Quantum Control via Adiabatic Theory and intersection of eigenvalues

U. Boscain, F. C. Chittaro, P. Mason, M. Sigalotti

L2S-Supélec (Paris)

Workshop on Quantum Control IHP, Paris, December 8th-11th, 2010

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010

The problem

Want to control the Schrödinger equation

$$i\frac{\partial}{\partial t}\psi(x,t) = (H_0 + u_1(t)H_1 + u_2(t)H_2)\psi(x,t)$$

 H_0, H_1, H_2 self-adjoint linerar operators on a Hilbert space \mathcal{H} $\mathbf{u} = (u_1, u_2) : \mathbb{R} \to \mathbb{R}^2$ control $x \in \Omega \subset \mathbb{R}^n$ (possibly the whole \mathbb{R}^n)

F. C. Chittaro (L2S)

 $QC\ via\ Adiabatic\ Theory$

▲ ● ◆ ■ ◆ ■ ◆ ■ ◆ ○ へ ○ December 11th, 2010 2 / 29

Assumptions on the Hamiltonians

(H) H_0 is a self-adjoint operator on a Hilbert space \mathcal{H} the discrete spectrum of H_0 is nonempty (and nontrivial). H_1 and H_2 are bounded and self-adjoint linear operators on \mathcal{H} real with respect to H_0

Typical case:

 $H_0 = -\Delta + V(x)$ where Δ is the Laplacian on a domain of \mathbb{R}^n , V is a L^1_{loc} real-valued multiplication operator H_1 and H_2 are measurable bounded real valued multiplication operators.

 (Σ) there is an open domain in $\omega \subset \mathbb{R}^2$ where $H(\mathbf{u}) = H_0 + u_1 H_1 + u_2 H_2, \ \mathbf{u} \in \omega$, has a separated discrete spectrum.

Assumptions on the Hamiltonians

(H) H_0 is a self-adjoint operator on a Hilbert space \mathcal{H} the discrete spectrum of H_0 is nonempty (and nontrivial). H_1 and H_2 are bounded and self-adjoint linear operators on \mathcal{H} real with respect to H_0

Typical case:

 $H_0 = -\Delta + V(x)$ where Δ is the Laplacian on a domain of \mathbb{R}^n , V is a L^1_{loc} real-valued multiplication operator H_1 and H_2 are measurable bounded real valued multiplication operators.

 (Σ) there is an open domain in $\omega \subset \mathbb{R}^2$ where $H(\mathbf{u}) = H_0 + u_1 H_1 + u_2 H_2, \ \mathbf{u} \in \omega$, has a separated discrete spectrum.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Assumptions on the Hamiltonians

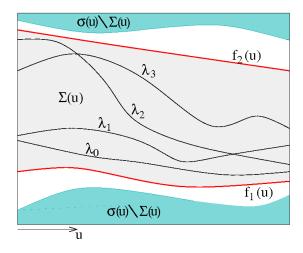
(H) H_0 is a self-adjoint operator on a Hilbert space \mathcal{H} the discrete spectrum of H_0 is nonempty (and nontrivial). H_1 and H_2 are bounded and self-adjoint linear operators on \mathcal{H} real with respect to H_0

Typical case:

 $H_0 = -\Delta + V(x)$ where Δ is the Laplacian on a domain of \mathbb{R}^n , V is a L_{loc}^{1} real-valued multiplication operator H_1 and H_2 are measurable bounded real valued multiplication operators.

(Σ) there is an open domain in $\omega \subset \mathbb{R}^2$ where $H(\mathbf{u}) = H_0 + u_1 H_1 + u_2 H_2$, $\mathbf{u} \in \omega$, has a separated discrete spectrum.

Example of separated discrete spectrum



イロン イヨン イヨン

- 3

Definition of separated discrete spectrum

Definition

Let ω be a domain in \mathbb{R}^2 . A map Σ defined on ω that associates to each $\mathbf{u} \in \omega$ a subset $\Sigma(\mathbf{u})$ of the discrete spectrum of $H(\mathbf{u})$ is said to be a separated discrete spectrum on ω if there exist two continuous bounded functions $f_1, f_2 : \omega \to \mathbb{R}$ such that:

- $f_1(\mathbf{u}) < f_2(\mathbf{u})$ and $\Sigma(\mathbf{u}) \subset [f_1(\mathbf{u}), f_2(\mathbf{u})]$ $\forall \mathbf{u} \in \omega.$
- there exists $\Gamma > 0$ such that

inf $dist([f_1(\mathbf{u}), f_2(\mathbf{u})], \sigma(\mathbf{u}) \setminus \Sigma(\mathbf{u})) > \Gamma$ $\mathbf{u} \in \omega$

QC via Adiabatic Theory

Definition of separated discrete spectrum

Definition

Let ω be a domain in \mathbb{R}^2 . A map Σ defined on ω that associates to each $\mathbf{u} \in \omega$ a subset $\Sigma(\mathbf{u})$ of the discrete spectrum of $H(\mathbf{u})$ is said to be a separated discrete spectrum on ω if there exist two continuous bounded functions $f_1, f_2 : \omega \to \mathbb{R}$ such that:

- $f_1(\mathbf{u}) < f_2(\mathbf{u})$ and $\Sigma(\mathbf{u}) \subset [f_1(\mathbf{u}), f_2(\mathbf{u})]$ $\forall \mathbf{u} \in \omega.$
- there exists $\Gamma > 0$ such that

$$\inf_{\mathbf{u}\in\omega}\textit{dist}([f_1(\mathbf{u}),f_2(\mathbf{u})],\sigma(\mathbf{u})\setminus\Sigma(\mathbf{u}))>\Gamma$$

Notation: $\Sigma = \{\lambda_0 \leq \ldots \leq \lambda_k\}$, where λ_0 is not necessarily the ground state. $\varphi_i(\mathbf{u}), i = 0, \dots, k$ real eigenfunction of $H(\mathbf{u})$ relative to $\lambda_i(\mathbf{u})$.

