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Cavity QED quantum feedback scheme

state
injection

Goal:
 Steering the trapped microwave 
field (harmonic oscillator) to a 
desired quantum state

 Preserving this state from 
decoherence

Elements of feedback loop
 Quantum measurement: performed with (spin ½) atoms followed by cavity state estimation

 Quantum filter: estimation of what is best to do for becoming closer to the target

 Actuator – Classical: microwave injection with a classical source

Quantum: resonant interaction with a single two-level atom
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Outline

• Cavity QED setup

• Quantum non-demolition measurement

• Quantum feedback proposal:
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generation of photon-number states
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Microwave superconducting cavity:
Storage box for photons

- Resonance @ νcav = 51 GHz
- Lifetime of photons Tcav= 130 ms
- Q factor = ωcav Tcav = 4.2 ⋅ 1010 

5 cm

- best Fabry-Pérot resonator so far

- 1.4 billion bounces on the mirrors

- a light travel distance of 39 000 km 
(one full turn around the Earth)

2.8 cm
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- Rydberg atoms: large 
principle quantum number n
- Circular states: l=|m|=n-1
- Mesoscopic orbit size 
- Large dipole moment

Advantages:
- Almost ideal two-level system
- Long lifetime (30 ms)
- Tunable via the Stark effect 
- Large coupling to radiation (orbit diameter of 0.25 µm)
- Efficient state sensitive detection by ionization

Circular Rydberg atoms: Field microprobes

n = 51 (level e)

n = 50 (level g)

51 GHz 
= cavity resonance

85 Rubidium atom
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Meeting atoms and photons

Field 
ionization 
detector

Microwave source

Lasers

Circular 
atoms 

preparation

Low Q cavities: classical field pulses
(Ramsey interferometer to manipulate spin ½ atoms )

High Q cavity
(harmonic oscillator)

Atom
source

cooled to 0.8 K;
thermal, acoustic, 

magnetic & electric 
isolation 7
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Outline

• Cavity QED setup

• Quantum non-demolition measurement

• Quantum feedback proposal:
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Dispersive interaction
cavityatom

Phase shift of atomic coherence (light shift)

Energy conservation + adiabatic coupling 
⇒ the field (i.e. photon number) is preserved

phase shift per photon

99

number 
of photons
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QND measurement of photon number

1. Trigger of the atom clock:
resonant π/2 pulse π

2

1010

Bloch vector representation 
for spin ½ particle
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QND measurement of photon number

1. Trigger of the atom clock:
resonant π/2 pulse π

2
2. Dephasing of the clock:
interaction with the cavity field
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π 
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n=2

n=0

n=1n=3

n=4
n=5 n=6 n=7

11

phase



Quantum feedback in cavity QED Workshop on Quantum Control, 2010

QND measurement of photon number

1. Trigger of the atom clock:
resonant π/2 pulse π 

2 
π
2

2. Dephasing of the clock:
interaction with the cavity field

3. Measurement of the clock: 
second π/2 pulse & atom's state detection

phase

n=2
n=0

n=1

n=3

n=4 n=5
n=6

n=7
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Single atom detection

initial knowledge

atom in |e〉

atom in |g〉
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From weak to projective measurement

• Initial coherent field with 3.7 photon

• Progressive collapse of the field 
state vector during information 
acquisition

Many repeated weak measurements result in 
the ideal projective measurement of the photon number

14



Quantum feedback in cavity QED Workshop on Quantum Control, 2010

Another sequence

• Final photon number fluctuates 
randomly from sequence to 
sequence

• Statistics of final photon number 
should reveal the statistics of the 
initial quantum field
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Many repeated weak measurements result in 
the ideal projective measurement of the photon number
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Photon number statistics
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|n〉=3 state preparation
by post-selection

Coherent state of a harmonic oscillator in a photon-number basis
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Outline

• Cavity QED setup

• Quantum non-demolition measurement

• Quantum feedback proposal:

generation of photon-number states on demand

Workshop on Quantum Control, 2010 17
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Back-action of weak measurement 
initial state

projected state

detection
direction

phase shift

photon number
operator
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atom detection changes 
photon-number distribution

atom in |e〉

atom in |g〉

⇒ good

⇒ bad

on average, good/bad outcomes 
are equally probable
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Back-action of weak measurement 
initial state

projected state

detection
direction
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atom in |e〉

atom in |g〉

Deterministically 
prepare state |n〉=3 ?   

