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The problem

Want to control the Schrodinger equation

/88t¢(x, £) = (Ho + t1(£)Hh + ua(£)Hs) (. 1)

Ho, H1, H> self-adjoint linerar operators on a Hilbert space H
u = (u1,u) : R — R? control
x € Q C R" (possibly the whole R")
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Introduction

Assumptions on the Hamiltonians

(H) Hy is a self-adjoint operator on a Hilbert space H
the discrete spectrum of Hp is nonempty (and nontrivial).
H; and H, are bounded and self-adjoint linear operators on H real
with respect to Hy
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Introduction

Assumptions on the Hamiltonians

(H) Hy is a self-adjoint operator on a Hilbert space H
the discrete spectrum of Hp is nonempty (and nontrivial).
H; and H, are bounded and self-adjoint linear operators on H real
with respect to Hp

Typical case:

Ho = —A + V(x) where A is the Laplacian on a domain of R", V is a
L} . real-valued multiplication operator
H; and H, are measurable bounded real valued multiplication operators.

(%) there is an open domain in w C R2 where
H(u) = Ho+ u1H1 + upHa, u € w, has a separated discrete spectrum .
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Introduction Definitions

Ezxample of separated discrete spectrum

SN\ (W)

 oW\Im

E——
u
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Introduction Definitions

Definition of separated discrete spectrum

Definition

Let w be a domain in R%2. A map X defined on w that associates to each
u € w a subset X(u) of the discrete spectrum of H(u) is said to be a
separated discrete spectrum on w if there exist two continuous bounded
functions fi, f, : w — R such that:

o fi(u) < fo(u) and X(u) C [f1(u), 2(u)] Vu € w.
@ there exists ' > 0 such that

Jgf) dist([fi(u), 2(u)],o(u) \ Z(u)) > T
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Introduction Definitions

Definition of separated discrete spectrum

Definition

Let w be a domain in R%2. A map X defined on w that associates to each
u € w a subset X(u) of the discrete spectrum of H(u) is said to be a
separated discrete spectrum on w if there exist two continuous bounded
functions fi, f, : w — R such that:

o fi(u) < fo(u) and X(u) C [f1(u), 2(u)] Vu € w.
@ there exists ' > 0 such that

Jgfu dist([fi(u), 2(u)],o(u) \ Z(u)) > T

Notation: ¥ = {A\g < ... < A¢}, where \g is not necessarily the ground
state.
wi(u),i =0,..., k real eigenfunction of H(u) relative to A;(u).
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Introduction Definitions

Definition of Spread Controllability

Definition
> be a separated discrete spectrum on w
u® € w such that A\;(u®) # \;(u®) i # j.

We say that the system is approximately spread controllable in (w, X(w)) if

for every

q)in € {@0(“0)? ce 780k(u0)}v d}(O) = (Din

p € [0,1]%T such that K (p? =1

e>0

there exists T > 0 and a continuous control u(-) : [0, T| — w,
u(0) = u(T) = u® such that

" 1/2

D e o(TH = pi)?|  <e

i=0

where ¢(T) is the solution of the equation i1)(t) = H(u(t))y(t).
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Deifesiars
Definition of Spread Controllability

309, ...,04 such that & = Zf:o e'% pipi(u®) and we have

[®r = o(T)ln <e
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Introduction Results

Main result

Theorem

Y : w — RX*1 separated discrete spectrum on w C R?
Jdujcw, j=0,...,k—1, such that

Aj(uj) = Aj11(uj) conical intersection Ai(uj) simple if i # j,j + 1.

Then the system is approximately spread controllable on ¥, where the final
time T in can be chosen of the order O(1/¢).

v

Remark
The proof is constructive
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Introduction Results

Main result

Theorem

Y : w — RX*1 separated discrete spectrum on w C R?
Jdujcw, j=0,...,k—1, such that

Aj(uj) = Aj11(uj) conical intersection Ai(uj) simple if i # j,j + 1.

Then the system is approximately spread controllable on ¥, where the final
time T in can be chosen of the order O(1/¢).

v

Remark

The proof is constructive

Main tools
@ Adiabatic Theorem

@ Conical intersection
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Introduction Results

The Adiabatic Theorem

Consider slowly varying controls

"%@Z’(X, t) = (Ho + u1(et)Hr + wa(et)Ha) (x,t), >0
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Introduction Results