・ロト ・周 ト ・ヨ ト ・ヨ ・ つへで

Definition of Spread Controllability

Definition

 Σ be a separated discrete spectrum on ω $\mathbf{u}^0 \in \omega$ such that $\lambda_i(\mathbf{u}^0) \neq \lambda_j(\mathbf{u}^0)$ $i \neq j$. We say that the system is approximately spread controllable in $(\omega, \Sigma(\omega))$ if for every $\Phi_{in} \in \{\varphi_0(\mathbf{u}^0), \dots, \varphi_k(\mathbf{u}^0)\}, \psi(0) = \Phi_{in}$

$$\Phi_{in} \in \{\varphi_0(\mathbf{u}^0), \dots, \varphi_k(\mathbf{u}^0)\}, \ \psi(0) = \Phi_{in}$$

$$p \in [0, 1]^{k+1} \text{ such that } \sum_{i=0}^k p_i^2 = 1$$

$$\varepsilon > 0$$

there exists T > 0 and a continuous control $\mathbf{u}(\cdot) : [0, T] \to \omega$, $\mathbf{u}(0) = \mathbf{u}(T) = \mathbf{u}^0$ such that

$$\left[\sum_{i=0}^{k}(|\langle \varphi_{i}(\mathbf{u}^{0}),\psi(\mathcal{T})\rangle|-p_{i})^{2}\right]^{1/2}\leq\varepsilon$$

where $\psi(T)$ is the solution of the equation $i\dot{\psi}(t) = H(\mathbf{u}(t))\psi(t)$.

Definition of Spread Controllability

$$\begin{bmatrix} \sum_{i=0}^{k} (|\langle \varphi_{i}(\mathbf{u}^{0}), \psi(T) \rangle| - p_{i})^{2} \end{bmatrix}^{1/2} \leq \varepsilon$$

$$\textcircled{1}$$

$$\exists \theta_{0}, \dots, \theta_{k} \text{ such that } \Phi_{f} = \sum_{i=0}^{k} e^{i\theta_{i}} p_{i} \varphi_{i}(\mathbf{u}^{0}) \text{ and we have}$$

$$\|\Phi_{f} - \psi(T)\|_{\mathcal{H}} \leq \varepsilon$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results

Main result

Theorem

 $\Sigma : \omega \to \mathbb{R}^{k+1}$ separated discrete spectrum on $\omega \subset \mathbb{R}^2$ $\exists \mathbf{u}_j \in \omega, \ j = 0, \dots, k-1$, such that

 $\lambda_j(\mathbf{u}_j) = \lambda_{j+1}(\mathbf{u}_j) \text{ conical intersection} \qquad \lambda_i(\mathbf{u}_j) \text{ simple if } i \neq j, j+1.$

Then the system is approximately spread controllable on Σ , where the final time T in can be chosen of the order $O(1/\varepsilon)$.

Remark

The proof is constructive

Main tools

- Adiabatic Theorem
- Conical intersection

F. C. Chittaro (L2S)

QC via Adiabatic Theory

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results

Main result

Theorem

 $\Sigma : \omega \to \mathbb{R}^{k+1}$ separated discrete spectrum on $\omega \subset \mathbb{R}^2$ $\exists \mathbf{u}_j \in \omega, \ j = 0, \dots, k-1$, such that

 $\lambda_j(\mathbf{u}_j) = \lambda_{j+1}(\mathbf{u}_j) \text{ conical intersection} \qquad \lambda_i(\mathbf{u}_j) \text{ simple if } i \neq j, j+1.$

Then the system is approximately spread controllable on Σ , where the final time T in can be chosen of the order $O(1/\varepsilon)$.

Remark

The proof is constructive

Main tools

- Adiabatic Theorem
- Conical intersection

F. C. Chittaro (L2S)

QC via Adiabatic Theory

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Adiabatic Theorem

Consider slowly varying controls

$$i\frac{\partial}{\partial t}\psi(x,t) = (H_0 + u_1(\varepsilon t)H_1 + u_2(\varepsilon t)H_2)\psi(x,t), \quad \varepsilon > 0$$

$$H_a(\tau) = H(\tau) - i\varepsilon P_{\Sigma}(\tau)\dot{P}_{\Sigma}(\tau) - i\varepsilon P_{\Sigma}^{\perp}(\tau)\dot{P}_{\Sigma}^{\perp}(\tau) \qquad \tau = \varepsilon t$$

Theorem (Born-Fock, Kato, Nenciu, Avron, Teufel...)

Assume that $H(t) \in C^2$. Then there is a constant C > 0 (depending on the gap) such that for all $\tau, \tau_0 \in \mathbb{R}$

 $\begin{aligned} \|U^{\varepsilon}(\tau,\tau_0) - U^{\varepsilon}_{a}(\tau,\tau_0)\| &\leq C\varepsilon(1+|\tau-\tau_0|) \qquad (|\tau-\tau_0| = O(1)) \\ &\leq C\varepsilon(1+\varepsilon|t-t_0|) \qquad (|t-t_0| = O(1/\varepsilon)) \end{aligned}$

The Adiabatic Theorem

Consider slowly varying controls

$$i\frac{\partial}{\partial t}\psi(x,t) = (H_0 + u_1(\varepsilon t)H_1 + u_2(\varepsilon t)H_2)\psi(x,t), \quad \varepsilon > 0$$

$$H_{a}(\tau) = H(\tau) - i\varepsilon P_{\Sigma}(\tau)\dot{P}_{\Sigma}(\tau) - i\varepsilon P_{\Sigma}^{\perp}(\tau)\dot{P}_{\Sigma}^{\perp}(\tau) \qquad \tau = \varepsilon t$$

Theorem (Born-Fock, Kato, Nenciu, Avron, Teufel...)

Assume that $H(t) \in C^2$. Then there is a constant C > 0 (depending on the gap) such that for all $\tau, \tau_0 \in \mathbb{R}$

 $\begin{aligned} \|U^{\varepsilon}(\tau,\tau_0) - U^{\varepsilon}_{a}(\tau,\tau_0)\| &\leq C\varepsilon(1+|\tau-\tau_0|) \qquad (|\tau-\tau_0| = O(1)) \\ &\leq C\varepsilon(1+\varepsilon|t-t_0|) \qquad (|t-t_0| = O(1/\varepsilon)) \end{aligned}$

The Adiabatic Theorem

Consider slowly varying controls

$$i\frac{\partial}{\partial t}\psi(x,t) = (H_0 + u_1(\varepsilon t)H_1 + u_2(\varepsilon t)H_2)\psi(x,t), \quad \varepsilon > 0$$

$$H_{a}(\tau) = H(\tau) - i\varepsilon P_{\Sigma}(\tau)\dot{P}_{\Sigma}(\tau) - i\varepsilon P_{\Sigma}^{\perp}(\tau)\dot{P}_{\Sigma}^{\perp}(\tau) \qquad \tau = \varepsilon t$$

Theorem (Born-Fock, Kato, Nenciu, Avron, Teufel...)

