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Introduction

The problem

Want to control the Schrödinger equation

i
∂

∂t
ψ(x , t) = (H0 + u1(t)H1 + u2(t)H2)ψ(x , t)

H0,H1,H2 self-adjoint linerar operators on a Hilbert space H
u = (u1, u2) : R→ R2 control
x ∈ Ω ⊂ Rn (possibly the whole Rn)
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Introduction

Assumptions on the Hamiltonians

(H) H0 is a self-adjoint operator on a Hilbert space H
the discrete spectrum of H0 is nonempty (and nontrivial).

H1 and H2 are bounded and self-adjoint linear operators on H real
with respect to H0

Typical case:
H0 = −∆ + V (x) where ∆ is the Laplacian on a domain of Rn, V is a
L1

loc real-valued multiplication operator
H1 and H2 are measurable bounded real valued multiplication operators.

(Σ) there is an open domain in ω ⊂ R2 where
H(u) = H0 + u1H1 + u2H2, u ∈ ω, has a separated discrete spectrum .
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Introduction Definitions

Example of separated discrete spectrum
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Introduction Definitions

Definition of separated discrete spectrum

Definition

Let ω be a domain in R2. A map Σ defined on ω that associates to each
u ∈ ω a subset Σ(u) of the discrete spectrum of H(u) is said to be a
separated discrete spectrum on ω if there exist two continuous bounded
functions f1, f2 : ω → R such that:

f1(u) < f2(u) and Σ(u) ⊂ [f1(u), f2(u)] ∀u ∈ ω.

there exists Γ > 0 such that

inf
u∈ω

dist([f1(u), f2(u)], σ(u) \ Σ(u)) > Γ

Notation: Σ = {λ0 ≤ . . . ≤ λk}, where λ0 is not necessarily the ground
state.
ϕi (u), i = 0, . . . , k real eigenfunction of H(u) relative to λi (u).
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Introduction Definitions

Definition of Spread Controllability

Definition
Σ be a separated discrete spectrum on ω
u0 ∈ ω such that λi (u0) 6= λj(u0) i 6= j .
We say that the system is approximately spread controllable in (ω,Σ(ω)) if
for every
Φin ∈ {ϕ0(u0), . . . , ϕk(u0)}, ψ(0) = Φin

p ∈ [0, 1]k+1 such that
∑k

i=0 p2
i = 1

ε > 0
there exists T > 0 and a continuous control u(·) : [0,T ]→ ω,
u(0) = u(T ) = u0 such that[

k∑
i=0

( |〈ϕi (u0), ψ(T )〉| − pi )
2

]1/2

≤ ε

where ψ(T ) is the solution of the equation iψ̇(t) = H(u(t))ψ(t).
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Introduction Definitions

Definition of Spread Controllability

[
k∑

i=0

( |〈ϕi (u0), ψ(T )〉| − pi )
2

]1/2

≤ ε

m

∃ θ0, . . . , θk such that Φf =
∑k

i=0 e iθi piϕi (u0) and we have

‖Φf − ψ(T )‖H ≤ ε
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Introduction Results

Main result

Theorem

Σ : ω → Rk+1 separated discrete spectrum on ω ⊂ R2

∃ uj ∈ ω, j = 0, . . . , k − 1, such that

λj(uj) = λj+1(uj) conical intersection λi (uj) simple if i 6= j , j + 1.

Then the system is approximately spread controllable on Σ, where the final
time T in can be chosen of the order O(1/ε).

Remark
The proof is constructive

Main tools

Adiabatic Theorem

Conical intersection
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Introduction Results

The Adiabatic Theorem

Consider slowly varying controls

i
∂

∂t
ψ(x , t) = (H0 + u1(εt)H1 + u2(εt)H2)ψ(x , t), ε > 0

Ha(τ) = H(τ)− iεPΣ(τ)ṖΣ(τ)− iεP⊥Σ (τ)Ṗ⊥Σ (τ) τ = εt

Theorem (Born-Fock, Kato, Nenciu, Avron, Teufel...)

