Vp given. Is it possible to find a control v : [0, T|] — U such
that T%(va) = ¢p ?

Approximate controllability

€ >0, ¥,, ¥y given. Is it possible to find a control u: [0, T] — U
such that ||T%(¢,) — | < €?

| A\

Simultaneous approximate controllability

€>0, i, v2, .. ¥E YF, ..., ¢f given. Is it possible to find a
control u : [0, T] — U such that || T%(¢4) — ¢} || < € for every j?

<




Some known results
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A negative result

Theorem (Ball-Marsden-Slemrod, 1982 and Turinici, 2000)

If 1) — W1 is bounded, then the reachable set from any point
(with L}*7 controls) of the control system :

19 e, £) = B, ) + VO, D U(EW 1

has dense complement in the unit sphere.




Some known results
000

Non controllability of the harmonic oscillator (1)

oy 10% 1,
Bt T oo TaxX v ultxy

Theorem (Mirrahimi-Rouchon, 2004)

The quantum harmonic oscillator is not controllable.

(see also lllner-Lange-Teismann 2005 and Bloch-Brockett-Rangan
2006)
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Non controllability of the harmonic oscillator (II)

The Galerkin approximation of order n is controllable (in U(n)) :

A__1]0 3 :
210 0
0 --- 0 2n+1
0 1 0 0
1 0 V2
0 vV2 0 V3
B = —i _
. 0
: S0 ¥l
0 -~ -+ 0 Vn+1 0
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Exact controllability for the potential well

Q=(-1/2,1/2)

Theorem (Beauchard, 2005)

The system is exactly controllable in the intersection of the unit

sphere of L% with H(70).




Some known results
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Generic controllability results via geometric methods

Theorem (Boscain-Chambrion-Mason-Sigalotti, 2009)

If (Ant1 — An)nen is Q-linearly independent and if B is connected
w.r.t. A, then for every § > 0 (A, B,(0,0)) is approximately
controllable on the unit sphere.

@ The family (Ap+1 — An)nen is Q-linearly independent if for
every N € N and (q1,...,qn) € QY ~ {0} one has
ZnN:]_ qn(/\n+1 - /\n) 7é 0.

o B is connected w.r.t. A if for every {j, k} in N2, 3p € N,
3j=h,h,...,I, = ksuch that b, ;. , #0, for 1 <i<p.



Some known results
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Lyapounov techniques

i%(x, t) = —AY(x, t) + V(x)(x, t) +u(t) W(x)yp(x, t)
—_———
Agp By

Q is a bounded domain of R4, with smooth boundary.

Theorem (Nersesyan, 2009)
If
@ by j# 0 forevery j > 1 and
o [A1 — Aj| # [Ak — N forevery j > 1, {1,j} # {k, I}

then the control system is approximately controllable on the unit
sphere of L% for H® norms.




Some known results
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Fixed point theorem

Q=(0,1)

i(?;f(x, t) = —AY(x, t) +u(t) W(x)(x, t)
—_—— —_——
Ap By

Theorem (Beauchard-Laurent, 2009)
If there exists C > 0 such that for every j € N,

C
b1 > 7

then the system is exactly controllable in the intersection of the
unit sphere with H(30).




A new result
°

A new result (simple statement)

S C N2 is a non resonant chain of connectedness of (A, B) if

o for every j < k in N, there exists a sequence
(st,s3),...,(sf,s5) in SN {L,... k} such that
T

@ bs, s, # 0 for every (s1,5) € S

o for every (j, k) in N2, (s1,5) € S,

{s,2} # i, k} = [As; — Asy| # |/\j — M| or bj,k =0

Theorem (Boscain-Caponigro-Chambrion-Sigalotti)

If A has simple spectrum and (A, B) admits a non resonant chain
of connectedness, then, for every 6 > 0, (A, B) is approximately
simultaneously controllable by means of controls in [0, d].

A
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A new result
°0

|dea of the geometric proof

. L 1
Up to a time reparametrization, et(A+uB) — et(5A+B) the control
system is

X = PuAX +BX,  Pu> %

This time-reparametrization exchanges time and L' norm.
After the change of variable Y = e~/ P“AX | one finds

Y: e—fPuABefPuAY

For every k, |{¢k, Y)| = |(dk, X)|
Galerkin approximation :

Y = [e"(Ai*/\k)fP“bjjkL Y
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Tracking

Non-resonant chain of connectedness : for every (j, k) in N2,
(s1,52) €5, {5192} # U/, k} = (A = Asp| # [Aj = Ak or bj ke = 0.
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A new result
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Non-simple spectrum

The result extends to the case where A has finitely degenerated
eigenvalues if (A, B, ®) satisfies the extra condition

j;ékand)\j:)\k:>bj,k:0. \

This is just a particular choice of the Hilbert basis ®.
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The result (non simple spectrum)
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A new result
oe

The result (non simple spectrum)

Theorem (Boscain-Caponigro-Chambrion-Sigalotti)

If (A, B, ®) admits a non resonant chain of connectedness, then the
control system is approximately simultaneously controllable on the

sphere.
Example :
1000 0110
cfrzee) e[
0 00 4 0100

Slightly weaker hypotheses as for the finite result of controllability
on the sphere for finite dimensional systems, obtained in 2000 by
Turinici.



A new result
°

Estimates

Theorem (Boscain-Caponigro-Chambrion-Sigalotti)

If (A, B, ®) admits a non resonant chain of connectedness
containing (1,2), then, for every 6 > 0, for every € > 0, there exist
a piecewise constant control u : [0, T] — [0, d] such that

. 51
IT(81) = oll < € and fJullus < o=y




Numerical simulations
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The planar molecule

Let us consider a 2D-planar molecule submitted to a laser

i(z;f(é?, t) = —%831/1(9, t) + u(t)cos()y(6,t) O €R/2m
@ The parity of 1) cannot change = no global controllability
@ We just look at the even part

@ We try to steer the system from the first even eigenstate to
the second even eigenstate



Numerical simulations
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Galerkin approximation

0 0 ... 0 1/V2 0
o 1 0 .
amil g_i| Yv2 0 12
S 0 1/2 0 1/2
9 : .1/2 0

{(k,k £1); k € N} is a non-resonant chain of connectedness.
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Moduli of the first coordinates for 0 < t < 20

Control
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First coordinates for 0 < t < 20

Numerical simulations
0000000

First coordinate (fime in [0,20])
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Second coordinate for 0 < t < 420

Second coordinate (time in [0,450])
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Simultaneous control (0 < t < 420
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Numerical simulations
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Moduli of coordinates 1, 2, 3, 8, 10 for 0 < t < 420
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Concluding remarks

o A sufficient criterion for simultaneous approximate
controllability
e valid on R" or finite dimensional manifolds ;
o for bounded or unbounded potentials;
e and arbitrarly small controls.

@ It provides

e an explicit construction of the control (effective numerical
computations) ;
o easily computable estimates of the L! norm of the control.



Numerical simulations
oce

Future works

@ Simultaneous approximate controllability in higher norms



Numerical simulations
oce

Future works

@ Simultaneous approximate controllability in higher norms

@ Time estimates



Numerical simulations
oce

Future works

@ Simultaneous approximate controllability in higher norms
@ Time estimates

@ Implementation in the real life ?
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