Assume that $H(t) \in C^2$. Then there is a constant C > 0 (depending on the gap) such that for all $\tau, \tau_0 \in \mathbb{R}$

$$egin{aligned} \|U^arepsilon(au, au_0)-U^arepsilon_{m{a}}(au, au_0)\|&\leq Carepsilon(1+| au- au_0|) & (| au- au_0|=O(1))\ &\leq Carepsilon(1+arepsilon|t-t_0|) & (|t-t_0|=O(1/arepsilon)) \end{aligned}$$

F. C. Chittaro (L2S)

물 🖌 🗶 물 🛌 물

Definition

Conical Intersections

Definition

Let $H(\mathbf{u})$ satisfy hypothesis **(H)**. We say that $\bar{\mathbf{u}} \in \mathbb{R}^2$ is a conical intersection between the eigenvalues λ_1 and λ_2 if $\lambda_1(\bar{\mathbf{u}}) = \lambda_2(\bar{\mathbf{u}})$ $\exists c > 0$ such that for any unit vector $\mathbf{v} \in \mathbb{R}^2$ and t > 0 small enough we have that

$$\lambda_2(\mathbf{ar{u}}+t\mathbf{v})-\lambda_1(\mathbf{ar{u}}+t\mathbf{v})>ct$$
 .

F. C. Chittaro (L2S)

QC via Adiabatic Theory

イロト 不得 とくほど 不良 とうしょう December 11th, 2010

Definition

Conical Intersections

Definition

Let $H(\mathbf{u})$ satisfy hypothesis **(H)**. We say that $\bar{\mathbf{u}} \in \mathbb{R}^2$ is a conical intersection between the eigenvalues λ_1 and λ_2 if $\lambda_1(\bar{\mathbf{u}}) = \lambda_2(\bar{\mathbf{u}})$ $\exists c > 0$ such that for any unit vector $\mathbf{v} \in \mathbb{R}^2$ and t > 0 small enough we have that

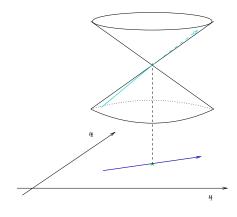
$$\lambda_2(\bar{\mathbf{u}}+t\mathbf{v})-\lambda_1(\bar{\mathbf{u}}+t\mathbf{v})>ct$$
 .

Remark

This definition is appropriate if the Hamiltonian is smooth with respect to the controls.

◆□> ◆□> ◆三> ◆三> ・三 のへで F. C. Chittaro (L2S) QC via Adiabatic Theory December 11th, 2010 10 / 29

Passage through a conical intersection



 \mathbf{u}^0 conical intersection between λ_1 and λ_2

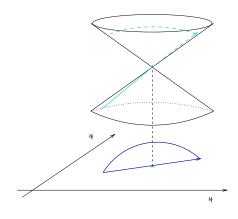
$$\begin{aligned} \mathbf{u}(\tau) &= \bar{\mathbf{u}} + \tau(\cos\alpha, \sin\alpha) \\ \tau &\in [-1, 1] \end{aligned}$$

 $\psi(\tau)$ solution of $i\dot{\psi}(t) = H(\mathbf{u}(\tau))\psi(t)$ at time $\tau = 1$ with $\psi(-1) = \varphi_1(\mathbf{u}(-1))$ From adiabatic theory

 $|1-|\langle arphi_2(\mathbf{u}(1)),\psi(1)
angle||\leq C\sqrt{arepsilon}$

Image: A matrix

Passage through a conical intersection



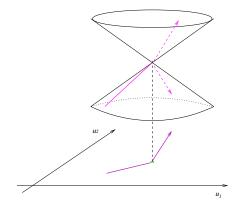
 \mathbf{u}^0 conical intersection between λ_1 and λ_2

$$\begin{aligned} \mathbf{u}(\tau) &= \bar{\mathbf{u}} + \tau(\cos\alpha, \sin\alpha) \\ \tau &\in [-1, 1] \end{aligned}$$

 $\psi(\tau)$ solution of $i\dot{\psi}(t) = H(\mathbf{u}(\tau))\psi(t)$ at time $\tau = 1$ with $\psi(-1) = \varphi_1(\mathbf{u}(-1))$ From adiabatic theory

$$|1-|\langle arphi_2(\mathbf{u}^0),\psi(2)
angle||\leq C'\sqrt{arepsilon}$$

Passage through a conical intersection



$$\mathbf{u}(\tau) = \begin{cases} \mathbf{\bar{u}} + \tau(\cos\alpha_i, \sin\alpha_i), \ \tau \leq 0\\ \mathbf{\bar{u}} + \tau(\cos\alpha_o, \sin\alpha_o), \ \tau \geq 0 \end{cases}$$

Is it possible to spread the probability of occupation of φ_1 and φ_2 ?

Regularity around a conical intersection

Theorem (Kato-Rellich)

"Along analytic curves the eigenfunctions and the eigenvalues are analytic."

For analytic curves (in particular, straight lines) $\gamma: I \to \omega$ with $\gamma(\bar{t}) = \bar{\mathbf{u}}$ $\exists \varphi_1^{\gamma}, \varphi_2^{\gamma}$ orthonormal eigenfunctions of $H(\bar{\mathbf{u}})$ relative to $\lambda_1(\bar{\mathbf{u}}) = \lambda_2(\bar{\mathbf{u}})$ such that

$$\lim_{t\to \overline{t}^-}\varphi_j(\gamma(t))=\varphi_j^\gamma, \qquad j=1,2.$$

Proposition

Let γ be a C^1 curve such that $\gamma(\overline{t}) = \overline{u}$. Let r(t) be the tangent line to γ at \overline{u} , $r(\overline{t}) = \overline{u}$. Then

$$\lim_{t\to \overline{t}}\varphi_j(\gamma(t)) = \lim_{t\to \overline{t}}\varphi_j(r(t)), \qquad j=1,2.$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010

Regularity around a conical intersection

Theorem (Kato-Rellich)

"Along analytic curves the eigenfunctions and the eigenvalues are analytic."