Assume that H(t) ∈ C 2. Then there is a constant C > 0 (depending on
the gap) such that for all τ, τ0 ∈ R

‖Uε(τ, τ0)− Uε
a(τ, τ0)‖ ≤ Cε(1 + |τ − τ0|) (|τ − τ0| = O(1))

≤ Cε(1 + ε|t − t0|) (|t − t0| = O(1/ε))
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Conical intersections Definition

Conical Intersections

Definition

Let H(u) satisfy hypothesis (H). We say that ū ∈ R2 is a conical
intersection between the eigenvalues λ1 and λ2 if
λ1(ū) = λ2(ū)
∃ c > 0 such that for any unit vector v ∈ R2 and t > 0 small enough we
have that

λ2(ū + tv)− λ1(ū + tv) > ct .

Remark
This definition is appropriate if the Hamiltonian is smooth with respect to
the controls.
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Conical intersections Dynamics through conical intersections

Passage through a conical intersection

u

2

1    

u

u0 conical intersection between λ1

and λ2

u(τ) = ū + τ(cosα, sinα)

τ ∈ [−1, 1]

ψ(τ) solution of
iψ̇(t) = H(u(τ))ψ(t) at time τ = 1
with ψ(−1) = ϕ1(u(−1))
From adiabatic theory

|1− |〈ϕ2(u(1)), ψ(1)〉|| ≤ C
√
ε
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Conical intersections Dynamics through conical intersections

Passage through a conical intersection

u

u2

1

u(τ) =

{
ū + τ(cosαi , sinαi ), τ ≤ 0

ū + τ(cosαo , sinαo), τ ≥ 0

Is it possible to spread the probability
of occupation of ϕ1 and ϕ2?
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Conical intersections Geometry of conical intersections

Regularity around a conical intersection

Theorem (Kato-Rellich)

”Along analytic curves the eigenfunctions and the eigenvalues are
analytic.”

For analytic curves (in particular, straight lines) γ : I → ω with γ(t̄) = ū
∃ ϕγ1 , ϕ

γ
2 orthonormal eigenfunctions of H(ū) relative to λ1(ū) = λ2(ū)

such that
lim

t→t̄−
ϕj(γ(t)) = ϕγj , j = 1, 2.

Proposition

Let γ be a C 1 curve such that γ(t̄) = ū.
Let r(t) be the tangent line to γ at ū, r(t̄) = ū. Then

lim
t→t̄

ϕj(γ(t)) = lim
t→t̄

ϕj(r(t)), j = 1, 2.
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∃ ϕγ1 , ϕ

γ
2 orthonormal eigenfunctions of H(ū) relative to λ1(ū) = λ2(ū)
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Conical intersections Geometry of conical intersections

The Conicity Matrix

Definition

Let ψ1, ψ2 ∈ H. We define the conicity matrix associated to (ψ1, ψ2) as

M(ψ1, ψ2) =

(
〈ψ1,H1ψ2〉 1

2

(
〈ψ2,H1ψ2〉 − 〈ψ1,H1ψ1〉

)
〈ψ1,H2ψ2〉 1

2

(
〈ψ2,H2ψ2〉 − 〈ψ1,H2ψ1〉

)) .
Lemma
detM(·, ·) is invariant under rotation of the argument, that is for any
ψ1, ψ2 pair of orthonormal functions of H and for any rotation

ψα1 = cosαψ1 + sinαψ2

ψα2 = − sinαψ1 + cosαψ2

one has detM(ψα1 , ψ
α
2 ) = detM(ψ1, ψ2).
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Conical intersections Geometry of conical intersections

Properties of the conicity matrix

Corollary

ϕ1(u), ϕ2(u) eigenfunctions of H(u) relative to λ1, λ2.
The (multi)function u 7→ det{−|M(ϕ1(u), ϕ2(u))|, |M(ϕ1(u), ϕ2(u))|} is
well defined as a function of u ∈ ω.

Theorem (Characterization of conical intersections)

The intersection is conical if and only if the conicity matrix is
non-degenerate at the intersection.
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Conical intersections Geometry of conical intersections

Proposition
ū conical intersection between λ1, λ2

γ0(t) = ū + (t − 1, 0), t ≥ 0 reference curve limt→1− ϕj(γ0(t)) = ϕ0
j .