⇒ good

⇒ bad

Idea: Let us alter the distribution, i.e. increase P(n=3),
depending on measurement outcome before the next measurement
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Field displacement as feedback control
We modify the photon-number distribution by displacing the field's state:

displacement operator                                       :  injection of a coherent pulse into the cavity

displacement amplitude: complex amplitude of the injection pulse

Displacement amplitude is chosen to maximize the fidelity to the desired 
photon number (i.e. population of this state): 

desired photon number state

Efficient feedback law (using Lyapunov function approach) reads: 

optimal gain
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Proposal: Quantum feedback loop

state
injection

Standard closed-loop 
components:
 Sensor (quantum): 

atoms and QND measurement

 Controller (classical): 

classical computer

 Actuator (classical): 

microwave injection

Feedback protocol:
 Inject initial coherent field into the cavity
 Send one-by-one atoms in a Ramsey configuration
 Detection of each atom projects cavity field ρ into a new state ρproj

 Calculate displacement α, which maximizes overlap F between ρtarget and ρdisp

 Close feedback loop by injecting a control coherent field |α〉

 Repeat feedback cycles until success when F ≈1
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Feedback performance: ideal case

n > ntarget

n = ntarget

n < ntarget

Workshop on Quantum Control, 2010 23

Monte-Carlo simulation 
with ntarget = 3 photons

average over 104 quantum trajectories
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Feedback performance: realistic case

 target Fock state: |3〉
 Hilbert space size: 10

 cavity decay time: 130 ms
 separation of atomic pulses: 100 µs
 delay in atom detection of 4 atoms 
 black-body thermal field: 0.05 photons

 average number of atoms per pulse: 0.4 
 detection efficiency: 80%
 false state detection: 10%

Workshop on Quantum Control, 2010 24

Simulation parameters:

n > ntarget

n = ntarget

n < ntarget
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P
op

ul
at

io
n

Feedback performance

initial state

final statephoton loss

convergence

state recovery

Simulation results for a target Fock state ρtarget = |3〉

about 3 atoms in 1 ms
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Average over many trajectories

What is fidelity of the state production at arbitrary time?

about 63% fidelity

result of
cavity decay

average over 104 quantum trajectories

P
op

ul
at

io
n
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Convergence rate

How fast the target state is prepared ?

- We chose the feedback to converge if F > 95%
- Convergence probability of about 50% after 20 ms
- Inevitably, all trajectories converge
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Resonant atoms as field injectors

Workshop on Quantum Control, 2010 28

0 5 10 15 20
0,0

0,2

0,4

0,6

0,8

1,0

E
m

is
si

on
 p

ro
ba

bi
lit

y
P

(t)

Time t [µs] 

Probability to inject a photon
for an atom initially in |e〉:

Rabi oscillation in a photon number state



Quantum feedback in cavity QED

Resonant atoms as field injectors

Rabi oscillation in a photon number state

At t =10 µs, atoms perform 
2π pulse in 3 photons:

“trapping state” situation

Workshop on Quantum Control, 2010 29
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Probability to inject a photon
for an atom initially in |e〉:

“Photon pumping” of the cavity:
1. Start from empty cavity (vacuum state with n=0)
2. Send atoms in |e〉 and set interaction time to 2π for |3〉 state
3. After several atoms, the cavity will be “pumped” and “trapped” in |3〉
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BUT:
As soon as n>3 (e.g. due to thermal field excitation), field will continue 
to uncontrollably increase and run away from the desired state ! 

SOLUTION: 
Probe the field with QND atoms and start to send resonant atoms in 
state |g〉 if n>3 in order to absorb the excess field !

Resonant atoms as field injectors

Rabi oscillation in a photon number state

At t =10 µs, atoms perform 
2π pulse in 3 photons:

“trapping state” situation

Workshop on Quantum Control, 2010 30
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Atomic feedback convergence

initial state:
coherent with 〈n〉=3

initial state:
vacuum

Very fast convergence toward the target
Workshop on Quantum Control, 2010 31

Monte-Carlo simulations
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Stabilization of decoherence
Cavity decay:

|3〉 → |2〉 quantum jump
⇓

Intrinsic passive stability

Black-body field emission:
|3〉 →|4〉 quantum jump

⇓
Active feedback action

Workshop on Quantum Control, 2010 32
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Atomic feedback convergence

Convergence to |n〉=3 with 90% fidelity in 15 ms

Average over many trajectory
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initial state: 
coherent with 〈n〉=3
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Trapping state instability

Photon number evolution in trapping state condition 
without feedback: instability due to blackbody radiation 
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initial state: 
coherent with 〈n〉=3
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• Other work in progress:
 non-local state preparation in two cavities
 EPR pair of Schrödinger cats

Conclusion / Perspectives
• Quantum Non-Demolition photon counting for quantum 

state preparation :
 weak and projective measurement

• Quantum feedback proposals – coherent and atomic:
 deterministic preparation of number states with high fidelity
 protection of these states with respect to decoherence

Realization in progress

Workshop on Quantum Control, 2010 35
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Thank you
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