For analytic curves (in particular, straight lines) $\gamma: I \to \omega$ with $\gamma(\bar{t}) = \bar{\mathbf{u}}$ $\exists \varphi_1^{\gamma}, \varphi_2^{\gamma}$ orthonormal eigenfunctions of $H(\bar{\mathbf{u}})$ relative to $\lambda_1(\bar{\mathbf{u}}) = \lambda_2(\bar{\mathbf{u}})$ such that

$$\lim_{t\to \overline{t}^-}\varphi_j(\gamma(t))=\varphi_j^\gamma, \qquad j=1,2.$$

Proposition

Let γ be a C^1 curve such that $\gamma(\bar{t}) = \bar{\mathbf{u}}$. Let r(t) be the tangent line to γ at $\bar{\mathbf{u}}$, $r(\bar{t}) = \bar{\mathbf{u}}$. Then

$$\lim_{t\to \overline{t}}\varphi_j(\gamma(t))=\lim_{t\to \overline{t}}\varphi_j(r(t)), \qquad j=1,2.$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

The Conicity Matrix

Definition

Let $\psi_1, \psi_2 \in \mathcal{H}$. We define the conicity matrix associated to (ψ_1, ψ_2) as

$$\mathcal{M}(\psi_1,\psi_2) = egin{pmatrix} \langle \psi_1, H_1\psi_2
angle & rac{1}{2} ig(\langle \psi_2, H_1\psi_2
angle - \langle \psi_1, H_1\psi_1
angle ig) \ \langle \psi_1, H_2\psi_2
angle & rac{1}{2} ig(\langle \psi_2, H_2\psi_2
angle - \langle \psi_1, H_2\psi_1
angle ig) \end{pmatrix}.$$

Lemma

det $\mathcal{M}(\cdot, \cdot)$ is invariant under rotation of the argument, that is for any ψ_1, ψ_2 pair of orthonormal functions of \mathcal{H} and for any rotation

$$\psi_1^{\alpha} = \cos \alpha \, \psi_1 + \sin \alpha \, \psi_2$$

$$\psi_2^{\alpha} = -\sin \alpha \, \psi_1 + \cos \alpha \, \psi_2$$

one has det $\mathcal{M}(\psi_1^{\alpha}, \psi_2^{\alpha}) = \det \mathcal{M}(\psi_1, \psi_2)$.

< 🗇 🕨

э

Properties of the conicity matrix

Corollary

 $\varphi_1(\mathbf{u}), \varphi_2(\mathbf{u})$ eigenfunctions of $H(\mathbf{u})$ relative to λ_1, λ_2 . The (multi)function $\mathbf{u} \mapsto \det\{-|\mathcal{M}(\varphi_1(\mathbf{u}), \varphi_2(\mathbf{u}))|, |\mathcal{M}(\varphi_1(\mathbf{u}), \varphi_2(\mathbf{u}))|\}$ is well defined as a function of $\mathbf{u} \in \omega$.

Theorem (Characterization of conical intersections)

The intersection is conical if and only if the conicity matrix is non-degenerate at the intersection.

F. C. Chittaro (L2S)

QC via Adiabatic Theory

Properties of the conicity matrix

Corollary

 $\varphi_1(\mathbf{u}), \varphi_2(\mathbf{u})$ eigenfunctions of $H(\mathbf{u})$ relative to λ_1, λ_2 . The (multi)function $\mathbf{u} \mapsto \det\{-|\mathcal{M}(\varphi_1(\mathbf{u}), \varphi_2(\mathbf{u}))|, |\mathcal{M}(\varphi_1(\mathbf{u}), \varphi_2(\mathbf{u}))|\}$ is well defined as a function of $\mathbf{u} \in \omega$.

Theorem (Characterization of conical intersections)

The intersection is conical if and only if the conicity matrix is non-degenerate at the intersection.

F. C. Chittaro (L2S)

QC via Adiabatic Theory

Proposition

 $\mathbf{\bar{u}}$ conical intersection between λ_1, λ_2 $\gamma_0(t) = \mathbf{\bar{u}} + (t - 1, 0), t \ge 0$ reference curve $\lim_{t \to 1^-} \varphi_j(\gamma_0(t)) = \varphi_j^0.$ Consider the curve $\gamma_\alpha(t) = \mathbf{\bar{u}} + t(\cos \alpha, \sin \alpha), t \ge 0.$ Then there is a monotone C^1 function $\vartheta : [0, 2\pi) \to [0, \pi)$ (or $(-\pi, 0]$) with $\vartheta(0) = 0$ such that

$$\lim_{t\to 0-} \varphi_j(\gamma_\alpha(t)) = \varphi_j^\alpha \quad j = 1, 2$$

with

$$\begin{split} \varphi_1^{\alpha} &= \cos \vartheta(\alpha) \varphi_1^0 + \sin \vartheta(\alpha) \varphi_2^0 \\ \varphi_2^{\alpha} &= -\sin \vartheta(\alpha) \varphi_1^0 + \cos \vartheta(\alpha) \varphi_2^0. \end{split}$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへの

Moreover, $\vartheta(\cdot)$ satisfies the following equation:

$$(\cos \alpha, \sin \alpha) \mathcal{M}(\varphi_1^0, \varphi_2^0) \begin{pmatrix} \cos 2\vartheta(\alpha) \\ \sin 2\vartheta(\alpha) \end{pmatrix} = 0.$$

If $\gamma_{lpha}(t) = oldsymbol{ar{u}} + (1-t,0), \,\,t \geq 0$, then

$$\theta(\alpha) = (-)\frac{\pi}{2}.$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Moreover, $\vartheta(\cdot)$ satisfies the following equation:

$$(\cos \alpha, \sin \alpha) \mathcal{M}(\varphi_1^0, \varphi_2^0) \begin{pmatrix} \cos 2\vartheta(\alpha) \\ \sin 2\vartheta(\alpha) \end{pmatrix} = 0.$$