Consider the curve γα(t) = ū + t(cosα, sinα), t ≥ 0.
Then there is a monotone C 1 function ϑ : [0, 2π)→ [0, π) (or (−π, 0])
with ϑ(0) = 0 such that

lim
t→0−

ϕj(γα(t)) = ϕαj j = 1, 2

with

ϕα1 = cos ϑ(α)ϕ0
1 + sin ϑ(α)ϕ0

2

ϕα2 = − sin ϑ(α)ϕ0
1 + cos ϑ(α)ϕ0

2.
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Conical intersections Geometry of conical intersections

Moreover, ϑ(·) satisfies the following equation:

(
cosα, sinα

)
M(ϕ0

1, ϕ
0
2)

(
cos 2ϑ(α)
sin 2ϑ(α)

)
= 0.

If γα(t) = ū + (1− t, 0), t ≥ 0, then

θ(α) = (−)
π

2
.
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The effective dynamics Reduction to 2-d

Reduction to 2-d
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The effective dynamics Reduction to 2-d

Representation in C2

Assumptions:

Σ(ω′) = {λ1 ≤ λ2} separated discrete spectrum.

γ C 2 curve in ω′ such that ϕ1, ϕ2 are C 1 along γ.

We can establish an isomorphism U(t) : PΣ(γ(t))(H)→ C2

PΣ(γ(t))(H) = C{ϕ1(γ(t)), ϕ2(γ(t))} ' C2

{ϕ1(γ(t)), ϕ2(γ(t))} ↔
{

(1, 0)T , (0, 1)T
}
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The effective dynamics Reduction to 2-d

The effective Hamiltonian

Heff(τ) = U(τ)Ha(τ)U∗(τ) + iεU̇(τ)U∗(τ)

=

(
λα(τ) 0

0 λβ(τ)

)
+ iε

(
0 〈ϕ̇α(τ), ϕβ(τ)〉

〈ϕ̇α(τ), ϕβ(τ)〉 0

)
Uε

eff(τ, τ0) evolution operator (on C2) associated to Heff

‖ (Uε(τ, τ0)− U∗(τ)Uε
eff(τ, τ0)U(τ0)) PΣ(γ(t))‖ ≤ Cε(1 + |τ − τ0|)

The non-diagonal terms give a superposition between the two energy levels
a priori of order O(1)
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The effective dynamics The non-mixing dynamics

The non-mixing Field

〈ϕ̇1(τ), ϕ2(τ)〉 =
〈ϕ1, (u̇1H1 + u̇2H2)ϕ2〉

λ2(τ)− λ1(τ)

〈ϕ̇1(τ), ϕ2(τ)〉 ≡ 0 along the solutions of the equation{
u̇1 = −〈ϕ1(u),H2ϕ2(u)〉
u̇2 = 〈ϕ1(u),H1ϕ2(u)〉

({
u̇1 = 〈ϕ1(u),H2ϕ2(u)〉
u̇2 = −〈ϕ1(u),H1ϕ2(u)〉

)

Definition

The field XP(u) = (±)(−〈ϕ1(u),H2ϕ2(u)〉, 〈ϕ1(u),H1ϕ2(u)〉) is called the
non-mixing field.

XP is well defined and continuous in ω′ \ {ū};
it is multivalued at ū.
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The effective dynamics The non-mixing dynamics

The integral curves of XP

DXP
(λ2 − λ1)(u) = | detM(u)|

There is a neighbourhood ω̄ of the conical intersection ū such that for
any u ∈ ω̄ the integral curve of (±)XP starting from u reaches ū in
finite time

at the conical intersection XP(ū) covers all possible directions

the integral curves of XP are C 1 (ū included) and ϕ1, ϕ2 are C 1 along
them

the integral curves of XP are C∞ (ū included) and ϕ1, ϕ2 are C∞

along them
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at the conical intersection XP(ū) covers all possible directions

the integral curves of XP are C 1 (ū included) and ϕ1, ϕ2 are C 1 along
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Results Passage through one intersection

Climb of one level

Theorem
ū conical intersection between λ1, λ2

γ : [0, 1]→ ω such that

γ(0) = u0 γ(t̄) = ū (t̄ ∈ (0, 1))

γ̇(t) = XP(γ(t)) t ∈ [0, t̄) ∪ (t̄, 1]

Let ψ(0) = ϕ1(u0). Then for any ε > 0 there are θ ∈ [0, 2π],
T > 0, T = O(1/ε), such that

‖ψ(T )− e iθϕ2(γ(1))‖ ≤ ε,

where ψ(T ) is the solution of the equation iψ̇(t) = H(γ(t/T ))ψ(t).
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Results Passage through one intersection

Distribution of probability between two levels.