The Adiabatic Theorem

Consider slowly varying controls

"%@Z’(X, t) = (Ho + u1(et)Hr + wa(et)Ha) (x,t), >0

H,(1) = H(7) — ié—:Pz(’T)Pz(T) — ié—:P%(T)P%(T) T=ct

Theorem (Born-Fock, Kato, Nenciu, Avron, Teufel...)
Assume that H(t) € C2. Then there is a constant C > 0 (depending on
the gap) such that for all 7,79 € R
U (7, 70) = Us(7, 7o) < Ce(L + |7 —m0f)  (I7 — 70 = O(1))
< Ce(l+eft—to]) (|t —to| = O(1/¢))
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Conical intersections Definition

Conical Intersections

Definition

Let H(u) satisfy hypothesis (H). We say that @i € R? is a conical
intersection between the eigenvalues A; and A; if

A1(n) = Aa(1)

J ¢ > 0 such that for any unit vector v € R? and t > 0 small enough we
have that

Xo(u+ tv) — Ai(u+ tv) > ct.
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Conical intersections Definition

Conical Intersections

Definition

Let H(u) satisfy hypothesis (H). We say that @i € R? is a conical
intersection between the eigenvalues A; and A; if

A1(n) = Aa(1)

J ¢ > 0 such that for any unit vector v € R? and t > 0 small enough we
have that

Xo(u+ tv) — Ai(u+ tv) > ct.

Remark

This definition is appropriate if the Hamiltonian is smooth with respect to
the controls.
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Conical intersections Dynamics through conical intersections

Passage through a conical intersection

0

u’ conical intersection between A\;

> M

u(7) =t + 7(cos a, sin «)
T €[-1,1]
‘ (1) solution of
* ip(t) = H(u(7))y(t) at time 7 =1
ity ) = a(-D)

From adiabatic theory

11— [p2(u(1)), v(1))]] < CVe

1
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Conical intersections Dynamics through conical intersections

Passage through a conical intersection

0

u’ conical intersection between A\;

S
u(7) =t + 7(cos a, sin «)
T €[-1,1]
¥(7) solution of

3 ib(t) = H(u(r))u(t) at time 7 = 1
ST wite() = pau(-D)

From adiabatic theory

11— [p2(u®). 0(2))|| < C'Ve

W
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Conical intersections Dynamics through conical intersections

Passage through a conical intersection

u+ 7(cosaj,sina;), 7 <0
u(t) =
U+ 7(cos ap,sinay), 7>0

! Is it possible to spread the probability

// of occupation of (7 and ¢,?

uy
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Conical intersections Geometry of conical intersections

Regularity around a conical intersection

Theorem (Kato-Rellich)
"Along analytic curves the eigenfunctions and the eigenvalues are

analytic.”

For analytlc curves (in particular, straight lines) v : | — w with
3 ¢, 3 orthonormal eigenfunctions of H(a) relative to A\; (@) =
such that

fim_;((t)) = ¢/, j=12
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Conical intersections Geometry of conical intersections

Regularity around a conical intersection

Theorem (Kato-Rellich)

"Along analytic curves the eigenfunctions and the eigenvalues are
analytic.”

For analytlc curves (in particular, straight lines) v : | — w with () = @
3 ¢, 3 orthonormal eigenfunctions of H(a) relative to A1 (@) = Ap(ai)
such that

fim_;((t)) = ¢/, j=12

Proposition

Let v be a C* curve such that v(t) = u.
Let r(t) be the tangent line to v at u, r(t) = u. Then

im ;(1(£)) = lim o;(r(),  J=1,2,

t—t
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Conical intersections Geometry of conical intersections

The Conicity Matriz

Definition
Let v1, 12 € H. We define the conicity matrix associated to (1,) as

_ (W1, Hia) 5 ({2, Hitha) — (11, Hign))
e = <<¢1, Hoz) 5 ((2, Hatba) — (i1, H2¢1>)> '

N[=N|

Lemma

det M(+,-) is invariant under rotation of the argument, that is for any
1, pair of orthonormal functions of H and for any rotation

YT = cosa )y + sina
Yy = —sin a1y + cos a1y

one has det M(y{', 15) = det M ()1, 12).
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Conical inters ons Geometry of conical intersections

Properties of the conicity matrix

Corollary

©1(u), p2(u) eigenfunctions of H(u) relative to A1, Aa.

The (multi)function u — det{—| M (p1(u), p2(u))|, IM(p1(u), p2(u))|} is
well defined as a function of u € w.
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Conical intersections Geometry of conical intersections

Properties of the conicity matrix

Corollary
©1(u), p2(u) eigenfunctions of H(u) relative to A1, Aa.

The (multi)function u — det{—|M(¢1(u), g2(u))], [M(p1(u), p2(u))]} is

well defined as a function of u € w.