If $\gamma_{lpha}(t)=ar{\mathbf{u}}+(1-t,0),\,\,t\geq 0$, then

$$\theta(\alpha) = (-)\frac{\pi}{2}.$$

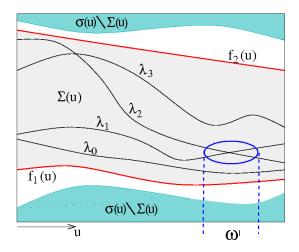
F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010 18 / 29

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Reduction to 2-d



F. C. Chittaro (L2S)

QC via Adiabatic Theory

・ロト ・四ト ・ヨト ・ヨト December 11th, 2010 ∃ • ク へ (~ 19 / 29

Representation in \mathbb{C}^2

Assumptions:

- $\Sigma(\omega') = \{\lambda_1 \leq \lambda_2\}$ separated discrete spectrum.
- γC^2 curve in ω' such that φ_1, φ_2 are C^1 along γ .

$$P_{\Sigma(\gamma(t))}(\mathcal{H}) = \mathbb{C}\{\varphi_1(\gamma(t)), \varphi_2(\gamma(t))\} \qquad \simeq \qquad \mathbb{C}^2$$
$$\{\varphi_1(\gamma(t)), \varphi_2(\gamma(t))\} \qquad \leftrightarrow \qquad \left\{(1, 0)^T, (0, 1)^T\right\}$$

Representation in \mathbb{C}^2

Assumptions:

- $\Sigma(\omega') = \{\lambda_1 \leq \lambda_2\}$ separated discrete spectrum.
- γC^2 curve in ω' such that φ_1, φ_2 are C^1 along γ .

We can establish an isomorphism $\mathcal{U}(t): P_{\Sigma(\gamma(t))}(\mathcal{H}) \to \mathbb{C}^2$

$$\begin{aligned} P_{\Sigma(\gamma(t))}(\mathcal{H}) &= \mathbb{C}\{\varphi_1(\gamma(t)), \varphi_2(\gamma(t))\} &\simeq & \mathbb{C}^2\\ \{\varphi_1(\gamma(t)), \varphi_2(\gamma(t))\} &\leftrightarrow & \left\{(1,0)^T, (0,1)^T\right\} \end{aligned}$$

The effective Hamiltonian

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}}(\tau) &= \mathcal{U}(\tau) \mathcal{H}_{\mathsf{a}}(\tau) \mathcal{U}^{*}(\tau) + i\varepsilon \dot{\mathcal{U}}(\tau) \mathcal{U}^{*}(\tau) \\ &= \begin{pmatrix} \lambda_{\alpha}(\tau) & 0 \\ 0 & \lambda_{\beta}(\tau) \end{pmatrix} + i\varepsilon \begin{pmatrix} 0 & \langle \dot{\varphi}_{\alpha}(\tau), \varphi_{\beta}(\tau) \rangle \\ \langle \dot{\varphi}_{\alpha}(\tau), \varphi_{\beta}(\tau) \rangle & 0 \end{pmatrix} \end{aligned}$$

 $U^arepsilon_{ ext{eff}}(au, au_{ ext{o}})$ evolution operator (on $\mathbb{C}^2)$ associated to $H_{ ext{eff}}$

 $\|\left(U^{\varepsilon}(\tau,\tau_{0})-\mathcal{U}^{*}(\tau)U^{\varepsilon}_{\mathrm{eff}}(\tau,\tau_{0})\mathcal{U}(\tau_{0})\right)P_{\Sigma(\gamma(t))}\|\leq C\varepsilon(1+|\tau-\tau_{0}|)$

The non-diagonal terms give a superposition between the two energy levels a priori of order ${\cal O}(1)$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010

э.

21 / 29

< ロト (同) (三) (三) (

The effective Hamiltonian

$$\begin{aligned} \mathcal{H}_{\text{eff}}(\tau) &= \mathcal{U}(\tau) \mathcal{H}_{a}(\tau) \mathcal{U}^{*}(\tau) + i \varepsilon \dot{\mathcal{U}}(\tau) \mathcal{U}^{*}(\tau) \\ &= \begin{pmatrix} \lambda_{\alpha}(\tau) & 0 \\ 0 & \lambda_{\beta}(\tau) \end{pmatrix} + i \varepsilon \begin{pmatrix} 0 & \langle \dot{\varphi}_{\alpha}(\tau), \varphi_{\beta}(\tau) \rangle \\ \langle \dot{\varphi}_{\alpha}(\tau), \varphi_{\beta}(\tau) \rangle & 0 \end{pmatrix} \end{aligned}$$

 $U_{
m eff}^arepsilon(au, au_0)$ evolution operator (on \mathbb{C}^2) associated to $H_{
m eff}$

$$\|\left(U^{\varepsilon}(\tau,\tau_{0})-\mathcal{U}^{*}(\tau)U^{\varepsilon}_{\mathrm{eff}}(\tau,\tau_{0})\mathcal{U}(\tau_{0})\right)\mathcal{P}_{\Sigma(\gamma(t))}\|\leq C\varepsilon(1+|\tau-\tau_{0}|)$$

The non-diagonal terms give a superposition between the two energy levels a priori of order ${\cal O}(1)$

F. C. Chittaro (L2S)

 $QC \ via \ Adiabatic \ Theory$

December 11th, 2010

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The effective Hamiltonian

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}}(\tau) &= \mathcal{U}(\tau) \mathcal{H}_{\mathsf{a}}(\tau) \mathcal{U}^{*}(\tau) + i\varepsilon \dot{\mathcal{U}}(\tau) \mathcal{U}^{*}(\tau) \\ &= \begin{pmatrix} \lambda_{\alpha}(\tau) & 0 \\ 0 & \lambda_{\beta}(\tau) \end{pmatrix} + i\varepsilon \begin{pmatrix} 0 & \langle \dot{\varphi}_{\alpha}(\tau), \varphi_{\beta}(\tau) \rangle \\ \langle \dot{\varphi}_{\alpha}(\tau), \varphi_{\beta}(\tau) \rangle & 0 \end{pmatrix} \end{aligned}$$