Theorem
ū conical intersection between λ1, λ2

γ : [0, 1]→ ω such that

γ(0) = u0 γ(t̄) = ū ( t̄ ∈ (0, 1))

γ̇(t) = XP(γ(t)) t ∈ [0, t̄) ∪ (t̄, 1]

let αi , αo such that

lim
t→t̄−

γ̇(t)

‖γ̇(t)‖
= −(cosαi , sinαi ) , lim

t→t̄+

γ̇(t)

‖γ̇(t)‖
= (cosαo , sinαo).
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Results Passage through one intersection

Distribution of probability between two levels.

Fix ψ(0) = ϕ1(u0). Then for any ε > 0, there is a T > 0, T = O(1/ε)
such that

||〈ϕ1(γ(1)), ψ(T )〉| − p1| ≤ ε,
||〈ϕ2(γ(1)), ψ(T )〉| − p2| ≤ ε.

where ψ(T ) is the solution of the equation iψ̇(t) = H(γ(t/T ))ψ(t).

p1 = | cos (ϑ(αo)− ϑ(αi )) | p2 = | sin (ϑ(αo)− ϑ(αi )) |.
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Results Passage through one intersection

Inducing a transition (1, 0) 7→ (p2
1, p

2
2)

β ∈ [0, π/2] such that (p1, p2) = (cosβ, sinβ)
γ1 : [0, t1]→ ω such that

γ1(0) = u0, γ1(t1) = ū

γ̇1(t) = XP(γ(t)) ∀t ≥ t ′, for some t ′ ∈ (0, t1)

limt→t−1

γ̇1(t)
‖γ̇2(t)‖ = −(cosαi , sinαi )

γ2 : [t1, t2]→ ω such that

γ2(t1) = ū, γ2(t2) = u0

γ̇2(t) = XP(γ(t)) ∀t ≤ t ′′, for some t ′′ ∈ (t1, t2)

limt→t+
1

γ̇2(t)
‖γ̇2(t)‖ = (cosαo , sinαo)

where

αo = ϑ−1(β + ϑ(αi ) + k+π) or αo = ϑ−1(−β + ϑ(αi ) + k−π)

k−, k+ ∈ Z in such a way that ϑ−1 is well defined.
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γ2(t1) = ū, γ2(t2) = u0

γ̇2(t) = XP(γ(t)) ∀t ≤ t ′′, for some t ′′ ∈ (t1, t2)

limt→t+
1

γ̇2(t)
‖γ̇2(t)‖ = (cosαo , sinαo)

where

αo = ϑ−1(β + ϑ(αi ) + k+π) or αo = ϑ−1(−β + ϑ(αi ) + k−π)

k−, k+ ∈ Z in such a way that ϑ−1 is well defined.

F. C. Chittaro (L2S) QC via Adiabatic Theory December 11th, 2010 27 / 29



Results Passage through one intersection

Main results

Theorem
Let Σ = {λ0(u) ≤ . . . ≤ λk(u)} be a separated discrete spectrum on ω.
Assume that

u0 ∈ ω such that λi (u0) 6= λj(u0), i 6= j

for every i = 0, . . . , k − 1 there is ūi ∈ ω
ūi conical intersection between λ1 and λ2

λl(ūj) 6= λl+1(ūj) if l 6= j .

Then the system is approximately spread controllable in (ω,Σ(ω)).
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Results Conclusions

Further Perspectives

study the case H(u) nonlinear w.r.t. u.

try to obtain a stronger controllability result, that is allowing
|〈ϕi , ψ(0)〉| = πi with

∑k
i=1 π

2
i = 1.

looking for a good approximation of the integral curves of XP which
are more easily computable.
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