Theorem (Characterization of conical intersections)

The intersection is conical if and only if the conicity matrix is
non-degenerate at the intersection.
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Conical intersec Geometry of conical intersections

Proposition

u conical intersection between A1, Ao

~v(t) =u+ (t —1,0), t > 0 reference curve lim,_1- pj(70(t)) = 4,0?.
Consider the curve ,(t) =  + t(cos a, sin ), t > 0.

Then there is a monotone C* function ¥ : [0,27) — [0,7) (or (—,0])
with 9(0) = 0 such that

lim @;(7a(t)) = ¢f j=1,2

t—0—

with

0§ = cos I(a)p? + sin ¥(a)d
03 = —sin 19(a)<p(1) + cos 19(04)<Pg-
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Geometry of conical intersections

Moreover, 9(-) satisfies the following equation:

(cosa, sina) M(43, ¥9) (Z?:;gég;) =0.

F. C. Chittaro QC via Adiabatic Theory December 11th, 2010 18 / 29



Conical intersections Geometry of conical intersections

Moreover, 9(-) satisfies the following equation:

(cosa, sina) M(43, ¥9) (Z?:;gég;) =0.

If vo(t) =0+ (1—1¢,0), t >0, then
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The effective dynamics Reduction to 2-d

Reduction to 2-d

SN\ ()
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The effective dynamics Reduction to 2-d

Representation in C?

Assumptions:
o X (w') = {A1 < A2} separated discrete spectrum.
e v C? curve in ' such that @1, s are C! along 7.
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The effective dynamics Reduction to 2-d

Representation in C?

Assumptions:
o Y (w') = {A1 < X2} separated discrete spectrum.
e v C? curve in ' such that @1, s are C! along 7.

We can establish an isomorphism U(t) : Py (y(¢))(H) — C?

Psyon(H) = Cloi(v(1)), 2(7(2))}  ~  C?
{e1(v()s p2(1(2))} < {(1,0)7,(0,1)T}
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The effective dynamics Reduction to 2-d

The effective Hamiltonian

Heg(T) = U(T)Ha(T)U*(T) 4 ield (7)U* (1)
() O e 0 (@a(T): ps(T))
- < 0 )‘5(7')> * <<s'0a(7),905(7)> 0 )
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The effective dynamics Reduction to 2-d

The effective Hamiltonian

Heg(T) = U(T)Ha(T)U*(T) 4 ield (7)U* (1)

= (7 ) " (gt )

(7, 7o) evolution operator (on C2) associated to Heg

1 (U=(7,70) = U (7) Uege (7> 0)U(70)) Pryeyll < Ce(1 + |7 — 7o)
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The effective dynamics Reduction to 2-d

The effective Hamiltonian

Heg(T) = U(T)Ha(T)U*(T) 4 ield (7)U* (1)

= (7 ) " (gt )

(7, 7o) evolution operator (on C2) associated to Heg

| (U5(7, 70) — U™ (7) Ugg (7, 70)U(70)) Ps(y(epy Il < Ce(1 + |7 — 70])

The non-diagonal terms give a superposition between the two energy levels
a priori of order O(1)
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The effective dynamics The non-mizing dynamics

The non-mixing Field

(@1, (inH1 + o H2)p2)
A2(7) — A7)

(21(7), p2(7)) =
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The effective dynamics The non-mizing dynamics

The non-mixing Field

(@1(7), pa(7)) = <¢1’§th)1—+ A[llz(T))gO2>

(¢1(7), p2(7)) = 0 along the solutions of the equation

{ul = —(p1(u), Hag2(u)) ( {ul = (p1(u), Hopz(u)) )

i = (p1(u), Hipa(u)) i = —(p1(u), Hipa(u))
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The effective dynamics The non-mizing dynamics

The non-mixing Field

(@1(7), pa(7)) = <9017§th)1_+ A[112(?))902>

(¢1(7), p2(7)) = 0 along the solutions of the equation

{ul = —(p1(u), Hag2(u)) ( {ul = (p1(u), Hopz(u)) )

i = (p1(u), Hipa(u)) i = —(p1(u), Hipa(u))

Definition

The field Xp(u) = (£)(—{(p1(u), Hapa(u)), (p1(u), Hip2(u))) is called the
non-mixing field.

e Xp is well defined and continuous in W’ \ {a};

@ it is multivalued at u.
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The effective dynamics The non-mizing dynamics

The integral curves of Xp

Dxp (A2 — A1)(u) = | det M(u)]

There is a neighbourhood & of the conical intersection @ such that for
any u € © the integral curve of (£)Xp starting from u reaches @ in
finite time
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The integral curves of Xp

Dxp (A2 — A1)(u) = | det M(u)]

There is a neighbourhood & of the conical intersection @ such that for
any u € © the integral curve of (£)Xp starting from u reaches @ in
finite time