 $U_{\text{eff}}^{\varepsilon}(\tau,\tau_0)$ evolution operator (on \mathbb{C}^2) associated to H_{eff}

$$\|\left(U^{\varepsilon}(\tau,\tau_{0})-\mathcal{U}^{*}(\tau)U^{\varepsilon}_{\mathrm{eff}}(\tau,\tau_{0})\mathcal{U}(\tau_{0})\right)\mathcal{P}_{\Sigma(\gamma(t))}\|\leq C\varepsilon(1+|\tau-\tau_{0}|)$$

The non-diagonal terms give a superposition between the two energy levels a priori of order O(1)

F. C. Chittaro (L2S)

QC via Adiabatic Theory

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● December 11th, 2010

The non-mixing Field

$$\langle \dot{arphi}_1(au), arphi_2(au)
angle = rac{\langle arphi_1, (\dot{u}_1H_1 + \dot{u}_2H_2)arphi_2
angle}{\lambda_2(au) - \lambda_1(au)}$$

 $\langle \dot{arphi}_1(au), arphi_2(au)
angle \equiv 0$ along the solutions of the equation

$$\begin{cases} \dot{u}_1 = -\langle \varphi_1(\mathbf{u}), H_2 \varphi_2(\mathbf{u}) \rangle \\ \dot{u}_2 = \langle \varphi_1(\mathbf{u}), H_1 \varphi_2(\mathbf{u}) \rangle \end{cases} \begin{pmatrix} \dot{u}_1 = \langle \varphi_1(\mathbf{u}), H_2 \varphi_2(\mathbf{u}) \rangle \\ \dot{u}_2 = -\langle \varphi_1(\mathbf{u}), H_1 \varphi_2(\mathbf{u}) \rangle \end{pmatrix}$$

Definition

The field $\mathcal{X}_P(\mathbf{u}) = (\pm)(-\langle \varphi_1(\mathbf{u}), H_2\varphi_2(\mathbf{u}) \rangle, \langle \varphi_1(\mathbf{u}), H_1\varphi_2(\mathbf{u}) \rangle)$ is called the non-mixing field.

- \mathcal{X}_P is well defined and continuous in $\omega' \setminus \{\bar{\mathbf{u}}\};$
- it is multivalued at ū.

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010 22 / 29

3

イロン 不同と 不同と 不同とう

The non-mixing Field

$$\langle \dot{arphi}_1(au), arphi_2(au)
angle = rac{\langle arphi_1, (\dot{u}_1H_1 + \dot{u}_2H_2)arphi_2
angle}{\lambda_2(au) - \lambda_1(au)}$$

 $\langle \dot{arphi}_1(au), arphi_2(au)
angle \equiv$ 0 along the solutions of the equation

$$\begin{cases} \dot{u}_1 = -\langle \varphi_1(\mathbf{u}), H_2 \varphi_2(\mathbf{u}) \rangle \\ \dot{u}_2 = \langle \varphi_1(\mathbf{u}), H_1 \varphi_2(\mathbf{u}) \rangle \end{cases} \qquad \left\{ \begin{cases} \dot{u}_1 = \langle \varphi_1(\mathbf{u}), H_2 \varphi_2(\mathbf{u}) \rangle \\ \dot{u}_2 = -\langle \varphi_1(\mathbf{u}), H_1 \varphi_2(\mathbf{u}) \rangle \end{cases} \right\}$$

Definition

The field $\mathcal{X}_{P}(\mathbf{u}) = (\pm)(-\langle \varphi_{1}(\mathbf{u}), H_{2}\varphi_{2}(\mathbf{u}) \rangle, \langle \varphi_{1}(\mathbf{u}), H_{1}\varphi_{2}(\mathbf{u}) \rangle)$ is called the non-mixing field.

- \mathcal{X}_P is well defined and continuous in $\omega' \setminus \{\mathbf{\bar{u}}\};$
- it is multivalued at ū.

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010 22 / 29

э.

イロト イポト イヨト イヨト

The non-mixing Field

$$\langle \dot{arphi}_1(au), arphi_2(au)
angle = rac{\langle arphi_1, (\dot{u}_1H_1 + \dot{u}_2H_2)arphi_2
angle}{\lambda_2(au) - \lambda_1(au)}$$

 $\langle \dot{\varphi}_1(\tau), \varphi_2(\tau) \rangle \equiv 0$ along the solutions of the equation

$$\begin{cases} \dot{u}_1 = -\langle \varphi_1(\mathbf{u}), H_2 \varphi_2(\mathbf{u}) \rangle \\ \dot{u}_2 = \langle \varphi_1(\mathbf{u}), H_1 \varphi_2(\mathbf{u}) \rangle \end{cases} \qquad \left\{ \begin{cases} \dot{u}_1 = \langle \varphi_1(\mathbf{u}), H_2 \varphi_2(\mathbf{u}) \rangle \\ \dot{u}_2 = -\langle \varphi_1(\mathbf{u}), H_1 \varphi_2(\mathbf{u}) \rangle \end{cases} \right\}$$

Definition

The field $\mathcal{X}_{P}(\mathbf{u}) = (\pm)(-\langle \varphi_{1}(\mathbf{u}), H_{2}\varphi_{2}(\mathbf{u}) \rangle, \langle \varphi_{1}(\mathbf{u}), H_{1}\varphi_{2}(\mathbf{u}) \rangle)$ is called the non-mixing field.

- \mathcal{X}_P is well defined and continuous in $\omega' \setminus \{\bar{\mathbf{u}}\}$;
- it is multivalued at u

F. C. Chittaro (L2S)

QC via Adiabatic Theory

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへの December 11th, 2010

۲

$D_{\mathcal{X}_P}(\lambda_2 - \lambda_1)(\mathbf{u}) = |\det \mathcal{M}(\mathbf{u})|$

There is a neighbourhood $\bar{\omega}$ of the conical intersection $\bar{\mathbf{u}}$ such that for any $\mathbf{u} \in \bar{\omega}$ the integral curve of $(\pm)\mathcal{X}_P$ starting from \mathbf{u} reaches $\bar{\mathbf{u}}$ in *finite time*

- at the conical intersection $\mathcal{X}_P(\bar{\mathbf{u}})$ covers all possible directions
- the integral curves of X_P are C¹ (ū included) and φ₁, φ₂ are C¹ along them
- the integral curves of \mathcal{X}_P are C^{∞} ($\mathbf{\bar{u}}$ included) and φ_1, φ_2 are C^{∞} along them

۲

$D_{\mathcal{X}_{\mathcal{P}}}(\lambda_2 - \lambda_1)(\mathbf{u}) = |\det \mathcal{M}(\mathbf{u})|$

There is a neighbourhood $\bar{\omega}$ of the conical intersection $\bar{\mathbf{u}}$ such that for any $\mathbf{u} \in \bar{\omega}$ the integral curve of $(\pm)\mathcal{X}_P$ starting from \mathbf{u} reaches $\bar{\mathbf{u}}$ in *finite time*

- at the conical intersection $\mathcal{X}_P(\bar{\mathbf{u}})$ covers all possible directions
- the integral curves of X_P are C¹ (ū included) and φ₁, φ₂ are C¹ along them
- the integral curves of X_P are C[∞] (ū included) and φ₁, φ₂ are C[∞] along them

۲

$D_{\mathcal{X}_P}(\lambda_2 - \lambda_1)(\mathbf{u}) = |\det \mathcal{M}(\mathbf{u})|$

There is a neighbourhood $\bar{\omega}$ of the conical intersection $\bar{\mathbf{u}}$ such that for any $\mathbf{u} \in \bar{\omega}$ the integral curve of $(\pm)\mathcal{X}_P$ starting from \mathbf{u} reaches $\bar{\mathbf{u}}$ in *finite time*

- at the conical intersection $\mathcal{X}_P(\bar{\mathbf{u}})$ covers all possible directions
- the integral curves of \mathcal{X}_P are C^1 ($\bar{\mathbf{u}}$ included) and φ_1, φ_2 are C^1 along them
- the integral curves of X_P are C[∞] (ū included) and φ₁, φ₂ are C[∞] along them

F. C. Chittaro (L2S)

QC via Adiabatic Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

۰

$D_{\mathcal{X}_{\mathcal{P}}}(\lambda_2 - \lambda_1)(\mathbf{u}) = |\det \mathcal{M}(\mathbf{u})|$

There is a neighbourhood $\bar{\omega}$ of the conical intersection $\bar{\mathbf{u}}$ such that for any $\mathbf{u} \in \bar{\omega}$ the integral curve of $(\pm)\mathcal{X}_P$ starting from \mathbf{u} reaches $\bar{\mathbf{u}}$ in finite time

- at the conical intersection $\mathcal{X}_P(\bar{\mathbf{u}})$ covers all possible directions
- the integral curves of \mathcal{X}_P are C^1 ($\bar{\mathbf{u}}$ included) and φ_1, φ_2 are C^1 along them
- the integral curves of \mathcal{X}_P are C^{∞} ($\bar{\mathbf{u}}$ included) and φ_1, φ_2 are C^{∞} along them

Climb of one level

Theorem

$$\begin{split} &\bar{\mathbf{u}} \text{ conical intersection between } \lambda_1, \lambda_2 \\ &\gamma : [0,1] \to \omega \text{ such that} \\ &\bullet \gamma(0) = \mathbf{u}^0 \qquad \gamma(\bar{t}) = \bar{\mathbf{u}} \quad (\bar{t} \in (0,1)) \\ &\bullet \dot{\gamma}(t) = \mathcal{X}_P(\gamma(t)) \quad t \in [0,\bar{t}) \cup (\bar{t},1] \\ &\text{Let } \psi(0) = \varphi_1(\mathbf{u}^0). \text{ Then for any } \varepsilon > 0 \text{ there are } \theta \in [0,2\pi], \\ &T > 0, \ T = O(1/\varepsilon), \text{ such that} \end{split}$$

$$\|\psi(T) - e^{i\theta}\varphi_2(\gamma(1))\| \leq \varepsilon,$$

where $\psi(T)$ is the solution of the equation $i\dot{\psi}(t) = H(\gamma(t/T))\psi(t)$.

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010 24 / 29

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへの

Distribution of probability between two levels.

Theorem

 $\bar{\mathbf{u}}$ conical intersection between λ_1, λ_2 $\gamma : [0, 1] \rightarrow \omega$ such that

•
$$\gamma(0)={f u}^0$$
 $\gamma(ar t)=ar {f u}$ ($ar t\in(0,1)$)

•
$$\dot{\gamma}(t) = \mathcal{X}_{\mathcal{P}}(\gamma(t))$$
 $t \in [0, \overline{t}) \cup (\overline{t}, 1]$

• let α_i , α_o such that

$$\lim_{t\to\bar{t}^-}\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}=-(\cos\alpha_i,\sin\alpha_i)\,,\quad \lim_{t\to\bar{t}^+}\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}=(\cos\alpha_o,\sin\alpha_o).$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

 $\langle \square \rangle \langle \exists \rangle \langle \exists \rangle \exists \rangle$ December 11th. 2010

Distribution of probability between two levels.

Fix $\psi(0) = \varphi_1(\mathbf{u}^0)$. Then for any $\varepsilon > 0$, there is a T > 0, $T = O(1/\varepsilon)$ such that

$$\begin{aligned} ||\langle \varphi_1(\gamma(1)), \psi(T) \rangle| - p_1| &\leq \varepsilon, \\ ||\langle \varphi_2(\gamma(1)), \psi(T) \rangle| - p_2| &\leq \varepsilon. \end{aligned}$$

where $\psi(T)$ is the solution of the equation $i\dot{\psi}(t) = H(\gamma(t/T))\psi(t)$.

$$p_1 = |\cos(\vartheta(\alpha_o) - \vartheta(\alpha_i))|$$
 $p_2 = |\sin(\vartheta(\alpha_o) - \vartheta(\alpha_i))|.$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへの December 11th, 2010