@ at the conical intersection Xp(u1) covers all possible directions
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The effective dynamics The non-mizing dynamics

The integral curves of Xp

Dxp (A2 — A1)(u) = | det M(u)]

There is a neighbourhood & of the conical intersection @ such that for
any u € © the integral curve of (£)Xp starting from u reaches @ in
finite time

@ at the conical intersection Xp(u1) covers all possible directions

@ the integral curves of Xp are Ct (@ included) and ¢1, 7 are Ct along
them
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The effective dynamics The non-mizing dynamics

The integral curves of Xp

Dxp (A2 — A1)(u) = | det M(u)]

There is a neighbourhood & of the conical intersection @ such that for
any u € © the integral curve of (£)Xp starting from u reaches @ in
finite time

@ at the conical intersection Xp(u1) covers all possible directions

@ the integral curves of Xp are Ct (@ included) and ¢1, 7 are Ct along
them

o the integral curves of Xp are C* (u included) and 1, @2 are C*°
along them
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Results Passage through one intersection

Climb of one level

Theorem
u conical intersection between A1, Ap
v :[0,1] — w such that

°7(0)=u’ (=0 (€(0,1))

° §(t) = Xp(y(t)) te[0,7)U (1]
Let 1(0) = ¢1(u®). Then for any ¢ > 0 there are 0 € [0, 27],
T >0, T=0(1/e), such that

19(T) = e oa(y(1))Il < e,

where 1)(T) is the solution of the equation iv)(t) = H(y(t/T))i(t).
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Passage through one intersection

Results

Distribution of probability between two levels.

Theorem
u conical intersection between A1, A»

v :[0,1] — w such that
o 1(0)=u0 (B =a(Fe(0,1)
o y(t) = Xp(y(t)) te€[0,t)U(E1]
o let «j, o, Such that

y(t y(t
(1) = —(cos aj, sin ;) , Iirp+ ”ﬂyEt;H = (cos a, Sin ).
t—tt ||7Y
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Results Passage through one intersection

Distribution of probability between two levels.

Fix 1(0) = ¢1(u®). Then for any e >0, thereisa T >0, T = O(1/e)
such that

K2 (v(1)), (T = Pl <&,
[Kp2(v(1)), (T))| = p2f <e.

where 1)(T) is the solution of the equation iv)(t) = H(v(t/T))i(t).

p1 = | cos (F(ao) — F(ai)) | p2 = |[sin (I(ao) — F(ai)) |
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Results Passage through one intersection

Inducing a transition (1,0) — (p?, p3)

B € [0,7/2] such that (p1, p2) = (cos 3,sin 3)
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Passage through one intersection

Inducing a transition (1,0) — (p?, p3)

B € [0,7/2] such that (p1, p2) = (cos 3,sin 3)
7 : [0, t1] — w such that

° 71(0) =u®, y1(t1) = @

e Y1(t) = Xp(y(t)) Vt>t/, for some t' € (0, t;)
Ya(t)

lim = —(cos aj, sin «j)

t—=t [[72(2)]l
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Passage through one intersection

Inducing a transition (1,0) — (p?, p3)

B € [0,7/2] such that (p1, p2) = (cos 3,sin 3)
7 : [0, t1] — w such that
° 71(0) =u®, y1(t1) = @
e Y1(t) = Xp(y(t)) Vt>t/, for some t' € (0, t;)
Y(t)

I|mt_)t17 m — —(COSOzi,SIn Oé,)

v2 : [t1, t2] — w such that
o 2(f1) =1, 72(tz) =u
o Yo(t) = Xp(y(t)) Vit <t’, for some t” € (t1, ta)
Ya(t)

+ =4 = (COoS a, Sin &
t—tf Ta(] = (COS Qo SN o)

0

lim
where
o =9 (B +() + ki) or  ap =9 B+ I(a;) + k_m)

k_,ky € Z in such a way that 971 is well defined.
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Main results

Theorem

Let ¥ = {Ao(u) < ... < A(u)} be a separated discrete spectrum on w.

Assume that
o u® € w such that \;j(u®) # X\;(u®), i #j
o foreveryi=0,...,k—1 thereisu; € w
e u; conical intersection between \1 and X\
o N(U;) # Nira(uy) if 1 # .
Then the system is approximately spread controllable in (w, ¥ (w)).
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Results Conclusions

Further Perspectives

o study the case H(u) nonlinear w.r.t. u.

@ try to obtain a stronger controllability result, that is allowing
(i, (0))| = m; with 2y 77 = 1.

@ looking for a good approximation of the integral curves of Xp which
are more easily computable.
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