Inducing a transition $(1,0) \mapsto (p_1^2, p_2^2)$

$$\beta \in [0, \pi/2] \text{ such that } (p_1, p_2) = (\cos \beta, \sin \beta)$$

$$\gamma_1 : [0, t_1] \to \omega \text{ such that}$$

• $\gamma_1(0) = \mathbf{u}^0, \ \gamma_1(t_1) = \bar{\mathbf{u}}$
• $\dot{\gamma}_1(t) = \mathcal{X}_P(\gamma(t)) \quad \forall t \ge t', \text{ for some } t' \in (0, \lim_{t \to t_1^-} \frac{\dot{\gamma}_1(t)}{\|\dot{\gamma}_2(t)\|} = -(\cos \alpha_i, \sin \alpha_i)$

$$\gamma_2 : [t_1, t_2] \to \omega \text{ such that}$$

• $\gamma_2(t_1) = \bar{\mathbf{u}}, \ \gamma_2(t_2) = \mathbf{u}^0$

•
$$\dot{\gamma}_2(t) = \mathcal{X}_P(\gamma(t)) \quad \forall t \leq t''$$
, for some $t'' \in (t_1, t_2)$
 $\lim_{t \to t_1^+} \frac{\dot{\gamma}_2(t)}{\|\dot{\gamma}_2(t)\|} = (\cos \alpha_o, \sin \alpha_o)$

$$\alpha_o = \vartheta^{-1}(\beta + \vartheta(\alpha_i) + k_+\pi) \quad \text{or} \quad \alpha_o = \vartheta^{-1}(-\beta + \vartheta(\alpha_i) + k_-\pi)$$

F. C. Chittaro (L2S)

QC via Adiabatic Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで December 11th, 2010

Inducing a transition $(1,0) \mapsto (p_1^2, p_2^2)$

$$\begin{split} \beta &\in [0, \pi/2] \text{ such that } (p_1, p_2) = (\cos \beta, \sin \beta) \\ \gamma_1 &: [0, t_1] \to \omega \text{ such that} \\ \bullet & \gamma_1(0) = \mathbf{u}^0, \ \gamma_1(t_1) = \bar{\mathbf{u}} \\ \bullet & \dot{\gamma}_1(t) = \mathcal{X}_P(\gamma(t)) \quad \forall t \geq t', \text{ for some } t' \in (0, t_1) \\ \lim_{t \to t_1^-} \frac{\dot{\gamma}_1(t)}{\|\dot{\gamma}_2(t)\|} &= -(\cos \alpha_i, \sin \alpha_i) \\ \gamma_2 &: [t_1, t_2] \to \omega \text{ such that} \\ \bullet & \gamma_2(t_1) = \bar{\mathbf{u}}, \ \gamma_2(t_2) = \mathbf{u}^0 \\ \bullet & \dot{\gamma}_2(t) = \mathcal{X}_P(\gamma(t)) \quad \forall t \leq t'', \text{ for some } t'' \in (t_1, t_2) \\ \lim_{t \to t_1^+} \frac{\dot{\gamma}_2(t)}{\|\dot{\gamma}_2(t)\|} &= (\cos \alpha_o, \sin \alpha_o) \end{split}$$

 $\alpha_o = \vartheta^{-1}(\beta + \vartheta(\alpha_i) + k_+\pi) \quad \text{or} \quad \alpha_o = \vartheta^{-1}(-\beta + \vartheta(\alpha_i) + k_-\pi)$

 $k_-,k_+\in\mathbb{Z}$ in such a way that $artheta^{-1}$ is well defined.

Inducing a transition $(1,0) \mapsto (p_1^2, p_2^2)$

$$\begin{split} \beta &\in [0, \pi/2] \text{ such that } (p_1, p_2) = (\cos \beta, \sin \beta) \\ \gamma_1 &: [0, t_1] \to \omega \text{ such that} \\ \bullet & \gamma_1(0) = \mathbf{u}^0, \ \gamma_1(t_1) = \bar{\mathbf{u}} \\ \bullet & \dot{\gamma}_1(t) = \mathcal{X}_P(\gamma(t)) \quad \forall t \geq t', \text{ for some } t' \in (0, t_1) \\ & \lim_{t \to t_1^-} \frac{\dot{\gamma}_1(t)}{\|\dot{\gamma}_2(t)\|} = -(\cos \alpha_i, \sin \alpha_i) \\ \gamma_2 &: [t_1, t_2] \to \omega \text{ such that} \\ \bullet & \gamma_2(t_1) = \bar{\mathbf{u}}, \ \gamma_2(t_2) = \mathbf{u}^0 \\ \bullet & \dot{\gamma}_2(t) = \mathcal{X}_P(\gamma(t)) \quad \forall t \leq t'', \text{ for some } t'' \in (t_1, t_2) \\ & \lim_{t \to t_1^+} \frac{\dot{\gamma}_2(t)}{\|\dot{\gamma}_2(t)\|} = (\cos \alpha_o, \sin \alpha_o) \\ \text{where} \\ & \alpha_0 = \vartheta^{-1}(\beta + \vartheta(\alpha_i) + k_+\pi) \quad \text{or} \quad \alpha_0 = \vartheta^{-1}(-\beta + \vartheta(\alpha_i) + k_-\pi) \end{split}$$

 $k_{-}, k_{+} \in \mathbb{Z}$ in such a way that ϑ^{-1} is well defined.

Main results

Theorem

Let $\Sigma = \{\lambda_0(\mathbf{u}) \leq \ldots \leq \lambda_k(\mathbf{u})\}\$ be a separated discrete spectrum on ω . Assume that

- $\mathbf{u}^0 \in \omega$ such that $\lambda_i(\mathbf{u}^0) \neq \lambda_i(\mathbf{u}^0), i \neq j$
- for every $i = 0, \ldots, k 1$ there is $\bar{\mathbf{u}}_i \in \omega$
 - $\bar{\mathbf{u}}_i$ conical intersection between λ_1 and λ_2
 - $\lambda_l(\bar{\mathbf{u}}_i) \neq \lambda_{l+1}(\bar{\mathbf{u}}_i)$ if $l \neq j$.

Then the system is approximately spread controllable in $(\omega, \Sigma(\omega))$.

Conclusions

Further Perspectives

- study the case $H(\mathbf{u})$ nonlinear w.r.t. \mathbf{u} .
- try to obtain a stronger controllability result, that is allowing $|\langle \varphi_i, \psi(\mathbf{0}) \rangle| = \pi_i$ with $\sum_{i=1}^k \pi_i^2 = 1$.
- looking for a good approximation of the integral curves of X_P which are more easily computable.

F. C. Chittaro (L2S)

QC via Adiabatic Theory

December 11th, 2010

• 3 >